TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
1
DOutstanding Combination of dc Precision
and AC Performance:
Unity-Gain Bandwidth...15 MHz Typ
Vn3.3 nV/Hz at f = 10 Hz Typ,. . . . .
2.5 nV/Hz at f = 1 kHz Typ
VIO 25 μV Max. . . .
AVD 45 V/μV Typ With RL = 2 kΩ,. . . .
19 V/μV Typ With RL = 600 Ω
DAvailable in Standard-Pinout Small-Outline
Package
DOutput Features Saturation Recovery
Circuitry
DMacromodels and Statistical information
description
The TLE20x7 and TLE20x7A contain innovative
circuit design expertise and high-quality process
control techniques to produce a level of ac
performance and dc precision previously unavail-
able in single operational amplifiers. Manufac-
tured using Texas Instruments state-of-the-art
Excalibur process, these devices allow upgrades
to systems that use lower-precision devices.
In the area of dc precision, the TLE20x7 and
TLE20x7A offer maximum offset voltages of
100 μV and 25 μV, respectively, common-mode
rejection ratio of 131 dB (typ), supply voltage
rejection ratio of 144 dB (typ), and dc gain of
45 V/μV (typ).
AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP
TA
VIOmax AT
25°CSMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
CHIP
FORM
(Y)
0
°
C to 70
°
C
25 μVTLE2027ACD
TLE2037ACD
TLE2027ACP
TLE2037ACP
TLE2027Y
TLE2037Y
0
°
C to 70
°
C
100 μVTLE2027CD
TLE2037CD
TLE2027CP
TLE2037CP
TLE2027Y
TLE2037Y
40
°
C to 105
°
C
25 μVTLE2027AID
TLE2037AID
TLE2027AIP
TLE2037AIP
40
°
C to 105
°
C
100 μVTLE2027ID
TLE2037ID
TLE2027IP
TLE2037IP
55
°
C to 125
°
C
25 μVTLE2027AMD
TLE2037AMD
TLE2027AMFK
TLE2037AMFK
TLE2027AMJG
TLE2037AMJG
TLE2027AMP
TLE2037AMP
55
°
C to 125
°
C
100 μVTLE2027MD
TLE2037MD
TLE2027MFK
TLE2037MFK
TLE2027MJG
TLE2037MJG
TLE2027MP
TLE2037MP
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR).
Chip forms are tested at 25°C only.
Copyright © 20022006, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
www.ti.com
1
2
3
4
8
7
6
5
OFFSET N1
IN
IN +
VCC
OFFSET N2
VCC +
OUT
NC
D, JG, OR P PACKAGE
(TOP VIEW)
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
NC
VCC +
NC
OUT
NC
NC
IN
NC
IN+
NC
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NC
NC NC
NC
NC
NC OFFSET N2
CC
V
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443
description (continued)
The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification
of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hz and 2.5 nV/Hz at frequencies
of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate
(7.5 V/μs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be
operated with a closed-loop gain of 5 or greater.
Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard
8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for
operation from 0°C to 70°C. The I-suffix devices are characterized for operation from 40°C to 105°C. The
M-suffix devices are characterized for operation over the full military temperature range of 55°C to 125°C.
symbol
OUT
OFFSET N2
IN
IN +
OFFSET N1
+
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
3
TLE202xY chip information
This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression
or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ±10%.
ALL DIMENSIONS ARE IN MILS.
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
(1) (2) (3)
(4)
(5)
(6)
(7)(8)
90
73
(1)
(2)
(3)
(4)
(6)
(7)
(8)
+
OUT
IN+
IN
VCC+
VCC
OFFSET N1
OFFSET N2
(1)
(3)
(2)
(8)
(7)
(4)
(6)
44444
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
44
44
4www.ti.com
equivalent schematic
IN
IN +
R24 R26
Q57
Q56
Q55
Q60
OUT
Q62
Q59
Q61
Q58
R25
Q48
Q54
Q53
Q52
Q49
Q50
R23
R22
R21
R20
Q46
Q42
R19
Q47
Q44
Q43
Q40 Q45
Q41
Q39
Q38
Q37
Q35
R15
Q36
R16
R17
C4
C3
R13
Q34
Q33
Q32
R9
Q27
Q30
R8 R11
Q25 Q28
C2
Q31
Q26 Q29
R18R14R12R10R7
Q19
C1
Q24Q23
Q20
R6
R3
Q21
Q22
Q16
Q15
Q18
R5
R4
Q13
Q14
Q17
R2
R1
OFFSET N2
OFFSET N1
Q12
Q10
Q9
Q11
Q8
Q7
Q5
Q6
Q4
Q1
Q3
Q2
Q51
CC
V
CC+
V
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLE2027 TLE2037
Transistors 61 61
Resistors 26 26
epiFET 1 1
Capacitors 4 4
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
5
www.ti.com
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) 19 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage, VCC 19 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±1.2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input) VCC±
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each Input) ±1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VCC+ 50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VCC 50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix 40°C to 105°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case temperature for 60 seconds, TC: FK package 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260°C. . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C. . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC .
2. Differential voltages are at IN+ with respect to IN . Excessive current flows if a differential input voltage in excess of approximately
±1.2 V is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE TA 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 105°C
POWER RATING
TA = 125°C
POWER RATING
D725 mW 5.8 mW/°C464 mW 261 mW 145 mW
FK 1375 mW 11.0 mW/°C 880 mW 495 mW 275 mW
JG 1050 mW 8.4 mW/°C 672 mW 378 mW 210 mW
P1000 mW 8.0 mW/°C640 mW 360 mW 200 mW
recommended operating conditions
C SUFFIX I SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX UNIT
Supply voltage, VCC ±±4±19 ±4±19 ±4±19 V
Common mode input voltage V
TA = 25°C11 11 11 11 11 11
V
Common-mode input voltage, VIC TA = Full range10.5 10.5 10.4 10.4 10.2 10.2 V
Operating free-air temperature, TA0 70 40 105 55 125 °C
Full range is 0°C to 70°C for C-suffix devices, 40°C to 105°C for I-suffix devices, and 55°C to 125°C for M-suffix devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
6www.ti.com
TLE20x7C electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE20x7C TLE20x7AC
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX UNIT
Input offset voltage
25°C 20 100 10 25
V
VIO Input offset voltage Full range 145 70 μV
αVIO
Temperature coefficient of
input offset voltage Full range 0.4 1 0.2 1 μV/°C
Input offset voltage
long-term drift (see Note 4) VIC = 0, RS = 50 Ω25°C 0.006 1 0.006 1 μV/mo
Input offset current
25°C 6 90 6 90
nA
IIO Input offset current Full range 150 150 nA
Input bias current
25°C 15 90 15 90
nA
IIB Input bias current Full range 150 150 nA
Common-mode input
R 50 Ω
25°C
11
to
11
13
to
13
11
to
11
13
to
13
V
VICR
Common mode input
voltage range RS = 50 Ω
Full range
10.5
to
10.5
10.5
to
10.5
V
R 600 Ω
25°C 10.5 12.9 10.5 12.9
Maximum
p
ositive
p
eak
RL = 600 Ω Full range 10 10
V
VOM +
Maximum positive peak
output voltage swing
R 2 kΩ
25°C 12 13.2 12 13.2 V
pgg
RL = 2 kΩFull range 11 11
R 600 Ω
25°C10.5 13 10.5 13
Maximum negative peak RL = 600 ΩFull range 10 10
V
VOM
Maximum negative peak
output voltage swing
R 2 kΩ
25°C12 13.5 12 13.5 V
RL = 2 kΩFull range 11 11
VO = ±11 V, RL = 2 kΩ25°C 5 45 10 45
VO = ±10 V, RL = 2 kΩFull range 2 4
Large-signal differential
V ±10 V R 1 kΩ
25°C 3.5 38 8 38
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 1 kΩFull range 1 2.5 V/μV
V
O
= ±10 V, 25°C 2 19 5 19
VO = ±10 V
,
RL = 600 ΩFull range 0.5 2
CiInput capacitance 25°C 8 8 pF
zo
Open-loop output
impedance IO = 0 25°C 50 50 Ω
Common-mode re
j
ection VI
C
= VI
C
Rmin, 25°C 100 131 117 131
dB
CMRR
Common mode rejection
ratio
VIC = VICRmin
,
RS = 50 ΩFull range 98 114 dB
Suppl
y
-volta
g
e re
j
ection
VCC ±= ±4 V to ±18 V,
RS = 50 Ω25°C 94 144 110 144
dB
kSVR
Supply voltage rejection
ratio (ΔVCC ±/ΔVIO)VCC ±= ±4 V to ±18 V,
RS = 50 ΩFull range 92 106
dB
Supply current
V 0 No load
25°C 3.8 5.3 3.8 5.3
mA
ICC Supply current VO = 0, No load Full range 5.6 5.6 mA
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
7
www.ti.com
TLE20x7C operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
TEST CONDITIONS
TLE20x7C TLE20x7AC
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX MIN TYP MAX UNIT
RL = 2 kΩ,
C 100 pF
TLE2027 1.7 2.8 1.7 2.8
CL = 100 pF,
See Figure 1 TLE2037 6 7.5 6 7.5
SR Slew rate at unity gain RL = 2 kΩ,
C
L
= 100
p
F, TLE2027 1.2 1.2 V/μs
CL = 100 pF
,
TA = 0°C to 70°C,
See Figure 1 TLE2037 5 5
V
Equivalent input noise volt- RS = 20 Ω, f = 10 Hz 3.3 8 3.3 4.5
nV/Hz
Vn
Equivalent input noise volt
age (see Figure 2) RS = 20 Ω, f = 1 kHz 2.5 4.5 2.5 3.8 nV/
Hz
VN(PP)
Peak-to-peak equivalent in-
put noise voltage f = 0.1 Hz to 10 Hz 50 250 50 130 nV
I
Equivalent input noise cur- f = 10 Hz 10 25 10 25
pA/Hz
In
Equivalent input noise cur
rent f = 1 kHz 0.8 1.8 0.8 1.8 pA/
Hz
THD
Total harmonic distortion
VO = + 10 V,
AVD = 1,
See Note 5
TLE2027 < 0.002% < 0.002%
THD Total harmonic distortion VO = + 10 V,
AVD = 5,
See Note 5
TLE2037 < 0.002% < 0.002%
B1
Unity-gain bandwidth
(see Figure 3)
RL = 2 kΩ,
CL = 100 pF TLE2027 9(6) 13 9(6) 13
MHz
GBW Gain bandwidth product RL = 2 kΩ,
CL = 100 pF TLE2037 35 50 35 50
MHz
B
Maximum output-swin
g
R 2 kΩ
TLE2027 30 30
kHz
BOM
Maximum output swing
bandwidth RL = 2 kΩTLE2037 80 80 kHz
φ
Phase margin at unity gain RL = 2 kΩ,TLE2027 55°55°
φ
m
Phase margin at unity gain
(see Figure 3)
RL 2 kΩ,
CL = 100 pF TLE2037 50°50°
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
NOTE 6: This parameter is not production tested
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
8www.ti.com
TLE20x7I electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE20x7I TLE20x7AI
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX UNIT
Input offset voltage
25°C 20 100 10 25
V
VIO Input offset voltage Full range 180 105 μV
αVIO
Temperature coefficient of
input offset voltage Full range 0.4 1 0.2 1 μV/°C
Input offset voltage
long-term drift (see Note 4) VIC = 0, RS = 50 Ω25°C 0.006 1 0.006 1 μV/mo
Input offset current
25°C 6 90 6 90
nA
IIO Input offset current Full range 150 150 nA
Input bias current
25°C 15 90 15 90
nA
IIB Input bias current Full range 150 150 nA
Common-mode input
R 50 Ω
25°C
11
to
11
13
to
13
11
to
11
13
to
13
V
VICR
Common mode input
voltage range RS = 50 Ω
Full range
10.4
to
10.4
10.4
to
10.4
V
R 600 Ω
25°C 10.5 12.9 10.5 12.9
Maximum
p
ositive
p
eak
RL = 600 Ω Full range 10 10
V
VOM +
Maximum positive peak
output voltage swing
R 2 kΩ
25°C 12 13.2 12 13.2 V
pgg
RL = 2 kΩFull range 11 11
R 600 Ω
25°C10.5 13 10.5 13
Maximum negative peak RL = 600 ΩFull range 10 10
V
VOM
Maximum negative peak
output voltage swing
R 2 kΩ
25°C12 13.5 12 13.5 V
RL = 2 kΩFull range 11 11
VO = ±11 V, RL = 2 kΩ25°C 5 45 10 45
VO = ±10 V, RL = 2 kΩFull range 2 3.5
Large-signal differential
V ±10 V R 1 kΩ
25°C 3.5 38 8 38
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 1 kΩFull range 1 2.2 V/μV
V ±10 V R 600 Ω
25°C 2 19 5 19
VO = ±10 V, RL = 600 ΩFull range 0.5 1.1
CiInput capacitance 25°C 8 8 pF
zo
Open-loop output
impedance IO = 0 25°C 50 50 Ω
Common-mode re
j
ection VI
C
= VI
C
Rmin, 25°C 100 131 117 131
dB
CMRR
Common mode rejection
ratio
VIC = VICRmin
,
RS = 50 ΩFull range 96 113 dB
Suppl
y
-volta
g
e re
j
ection
VCC ±= ±4 V to ±18 V,
RS = 50 Ω25°C 94 144 110 144
dB
kSVR
Supply voltage rejection
ratio (ΔVCC ±/ΔVIO)VCC ±= ±4 V to ±18 V,
RS = 50 ΩFull range 90 105
dB
Supply current
VO 0 No load
25°C 3.8 5.3 3.8 5.3
mA
ICC Supply current VO = 0, No load Full range 5.6 5.6 mA
Full range is 40°C to 105°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
9
www.ti.com
TLE20x7I operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
TEST CONDITIONS
TLE20x7I TLE20x7AI
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX MIN TYP MAX UNIT
RL = 2 kΩ,
C 100 pF
TLE2027 1.7 2.8 1.7 2.8
CL = 100 pF,
See Figure 1 TLE2037 6 7.5 6 7.5
SR Slew rate at unity gain RL = 2 kΩ,
C
L
= 100
p
F, TLE2027 1.1 1.1 V/μs
CL = 100 pF
,
TA = 40°C to 85°C,
See Figure 1 TLE2037 4.7 4.7
V
Equivalent input noise RS = 20 Ω, f = 10 Hz 3.3 8 3.3 4.5
nV/Hz
Vn
Equivalent input noise
voltage (see Figure 2) RS = 20 Ω, f = 1 kHz 2.5 4.5 2.5 3.8 nV/
Hz
VN(PP)
Peak-to-peak equivalent
input noise voltage f = 0.1 Hz to 10 Hz 50 250 50 130 nV
I
Equivalent input noise f = 10 Hz 10 25 10 25
pA/Hz
In
Equivalent input noise
current f = 1 kHz 0.8 1,8 0.8 1.8 pA/
Hz
THD
Total harmonic distortion
VO = + 10 V,
AVD = 1,
See Note 5
TLE2027 < 0.002% < 0.002%
THD Total harmonic distortion VO = + 10 V,
AVD = 5,
See Note 5
TLE2037 < 0.002% < 0.002%
B1
Unity-gain bandwidth
(see Figure 3)
RL = 2 kΩ,
CL = 100 pF TLE2027 9(6) 13 9(6) 13
MHz
GBW Gain bandwidth product RL = 2 kΩ,
CL = 100 pF TLE2037 35 50 35 50
MHz
B
Maximum output-swin
g
R 2 kΩ
TLE2027 30 30
kHz
BOM
Maximum output swing
bandwidth RL = 2 kΩTLE2037 80 80 kHz
φ
Phase mar
g
in at unit
y
RL = 2 kΩ,TLE2027 55°55°
φm
Phase margin at unity
gain (see Figure 3)
RL = 2 kΩ
,
CL = 100 pF TLE2037 50°50°
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
NOTE 6: This parameter is not production tested.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
10 www.ti.com
TLE20x7M electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE20x7M TLE20x7AM
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX UNIT
Input offset voltage
25°C 20 100 10 25
V
VIO Input offset voltage Full range 200 105 μV
αVIO
Temperature coefficient of
input offset voltage Full range 0.4 1* 0.2 1* μV/°C
Input offset voltage
long-term drift (see Note 4) VIC = 0, RS = 50 Ω25°C 0.006 1* 0.006 1* μV/mo
Input offset current
25°C 6 90 6 90
nA
IIO Input offset current Full range 150 150 nA
Input bias current
25°C 15 90 15 90
nA
IIB Input bias current Full range 150 150 nA
Common-mode input
R 50 Ω
25°C
11
to
11
13
to
13
11
to
11
13
to
13
V
VICR
Common mode input
voltage range RS = 50 Ω
Full range
10.3
to
10.3
10.4
to
10.4
V
R 600 Ω
25°C 10.5 12.9 10.5 12.9
Maximum
p
ositive
p
eak
RL = 600 Ω Full range 10 10
V
VOM +
Maximum positive peak
output voltage swing
R 2 kΩ
25°C 12 13.2 12 13.2 V
pgg
RL = 2 kΩFull range 11 11
R 600 Ω
25°C10.5 13 10.5 13
Maximum negative peak RL = 600 ΩFull range 10 10
V
VOM
Maximum negative peak
output voltage swing
R 2 kΩ
25°C12 13.5 12 13.5 V
RL = 2 kΩFull range 11 11
VO = ±11 V, RL = 2 kΩ25°C 5 45 10 45
L i l diff ti l
VO = ±10 V, RL = 2 kΩFull range 2.5 3.5
AVD
Large-signal differential
voltage amplification
V ±10 V R 1 kΩ
25°C 3.5 38 8 38 V/μV
vo
lt
age
amp
lifi
ca
ti
on VO = ±10 V, RL = 1 kΩFull range 1.8 2.2
V/μV
V ±10 V R 600 Ω
25°C
2
19
5
19
VO = ±10 V, RL = 600 Ω25°C 2 19 5 19
Ci Input capacitance 25°C 8 8 pF
zo
Open-loop output
impedance IO = 0 25°C 50 50 Ω
Common-mode re
j
ection VI
C
= VI
C
Rmin, 25°C 100 131 117 131
dB
CMRR
Common mode rejection
ratio
VIC = VICRmin
,
RS = 50 ΩFull range 96 113 dB
Suppl
y
-volta
g
e re
j
ection
VCC ±= ±4 V to ±18 V,
RS = 50 Ω25°C 94 144 110 144
dB
kSVR
Supply voltage rejection
ratio (ΔVCC ±/ΔVIO)VCC ±= ±4 V to ±18 V,
RS = 50 ΩFull range 90 105
dB
Supply current
V 0 No load
25°C 3.8 5.3 3.8 5.3
mA
ICC Supply current VO = 0, No load Full range 5.6 5.6 mA
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
Full range is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
11
www.ti.com
TLE20x7M operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
TEST CONDITIONS
TLE20x7M TLE20x7AM
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX MIN TYP MAX UNIT
RL = 2 kΩ,
C 100 pF
TLE2027 1.7 2.8 1.7 2.8
CL = 100 pF,
See Figure 1 TLE2037 6* 7.5 6* 7.5
SR Slew rate at unity gain RL = 2 kΩ,
C
L
= 100
p
F, TLE2027 1 1 V/μs
CL = 100 pF
,
TA = 55°C to 125°C,
See Figure 1 TLE2037 4.4* 4.4*
V
Equivalent input noise RS = 20 Ω, f = 10 Hz 3.3 8* 3.3 8*
nV/Hz
Vn
Equivalent input noise
voltage (see Figure 2) RS = 20 Ω, f = 1 kHz 2.5 4* 2.5 4* nV/
Hz
VN(PP)
Peak-to-peak equivalent
input noise voltage f = 0.1 Hz to 10 Hz 225 375* 225 375* nV
I
Equivalent input noise f = 10 Hz 25 25
pA/Hz
In
Equivalent input noise
current f = 1 kHz 2.5 2.5 pA/
Hz
THD
Total harmonic distortion
VO = + 10 V,
AVD = 1,
See Note 5
TLE2027 < 0.002% < 0.002%
THD Total harmonic distortion VO = + 10 V,
AVD = 5,
See Note 5
TLE2037 < 0.002% < 0.002%
B
Unit
y
-
g
ain bandwidth RL = 2 kΩ,TLE2027 7* 13 9* 13
MHz
B1
Unity gain bandwidth
(see Figure 3)
RL = 2 kΩ
,
CL = 100 pF TLE2037 35 50 35 50 MHz
B
Maximum output-swin
g
R 2 kΩ
TLE2027 30 30
kHz
BOM
Maximum output swing
bandwidth RL = 2 kΩTLE2037 80 80 kHz
φ
Phase margin at unity RL = 2 kΩ,TLE2027 55°55°
φ
m
Phase margin at unity
gain (see Figure 3)
RL 2 kΩ,
CL = 100 pF TLE2037 50°50°
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
12 www.ti.com
TLE20x7Y electrical characteristics, VCC± = ±15 V, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE20x7Y
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIO Input offset voltage 20 μV
Input offset voltage
long-term drift (see Note 4) V
IC
= 0, R
S
= 50 Ω0.006 μV/mo
IIO Input offset current
VIC = 0
,
RS = 50 Ω
6 nA
IIB Input bias current 15 nA
VICR Common-mode input voltage range RS = 50 Ω
13
to
13
V
Maximum positive peak output voltage swing
RL = 600 Ω 12.9
V
VOM + Maximum positive peak output voltage swing RL = 2 kΩ13.2
V
Maximum negative peak output voltage swing
RL = 600 Ω13
V
VOM Maximum negative peak output voltage swing RL = 2 kΩ13.5 V
VO = ±11 V, RL = 2 kΩ45
Large-signal differential voltage amplification
VO = ±10 V, RL = 1 kΩ38
V/μV
VD
L
arge-s
i
gna
l diff
erent
i
a
l
vo
l
tage
amp
lifi
cat
i
on
VO = ±10 V,
RL = 600 Ω19
V/
μ
V
CiInput capacitance 8 pF
zoOpen-loop output impedance IO = 0 50 Ω
CMRR Common-mode rejection ratio VIC = VICRmin,
RS = 50 Ω131 dB
kSVR Supply-voltage rejection ratio (ΔVCC ±/ΔVIO)VCC ±= ±4 V to ±18 V,
RS = 50 Ω144 dB
ICC Supply current VO = 0, No load 3.8 mA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
13
www.ti.com
TLE20x7Y operating characteristics at specified free-air temperature, VCC ± = ±15 V
PARAMETER
TEST CONDITIONS
TLE20x7Y
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR
Slew rate at unity gain
RL = 2 kΩ,C
L = 100 pF, TLE2027 2.8
V/ s
SR Slew rate at unity gain
RL = 2 kΩ
,
CL = 100 pF
,
See Figure 1 TLE2037 7.5 V/μs
V
Equivalent input noise voltage (see Figure 2)
RS = 20 Ω, f = 10 Hz 3.3
nV/Hz
VnEquivalent input noise voltage (see Figure 2) RS = 20 Ω, f = 1 kHz 2.5 nV/
Hz
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 50 nV
I
Equivalent input noise current
f = 10 Hz 10
pA/Hz
InEquivalent input noise current f = 1 kHz 0.8 pA/
Hz
THD
Total harmonic distortion
VO = + 10 V, AVD = 1,
See Note 5 TLE2027 < 0.002%
THD Total harmonic distortion VO = + 10 V, AVD = 5,
See Note 5 TLE2037 < 0.002%
B
Unity gain bandwidth (see Figure 3)
R 2 kΩC 100 pF
TLE2027 13
MHz
B1Unity-gain bandwidth (see Figure 3) RL = 2 kΩ,C
L = 100 pF TLE2037 50 MHz
B
Maximum output swing bandwidth
R 2 kΩ
TLE2027 30
kHz
BOM Maximum output-swing bandwidth RL = 2 kΩTLE2037 80 kHz
φ
Phase margin at unity gain (see Figure 3)
R 2 kΩC 100 pF
TLE2027 55°
φ
mPhase margin at unity gain (see Figure 3) RL = 2 kΩ,C
L = 100 pF TLE2037 50°
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
14 www.ti.com
PARAMETER MEASUREMENT INFORMATION
VO
20 Ω
20 Ω
2 kΩ
15 V
15 V
+
RL = 2 kΩ
CL =
100 pF
(see Note A)
VO
15 V
VI+
15 V
Rf
NOTE A: CL includes fixture capacitance.
RI
Figure 1. Slew-Rate Test Circuit Figure 2. Noise-Voltage Test Circuit
VO
2 kΩ
CL =
100 pF
(see Note A)
10 kΩ
100 Ω
VI
15 V
15 V
+
VO
2 kΩ
15 V
15 V
+
VI
CL =
100 pF
(see Note A)
NOTES: A. CL includes fixture capacitance.NOTE A: CL includes fixture capacitance.
B. For the TLE2037 and TLE2037A,
AVD must be 5.
Rf
RI
Figure 3. Unity-Gain Bandwidth and Figure 4. Small-Signal Pulse-
Phase-Margin Test Circuit (TLE2027 Only) Response Test Circuit
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
15
www.ti.com
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
initial estimates of parameter distributions
In the ongoing program of improving data sheets and supplying more information to our customers, Texas
Instruments has added an estimate of not only the typical values but also the spread around these values. These
are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the
characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown
at the points where data was actually collected. The 95% and 5% points are used instead of ±3 sigma since
some of the distributions are not true Gaussian distributions.
The number of units tested and the number of different wafer lots used are on all of the graphs where distribution
bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is
a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always
the case on newly released products since there can only be data available from a few wafer lots.
The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each
distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested
fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices
fell outside every distribution bar.
Supply Current mA
CC
I
4.5
5
4
3.5
3
2.5
TA Free-Air Temperature °C
1501251007550250255075
(5% of the devices fell below this point.)
5% point on the distribution bar
and lower points on the distribution bar.
90% of the devices were within the upper
(5% of the devices fell above this point.)
95% point on the distribution bar
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
VCC± = ±15 V
VO = 0
No Load
Sample Size = 835 Units
From 2 Water Lots
Figure 5. Sample Graph With Distribution Bars
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
16 www.ti.com
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input offset voltage Distribution 6, 7
ΔVIO Input offset voltage change vs Time after power on 8, 9
IIO Input offset current vs Free-air temperature 10
I
Input bias current
vs Free-air temperature 11
IIB Input bias current
vs
vs
Free air temperature
Common-mode input voltage
11
12
IIInput current vs Differential input voltage 13
VO(PP) Maximum peak-to-peak output voltage vs Frequency 14, 15
V
Maximum (positive/ne
g
ative) peak output vs Load resistance 16, 17
VOM
Maximum (positive/negative) peak output
voltage
vs
vs
Load resistance
Free-air temperature
16
,
17
18, 19
vs Su
pp
l
y
volta
g
e 20
A
Large signal differential voltage amplification
vs
vs
Supply voltage
Load resistance
20
21
AVD Large-signal differential voltage amplification
vs
vs
Load resistance
Frequency
21
22 25
vs
vs
Frequency
Free-air temperature
22 25
26
zoOutput impedance vs Frequency 27
CMRR Common-mode rejection ratio vs Frequency 28
kSVR Supply-voltage rejection ratio vs Frequency 29
vs Su
pp
l
y
volta
g
e30
,
31
I
OS
Short-circut output current
vs
vs
Supply voltage
Elapsed time
30
,
31
32, 33
IOS
Short circut output current
vs
vs
Elapsed time
Free-air temperature
32
,
33
34, 35
I
Supply current
vs Suppl
y
volta
g
e 36
ICC Supply current
vs
vs
Supply voltage
Free-air temperature
36
37
Voltage follower pulse response
Small si
g
nal 38, 40
Voltage-follower pulse response
Small signal
Large signal
38
,
40
39, 41
VnEquivalent input noise voltage vs Frequency 42
Noise voltage (referred to input) Over 10-second interval 43
B
Unity gain bandwidth
vs Supply voltage 44
B1Unity-gain bandwidth
vs
vs
Supply voltage
Load capacitance
44
45
Gain bandwidth product
vs Suppl
y
volta
g
e 46
Gain bandwidth product
vs
vs
Supply voltage
Load capacitance
46
47
SR Slew rate vs Free-air temperature 48, 49
vs Su
pp
l
y
volta
g
e50
,
51
φm
Phase mar
g
in
vs
vs
Supply voltage
Load capacitance
50
,
51
52, 53
φ
m
Phase margin
vs
vs
Load capacitance
Free-air temperature
52
,
53
54, 55
Phase shift vs Frequency 22 25
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
17
www.ti.com
TYPICAL CHARACTERISTICS
Figure 6
Percentage of Amplifiers %
VIO Input Offset Voltage μV
TA = 25°C
VCC± = +15 V
16
14
12
10
8
6
4
2
0 120906030306090120
0
ÎÎÎÎ
D Package
ÎÎÎÎÎÎÎÎÎÎÎÎ
1568 Amplifiers Tested From 2 Wafer Lots
DISTRIBUTION
INPUT OFFSET VOLTAGE
Figure 7
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
00
t Time After Power On s
10 20 30 40 50 60
2
4
6
8
10
12
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
AVIO Change in Input Offset Voltage
ÁÁ
ÁÁ
ÁÁ
ΔVIO μV
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
50 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
D Package
Figure 8
t Time After Power On s
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
6
5
4
3
2
1
00 20 40 60 80 100 120 140 160 180
AVIO Change in Input Offset Voltage
ÁÁ
ÁÁ
ΔVIO μV
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
50 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
P Package
Figure 9
0
IIO Input Offset Current nA
5
10
15
20
25
30
15012510075502502550
TA Free-Air Temperature °C
75
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
IO
I
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC± = ±15 V
VIC = 0
Sample Size = 833 Units
From 2 Wafer Lots
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
18 www.ti.com
TYPICAL CHARACTERISTICS
Figure 10
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
20
75
IIB Input Bias Current nA
TA Free-Air Temperature °C
10
0
10
20
30
40
50
60
50 25 0 25 50 75 100 125 150
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
VCC ± = ±15 V
VIC = 0
Sample Size = 836 Units
From 2 Wafer Lots
IB
I
Figure 11
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
0
12
VIC Common-Mode Input Voltage V
840 4 8 12
5
10
15
20
25
30
35
40
TA = 25°C
VCC± = ±15 V
IIB Input Bias Current nA
IB
I
Figure 12
II Input Current mA
1
1.8
VID Differential Input Voltage V
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
1.2 0.6 0 0.6 1.2 1.8
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
I
I
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
VIC = 0
TA = 25°C
Figure 13
VO(PP) Maximum Peak-to-Peak Output Voltage V
TA = 55°C
TA = 125°C
10 M1 M100 k
30
25
20
15
10
5
f Frequency Hz
10 k
0
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC±= ±15 V
RL = 2 kΩ
TLE2027
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
19
www.ti.com
TYPICAL CHARACTERISTICS
Figure 14
VO(PP) Maximum Peak-to-Peak Output Voltage V
0
10 k
f Frequency Hz
5
10
15
20
25
30
100 k 1 M 100 M
TA = 55°C
10 M
ÁÁÁ
ÁÁÁ
ÁÁÁ
V
O(PP)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 kΩ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎ
ÎÎÎÎ
TA = 125°C
TLE2037
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
Figure 15
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
0
100
VOM+ Maximum Positive Peak Output Voltage V
RL Load Resistance Ω
2
4
6
8
10
12
14
1 k 10 k
ÁÁ
ÁÁ
ÁÁ
V
OM +
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
VCC ± = ±15 V
TA = 25°C
Figure 16
0
100
VOM Maximum Negative Peak Output Voltage V
RL Load Resistance Ω
2
4
6
8
10
12
14
1 k 10 k
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
ÁÁ
ÁÁ
ÁÁ
V
OM
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
TA = 25°C
Figure 17
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
12.9
75
TA Free-Air Temperature °C
13
13.1
13.2
13.3
13.4
13.5
50 25 0 25 50 75 100 125 150
VOM+ Maximum Positive Peak Output Voltage V
ÁÁ
ÁÁ
ÁÁ
V
OM +
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 kΩ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
From 2 Wafer Lots
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Sample Size = 832 Units
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
20 www.ti.com
TYPICAL CHARACTERISTICS
Figure 18
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
14
75
TA Free-Air Temperature °C
13.8
13.6
13.4
13.2
13
50 25 0 25 50 75 100 125 150
ÎÎÎÎÎ
RL = 2 kΩ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
VOM Maximum Negative Peak Output Voltage V
ÁÁÁ
ÁÁÁ
ÁÁÁ
V
OM
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Sample Size = 831 Units
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
From 2 Wafer Lots
Figure 19
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
0
0
VCC± Supply Voltage V
50
48 12 16 20
10
20
30
40
RL = 2 kΩ
RL = 1 kΩ
RL = 600 Ω
ÎÎÎÎ
TA = 25°C
AVD Large-Signal differential
ÁÁ
ÁÁ
ÁÁ
AVD Vμ
V/
Voltage Amplification
Figure 20
10
0
50
100 200 400 1 k 4 k 10 k
2 k
40
30
20
RL Load Resistance Ω
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
TA = 25°C
VCC± = ±15 V
AVD Large-Signal differential
ÁÁ
ÁÁ
ÁÁ
AVD Vμ
V/
Voltage Amplification
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
21
www.ti.com
TYPICAL CHARACTERISTICS
AVD
Phase Shift
VCC± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
Phase Shift
275°
75°
250°
225°
200°
175°
150°
125°
100°140
120
100
80
60
40
20
100 k100
160
100 M
f Frequency Hz
00.1
AVD Large-Signal Differential
ÁÁ
ÁÁ
AVD
Voltage Amplification dB
Figure 21
TLE2027
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
0.1
0
f Frequency MHz
100 M
160
100 100 k
20
40
60
80
100
120
140 100°
125°
150°
175°
200°
225°
250°
75°
275°
ÎÎÎÎÎ
ÎÎÎÎÎ
Phase Shift
ÎÎ
ÎÎ
AVD
Phase Shift
AVD Large-Signal Differential
Á
Á
Á
AVD
Voltage Amplification dB
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
CL = 100 pF
VCC± = ±15 V
RL = 2 kΩ
Figure 22
TLE2037
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
22 www.ti.com
TYPICAL CHARACTERISTICS
300°
100°
275°
250°
225°
200°
175°
150°
125°
Phase Shift
AVD
Phase Shift
704020
3
0
3
6
9
12
15
6
100
f Frequency MHz
18 10
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification dB
Figure 23
TLE2027
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
5
10
15
1 2 4 10 40 100
20
10
5
0
30
25
20
f Frequency MHz
Phase Shift
275
300
175
200
225
250
100
125
150
°
°
°
°
°
°
°
°
°
ÎÎÎÎÎ
Phase Shift
ÎÎÎ
AVD
AVD Large-Signal Differential
ÁÁ
ÁÁ
AVD
Voltage Amplification dB
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
CL = 100 pF
RL = 2 kΩ
VCC± = ±15 V
Figure 24
TLE2037
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
23
www.ti.com
TYPICAL CHARACTERISTICS
Figure 25
75
30
TA Free-Air Temperature °C
150
60
50 25 0 25 50 75 100 125
40
50
VCC ± = ±15 V
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 kΩ
ÎÎÎÎÎ
RL = 1 kΩ
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
AVD Large-Signal differential
ÁÁ
ÁÁ
ÁÁ
AVD Vμ
V/
Voltage Amplification
OUTPUT IMPEDANCE
vs
FREQUENCY
Figure 26
10
100
zo Output Impedance
f Frequency Hz
100 M
100
100 1 k 10 k 100 k 1 M 10 M
10
1
10
AVD = 100
See Note A
AVD = 10
ÁÁ
ÁÁ
zo
ÁÁ
ÁÁ
Ω
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
TA = 25°C
NOTE A: For this curve, the TLE2027 is AVD = 1 and the
TLE2037 is AVD = 5.
10
0
CMRR Common-Mode Rejection Ratio dB
f Frequency Hz
100 M
140
100 1 k 10 k 100 k 1 M 10 M
20
40
60
80
100
120
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ±= ±15 V
Figure 27
10
0
Supply-Voltage Rejection Ratio dB
f Frequency Hz
100 M
140
100 1 k 10 k 100 k 1 M 10 M
20
40
60
80
100
120
ÎÎÎÎ
kSVR
ÎÎÎ
ÎÎÎ
kSVR +
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎÎÎ
VCC ±= ±15 V
SVR
K
Figure 28
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
24 www.ti.com
TYPICAL CHARACTERISTICS
0
30
IOS Short-Circuit Output Current mA
42
2 4 6 8 10 12 14 16 18 20
32
34
36
38
40
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
VCC± Supply Voltage V
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VID = 100 mV
VO = 0
TA = 25°C
ÎÎÎÎ
P Package
ÁÁ
ÁÁ
OS
I
Figure 29
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
0
30
44
2 4 6 8 10 12 14 16 18 20
32
34
36
38
40
42
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
VID = 100 mV
VO = 0
TA = 25°C
P Package
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
OS
I
VCC± Supply Voltage V
Figure 30
0
35
t Elasped Time s
180
45
30 60 90 120 150
37
39
41
43
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎ
P Package
TA = 25°C
VO = 0
VID = 100 mV
VCC ± = ±15 V
IOS Short-Circuit Output Current mA
ÁÁÁ
ÁÁÁ
ÁÁÁ
OS
I
Figure 31
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
0
34
t Elasped Time s
180
44
30 60 90 120 150
36
38
40
42
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
OS
I
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ
P Package
TA = 25°C
VO = 0
VID = 100 mV
VCC ± = ±15 V
Figure 32
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
25
www.ti.com
TYPICAL CHARACTERISTICS
75
24
TA Free-Air Temperature °C
150
48
50 25 0 25 50 75 100 125
28
32
36
40
44
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
ÁÁ
OS
I
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
VID = 100 mV
VO = 0
P Package
Figure 33
26
TA Free-Air Temperature °C
46
30
34
38
42
12510075502502550 15075
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
ÁÁ
OS
I
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
VID = 100 mV
VO = 0
P Package
Figure 34
ÁÁÁÁ
ÁÁÁÁ
0
0
ICC Supply Current mA
VCC± Supply Voltage V
6
2 4 6 8 10 12 14 16 18 20
1
2
3
4
5
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
ÁÁ
ÁÁ
CC
I
VO = 0
No Load
ÎÎÎÎ
TA = 125°C
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
TA = 55°C
Figure 35
75
2.5
TA Free-Air Temperature °C
150
5
50 25 0255075 100 125
3
3.5
4
4.5
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
ICC Supply Current mA
ÁÁ
ÁÁ
CC
I
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC ± = ±15 V
VO = 0
No Load
Sample Size = 836 Units
From 2 Wafer Lots
Figure 36
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
26 www.ti.com
TYPICAL CHARACTERISTICS
Figure 37
VO Output Voltage mV
50
0
50
8006004002000
100
1000
t Time ns
100
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 4
TLE2027
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
Figure 38
t Time μs
250 5 10 15 20
10
5
0
5
10
15
15
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
VO Output Voltage V
TLE2027
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TA = 25°C
See Figure 4
VCC ± = ±15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
50
0
50
300
2001000
100
400
t Time ns
100
VO Output Voltage mV
ÁÁ
ÁÁ
VO
Figure 39
TLE2037
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
15
15
10
5
0
5
10
TA = 25°C
CL = 100 pF
RL = 2 kΩ
AVD = 5
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
8642010
t Time μs
VO Output Voltage V
ÁÁ
ÁÁ
VO
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 1
Figure 40
TLE2037
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
27
www.ti.com
TYPICAL CHARACTERISTICS
1
0
Vn Equivalent Input Noise Voltage nVHz
f Frequency Hz
100 k
10
10 100 1 k 10 k
2
4
6
8
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC ± = ±15 V
RS = 20 Ω
TA = 25°C
See Figure 2
Sample Size = 100 Units
From 2 Wafer Lots
Vn
ÁÁ
ÁÁ
ÁÁ
nV/ Hz
Figure 41
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
0
50
Noise Voltage nV
t Time s
10
50
246 8
40
30
20
10
0
10
20
30
40
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
VCC ± = ±15 V
f = 0.1 to 10 Hz
TA = 25°C
Figure 42
Figure 43
20
B1 Unity-Gain Bandwidth MHz
18
16
14
12
201816141210864222
| VCC± | Supply Voltage V
10 0
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
TLE2027
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
Figure 44
0
48
VCC± Supply Voltage V
52
2468 10 12 14 16 18 20
49
50
51
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 2 kΩ
CL = 100 pF
TA = 25°C
f = 100 kHz
Gain-Bandwidth Product MHz
TLE2037
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
28 www.ti.com
TYPICAL CHARACTERISTICS
Figure 45
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
1000
12
8
4
16
10000
CL Load Capacitance pF
0100
B1 Unity-Gain Bandwidth MHz
TLE2027
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
100
48
Gain-Bandwidth Product MHz
CL Load Capacitance pF
10000
52
49
50
51
1000
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TA = 25°C
RL = 2 kΩ
VCC± = ±15 V
Figure 46
TLE2037
GAIN-BANDWIDTH PRODUCT
vs
LOAD CAPACITANCE
Figure 47
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
AVD = 1
RL = 2 kΩ
CL = 100 pF
See Figure 1
2.8
2.6
2.4
2.2
12510075502502550
3
150
TA Free-Air Temperature °C
SR Slew Rate V/ s
2
75
μ
TLE2027
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 48
75
5
TA Free-Air Temperature °C
150
10
50 25 0 25 50 75 100 125
6
7
8
9
sμ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
AVD = 5
RL = 2 kΩ
CL = 100 pF
See Figure 1
SR Slew Rate V/
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
TLE2037
SLEW RATE
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
29
www.ti.com
TYPICAL CHARACTERISTICS
Figure 49
56°
54°
52°
50°
48°
46°
44°
2018161412108642
58°
22
| VCC± | Supply Voltage V
Phase Margin
42°0
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
ÁÁ
ÁÁ
m
φ
TLE2027
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 50
0
m
VCC± Supply Voltage V
2468 10 12 14 16 18 20
38°
40°
42°
44°
46°
48°
50°
52°
φ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
CL = 100 pF
AVD = 5
RL = 2 kΩ
Phase Margin
TLE2037
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 51
1000
40°
20°
60°
CL Load Capacitance pF
0°100
Phase Margin
ÁÁ
ÁÁ
m
φ
TLE2027
PHASE MARGIN
vs
LOAD CAPACITANCE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
10°
30°
50°
Figure 52
100
0°
CL Load Capacitance pF
10000
1000
10°
20°
30°
40°
50°
60°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
RL = 2 kΩ
TA = 25°C
m
φ Phase Margin
TLE2037
PHASE MARGIN
vs
LOAD CAPACITANCE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
30 www.ti.com
TYPICAL CHARACTERISTICS
Figure 53
Phase Margin
ÁÁ
ÁÁ
m
φ
60°
55°
50°
45°
40°
12510075502502550
65°
150
TA Free-Air Temperature °C
35°
75
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
TLE2027
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Figure 54
75
45°
TA Free-Air Temperature °C
150
50 25 0 25 50 75 100 125
49°
51°
53°
55°
47°
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CL = 100 pF
RL = 2 kΩ
AVD = 5
VCC ± = ±15 V
m
φ Phase Margin
TLE2037
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
31
www.ti.com
APPLICATION INFORMATION
input offset voltage nulling
The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset
voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not
needed, the null pins may be left disconnected.
4.7 kΩ
1 kΩ
VCC +
OUT
IN
IN +
VCC
+
4.7 kΩ
+
VCC
OUT
VCC +
10 kΩ
IN
IN +
(a) STANDARD ADJUSTMENT (b) ADJUSTMENT WITH IMPROVED SENSITIVITY
Figure 55. Input Offset Voltage Nulling Circuits
voltage-follower applications
The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device.
For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem
can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56).
RF
IF 1 mA
+
VI
VO
VCC
VCC
CF = 20 to 50 pF
Figure 56. Voltage Follower
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
32 www.ti.com
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and
Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Gain-bandwidth product
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
8
ro2
7
12
VCC +
IN +
IN
VCC
1
2dp
rp 11
rc1 c1 rc2
Q2Q1
13 14
3
re1 re2
4
lee
ve
+
54
10
ree cee
53
vc
+
r2
6
gcm ga
de
dc
vb
9
+
egnd
99
+
fb
C2
vlim
+
ro1
5
OUT
90
hlim
+ dip
91
92
dln
vip vin
+
+
Figure 57. Boyle Macromodel
PSpice and Parts are trademarks of MicroSim Corporation.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
33
www.ti.com
APPLICATION INFORMATION
macromodel information (continued)
.subckt TLE2027 1 2 3 4 5
*
c1 11 12 4.003E-12
c2 6 7 20.00E-12
dc 5 53 dz
de 54 5 dz
dlp 90 91 dz
dln 92 90 dx
dp 4 3 dz
egnd 99 0 poly(2) (3,0)
(4,0) 0 5 .5
fb 7 99 poly(5) vb vc
ve vlp vln 0 954.8E6 1E9 1E9 1E9
1E9
ga 6 0 11 12
2.062E-3
gcm 0 6 10 99
531.3E-12
iee 10 4 dc 56.01E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
Figure 58. TLE2027 Macromodel Subcircuit
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 530.5
rc2 3 12 530.5
re1 13 10 393.2
re2 14 10 393.2
ree 10 99 3.571E6
ro1 8 5 25
ro2 7 99 25
rp 3 4 8.013E3
vb 9 0 dc 0
vc 3 53 dc 2.400
ve 54 4 dc 2.100
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.modeldx D(Is=800.0E-18)
.modelqx NPN(Is=800.0E-18
Bf=7.000E3)
.ends
.subckt TLE2037 1 2 3 4 5
*
c1 11 12 4.003E12
c2 6 7 7.500E12
dc 5 53 dz
de 54 5 dz
dlp 90 91 dz
dln 92 90 dx
dp 4 3 dz
egnd 99 0 poly(2) (3,0)
(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc
ve vip vln 0 923.4E6 A800E6
800E6 800E6 A800E6
ga 6 0 11 12 2.121E3
gcm 0 6 10 99 597.7E12
iee 10 4 dc 56.26E6
hlim 90 0 vlim 1K
q1 11 2 13 qx
Figure 59. TLE2037 Macromodel Subcircuit
q2 12 1 14 qz
r2 6 9 100.0E3
rc1 3 11 471.5
rc2 3 12 471.5
re1 13 10 A448
re2 14 10 A448
ree 10 99 3.555E6
ro1 8 5 25
ro2 7 99 25
rp 3 4 8.013E3
vb 9 0 dc 0
vc 3 53 dc 2.400
ve 54 4 dc 2.100
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dxD(Is=800.0E18)
.model qxNPN(Is=800.0E18
Bf=7.031E3)
.ends
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C FEBRUARY 1997 REVISED APRIL 2010
34 www.ti.com
REVISION HISTORY
Changes from Revision B (October 2006) to Revision C
Changed values of Vn, VN(PP), and In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 11
PACKAGE OPTION ADDENDUM
www.ti.com 27-Apr-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
5962-9089601M2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9089601MPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9089602MPA OBSOLETE CDIP JG 8 TBD Call TI Call TI
5962-9089603Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9089603QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
TLE2027ACD OBSOLETE SOIC D 8 TBD Call TI Call TI
TLE2027ACP OBSOLETE PDIP P 8 TBD Call TI Call TI
TLE2027AID OBSOLETE SOIC D 8 TBD Call TI Call TI
TLE2027AIP OBSOLETE PDIP P 8 TBD Call TI Call TI
TLE2027AMD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027AMDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2027AMJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2027AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2027CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027CP OBSOLETE PDIP P 8 TBD Call TI Call TI
TLE2027ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 27-Apr-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLE2027IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027IP OBSOLETE PDIP P 8 TBD Call TI Call TI
TLE2027MD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027MDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2027MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2027MJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2027MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2037ACD OBSOLETE SOIC D 8 TBD Call TI Call TI
TLE2037ACP OBSOLETE PDIP P 8 TBD Call TI Call TI
TLE2037AID OBSOLETE SOIC D 8 TBD Call TI Call TI
TLE2037AIP OBSOLETE PDIP P 8 TBD Call TI Call TI
TLE2037AMD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037AMDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037AMJGB OBSOLETE CDIP JG 8 TBD Call TI Call TI
TLE2037CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037CP OBSOLETE PDIP P 8 TBD Call TI Call TI
TLE2037ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 27-Apr-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLE2037IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037IP OBSOLETE PDIP P 8 TBD Call TI Call TI
TLE2037MD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037MDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2037MFKB OBSOLETE LCCC FK 20 TBD Call TI Call TI
TLE2037MJGB OBSOLETE CDIP JG 8 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLE2027, TLE2027A, TLE2027AM, TLE2027M, TLE2037, TLE2037A :
PACKAGE OPTION ADDENDUM
www.ti.com 27-Apr-2012
Addendum-Page 4
Catalog: TLE2027A, TLE2027
Automotive: TLE2037-Q1, TLE2037A-Q1
Enhanced Product: TLE2027-EP, TLE2027-EP
Military: TLE2027M, TLE2027AM
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Enhanced Product - Supports Defense, Aerospace and Medical Applications
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLE2027CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2027IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2037CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2037IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 23-Sep-2010
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLE2027CDR SOIC D 8 2500 340.5 338.1 20.6
TLE2027IDR SOIC D 8 2500 340.5 338.1 20.6
TLE2037CDR SOIC D 8 2500 340.5 338.1 20.6
TLE2037IDR SOIC D 8 2500 340.5 338.1 20.6
PACKAGE MATERIALS INFORMATION
www.ti.com 23-Sep-2010
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated