INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGB4045DPbF
1www.irf.com
01/28/2010
VCES = 600V
IC = 6.0A, TC = 100°C
tsc > 5µs, Tjmax = 175°C
VCE(on) typ. = 1.7V
TO-220AB
C
E
C
G
GCE
Gate Collector Emitter
E
G
n-channel
C
Features
Low VCE (on) Trench IGBT Technology
Low Switching Losses
Maximum Junction temperature 175 °C
5µs SCSOA
Square RBSOA
100% of the parts tested for ILM
Positive VCE (on) Temperature Coefficient.
Ultra Fast Soft Recovery Co-pak Diode
Tighter Distribution of Parameters
Lead-Free Package
Benefits
High Efficiency in a Wide Range of Applications
Suitable for a Wide Range of Switching Frequencies due
to Low VCE (ON) and Low Switching Losses
Rugged Transient Performance for Increased Reliability
Excellent Current Sharing in Parallel Operation
Low EMI
Absolute Maximum Ratings
Parameter Max. Units
V
CES
Collector-to-Emitter Breakdown Voltage V
I
C
@ T
C
= 25°C Continuous Collector Current
I
C
@ T
C
= 100°C Continuous Collector Current
I
CM
Pulsed Collector Current, V
GE
= 15V
I
LM
Clamped Inductive Load Current, V
GE
= 20V
c
A
I
F
@T
C
=25°C Diode Continuous Forward Current
I
F
@T
C
=100°C Diode Continuous Forward Current
I
FM
Diode Maximum Forward Current
d
Continuous Gate-to-Emitter Voltage V
Transient Gate-to-Emitter Voltage
P
D
@ T
C
=25° Maximum Power Dissipation W
P
D
@ T
C
=10 Maximum Power Dissipation
T
J
Operating Junction and °C
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
Thermal Resistance
Parameter Min. Typ. Max. Units
R
θJC
Junction-to-Case - IGBT
e
1.94
R
θJC
Junction-to-Case - Diode
e
6.30
R
θCS
Case-to-Sink, flat, greased surface 0.5
R
θJA
Junction-to-Ambient, typical socket mount
e
——62
°C/W
V
GE
600
12
6.0
18
24
8.0
4.0
24
-55 to + 175
300 (0.063 in. (1.6mm) from case)
± 20
± 30
77
39
PD - 97269A
IRGB4045DPbF
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 15V, L = 1.0mH, RG = 47Ω.
Pulse width limited by max. junction temperature.
Rθ is measured at TJ approximately 90°C.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
Ref.Fig
V
(BR)CES
Collector-to-Emitter Breakdown Voltage 600 V V
GE
= 0V, I
c
=100 µA
f
V
(
BR
)
CES
/T
J
Temperature Coeff. of Breakdown Voltage
—0.36—V/°C
V
GE
= 0V, I
c
= 25A ( 25 -175
o
C )
f
—1.72.0 I
C
= 6.0A, V
GE
= 15V, T
J
= 25°C
V
CE(on)
Collector-to-Emitter Saturation Voltage 2.07 V I
C
= 6.0A, V
GE
= 15V, T
J
= 150°C
5,6,7,9,
—2.14— I
C
= 6.0A, V
GE
= 15V, T
J
= 175°C
10 ,11
V
GE(th)
Gate Threshold Voltage 4.0 6.5 V V
CE
= V
GE
, I
C
= 15A
V
GE
(
th
)
/TJ
Threshold Voltage temp. coefficient -13 —mV/°C
V
CE
= V
GE
, I
C
= 25A ( 25 -175
o
C )
gfe Forward Transconductance 5.8 S V
CE
= 25V, I
C
= 6.0A, PW =80
µ
s
I
CES
25 µA V
GE
= 0V,V
CE
= 600V
——250 V
GE
= 0V, V
CE
= 600V, T
J
=175°C
8
V
FM
—1.602.30 VI
F
= 6.0A
—1.30— I
F
= 6.0A, T
J
= 175°C
I
GES
Gate-to-Emitter Leakage Current ±100 nA V
GE
= ± 20 V
Switchin
g
Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
Ref.Fig
Q
g
Total Gate Charge (turn-on) 13 19.5 I
C
= 6.0A
24
Q
ge
Gate-to-Emitter Charge (turn-on) 3.1 4.65 nC V
CC
= 400V
CT1
Q
gc
Gate-to-Collector Charge (turn-on) 6.4 9.6 V
GE
= 15V
E
on
Turn-On Switching Loss 56 86 I
C
= 6.0A, V
CC
= 400V, V
GE
= 15V
E
off
Turn-Off Switching Loss 122 143 µJ R
G
= 47, L=1mH, L
S
= 150nH, T
J
= 25°C
CT4
E
total
Total Switching Loss 178 229
Energy losses include tail and diode reverse recovery
t
d(on)
Turn-On delay time 27 35 I
C
= 6.0A, V
CC
= 400V
t
r
Rise time 11 15 ns R
G
= 47, L=1mH, L
S
= 150nH
CT4
t
d(off)
Turn-Off delay time 75 93 T
J
= 25°C
t
f
Fall time 17 22
E
on
Turn-On Switching Loss 140 I
C
= 6.0A, V
CC
= 400V, V
GE
= 15V
13,15
E
off
Turn-Off Switching Loss 189 µJ R
G
= 47, L=1mH, L
S
= 150nH, T
J
= 175°C
CT4
E
total
Total Switching Loss 329
Energy losses include tail and diode reverse recovery
WF1,WF2
t
d(on)
Turn-On delay time 26 I
C
= 6.0A, V
CC
= 400V
14,16
t
r
Rise time 12 —ns
R
G
= 47, L=1mH, L
S
= 150nH
CT4
t
d(off)
Turn-Off delay time 95 T
J
= 175°C
WF1,WF2
t
f
Fall time 32
C
ies
Input Capacitance 350 V
GE
= 0V
23
C
oes
Output Capacitance 29 V
CC
= 30V
C
res
Reverse Transfer Capacitance 10 f = 1Mhz
T
J
= 175°C, I
C
= 24A
4
RBSOA Reverse Bias Safe Operating Area FULL SQUARE V
CC
= 500V, Vp =600V
CT2
R
G
= 100, V
GE
= +20V to 0V
V
CC
= 400V, Vp =600V
22, CT3
R
G
= 100, V
GE
= +15V to 0V
WF4
Erec Reverse recovery energy of the diode 178 µJ T
J
= 175
o
C
17,18,19
trr Diode Reverse recovery time 74 ns V
CC
= 400V, I
F
= 6.0A
20,21
Irr Peak Reverse Recovery Current 12 A V
GE
= 15V, Rg = 47, L=1mH, L
S
=150nH
WF3
Diode Forward Voltage Drop
Collector-to-Emitter Leakage Current
SCSOA Short Circuit Safe Operating Area 5 µs
pF
CT6
9,10,11,12
Conditions
IRGB4045DPbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 4 - Reverse Bias SOA
TJ = 175°C, VGE = 20V
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
Fig. 3 - Forward SOA,
TC = 25°C, TJ 175°C, VGE = 15V
0 20 40 60 80 100 120 140 160 180
TC (°C)
0
10
20
30
40
50
60
70
80
Ptot (W)
020 40 60 80 100 120 140 160 180
TC (°C)
0
2
4
6
8
10
12
14
IC (A)
10 100 1000
VCE (V)
0
1
10
100
IC A)
1 10 100 1000
VCE (V)
0.1
1
10
100
IC (A)
10µsec
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
0246810
VCE (V)
0
5
10
15
20
ICE (A)
Top VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
Bottom VGE = 8.0V
0246810
VCE (V)
0
5
10
15
20
ICE (A)
Top VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
Bottom VGE = 8.0V
IRGB4045DPbF
4www.irf.com
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
0.0 1.0 2.0 3.0
VF (V)
0
2
4
6
8
10
12
14
16
18
20
IF (A)
-40°C
25°C
175°C
5 101520
VGE (V)
0
2
4
6
8
10
VCE (V)
ICE = 3.0A
ICE = 6.0A
ICE = 12A
5 101520
VGE (V)
0
2
4
6
8
10
VCE (V)
ICE = 3.0A
ICE = 6.0A
ICE = 12A
5 101520
VGE (V)
0
2
4
6
8
10
VCE (V)
ICE = 3.0A
ICE = 6.0A
ICE = 12A
0246810
VCE (V)
0
5
10
15
20
ICE (A)
Top VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
Bottom VGE = 8.0V
4 6 8 10121416
VGE, Gate-to-Emitter Voltage (V)
0
2
4
6
8
10
12
14
16
18
20
IC, Collector-to-Emitter Current (A)
TJ = 25°C
TJ = 175°C
IRGB4045DPbF
www.irf.com 5
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 1mH; VCE = 400V, RG = 47; VGE = 15V.
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 1mH; VCE = 400V, ICE = 6.0A; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L=1mH; VCE= 400V
RG= 47; VGE= 15V
Fig. 16- Typ. Switching Time vs. RG
TJ = 175°C; L=1mH; VCE= 400V
ICE= 6.0A; VGE= 15V
Fig. 17 - Typical Diode IRR vs. IF
TJ = 175°C
Fig. 18 - Typical Diode IRR vs. RG
TJ = 175°C; IF = 6.0A
02468101214
IC (A)
50
100
150
200
250
300
350
400
Energy (µJ)
EOFF
E
ON
246810 12 14
IC (A)
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
0 25 50 75 100 125
Rg ()
60
80
100
120
140
160
180
200
220
Energy (µJ)
EOFF
EON
025 50 75 100 125
RG ()
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
246810 12 14
IF (A)
0
5
10
15
20
25
30
IRR (A)
RG = 10
RG = 22
RG = 47
RG = 100
025 50 75 100 125
RG (Ω)
6
8
10
12
14
16
18
20
22
IRR (A)
IRGB4045DPbF
6www.irf.com
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V; TJ = 175°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 6.0A; TJ = 175°C
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 6.0A, L=600µH
Fig. 23- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 22- Typ. VGE vs. Short Circuit Time
VCC=400V, TC =25°C
Fig. 21 - Typical Diode ERR vs. IF
TJ = 175°C
0100 200 300 400 500
VCE (V)
1
10
100
1000
Capacitance (pF)
Cies
Coes
Cres
0200 400 600 800 1000 1200
diF /dt ( A/µs)
6
8
10
12
14
16
18
20
IRR (A)
246810 12 14
IF (A)
50
100
150
200
250
300
350
Energy (µJ)
RG = 10
RG = 22
RG = 47
RG = 100
8 1012141618
VGE (V)
0
5
10
15
20
Time (µs)
10
20
30
40
50
Current (A)
Tsc
Isc
0 2 4 6 8 10 12 14
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES
= 400V
VCES
= 300V
0 500 1000 1500
diF /dt (A/µs)
200
400
600
800
1000
1200
QRR (nC)
10
22
100
47
6.0A
12A
3.0A
IRGB4045DPbF
www.irf.com 7
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.0415 0.000005
0.7262 0.000076
0.7721 0.000810
0.4016 0.004929
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.2195 0.000023
1.7733 0.000165
2.9352 0.001493
1.3704 0.013255
IRGB4045DPbF
8www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
1K
VCC
DUT
0
L
Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit
L
Rg
80 V DUT
480V
+
-
Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - Typical Filter Circuit for
V(BR)CES Measurement
IRGB4045DPbF
www.irf.com 9
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
WF.3- Typ. Diode Recovery Waveform
@ TJ = 175°C using CT.4
WF.4- Typ. Short Circuit Waveform
@ TJ = 25°C using CT.3
0
50
100
150
200
250
300
350
400
450
500
-2-1012345678
Tim e (uS)
Vce (V)
-20
-10
0
10
20
30
40
50
60
70
80
VCE
ICE
-600
-500
-400
-300
-200
-100
0
100
-0.05 0.05 0.15 0.25
time (µS)
V
F
(V )
-20
-15
-10
-5
0
5
10
15
Pea k
IRR
t
RR
Q
RR
10%
Pea k
IRR
-100
0
100
200
300
400
500
600
-0.2 0 0.2 0.4 0.6 0.8 1
time(µs)
V
CE
(V )
-2
0
2
4
6
8
10
12
90% I
CE
5% V
CE
5% I
CE
Eoff Loss
tf
-100
0
100
200
300
400
500
600
4.3 4.5 4.7
ti me (µs)
V
CE
(V)
-5
0
5
10
15
20
25
30
TEST
CURRENT
90% test
current
5% V
CE
10% test
current
tr
Eon Loss
IRGB4045DPbF
10 www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 01/2010
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
,17(51$7,21$/ 3$57180%(5
5(&7,),(5
/27&2'(
$66(0%/<
/2*2
<($5 
'$7(&2'(
:((.
/,1(&
/27&2'(
(;$03/( 7+,6,6$1,5)
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17+($66(0%/</,1(&
$66(0%/('21::
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/