07/23/2010
www.irf.com 1
AUTOMOTIVE GRADE
PD - 97542
HEXFET® Power MOSFET
AUIRF3205Z
AUIRF3205ZS
Features
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to
Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low on-
resistance per silicon area. Additional features of
this design are a 175°C junction operating tempera-
ture, fast switching speed and improved repetitive
avalanche rating . These features combine to make
this design an extremely efficient and reliable device
for use in Automotive applications and a wide variety
of other applications.
GDS
Gate Drain Source
V
(BR)DSS
55V
R
DS(on)
max. 6.5m
I
D (Silicon Limited)
110A
I
D (Package Limited)
75A
S
D
G
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings
only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power
dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise
specified.
HEXFET® is a registered trademark of International Rectifier.
*Qualification standards can be found at http://www.irf.com/
Parameter Units
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
I
D
@ T
C
= 100°C Continuous Drain Current, V
GS
@ 10V A
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
(Package Limited)
I
DM
Pulsed Drain Current
c
P
D
@T
C
= 25°C Power Dissipation W
Linear Derating Factor W/°C
V
GS
Gate-to-Source Voltage V
E
AS
Single Pulse Avalanche Energy (Thermally Limited)
d
mJ
E
AS
(tested ) Sin
g
le Pulse Avalanche Ener
gy
Tested Value
h
I
AR
Avalanche Current
c
A
E
AR
Repetitive Avalanche Ener
gy
g
mJ
T
J
Operating Junction and
T
STG
Storage Temperature Range °C
Soldering Temperature, for 10 seconds (1.6mm from case )
Mountin
g
Tor
q
ue, 6-32 or M3 screw
i
Thermal Resistance
Parameter T
y
p. Max. Units
R
θJC
Junction-to-Case
k
––– 0.90 °C/W
R
θCS
Case-to-Sink, Flat Greased Surface
i
0.50 ––
R
θJA
Junction-to-Ambient
i
––– 62
R
θJA
Junction-to-Ambient (PCB Mount)
j
––– 40
-55 to + 175
300
10 lbf
y
in (1.1N
y
m)
170
1.1
± 20
Max.
110
78
440
75
250
180
See Fig.12a, 12b, 15, 16
D2Pak
AUIRF3205ZS
S
D
G
D
TO-220AB
AUIRF3205Z
S
D
G
D
AUIRF3205Z/ZS
2www.irf.com
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C, L = 0.08mH
RG = 25, IAS = 66A, VGS =10V. Part not
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the
same charging time as Coss while VDS is rising
from 0 to 80% VDSS .
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population, starting
TJ = 25°C, L = 0.08mH
RG = 25, IAS = 66A, VGS =10V.
This is only applied to TO-220AB pakcage.
This is applied to D2Pak, when mounted on 1" square PCB (FR-
4 or G-10 Material). For recommended footprint and soldering
techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C.
Static Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. T
y
p. Max. Units
V
(BR)DSS
Drain-to-Source Breakdown Volta
g
e 55 ––– –– V
V
(BR)DSS
/
T
J
Breakdown Volta
g
e Temp. Coefficient ––– 0.051 ––– V/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 4.9 6.5 m
V
GS(th)
Gate Threshold Volta
e2.04.0V
g
fs Forward Transconductance 71 ––– ––– S
I
DSS
Drain-to-Source Leaka
g
e Current ––– ––– 20
µ
A
––– –– 250
I
GSS
Gate-to-Source Forward Leaka
g
e ––– –– 200 nA
Gate-to-Source Reverse Leaka
g
e ––– ––– -200
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
Q
g
Total Gate Char
g
e ––– 76 110
Q
gs
Gate-to-Source Char
g
e ––– 21 ––– nC
Q
gd
Gate-to-Drain ("Miller") Char
g
e ––– 30 –––
t
d(on)
Turn-On Dela
y
Time ––– 18 –––
t
r
Rise Time ––– 95 –––
t
d(off)
Turn-Off Dela
y
Time ––– 45 ––– ns
t
f
Fall Time ––– 67 –––
L
D
Internal Drain Inductance ––– 4.5 –– Between lead,
nH 6mm (0.25in.)
L
S
Internal Source Inductance ––– 7.5 –– from packa
g
e
and center of die contact
C
iss
Input Capacitance ––– 3450 –––
C
oss
Output Capacitance ––– 550 –––
C
rss
Reverse Transfer Capacitance ––– 310 ––– pF
C
oss
Output Capacitance –– 1940 –––
C
oss
Output Capacitance ––– 430 –––
C
oss
eff. Effective Output Capacitance ––– 640 –––
Diode Characteristics
Parameter Min. T
y
p. Max. Units
I
S
Continuous Source Current ––– ––– 75
(Body Diode) A
I
SM
Pulsed Source Current ––– ––– 440
(Body Diode)
c
V
SD
Diode Forward Volta
g
e–1.3V
t
rr
Reverse Recover
y
Time –– 28 42 ns
Q
rr
Reverse Recover
y
Char
g
e ––– 25 38 nC
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 44V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 44V
f
V
GS
= 10V
e
V
DD
= 28V
I
D
= 66A
R
G
= 6.8
T
J
= 25°C, I
S
= 66A, V
GS
= 0V
e
T
J
= 25°C, I
F
= 66A, V
DD
= 25V
di/dt = 100A/
µ
s
e
Conditions
V
GS
= 0V, I
D
= 250µA
Reference to 25°C, I
D
= 1mA
V
GS
= 10V, I
D
= 66A
e
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 55V, V
GS
= 0V
V
DS
= 55V, V
GS
= 0V, T
J
= 125°C
MOSFET symbol
showing the
integral reverse
p-n junction diode.
V
DS
= 25V, I
D
= 66A
I
D
= 66A
V
DS
= 44V
Conditions
V
GS
= 10V
e
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz
V
GS
= 20V
V
GS
= -20V
AUIRF3205Z/ZS
www.irf.com 3
Qualification standards can be found at International Rectifiers web site: http//www.irf.com/
Exceptions to AEC-Q101 requirements are noted in the qualification report.
Qualification Information
TO-220AB N/A
TO-262 N/A
D
2
Pak MSL1
Charged Device Model Class C5 (1125V)
AEC-Q101-005
Qualification Level
Automotive
(per AEC-Q101)
††
Comments: This part number(s) passed Automotive
qualification. IR’s Industrial and Consumer qualification
level is granted by extension of the higher Automotive
level.
Moisture Sensitivity Level
RoHS Compliant Yes
ESD
Machine Model Class M4 (425V)
AEC-Q101-002
Human Body Model Class H1C (2000V)
AEC-Q101-001
AUIRF3205Z/ZS
4www.irf.com
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
Vs. Drain Current
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
4.5V 20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
4.5V 20µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
VGS, Gate-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (
A)
TJ = 25°C
TJ = 175°C
VDS = 25V
20µs PULSE WIDTH
0 20406080100
ID, Drain-to-Source Current (A)
0
20
40
60
80
100
120
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 10V
20µs PULSE WIDTH
AUIRF3205Z/ZS
www.irf.com 5
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0.2 0.6 1.0 1.4 1.8 2.2
VSD, Source-toDrain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
110 100
VDS, Drain-to-Source Voltage (V)
0
1000
2000
3000
4000
5000
6000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
0 20 40 60 80 100 120
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 44V
VDS= 28V
VDS= 11V
ID= 66A
AUIRF3205Z/ZS
6www.irf.com
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10. Normalized On-Resistance
Vs. Temperature
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
20
40
60
80
100
120
ID , Drain Current (A)
LIMITED BY PACKAGE
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 66A
VGS = 10V
AUIRF3205Z/ZS
www.irf.com 7
QG
QGS QGD
VG
Charge
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage Vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
50
100
150
200
250
300
350
EAS, Single Pulse Avalanche Energy (mJ)
ID
TOP 27A
47A
BOTTOM 66A
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
2.0
3.0
4.0
VGS(th) Gate threshold Voltage (V)
ID = 250µA
1K
VCC
DUT
0
L
AUIRF3205Z/ZS
8www.irf.com
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
40
80
120
160
200
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 66A
AUIRF3205Z/ZS
www.irf.com 9
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* V
GS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
AUIRF3205Z/ZS
10 www.irf.com
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Part Marking Information
AUIRF3205Z
YWWA
XX or XX
Date Code
Y= Year
WW= Work Week
A= Automotive, LeadFree
Part Number
IR Logo
Lot Code
AUIRF3205Z/ZS
www.irf.com 11
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
AUIRF3205ZS
YWWA
XX or XX
Date Code
Y= Year
WW= Work Week
A= Automotive, LeadFree
Part Number
IR Logo
Lot Code
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
AUIRF3205Z/ZS
12 www.irf.com
D2Pak Tape & Reel Information
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
AUIRF3205Z/ZS
www.irf.com 13
Ordering Information
Base
p
art Packa
g
e T
yp
eStandard Pack Com
p
lete Part Number
Form Quantit
y
AUIRF3205Z TO-220 Tube 50 AUIRF3205Z
AUIRF3205ZS D2Pak Tube 50 AUIRF3205ZS
Ta
p
e and Reel Left 800 AUIRF3205ZSTRL
Ta
p
e and Reel Ri
g
ht 800 AUIRF3205ZSTRR
AUIRF3205Z/ZS
14 www.irf.com
IMPORTANT NOTICE
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR)
reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and
services at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix
follow automotive industry and / or customer specific requirements with regards to product discontinuance and process
change notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order
acknowledgment.
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with
IR’s standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support
this warranty. Except where mandated by government requirements, testing of all parameters of each product is not
necessarily performed.
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using IR components. To minimize the risks with customer products and applications, customers
should provide adequate design and operating safeguards.
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and
is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with
alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation.
Information of third parties may be subject to additional restrictions.
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product
or service voids all express and any implied warranties for the associated IR product or service and is an unfair and
deceptive business practice. IR is not responsible or liable for any such statements.
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into
the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the
IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products
for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture
of the product.
IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR
products are specifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as
military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has
not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all
legal and regulatory requirements in connection with such use.
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR
products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the
designation “AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive
applications, IR will not be responsible for any failure to meet such requirements.
For technical support, please contact IR’s Technical Assistance Center
http://www.irf.com/technical-info/
WORLD HEADQUARTERS:
233 Kansas St., El Segundo, California 90245
Tel: (310) 252-7105