May-17-2004
1
BCR129.../SEMH4
NPN Silicon Digital Transistor
Switching circuit, inverter, interface circuit,
driver circuit
Built in bias resistor (R1=10k)
For 6-PIN packages: two (galvanic) internal
isolated transistors with good matching
in one package
BCR129/F/L3
BCR129T/W
BCR129S
SEMH4
EHA07264
3
12
BE
C
1
R
EHA07265
654
321
C1 B2 E2
C2B1E1
TR1 TR2
R
1
R
1
Type Marking Pin Configuration Package
BCR129
BCR129F
BCR129L3
BCR129S
BCR129T
BCR129W
SEMH4
WVs
WVs
WV
WVs
WVs
WVs
WV
1=B
1=B
1=B
1=E1
1=B
1=B
1=E1
2=E
2=E
2=E
2=B1
2=E
2=E
2=B1
3=C
3=C
3=C
3=C2
3=C
3=C
3=C2
-
-
-
4=E2
-
-
4=E2
-
-
-
5=B2
-
-
5=B2
-
-
-
6=C1
-
-
6=C1
SOT23
TSFP-3
TSLP-3-4
SOT363
SC75
SOT323
SOT666
May-17-2004
2
BCR129.../SEMH4
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCEO 50 V
Collector-base voltage VCBO 50
Emitter-base voltage VEBO 5
Input on voltage Vi(on) 20
Collector current IC100 mA
Total power dissipation-
BCR129, TS 102°C
BCR129F, TS 128°C
BCR129L3, TS 135°C
BCR129S, TS 115°C
BCR129T, TS 109°C
BCR129W, TS 124°C
SEMH4, TS 75°C
Ptot
200
250
250
250
250
250
250
mW
Junction temperature Tj150 °C
Storage temperature Tstg -65 ... 150
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point1)
BCR129
BCR129F
BCR129L3
BCR129S
BCR129T
BCR129W
SEMH4
RthJS
240
90
60
140
165
105
300
K/W
1For calculation of RthJA please refer to Application Note Thermal Resistance
May-17-2004
3
BCR129.../SEMH4
Electrical Characteristics at T
A
= 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 100 µA, IB = 0
V(BR)CEO 50 - - V
Collector-base breakdown voltage
IC = 10 µA, IE = 0
V(BR)CBO 50 - -
Emitter-base breakdown voltage
IE = 10 µA, IC = 0
V(BR)EBO 5 - -
Collector-base cutoff current
VCB = 40 V, IE = 0
ICBO - - 100 nA
DC current gain1)
IC = 5 mA, VCE = 5 V
hFE 120 - 630 -
Collector-emitter saturation voltage1)
IC = 10 mA, IB = 0.5 mA
VCEsat - - 0.3 V
Input off voltage
IC = 100 µA, VCE = 5 V
Vi(off) 0.4 - 1
Input on voltage
IC = 2 mA, VCE = 0.3 V
Vi(on) 0.5 - 1.1
Input resistor R17 10 13 k
AC Characteristics
Transition frequency
IC = 10 mA, VCE = 5 V, f = 100 MHz
fT- 150 - MHz
Collector-base capacitance
VCB = 10 V, f = 1 MHz
Ccb - 3 - pF
1Pulse test: t < 300µs; D < 2%
May-17-2004
4
BCR129.../SEMH4
DC current gain hFE = ƒ(IC)
VCE = 5 V (common emitter configuration)
10 -4 10 -3 10 -2 10 -1
A
IC
1
10
2
10
3
10
hFE
Collector-emitter saturation voltage
VCEsat = ƒ(IC), hFE = 20
0 0.1 0.2 0.3 V0.5
VCEsat
-4
10
-3
10
-2
10
-1
10
A
IC
Input on Voltage Vi(on) = ƒ(IC)
VCE = 0.3V (common emitter configuration)
10 -1 10 0 10 1 10 2
V
Vi(on)
-4
10
-3
10
-2
10
-1
10
A
IC
Input off voltage Vi(off) = ƒ(IC)
VCE = 5V (common emitter configuration)
0 0.5 1 V2
Vi(off)
-6
10
-5
10
-4
10
-3
10
-2
10
A
IC
May-17-2004
5
BCR129.../SEMH4
Total power dissipation Ptot = ƒ(TS)
0 20 40 60 80 100 120 °C 150
TS
0
50
100
150
200
mW
300
Ptot
Total power dissipation Ptot = ƒ(TS)
BCR129F
0 20 40 60 80 100 120 °C 150
TS
0
50
100
150
200
mW
300
Ptot
Total power dissipation Ptot = ƒ(TS)
BCR129L3
0 20 40 60 80 100 120 °C 150
TS
0
50
100
150
200
mW
300
Ptot
Total power dissipation Ptot = ƒ(TS)
BCR129S
0 20 40 60 80 100 120 °C 150
TS
0
50
100
150
200
mW
300
Ptot
May-17-2004
6
BCR129.../SEMH4
Total power dissipation Ptot = ƒ(TS)
BCR129T
0 20 40 60 80 100 120 °C 150
TS
0
50
100
150
200
mW
300
Ptot
Total power dissipation Ptot = ƒ(TS)
BCR129W
0 20 40 60 80 100 120 °C 150
TS
0
50
100
150
200
mW
300
Ptot
Total power dissipation Ptot = ƒ(TS)
SEMH4
0 20 40 60 80 100 120 °C 150
TS
0
50
100
150
200
mW
300
Ptot
May-17-2004
7
BCR129.../SEMH4
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
BCR129
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
2
10
3
10
-
Ptotmax / PtotDC
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Permissible Pulse Load RthJS = ƒ(tp)
BCR129
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
-1
10
0
10
1
10
2
10
3
10
K/W
RthJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D = 0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
BCR129F
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
2
10
3
10
Ptotmax/PtotDC
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Permissible Puls Load RthJS = ƒ (tp)
BCR129F
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
-1
10
0
10
1
10
2
10
K/W
RthJS
D=0.5
0.2
0.1
0.05
0.02
0.01
0.005
0
May-17-2004
8
BCR129.../SEMH4
Permissible Puls Load RthJS = ƒ (tp)
BCR129L3
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
-1
10
0
10
1
10
2
10
RthJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D = 0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
BCR129L3
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
2
10
3
10
Ptotmax/ PtotDC
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Permissible Puls Load RthJS = ƒ (tp)
BCR129S
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
-1
10
0
10
1
10
2
10
3
10
K/W
RthJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D = 0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
BCR129S
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
2
10
3
10
-
Ptotmax / PtotDC
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
May-17-2004
9
BCR129.../SEMH4
Permissible Puls Load RthJS = ƒ (tp)
BCR129T
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
-1
10
0
10
1
10
2
10
3
10
K/W
RthJS
D=0.5
0.2
0.1
0.05
0.02
0.01
0.005
0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
BCR129T
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
2
10
3
10
Ptotmax / PtotDC
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Permissible Puls Load RthJS = ƒ (tp)
BCR129W
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
-1
10
0
10
1
10
2
10
3
10
K/W
RthJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D = 0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
BCR129W
10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
2
10
3
10
-
Ptotmax / PtotDC
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
May-17-2004
10
BCR129.../SEMH4
Permissible Puls Load RthJS = ƒ (tp)
SEMH4
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
-1
10
0
10
1
10
2
10
3
10
K/W
RthJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D = 0
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
SEMH4
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
0
10
1
10
2
10
3
10
Ptotmax/ PtotDC
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5