R2 = 1.225 x R1
VIN(min) + (5 x 10-6 x R1) ± 1.225
§
¨
©
§
¨
©
LM5574, LM5574-Q1
www.ti.com
SNVS478F –JANUARY 2007–REVISED APRIL 2013
The forward voltage drop has a significant impact on the conversion efficiency, especially for applications with a
low output voltage. “Rated” current for diodes vary widely from various manufacturers. The worst case is to
assume a short circuit load condition. In this case the diode will carry the output current almost continuously. For
the LM5574 this current can be as high as 0.7A. Assuming a worst case 1V drop across the diode, the maximum
diode power dissipation can be as high as 0.7W. For the reference design a 100V Schottky in a SMA package
was selected.
C1
The regulator supply voltage has a large source impedance at the switching frequency. Good quality input
capacitors are necessary to limit the ripple voltage at the VIN pin while supplying most of the switch current
during the on-time. When the buck switch turns on, the current into the VIN pin steps to the lower peak of the
inductor current waveform, ramps up to the peak value, then drops to zero at turn-off. The average current into
VIN during the on-time is the load current. The input capacitance should be selected for RMS current rating and
minimum ripple voltage. A good approximation for the required ripple current rating necessary is IRMS > IOUT / 2.
Quality ceramic capacitors with a low ESR should be selected for the input filter. To allow for capacitor
tolerances and voltage effects, one 1.0µF, 100V ceramic capacitor will be used. If step input voltage transients
are expected near the maximum rating of the LM5574, a careful evaluation of ringing and possible spikes at the
device VIN pin should be completed. An additional damping network or input voltage clamp may be required in
these cases.
C8
The capacitor at the VCC pin provides noise filtering and stability for the VCC regulator. The recommended value
of C8 should be no smaller than 0.1µF, and should be a good quality, low ESR, ceramic capacitor. A value of
0.47µF was selected for this design.
C7
The bootstrap capacitor between the BST and the SW pins supplies the gate current to charge the buck switch
gate at turn-on. The recommended value of C7 is 0.022µF, and should be a good quality, low ESR, ceramic
capacitor.
C4
The capacitor at the SS pin determines the soft-start time, i.e. the time for the reference voltage and the output
voltage, to reach the final regulated value. The time is determined from:
(10)
For this application, a C4 value of 0.01µF was chosen which corresponds to a soft-start time of 1ms.
R5, R6
R5 and R6 set the output voltage level, the ratio of these resistors is calculated from:
R5/R6 = (VOUT / 1.225V) - 1 (11)
For a 5V output, the R5/R6 ratio calculates to 3.082. The resistors should be chosen from standard value
resistors, a good starting point is selection in the range of 1.0kΩ- 10kΩ. Values of 5.11kΩfor R5, and 1.65kΩfor
R6 were selected.
R1, R2, C2
A voltage divider can be connected to the SD pin to set a minimum operating voltage Vin(min) for the regulator. If
this feature is required, the easiest approach to select the divider resistor values is to select a value for R1
(between 10kΩand 100kΩrecommended) then calculate R2 from:
(12)
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LM5574 LM5574-Q1