To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. 2. 3. 4. 5. 6. 7. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc. "Standard": 8. 9. 10. 11. 12. Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support. "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. User's Manual 32182 Group 32 User's Manual RENESAS 32-BIT RISC SINGLE-CHIP MICROCOMPUTER M32R FAMILY / M32R/ECU SERIES All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com). Rev.1.00 2003.06 Keep safety first in your circuit designs! * Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials * These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. * Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. * All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). * When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. * Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. * The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. * If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited. * Please contact Renesas Technology Corporation for further details on these materials or the products contained therein. 32182 Group User's Manual REVISION HISTORY Rev. Date Description Summary Page 1.00 Jun 4, 2003 - First edition issued (1/1) Table of contents CHAPTER 1 OVERVIEW 1.1 Outline of the 32182 Group --------------------------------------------------------------------------------------------- 1-2 1.1.1 M32R Family CPU Core with Built-in FPU (M32R-FPU) --------------------------------------------- 1-2 1.1.2 Built-in Multiplier/Accumulator ------------------------------------------------------------------------------- 1-3 1.1.3 Built-in Single-precision FPU -------------------------------------------------------------------------------- 1-3 1.1.4 Built-in Flash Memory and RAM ---------------------------------------------------------------------------- 1-3 1.1.5 Built-in Clock Frequency Multiplier ------------------------------------------------------------------------- 1-4 1.1.6 Powerful Peripheral Functions Built-in -------------------------------------------------------------------- 1-4 1.2 Block Diagram -------------------------------------------------------------------------------------------------------------- 1-5 1.3 Pin Functions --------------------------------------------------------------------------------------------------------------- 1-8 1.4 Pin Assignments ----------------------------------------------------------------------------------------------------------- 1-14 CHAPTER 2 CPU 2.1 CPU Registers ------------------------------------------------------------------------------------------------------------- 2-2 2.2 General-purpose Registers --------------------------------------------------------------------------------------------- 2-2 2.3 Control Registers ---------------------------------------------------------------------------------------------------------- 2-2 2.3.1 Processor Status Word Register: PSW (CR0) ---------------------------------------------------------- 2-3 2.3.2 Condition Bit Register: CBR (CR1) ------------------------------------------------------------------------ 2-4 2.3.3 Interrupt Stack Pointer: SPI (CR2) and User Stack Pointer: SPU (CR3) ------------------------- 2-4 2.3.4 Backup PC: BPC (CR6) -------------------------------------------------------------------------------------- 2-4 2.3.5 Floating-point Status Register: FPSR (CR7) ------------------------------------------------------------ 2-5 2.4 Accumulator ----------------------------------------------------------------------------------------------------------------- 2-7 2.5 Program Counter ---------------------------------------------------------------------------------------------------------- 2-7 2.6 Data Formats --------------------------------------------------------------------------------------------------------------- 2-8 2.6.1 Data Types ------------------------------------------------------------------------------------------------------- 2-8 2.6.2 Data Formats ---------------------------------------------------------------------------------------------------- 2-9 2.7 Supplementary Explanation for BSET, BCLR, LOCK and UNLOCK Instruction Execution ----------------- 2-14 CHAPTER 3 ADDRESS SPACE 3.1 Outline of the Address Space ------------------------------------------------------------------------------------------ 3-2 3.2 Operation Modes ---------------------------------------------------------------------------------------------------------- 3-5 3.3 Internal ROM and Extended External Areas ------------------------------------------------------------------------ 3-9 3.3.1 Internal ROM Area --------------------------------------------------------------------------------------------- 3-9 3.3.2 Extended External Area -------------------------------------------------------------------------------------- 3-9 3.4 Internal RAM and SFR Areas ------------------------------------------------------------------------------------------ 3-10 3.4.1 Internal RAM Area --------------------------------------------------------------------------------------------- 3-10 3.4.2 SFR (Special Function Register) Area -------------------------------------------------------------------- 3-10 3.5 EIT Vector Entry ----------------------------------------------------------------------------------------------------------- 3-33 3.6 ICU Vector Table ---------------------------------------------------------------------------------------------------------- 3-34 3.7 Notes about Address Space -------------------------------------------------------------------------------------------- 3-36 (1) CHAPTER 4 EIT 4.1 Outline of EIT --------------------------------------------------------------------------------------------------------------- 4-2 4.2 EIT Events ------------------------------------------------------------------------------------------------------------------ 4-3 4.2.1 Exception --------------------------------------------------------------------------------------------------------- 4-3 4.2.2 Interrupt ----------------------------------------------------------------------------------------------------------- 4-5 4.2.3 Trap ---------------------------------------------------------------------------------------------------------------- 4-6 4.3 EIT Processing Procedure ---------------------------------------------------------------------------------------------- 4-6 4.4 EIT Processing Mechanism --------------------------------------------------------------------------------------------- 4-7 4.5 Acceptance of EIT Events ----------------------------------------------------------------------------------------------- 4-8 4.6 Saving and Restoring the PC and PSW ----------------------------------------------------------------------------- 4-8 4.7 EIT Vector Entry ----------------------------------------------------------------------------------------------------------- 4-10 4.8 Exception Processing ---------------------------------------------------------------------------------------------------- 4-11 4.8.1 Reserved Instruction Exception (RIE) --------------------------------------------------------------------- 4-11 4.8.2 Address Exception (AE) -------------------------------------------------------------------------------------- 4-12 4.8.3 Floating-Point Exception (FPE) ----------------------------------------------------------------------------- 4-13 4.9 Interrupt Processing ------------------------------------------------------------------------------------------------------ 4-15 4.9.1 Reset Interrupt (RI) -------------------------------------------------------------------------------------------- 4-15 4.9.2 System Break Interrupt (SBI) -------------------------------------------------------------------------------- 4-15 4.9.3 External Interrupt (EI) ----------------------------------------------------------------------------------------- 4-17 4.10 Trap Processing ---------------------------------------------------------------------------------------------------------- 4-18 4.10.1 Trap ---------------------------------------------------------------------------------------------------------------- 4-18 4.11 EIT Priority Levels ------------------------------------------------------------------------------------------------------- 4-19 4.12 Example of EIT Processing ------------------------------------------------------------------------------------------- 4-20 4.13 Precautions on EIT ------------------------------------------------------------------------------------------------------ 4-22 CHAPTER 5 INTERRUPT CONTROLLER (ICU) 5.1 Outline of the Interrupt Controller -------------------------------------------------------------------------------------- 5-2 5.2 ICU Related Registers --------------------------------------------------------------------------------------------------- 5-4 5.2.1 Interrupt Vector Register ------------------------------------------------------------------------------------- 5-5 5.2.2 Interrupt Request Mask Register --------------------------------------------------------------------------- 5-6 5.2.3 SBI (System Break Interrupt) Control Register --------------------------------------------------------- 5-7 5.2.4 Interrupt Control Registers ----------------------------------------------------------------------------------- 5-8 5.3 Interrupt Request Sources in Internal Peripheral I/O ------------------------------------------------------------- 5-11 5.4 ICU Vector Table ---------------------------------------------------------------------------------------------------------- 5-12 5.5 Description of Interrupt Operation ------------------------------------------------------------------------------------- 5-13 5.5.1 Acceptance of Internal Peripheral I/O Interrupts ------------------------------------------------------- 5-13 5.5.2 Processing by Internal Peripheral I/O Interrupt Handlers -------------------------------------------- 5-15 5.6 Description of System Break Interrupt (SBI) Operation ---------------------------------------------------------- 5-18 5.6.1 Acceptance of SBI --------------------------------------------------------------------------------------------- 5-18 5.6.2 SBI Processing by Handler ---------------------------------------------------------------------------------- 5-18 CHAPTER 6 INTERNAL MEMORY 6.1 Outline of the Internal Memory ----------------------------------------------------------------------------------------- 6-2 6.2 Internal RAM ---------------------------------------------------------------------------------------------------------------- 6-2 6.3 Internal Flash Memory --------------------------------------------------------------------------------------------------- 6-2 (2) 6.4 Registers Associated with the Internal Flash Memory ----------------------------------------------------------- 6-5 6.4.1 Flash Mode Register ------------------------------------------------------------------------------------------ 6-5 6.4.2 Flash Status Registers ---------------------------------------------------------------------------------------- 6-6 6.4.3 Flash Status Register 2 (FSTAT2) ------------------------------------------------------------------------- 6-6 6.4.4 Flash Control Registers --------------------------------------------------------------------------------------- 6-8 6.4.5 Virtual Flash S Bank Registers ----------------------------------------------------------------------------- 6-12 6.5 Programming the Internal Flash Memory ---------------------------------------------------------------------------- 6-13 6.5.1 Outline of Internal Flash Memory Programming -------------------------------------------------------- 6-13 6.5.2 Controlling Operation Modes during Flash Programming -------------------------------------------- 6-18 6.5.3 Procedure for Programming/Erasing the Internal Flash Memory ---------------------------------- 6-21 6.5.4 Flash Programming Time (Reference) -------------------------------------------------------------------- 6-30 6.6 Virtual Flash Emulation Function -------------------------------------------------------------------------------------- 6-31 6.6.1 Virtual Flash Emulation Area -------------------------------------------------------------------------------- 6-32 6.6.2 Entering Virtual Flash Emulation Mode ------------------------------------------------------------------- 6-35 6.6.3 Application Example of Virtual Flash Emulation Mode ------------------------------------------------ 6-36 6.7 Connecting to A Serial Programmer ---------------------------------------------------------------------------------- 6-38 6.8 Internal Flash Memory Protect Function ----------------------------------------------------------------------------- 6-40 6.9 Precautions To Be Taken when Rewriting the Internal Flash Memory -------------------------------------- 6-41 CHAPTER 7 RESET 7.1 Outline of Reset ------------------------------------------------------------------------------------------------------------ 7-2 7.2 Reset Operation ----------------------------------------------------------------------------------------------------------- 7-2 7.2.1 Reset at Power-on --------------------------------------------------------------------------------------------- 7-3 7.2.2 Reset during Operation --------------------------------------------------------------------------------------- 7-3 7.2.3 Reset at Entering RAM Backup Mode -------------------------------------------------------------------- 7-3 7.2.4 Reset Vector Relocation during Flash Programming -------------------------------------------------- 7-3 7.3 Internal State Immediately after Reset ------------------------------------------------------------------------------- 7-4 7.4 Things to Be Considered after Reset --------------------------------------------------------------------------------- 7-4 CHAPTER 8 INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8.1 Outline of Input/Output Ports ------------------------------------------------------------------------------------------- 8-2 8.2 Selecting Pin Functions -------------------------------------------------------------------------------------------------- 8-3 8.3 Input/Output Port Related Registers ---------------------------------------------------------------------------------- 8-5 8.3.1 Port Data Registers -------------------------------------------------------------------------------------------- 8-7 8.3.2 Port Direction Registers -------------------------------------------------------------------------------------- 8-8 8.3.3 Port Operation Mode Registers ----------------------------------------------------------------------------- 8-9 8.3.4 Port Peripheral Output Select Registers ------------------------------------------------------------------ 8-20 8.3.5 Port Input Special Function Control Register ------------------------------------------------------------ 8-21 8.4 Port Input Level Switching Function ---------------------------------------------------------------------------------- 8-24 8.5 Port Peripheral Circuits -------------------------------------------------------------------------------------------------- 8-27 8.6 Precautions on Input/Output Ports ------------------------------------------------------------------------------------ 8-31 (3) CHAPTER 9 DMAC 9.1 Outline of the DMAC ------------------------------------------------------------------------------------------------------ 9-2 9.2 DMAC Related Registers ------------------------------------------------------------------------------------------------ 9-4 9.2.1 DMA Channel Control Registers --------------------------------------------------------------------------- 9-6 9.2.2 DMA Software Request Generation Registers ---------------------------------------------------------- 9-18 9.2.3 DMA Source Address Registers ---------------------------------------------------------------------------- 9-19 9.2.4 DMA Destination Address Registers ---------------------------------------------------------------------- 9-20 9.2.5 DMA Transfer Count Registers ----------------------------------------------------------------------------- 9-21 9.2.6 DMA Interrupt Related Registers --------------------------------------------------------------------------- 9-22 9.3 Functional Description of the DMAC ---------------------------------------------------------------------------------- 9-27 9.3.1 DMA Transfer Request Sources ---------------------------------------------------------------------------- 9-27 9.3.2 DMA Transfer Processing Procedure --------------------------------------------------------------------- 9-33 9.3.3 Starting DMA ---------------------------------------------------------------------------------------------------- 9-34 9.3.4 DMA Channel Priority ----------------------------------------------------------------------------------------- 9-34 9.3.5 Gaining and Releasing Control of the Internal Bus ---------------------------------------------------- 9-34 9.3.6 Transfer Units --------------------------------------------------------------------------------------------------- 9-35 9.3.7 Transfer Counts ------------------------------------------------------------------------------------------------- 9-35 9.3.8 Address Space -------------------------------------------------------------------------------------------------- 9-35 9.3.9 Transfer Operation --------------------------------------------------------------------------------------------- 9-35 9.3.10 End of DMA and Interrupt ------------------------------------------------------------------------------------ 9-37 9.3.11 Each Register Status after Completion of DMA Transfer -------------------------------------------- 9-37 9.4 Precautions about the DMAC ------------------------------------------------------------------------------------------ 9-38 CHAPTER 10 MULTIJUNCTION TIMERS 10.1 Outline of Multijunction Timers --------------------------------------------------------------------------------------- 10-2 10.2 Common Units of Multijunction Timers ----------------------------------------------------------------------------- 10-8 10.2.1 MJT Common Unit Register Map -------------------------------------------------------------------------- 10-9 10.2.2 Prescaler Unit -------------------------------------------------------------------------------------------------- 10-10 10.2.3 Clock Bus and Input/Output Event Bus Control Unit ------------------------------------------------- 10-11 10.2.4 Input Processing Control Unit ------------------------------------------------------------------------------ 10-15 10.2.5 Output Flip-flop Control Unit -------------------------------------------------------------------------------- 10-21 10.2.6 Interrupt Control Unit ----------------------------------------------------------------------------------------- 10-26 10.3 TOP (Output-Related 16-Bit Timer) --------------------------------------------------------------------------------- 10-43 10.3.1 Outline of TOP -------------------------------------------------------------------------------------------------- 10-43 10.3.2 Outline of Each Mode of TOP ------------------------------------------------------------------------------- 10-45 10.3.3 TOP Related Register Map ---------------------------------------------------------------------------------- 10-47 10.3.4 TOP Control Registers ---------------------------------------------------------------------------------------- 10-49 10.3.5 TOP Counters (TOP0CT-TOP10CT) --------------------------------------------------------------------- 10-54 10.3.6 TOP Reload Registers (TOP0RL-TOP10RL) ----------------------------------------------------------- 10-55 10.3.7 TOP Correction Registers (TOP0CC-TOP10CC) ----------------------------------------------------- 10-56 10.3.8 TOP Enable Control Registers ------------------------------------------------------------------------------ 10-57 10.3.9 Operation in TOP Single-shot Output Mode (with Correction Function) -------------------------- 10-59 10.3.10 Operation in TOP Delayed Single-shot Output Mode (with Correction Function) -------------- 10-65 10.3.11 Operation in TOP Continuous Output Mode (without Correction Function) --------------------- 10-70 (4) 10.4 TIO (Input/Output-Related 16-Bit Timer) --------------------------------------------------------------------------- 10-73 10.4.1 Outline of TIO --------------------------------------------------------------------------------------------------- 10-73 10.4.2 Outline of Each Mode of TIO -------------------------------------------------------------------------------- 10-75 10.4.3 TIO Related Register Map ----------------------------------------------------------------------------------- 10-78 10.4.4 TIO Control Registers ----------------------------------------------------------------------------------------- 10-80 10.4.5 TIO Counters (TIO0CT-TIO9CT) -------------------------------------------------------------------------- 10-88 10.4.6 TIO Reload 0/ Measure Registers (TIO0RL0-TIO9RL0) --------------------------------------------- 10-89 10.4.7 TIO Reload 1 Registers (TIO0RL1-TIO9RL1) ---------------------------------------------------------- 10-90 10.4.8 TIO Enable Control Registers ------------------------------------------------------------------------------- 10-91 10.4.9 Operation in TIO Measure Free-Run/ Clear Input Modes -------------------------------------------- 10-93 10.4.10 Operation in TIO Noise Processing Input Mode -------------------------------------------------------- 10-95 10.4.11 Operation in TIO PWM Output Mode ---------------------------------------------------------------------- 10-96 10.4.12 Operation in TIO Single-shot Output Mode (without Correction Function) ----------------------- 10-99 10.4.13 Operation in TIO Delayed Single-shot Output Mode (without Correction Function) ----------- 10-101 10.4.14 Operation in TIO Continuous Output Mode (without Correction Function) ----------------------- 10-103 10.5 TMS (Input-Related 16-Bit Timer) ----------------------------------------------------------------------------------- 10-105 10.5.1 Outline of TMS -------------------------------------------------------------------------------------------------- 10-105 10.5.2 Outline of TMS Operation ------------------------------------------------------------------------------------ 10-105 10.5.3 TMS Related Register Map ---------------------------------------------------------------------------------- 10-107 10.5.4 TMS Control Registers ---------------------------------------------------------------------------------------- 10-108 10.5.5 TMS Counters (TMS0CT, TMS1CT) ---------------------------------------------------------------------- 10-109 10.5.6 TMS Measure Registers (TMS0MR3-0, TMS1MR3-0) ---------------------------------------------- 10-109 10.5.7 Operation of TMS Measure Input -------------------------------------------------------------------------- 10-110 10.6 TML (Input-Related 32-Bit Timer) ------------------------------------------------------------------------------------ 10-111 10.6.1 Outline of TML -------------------------------------------------------------------------------------------------- 10-111 10.6.2 Outline of TML Operation ------------------------------------------------------------------------------------ 10-112 10.6.3 TML Related Register Map ---------------------------------------------------------------------------------- 10-112 10.6.4 TML Control Registers ---------------------------------------------------------------------------------------- 10-113 10.6.5 TML Counters --------------------------------------------------------------------------------------------------- 10-114 10.6.6 TML Measure Registers -------------------------------------------------------------------------------------- 10-114 10.6.7 Operation of TML Measure Input --------------------------------------------------------------------------- 10-115 CHAPTER 11 A-D CONVERTER 11.1 Outline of A-D Converter ----------------------------------------------------------------------------------------------- 11-2 11.1.1 Conversion Modes --------------------------------------------------------------------------------------------- 11-5 11.1.2 Operation Modes ----------------------------------------------------------------------------------------------- 11-5 11.1.3 Special Operation Modes ------------------------------------------------------------------------------------ 11-8 11.1.4 A-D Converter Interrupt and DMA Transfer Requests ------------------------------------------------ 11-11 11.1.5 Sample-and-Hold Function ----------------------------------------------------------------------------------- 11-11 11.2 A-D Converter Related Registers ------------------------------------------------------------------------------------ 11-12 11.2.1 A-D Single Mode Register 0 --------------------------------------------------------------------------------- 11-14 11.2.2 A-D Single Mode Register 1 --------------------------------------------------------------------------------- 11-16 11.2.3 A-D Scan Mode Register 0 ---------------------------------------------------------------------------------- 11-18 11.2.4 A-D Scan Mode Register 1 ---------------------------------------------------------------------------------- 11-20 11.2.5 A-D Conversion Speed Control Register ----------------------------------------------------------------- 11-22 (5) 11.2.6 A-D Disconnection Detection Assist Function Control Register ------------------------------------ 11-23 11.2.7 A-D Disconnection Detection Assist Method Select Register --------------------------------------- 11-24 11.2.8 A-D Successive Approximation Register ----------------------------------------------------------------- 11-27 11.2.9 A-D Comparate Data Register ------------------------------------------------------------------------------ 11-28 11.2.10 10-bit A-D Data Registers ------------------------------------------------------------------------------------ 11-29 11.2.11 8-bit A-D Data Registers -------------------------------------------------------------------------------------- 11-30 11.3 Functional Description of A-D Converter --------------------------------------------------------------------------- 11-31 11.3.1 How to Find Analog Input Voltages ------------------------------------------------------------------------ 11-31 11.3.2 A-D Conversion by Successive Approximation Method ---------------------------------------------- 11-32 11.3.3 Comparator Operation ---------------------------------------------------------------------------------------- 11-33 11.3.4 Calculating the A-D Conversion Time --------------------------------------------------------------------- 11-34 11.3.5 Accuracy of A-D Conversion -------------------------------------------------------------------------------- 11-37 11.4 Inflow Current Bypass Circuit ----------------------------------------------------------------------------------------- 11-39 11.5 Precautions on Using A-D Converter ------------------------------------------------------------------------------- 11-41 CHAPTER 12 SERIAL I/O 12.1 Outline of Serial I/O ----------------------------------------------------------------------------------------------------- 12-2 12.2 Serial I/O Related Registers ------------------------------------------------------------------------------------------ 12-5 12.2.1 SIO Interrupt Related Registers ---------------------------------------------------------------------------- 12-6 12.2.2 SIO Transmit Control Registers ---------------------------------------------------------------------------- 12-13 12.2.3 SIO Transmit/Receive Mode Registers ------------------------------------------------------------------- 12-14 12.2.4 SIO Transmit Buffer Registers ------------------------------------------------------------------------------ 12-17 12.2.5 SIO Receive Buffer Registers ------------------------------------------------------------------------------- 12-18 12.2.6 SIO Receive Control Registers ----------------------------------------------------------------------------- 12-19 12.2.7 SIO Baud Rate Registers ------------------------------------------------------------------------------------ 12-22 12.3 Transmit Operation in CSIO Mode ---------------------------------------------------------------------------------- 12-23 12.3.1 Setting the CSIO Baud Rate --------------------------------------------------------------------------------- 12-23 12.3.2 Initializing CSIO Transmission ------------------------------------------------------------------------------ 12-24 12.3.3 Starting CSIO Transmission --------------------------------------------------------------------------------- 12-26 12.3.4 Successive CSIO Transmission ---------------------------------------------------------------------------- 12-26 12.3.5 Processing at End of CSIO Transmission ---------------------------------------------------------------- 12-27 12.3.6 Transmit Interrupts --------------------------------------------------------------------------------------------- 12-27 12.3.7 Transmit DMA Transfer Request --------------------------------------------------------------------------- 12-27 12.3.8 Example of CSIO Transmit Operation -------------------------------------------------------------------- 12-29 12.4 Receive Operation in CSIO Mode ----------------------------------------------------------------------------------- 12-31 12.4.1 Initialization for CSIO Reception ---------------------------------------------------------------------------- 12-31 12.4.2 Starting CSIO Reception ------------------------------------------------------------------------------------- 12-33 12.4.3 Processing at End of CSIO Reception -------------------------------------------------------------------- 12-33 12.4.4 About Successive Reception -------------------------------------------------------------------------------- 12-34 12.4.5 Flags Showing the Status of CSIO Receive Operation ----------------------------------------------- 12-35 12.4.6 Example of CSIO Receive Operation --------------------------------------------------------------------- 12-36 12.5 Precautions on Using CSIO Mode ----------------------------------------------------------------------------------- 12-38 12.6 Transmit Operation in UART Mode --------------------------------------------------------------------------------- 12-39 12.6.1 Setting the UART Baud Rate -------------------------------------------------------------------------------- 12-39 12.6.2 UART Transmit/Receive Data Formats ------------------------------------------------------------------- 12-39 12.6.3 Initializing UART Transmission ----------------------------------------------------------------------------- 12-41 12.6.4 Starting UART Transmission -------------------------------------------------------------------------------- 12-43 (6) 12.6.5 Successive UART Transmission --------------------------------------------------------------------------- 12-43 12.6.6 Processing at End of UART Transmission --------------------------------------------------------------- 12-43 12.6.7 Transmit Interrupts --------------------------------------------------------------------------------------------- 12-43 12.6.8 Transmit DMA Transfer Request --------------------------------------------------------------------------- 12-44 12.6.9 Example of UART Transmit Operation -------------------------------------------------------------------- 12-45 12.7 Receive Operation in UART Mode ---------------------------------------------------------------------------------- 12-47 12.7.1 Initialization for UART Reception --------------------------------------------------------------------------- 12-47 12.7.2 Starting UART Reception ------------------------------------------------------------------------------------ 12-49 12.7.3 Processing at End of UART Reception ------------------------------------------------------------------- 12-49 12.7.4 Example of UART Receive Operation -------------------------------------------------------------------- 12-51 12.7.5 Start Bit Detection during UART Reception -------------------------------------------------------------- 12-53 12.8 Fixed Period Clock Output Function -------------------------------------------------------------------------------- 12-54 12.9 Precautions on Using UART Mode ---------------------------------------------------------------------------------- 12-55 CHAPTER 13 CAN MODULE 13.1 Outline of the CAN Module -------------------------------------------------------------------------------------------- 13-2 13.2 CAN Module Related Registers -------------------------------------------------------------------------------------- 13-4 13.2.1 CAN Control Registers ---------------------------------------------------------------------------------------- 13-15 13.2.2 CAN Status Registers ----------------------------------------------------------------------------------------- 13-18 13.2.3 CAN Frame Format Select Registers --------------------------------------------------------------------- 13-21 13.2.4 CAN Configuration Registers -------------------------------------------------------------------------------- 13-22 13.2.5 CAN Timestamp Count Registers -------------------------------------------------------------------------- 13-24 13.2.6 CAN Error Count Registers ---------------------------------------------------------------------------------- 13-25 13.2.7 CAN Baud Rate Prescalers ---------------------------------------------------------------------------------- 13-26 13.2.8 CAN Interrupt Related Registers --------------------------------------------------------------------------- 13-27 13.2.9 CAN Cause of Error Registers ------------------------------------------------------------------------------ 13-45 13.2.10 CAN Mode Registers ------------------------------------------------------------------------------------------ 13-46 13.2.11 CAN DMA Transfer Request Select Register ----------------------------------------------------------- 13-47 13.2.12 CAN Mask Registers ------------------------------------------------------------------------------------------ 13-48 13.2.13 CAN Single-Shot Mode Control Registers --------------------------------------------------------------- 13-52 13.2.14 CAN Message Slot Control Registers --------------------------------------------------------------------- 13-53 13.2.15 CAN Message Slots ------------------------------------------------------------------------------------------- 13-57 13.3 CAN Protocol ------------------------------------------------------------------------------------------------------------- 13-72 13.3.1 CAN Protocol Frames ----------------------------------------------------------------------------------------- 13-72 13.3.2 Data Formats during CAN Transmission/Reception --------------------------------------------------- 13-73 13.3.3 CAN Controller Error States --------------------------------------------------------------------------------- 13-74 13.4 Initializing the CAN Module -------------------------------------------------------------------------------------------- 13-75 13.4.1 Initializing the CAN Module ---------------------------------------------------------------------------------- 13-75 13.5 Transmitting Data Frames --------------------------------------------------------------------------------------------- 13-78 13.5.1 Data Frame Transmit Procedure --------------------------------------------------------------------------- 13-78 13.5.2 Data Frame Transmit Operation ---------------------------------------------------------------------------- 13-79 13.5.3 Transmit Abort Function -------------------------------------------------------------------------------------- 13-80 13.6 Receiving Data Frames ------------------------------------------------------------------------------------------------ 13-81 13.6.1 Data Frame Receive Procedure ---------------------------------------------------------------------------- 13-81 13.6.2 Data Frame Receive Operation ----------------------------------------------------------------------------- 13-82 13.6.3 Reading Out Received Data Frames ---------------------------------------------------------------------- 13-84 (7) 13.7 Transmitting Remote Frames ---------------------------------------------------------------------------------------- 13-86 13.7.1 Remote Frame Transmit Procedure ----------------------------------------------------------------------- 13-86 13.7.2 Remote Frame Transmit Operation ------------------------------------------------------------------------ 13-87 13.7.3 Reading Out Received Data Frames when Set for Remote Frame Transmission ------------- 13-89 13.8 Receiving Remote Frames -------------------------------------------------------------------------------------------- 13-91 13.8.1 Remote Frame Receive Procedure ------------------------------------------------------------------------ 13-91 13.8.2 Remote Frame Receive Operation ------------------------------------------------------------------------ 13-92 13.9 Precautions about CAN Module -------------------------------------------------------------------------------------- 13-95 CHAPTER 14 REAL TIME DEBUGGER (RTD) 14.1 Outline of the Real-Time Debugger (RTD) ------------------------------------------------------------------------ 14-2 14.2 Pin Functions of the RTD ---------------------------------------------------------------------------------------------- 14-3 14.3 Functional Description of the RTD ----------------------------------------------------------------------------------- 14-4 14.3.1 Outline of the RTD Operation ------------------------------------------------------------------------------ 14-4 14.3.2 Operation of RDR (Real-time RAM Content Output) ------------------------------------------------- 14-4 14.3.3 Operation of the WRR (RAM Content Forcible Rewrite) --------------------------------------------- 14-6 14.3.4 Operation of VER (Continuous Monitor) ----------------------------------------------------------------- 14-7 14.3.5 Operation of VEI (Interrupt Request) --------------------------------------------------------------------- 14-7 14.3.6 Operation of RCV (Recover from Runaway) ----------------------------------------------------------- 14-8 14.3.7 Method for Setting a Specified Address when Using the RTD ------------------------------------- 14-9 14.3.8 Resetting the RTD --------------------------------------------------------------------------------------------- 14-10 14.4 Typical Connection with the Host ------------------------------------------------------------------------------------ 14-11 CHAPTER 15 EXTERNAL BUS INTERFACE 15.1 Outline of the External Bus Interface ------------------------------------------------------------------------------- 15-2 15.1.1 External Bus Interface Related Signals ------------------------------------------------------------------ 15-2 15.2 External Bus Interface Related Registers ------------------------------------------------------------------------- 15-4 15.2.1 Port Operation Mode Registers ---------------------------------------------------------------------------- 15-4 15.2.2 Port Peripheral Output Select Register ------------------------------------------------------------------ 15-8 15.2.3 Bus Mode Control Register --------------------------------------------------------------------------------- 15-9 15.3 Read/Write Operations ------------------------------------------------------------------------------------------------- 15-10 15.4 Bus Arbitration ------------------------------------------------------------------------------------------------------------ 15-16 15.5 Typical Connection of External Extension Memory ------------------------------------------------------------- 15-18 15.6 Example of Bus Voltage Settings Using VCC-BUS ------------------------------------------------------------- 15-21 CHAPTER 16 WAIT CONTROLLER 16.1 Outline of the Wait Controller ----------------------------------------------------------------------------------------- 16-2 16.2 Wait Controller Related Registers ----------------------------------------------------------------------------------- 16-4 16.2.1 CS Area Wait Control Registers ---------------------------------------------------------------------------- 16-4 16.3 Typical Operation of the Wait Controller --------------------------------------------------------------------------- 16-6 CHAPTER 17 RAM BACKUP MODE 17.1 Outline of RAM Backup Mode ---------------------------------------------------------------------------------------- 17-2 17.2 Example of RAM Backup when Power is Off -------------------------------------------------------------------------- 17-3 17.2.1 Normal Operating State --------------------------------------------------------------------------------------- 17-3 17.2.2 RAM Backup State --------------------------------------------------------------------------------------------- 17-4 (8) 17.3 Example of RAM Backup for Saving Power Consumption ---------------------------------------------------- 17-5 17.3.1 Normal Operating State --------------------------------------------------------------------------------------- 17-5 17.3.2 RAM Backup State --------------------------------------------------------------------------------------------- 17-6 17.3.3 Precautions to Be Observed at Power-On --------------------------------------------------------------- 17-7 17.4 Exiting RAM Backup Mode (Wakeup) ------------------------------------------------------------------------------ 17-8 CHAPTER 18 OSCILLATOR CIRCUIT 18.1 Oscillator Circuit ---------------------------------------------------------------------------------------------------------- 18-2 18.1.1 Example of an Oscillator Circuit ---------------------------------------------------------------------------- 18-2 18.1.2 XIN Oscillation Stoppage Detection Circuit -------------------------------------------------------------- 18-3 18.1.3 Oscillation Drive Capability Select Function ------------------------------------------------------------- 18-5 18.1.4 System Clock Output Function ------------------------------------------------------------------------------ 18-7 18.1.5 Oscillation Stabilization Time at Power-On -------------------------------------------------------------- 18-7 18.2 Clock Generator Circuit ------------------------------------------------------------------------------------------------ 18-8 CHAPTER 19 JTAG 19.1 Outline of JTAG ---------------------------------------------------------------------------------------------------------- 19-2 19.2 Configuration of the JTAG Circuit ------------------------------------------------------------------------------------ 19-3 19.3 JTAG Registers ---------------------------------------------------------------------------------------------------------- 19-4 19.3.1 Instruction Register (JTAGIR) ------------------------------------------------------------------------------- 19-4 19.3.2 Data Register ---------------------------------------------------------------------------------------------------- 19-5 19.4 Basic Operation of JTAG ---------------------------------------------------------------------------------------------- 19-6 19.4.1 Outline of JTAG Operation ----------------------------------------------------------------------------------- 19-6 19.4.2 IR Path Sequence ---------------------------------------------------------------------------------------------- 19-8 19.4.3 DR Path Sequence -------------------------------------------------------------------------------------------- 19-9 19.4.4 Inspecting and Setting Data Registers -------------------------------------------------------------------- 19-10 19.5 Boundary Scan Description Language ----------------------------------------------------------------------------- 19-11 19.6 Notes on Board Design when Connecting JTAG ---------------------------------------------------------------------- 19-12 19.7 Processing Pins when Not Using JTAG ---------------------------------------------------------------------------- 19-13 CHAPTER 20 POWER SUPPLY CIRCUIT 20.1 Configuration of the Power Supply Circuit ------------------------------------------------------------------------- 20-2 20.2 Power-On Sequence ---------------------------------------------------------------------------------------------------- 20-3 20.2.1 Power-On Sequence when Not Using RAM Backup -------------------------------------------------- 20-3 20.2.2 Power-On Sequence when Using RAM Backup -------------------------------------------------------- 20-4 20.3 Power-Off Sequence ---------------------------------------------------------------------------------------------------- 20-5 20.3.1 Power-Off Sequence when Not Using RAM Backup -------------------------------------------------- 20-5 20.3.2 Power-Off Sequence when Using RAM Backup ------------------------------------------------------- 20-6 CHAPTER 21 ELECTRICAL CHARACTERISTICS 21.1 Absolute Maximum Ratings ------------------------------------------------------------------------------------------- 21-2 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz ---------------------------------------------- 21-3 21.2.1 Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 10 MHz) ------------------- 21-3 21.2.2 D.C. Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz) ----------------------------------------- 21-5 21.2.3 A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz) -------------------------- 21-6 (9) 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz ------------------------------------------------ 21-7 21.3.1 Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 8 MHz) -------------------- 21-7 21.3.2 D.C. Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz) ------------------------------------------- 21-9 21.3.3 A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz) ---------------------------- 21-10 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz -------------------------------------------- 21-11 21.4.1 Recommended Operating Conditions (when VCCE = 3.3 V 0.3 V, f(XIN) = 10 MHz) ------ 21-11 21.4.2 D.C. Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 10 MHz) ---------------------------- 21-13 21.4.3 A-D Conversion Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 10 MHz) ------------- 21-14 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz ---------------------------------------------- 21-15 21.5.1 Recommended Operating Conditions (when VCCE = 3.3 V 0.3 V f(XIN) = 8 MHz) -------- 21-15 21.5.2 D.C. Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 8 MHz) ------------------------------ 21-17 21.5.3 A-D Conversion Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 8 MHz) --------------- 21-18 21.6 Flash Memory Related Characteristics ----------------------------------------------------------------------------- 21-19 21.7 A.C. Characteristics (when VCCE = 5 V) -------------------------------------------------------------------------- 21-20 21.7.1 Timing Requirements ------------------------------------------------------------------------------------------ 21-20 21.7.2 Switching Characteristics ------------------------------------------------------------------------------------- 21-24 21.7.3 A.C. Characteristics -------------------------------------------------------------------------------------------- 21-27 21.8 A.C. Characteristics (when VCCE = 3.3 V) ----------------------------------------------------------------------- 21-36 21.8.1 Timing Requirements ------------------------------------------------------------------------------------------ 21-36 21.8.2 Switching Characteristics ------------------------------------------------------------------------------------- 21-40 21.8.3 A.C. Characteristics -------------------------------------------------------------------------------------------- 21-43 CHAPTER 22 TYPICAL CHARACTERISTICS To be written at a later time --------------------------------------------------------------------------------------------------- 22-2 APPENDIX 1 MECHANICAL SPECIFICAITONS Appendix 1.1 Dimensional Outline Drawing ------------------------------------------------------------------- Appendix 1-2 APPENDIX 2 INSTRUCTION PROCESSING TIME Appendix 2.1 32182 Instruction Processing Time ------------------------------------------------------------ Appendix 2-2 APPENDIX 3 PROCESSING OF UNUSED PINS Appendix 3.1 Example Processing of Unused Pins --------------------------------------------------------- Appendix 3-2 APPENDIX 4 SUMMARY OF PRECAUTIONS Appendix 4.1 Precautions about the CPU --------------------------------------------------------------------Appendix 4.1.1 Precautions Regarding Data Transfer -----------------------------------------------Appendix 4.2 Precautions about the Address Space ------------------------------------------------------Appendix 4.2.1 Virtual Flash Emulation Function ------------------------------------------------------Appendix 4.3 Precautions about EIT --------------------------------------------------------------------------Appendix 4.4 Precautions To Be Observed when Programming Internal Flash Memory --------Appendix 4.5 Precautions to Be Observed after Reset ---------------------------------------------------Appendix 4.5.1 Input/output Ports -------------------------------------------------------------------------- (10) Appendix 4-2 Appendix 4-2 Appendix 4-3 Appendix 4-3 Appendix 4-3 Appendix 4-3 Appendix 4-4 Appendix 4-4 Appendix 4.6 Precautions about Input/Output Ports --------------------------------------------------Appendix 4.6.1 When Using Input/Output Ports in Output Mode ------------------------------Appendix 4.6.2 About the Port Input Disable Function -------------------------------------------Appendix 4.7 Precautions about the DMAC -------------------------------------------------------------Appendix 4.7.1 About Writing to the DMAC Related Registers ---------------------------------Appendix 4.7.2 Manipulating the DMAC Related Registers by DMA Transfer -------------Appendix 4.7.3 About the DMA Interrupt Request Status Register ----------------------------Appendix 4.7.4 About the Stable Operation of DMA Transfer ----------------------------------Appendix 4.8 Precautions about the Multijunction Timers -------------------------------------------Appendix 4.8.1 Precautions on Using TOP Single-Shot Output Mode -----------------------Appendix 4.8.2 Precautions on Using TOP Delayed Single-Shot Output Mode -----------Appendix 4.8.3 Precautions on Using TOP Continuous Output Mode ------------------------Appendix 4.8.4 Precautions on Using TIO Measure Free-Run/Clear Input Modes --------Appendix 4.8.5 Precautions on Using TIO PWM Output Mode ---------------------------------Appendix 4.8.6 Precautions on Using TIO Single-Shot Output Mode ------------------------Appendix 4.8.7 Precautions on Using TIO Delayed Single-Shot Output Mode -------------Appendix 4.8.8 Precautions on Using TIO Continuous Output Mode -------------------------Appendix 4.8.9 Precautions on Using TMS Measure Input --------------------------------------Appendix 4.8.10 Precautions on Using TML Measure Input -------------------------------------Appendix 4.9 Precautions about the A-D Converters -------------------------------------------------Appendix 4.10 Precautions about Serial I/O --------------------------------------------------------------Appendix 4.10.1 Precautions on Using CSIO Mode ------------------------------------------------Appendix 4.10.2 Precautions on Using UART Mode -----------------------------------------------Appendix 4.11 Precautions about RAM Backup Mode ------------------------------------------------Appendix 4.11.1 Precautions to Be Observed at Power-On -------------------------------------Appendix 4.12 Precautions about JTAG ------------------------------------------------------------------Appendix 4.12.1 Notes on Board Design when Connecting JTAG ------------------------------Appendix 4.12.2 Processing Pins when Not Using JTAG -----------------------------------------Appendix 4.13 Precautions about Noise ------------------------------------------------------------------Appendix 4.13.1 Reduction of Wiring Length --------------------------------------------------------Appendix 4.13.2 Inserting a Bypass Capacitor between VSS and VCC Lines --------------Appendix 4.13.3 Processing Analog Input Pin Wiring ---------------------------------------------Appendix 4.13.4 Consideration about the Oscillator and VCNT Pin ---------------------------Appendix 4.13.5 Processing Input/Output Ports ----------------------------------------------------- (11) Appendix 4-4 Appendix 4-4 Appendix 4-4 Appendix 4-5 Appendix 4-5 Appendix 4-5 Appendix 4-5 Appendix 4-5 Appendix 4-6 Appendix 4-6 Appendix 4-8 Appendix 4-9 Appendix 4-9 Appendix 4-9 Appendix 4-9 Appendix 4-10 Appendix 4-10 Appendix 4-10 Appendix 4-11 Appendix 4-12 Appendix 4-15 Appendix 4-15 Appendix 4-16 Appendix 4-17 Appendix 4-17 Appendix 4-18 Appendix 4-18 Appendix 4-19 Appendix 4-20 Appendix 4-20 Appendix 4-23 Appendix 4-23 Appendix 4-24 Appendix 4-28 This page is blank for reasons of layout. (12) CHAPTER 4 EIT 4.1 Outline of EIT --------------------------------------------------------------------------------------------------------------- 4-2 4.2 EIT Events ------------------------------------------------------------------------------------------------------------------ 4-3 4.2.1 Exception --------------------------------------------------------------------------------------------------------- 4-3 4.2.2 Interrupt ----------------------------------------------------------------------------------------------------------- 4-5 4.2.3 Trap ---------------------------------------------------------------------------------------------------------------- 4-6 4.3 EIT Processing Procedure ---------------------------------------------------------------------------------------------- 4-6 4.4 EIT Processing Mechanism --------------------------------------------------------------------------------------------- 4-7 4.5 Acceptance of EIT Events ----------------------------------------------------------------------------------------------- 4-8 4.6 Saving and Restoring the PC and PSW ----------------------------------------------------------------------------- 4-8 4.7 EIT Vector Entry ----------------------------------------------------------------------------------------------------------- 4-10 4.8 Exception Processing ---------------------------------------------------------------------------------------------------- 4-11 4.8.1 Reserved Instruction Exception (RIE) --------------------------------------------------------------------- 4-11 4.8.2 Address Exception (AE) -------------------------------------------------------------------------------------- 4-12 4.8.3 Floating-Point Exception (FPE) ----------------------------------------------------------------------------- 4-13 4.9 Interrupt Processing ------------------------------------------------------------------------------------------------------ 4-15 4.9.1 Reset Interrupt (RI) -------------------------------------------------------------------------------------------- 4-15 4.9.2 System Break Interrupt (SBI) -------------------------------------------------------------------------------- 4-15 4.9.3 External Interrupt (EI) ----------------------------------------------------------------------------------------- 4-17 4.10 Trap Processing ---------------------------------------------------------------------------------------------------------- 4-18 4.10.1 Trap ---------------------------------------------------------------------------------------------------------------- 4-18 4.11 EIT Priority Levels ------------------------------------------------------------------------------------------------------- 4-19 4.12 Example of EIT Processing ------------------------------------------------------------------------------------------- 4-20 4.13 Precautions on EIT ------------------------------------------------------------------------------------------------------ 4-22 CHAPTER 5 INTERRUPT CONTROLLER (ICU) 5.1 Outline of the Interrupt Controller -------------------------------------------------------------------------------------- 5-2 5.2 ICU Related Registers --------------------------------------------------------------------------------------------------- 5-4 5.2.1 Interrupt Vector Register ------------------------------------------------------------------------------------- 5-5 5.2.2 Interrupt Request Mask Register --------------------------------------------------------------------------- 5-6 5.2.3 SBI (System Break Interrupt) Control Register --------------------------------------------------------- 5-7 5.2.4 Interrupt Control Registers ----------------------------------------------------------------------------------- 5-8 5.3 Interrupt Request Sources in Internal Peripheral I/O ------------------------------------------------------------- 5-11 5.4 ICU Vector Table ---------------------------------------------------------------------------------------------------------- 5-12 5.5 Description of Interrupt Operation ------------------------------------------------------------------------------------- 5-13 5.5.1 Acceptance of Internal Peripheral I/O Interrupts ------------------------------------------------------- 5-13 5.5.2 Processing by Internal Peripheral I/O Interrupt Handlers -------------------------------------------- 5-15 5.6 Description of System Break Interrupt (SBI) Operation ---------------------------------------------------------- 5-18 5.6.1 Acceptance of SBI --------------------------------------------------------------------------------------------- 5-18 5.6.2 SBI Processing by Handler ---------------------------------------------------------------------------------- 5-18 CHAPTER 6 INTERNAL MEMORY 6.1 Outline of the Internal Memory ----------------------------------------------------------------------------------------- 6-2 6.2 Internal RAM ---------------------------------------------------------------------------------------------------------------- 6-2 6.3 Internal Flash Memory --------------------------------------------------------------------------------------------------- 6-2 (2) 6.4 Registers Associated with the Internal Flash Memory ----------------------------------------------------------- 6-5 6.4.1 Flash Mode Register ------------------------------------------------------------------------------------------ 6-5 6.4.2 Flash Status Registers ---------------------------------------------------------------------------------------- 6-6 6.4.3 Flash Status Register 2 (FSTAT2) ------------------------------------------------------------------------- 6-6 6.4.4 Flash Control Registers --------------------------------------------------------------------------------------- 6-8 6.4.5 Virtual Flash S Bank Registers ----------------------------------------------------------------------------- 6-12 6.5 Programming the Internal Flash Memory ---------------------------------------------------------------------------- 6-13 6.5.1 Outline of Internal Flash Memory Programming -------------------------------------------------------- 6-13 6.5.2 Controlling Operation Modes during Flash Programming -------------------------------------------- 6-18 6.5.3 Procedure for Programming/Erasing the Internal Flash Memory ---------------------------------- 6-21 6.5.4 Flash Programming Time (Reference) -------------------------------------------------------------------- 6-30 6.6 Virtual Flash Emulation Function -------------------------------------------------------------------------------------- 6-31 6.6.1 Virtual Flash Emulation Area -------------------------------------------------------------------------------- 6-32 6.6.2 Entering Virtual Flash Emulation Mode ------------------------------------------------------------------- 6-35 6.6.3 Application Example of Virtual Flash Emulation Mode ------------------------------------------------ 6-36 6.7 Connecting to A Serial Programmer ---------------------------------------------------------------------------------- 6-38 6.8 Internal Flash Memory Protect Function ----------------------------------------------------------------------------- 6-40 6.9 Precautions To Be Taken when Rewriting the Internal Flash Memory -------------------------------------- 6-41 CHAPTER 7 RESET 7.1 Outline of Reset ------------------------------------------------------------------------------------------------------------ 7-2 7.2 Reset Operation ----------------------------------------------------------------------------------------------------------- 7-2 7.2.1 Reset at Power-on --------------------------------------------------------------------------------------------- 7-3 7.2.2 Reset during Operation --------------------------------------------------------------------------------------- 7-3 7.2.3 Reset at Entering RAM Backup Mode -------------------------------------------------------------------- 7-3 7.2.4 Reset Vector Relocation during Flash Programming -------------------------------------------------- 7-3 7.3 Internal State Immediately after Reset ------------------------------------------------------------------------------- 7-4 7.4 Things to Be Considered after Reset --------------------------------------------------------------------------------- 7-4 CHAPTER 8 INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8.1 Outline of Input/Output Ports ------------------------------------------------------------------------------------------- 8-2 8.2 Selecting Pin Functions -------------------------------------------------------------------------------------------------- 8-3 8.3 Input/Output Port Related Registers ---------------------------------------------------------------------------------- 8-5 8.3.1 Port Data Registers -------------------------------------------------------------------------------------------- 8-7 8.3.2 Port Direction Registers -------------------------------------------------------------------------------------- 8-8 8.3.3 Port Operation Mode Registers ----------------------------------------------------------------------------- 8-9 8.3.4 Port Peripheral Output Select Registers ------------------------------------------------------------------ 8-20 8.3.5 Port Input Special Function Control Register ------------------------------------------------------------ 8-21 8.4 Port Input Level Switching Function ---------------------------------------------------------------------------------- 8-24 8.5 Port Peripheral Circuits -------------------------------------------------------------------------------------------------- 8-27 8.6 Precautions on Input/Output Ports ------------------------------------------------------------------------------------ 8-31 (3) CHAPTER 9 DMAC 9.1 Outline of the DMAC ------------------------------------------------------------------------------------------------------ 9-2 9.2 DMAC Related Registers ------------------------------------------------------------------------------------------------ 9-4 9.2.1 DMA Channel Control Registers --------------------------------------------------------------------------- 9-6 9.2.2 DMA Software Request Generation Registers ---------------------------------------------------------- 9-18 9.2.3 DMA Source Address Registers ---------------------------------------------------------------------------- 9-19 9.2.4 DMA Destination Address Registers ---------------------------------------------------------------------- 9-20 9.2.5 DMA Transfer Count Registers ----------------------------------------------------------------------------- 9-21 9.2.6 DMA Interrupt Related Registers --------------------------------------------------------------------------- 9-22 9.3 Functional Description of the DMAC ---------------------------------------------------------------------------------- 9-27 9.3.1 DMA Transfer Request Sources ---------------------------------------------------------------------------- 9-27 9.3.2 DMA Transfer Processing Procedure --------------------------------------------------------------------- 9-33 9.3.3 Starting DMA ---------------------------------------------------------------------------------------------------- 9-34 9.3.4 DMA Channel Priority ----------------------------------------------------------------------------------------- 9-34 9.3.5 Gaining and Releasing Control of the Internal Bus ---------------------------------------------------- 9-34 9.3.6 Transfer Units --------------------------------------------------------------------------------------------------- 9-35 9.3.7 Transfer Counts ------------------------------------------------------------------------------------------------- 9-35 9.3.8 Address Space -------------------------------------------------------------------------------------------------- 9-35 9.3.9 Transfer Operation --------------------------------------------------------------------------------------------- 9-35 9.3.10 End of DMA and Interrupt ------------------------------------------------------------------------------------ 9-37 9.3.11 Each Register Status after Completion of DMA Transfer -------------------------------------------- 9-37 9.4 Precautions about the DMAC ------------------------------------------------------------------------------------------ 9-38 CHAPTER 10 MULTIJUNCTION TIMERS 10.1 Outline of Multijunction Timers --------------------------------------------------------------------------------------- 10-2 10.2 Common Units of Multijunction Timers ----------------------------------------------------------------------------- 10-8 10.2.1 MJT Common Unit Register Map -------------------------------------------------------------------------- 10-9 10.2.2 Prescaler Unit -------------------------------------------------------------------------------------------------- 10-10 10.2.3 Clock Bus and Input/Output Event Bus Control Unit ------------------------------------------------- 10-11 10.2.4 Input Processing Control Unit ------------------------------------------------------------------------------ 10-15 10.2.5 Output Flip-flop Control Unit -------------------------------------------------------------------------------- 10-21 10.2.6 Interrupt Control Unit ----------------------------------------------------------------------------------------- 10-26 10.3 TOP (Output-Related 16-Bit Timer) --------------------------------------------------------------------------------- 10-43 10.3.1 Outline of TOP -------------------------------------------------------------------------------------------------- 10-43 10.3.2 Outline of Each Mode of TOP ------------------------------------------------------------------------------- 10-45 10.3.3 TOP Related Register Map ---------------------------------------------------------------------------------- 10-47 10.3.4 TOP Control Registers ---------------------------------------------------------------------------------------- 10-49 10.3.5 TOP Counters (TOP0CT-TOP10CT) --------------------------------------------------------------------- 10-54 10.3.6 TOP Reload Registers (TOP0RL-TOP10RL) ----------------------------------------------------------- 10-55 10.3.7 TOP Correction Registers (TOP0CC-TOP10CC) ----------------------------------------------------- 10-56 10.3.8 TOP Enable Control Registers ------------------------------------------------------------------------------ 10-57 10.3.9 Operation in TOP Single-shot Output Mode (with Correction Function) -------------------------- 10-59 10.3.10 Operation in TOP Delayed Single-shot Output Mode (with Correction Function) -------------- 10-65 10.3.11 Operation in TOP Continuous Output Mode (without Correction Function) --------------------- 10-70 (4) 10.4 TIO (Input/Output-Related 16-Bit Timer) --------------------------------------------------------------------------- 10-73 10.4.1 Outline of TIO --------------------------------------------------------------------------------------------------- 10-73 10.4.2 Outline of Each Mode of TIO -------------------------------------------------------------------------------- 10-75 10.4.3 TIO Related Register Map ----------------------------------------------------------------------------------- 10-78 10.4.4 TIO Control Registers ----------------------------------------------------------------------------------------- 10-80 10.4.5 TIO Counters (TIO0CT-TIO9CT) -------------------------------------------------------------------------- 10-88 10.4.6 TIO Reload 0/ Measure Registers (TIO0RL0-TIO9RL0) --------------------------------------------- 10-89 10.4.7 TIO Reload 1 Registers (TIO0RL1-TIO9RL1) ---------------------------------------------------------- 10-90 10.4.8 TIO Enable Control Registers ------------------------------------------------------------------------------- 10-91 10.4.9 Operation in TIO Measure Free-Run/ Clear Input Modes -------------------------------------------- 10-93 10.4.10 Operation in TIO Noise Processing Input Mode -------------------------------------------------------- 10-95 10.4.11 Operation in TIO PWM Output Mode ---------------------------------------------------------------------- 10-96 10.4.12 Operation in TIO Single-shot Output Mode (without Correction Function) ----------------------- 10-99 10.4.13 Operation in TIO Delayed Single-shot Output Mode (without Correction Function) ----------- 10-101 10.4.14 Operation in TIO Continuous Output Mode (without Correction Function) ----------------------- 10-103 10.5 TMS (Input-Related 16-Bit Timer) ----------------------------------------------------------------------------------- 10-105 10.5.1 Outline of TMS -------------------------------------------------------------------------------------------------- 10-105 10.5.2 Outline of TMS Operation ------------------------------------------------------------------------------------ 10-105 10.5.3 TMS Related Register Map ---------------------------------------------------------------------------------- 10-107 10.5.4 TMS Control Registers ---------------------------------------------------------------------------------------- 10-108 10.5.5 TMS Counters (TMS0CT, TMS1CT) ---------------------------------------------------------------------- 10-109 10.5.6 TMS Measure Registers (TMS0MR3-0, TMS1MR3-0) ---------------------------------------------- 10-109 10.5.7 Operation of TMS Measure Input -------------------------------------------------------------------------- 10-110 10.6 TML (Input-Related 32-Bit Timer) ------------------------------------------------------------------------------------ 10-111 10.6.1 Outline of TML -------------------------------------------------------------------------------------------------- 10-111 10.6.2 Outline of TML Operation ------------------------------------------------------------------------------------ 10-112 10.6.3 TML Related Register Map ---------------------------------------------------------------------------------- 10-112 10.6.4 TML Control Registers ---------------------------------------------------------------------------------------- 10-113 10.6.5 TML Counters --------------------------------------------------------------------------------------------------- 10-114 10.6.6 TML Measure Registers -------------------------------------------------------------------------------------- 10-114 10.6.7 Operation of TML Measure Input --------------------------------------------------------------------------- 10-115 CHAPTER 11 A-D CONVERTER 11.1 Outline of A-D Converter ----------------------------------------------------------------------------------------------- 11-2 11.1.1 Conversion Modes --------------------------------------------------------------------------------------------- 11-5 11.1.2 Operation Modes ----------------------------------------------------------------------------------------------- 11-5 11.1.3 Special Operation Modes ------------------------------------------------------------------------------------ 11-8 11.1.4 A-D Converter Interrupt and DMA Transfer Requests ------------------------------------------------ 11-11 11.1.5 Sample-and-Hold Function ----------------------------------------------------------------------------------- 11-11 11.2 A-D Converter Related Registers ------------------------------------------------------------------------------------ 11-12 11.2.1 A-D Single Mode Register 0 --------------------------------------------------------------------------------- 11-14 11.2.2 A-D Single Mode Register 1 --------------------------------------------------------------------------------- 11-16 11.2.3 A-D Scan Mode Register 0 ---------------------------------------------------------------------------------- 11-18 11.2.4 A-D Scan Mode Register 1 ---------------------------------------------------------------------------------- 11-20 11.2.5 A-D Conversion Speed Control Register ----------------------------------------------------------------- 11-22 (5) 11.2.6 A-D Disconnection Detection Assist Function Control Register ------------------------------------ 11-23 11.2.7 A-D Disconnection Detection Assist Method Select Register --------------------------------------- 11-24 11.2.8 A-D Successive Approximation Register ----------------------------------------------------------------- 11-27 11.2.9 A-D Comparate Data Register ------------------------------------------------------------------------------ 11-28 11.2.10 10-bit A-D Data Registers ------------------------------------------------------------------------------------ 11-29 11.2.11 8-bit A-D Data Registers -------------------------------------------------------------------------------------- 11-30 11.3 Functional Description of A-D Converter --------------------------------------------------------------------------- 11-31 11.3.1 How to Find Analog Input Voltages ------------------------------------------------------------------------ 11-31 11.3.2 A-D Conversion by Successive Approximation Method ---------------------------------------------- 11-32 11.3.3 Comparator Operation ---------------------------------------------------------------------------------------- 11-33 11.3.4 Calculating the A-D Conversion Time --------------------------------------------------------------------- 11-34 11.3.5 Accuracy of A-D Conversion -------------------------------------------------------------------------------- 11-37 11.4 Inflow Current Bypass Circuit ----------------------------------------------------------------------------------------- 11-39 11.5 Precautions on Using A-D Converter ------------------------------------------------------------------------------- 11-41 CHAPTER 12 SERIAL I/O 12.1 Outline of Serial I/O ----------------------------------------------------------------------------------------------------- 12-2 12.2 Serial I/O Related Registers ------------------------------------------------------------------------------------------ 12-5 12.2.1 SIO Interrupt Related Registers ---------------------------------------------------------------------------- 12-6 12.2.2 SIO Transmit Control Registers ---------------------------------------------------------------------------- 12-13 12.2.3 SIO Transmit/Receive Mode Registers ------------------------------------------------------------------- 12-14 12.2.4 SIO Transmit Buffer Registers ------------------------------------------------------------------------------ 12-17 12.2.5 SIO Receive Buffer Registers ------------------------------------------------------------------------------- 12-18 12.2.6 SIO Receive Control Registers ----------------------------------------------------------------------------- 12-19 12.2.7 SIO Baud Rate Registers ------------------------------------------------------------------------------------ 12-22 12.3 Transmit Operation in CSIO Mode ---------------------------------------------------------------------------------- 12-23 12.3.1 Setting the CSIO Baud Rate --------------------------------------------------------------------------------- 12-23 12.3.2 Initializing CSIO Transmission ------------------------------------------------------------------------------ 12-24 12.3.3 Starting CSIO Transmission --------------------------------------------------------------------------------- 12-26 12.3.4 Successive CSIO Transmission ---------------------------------------------------------------------------- 12-26 12.3.5 Processing at End of CSIO Transmission ---------------------------------------------------------------- 12-27 12.3.6 Transmit Interrupts --------------------------------------------------------------------------------------------- 12-27 12.3.7 Transmit DMA Transfer Request --------------------------------------------------------------------------- 12-27 12.3.8 Example of CSIO Transmit Operation -------------------------------------------------------------------- 12-29 12.4 Receive Operation in CSIO Mode ----------------------------------------------------------------------------------- 12-31 12.4.1 Initialization for CSIO Reception ---------------------------------------------------------------------------- 12-31 12.4.2 Starting CSIO Reception ------------------------------------------------------------------------------------- 12-33 12.4.3 Processing at End of CSIO Reception -------------------------------------------------------------------- 12-33 12.4.4 About Successive Reception -------------------------------------------------------------------------------- 12-34 12.4.5 Flags Showing the Status of CSIO Receive Operation ----------------------------------------------- 12-35 12.4.6 Example of CSIO Receive Operation --------------------------------------------------------------------- 12-36 12.5 Precautions on Using CSIO Mode ----------------------------------------------------------------------------------- 12-38 12.6 Transmit Operation in UART Mode --------------------------------------------------------------------------------- 12-39 12.6.1 Setting the UART Baud Rate -------------------------------------------------------------------------------- 12-39 12.6.2 UART Transmit/Receive Data Formats ------------------------------------------------------------------- 12-39 12.6.3 Initializing UART Transmission ----------------------------------------------------------------------------- 12-41 12.6.4 Starting UART Transmission -------------------------------------------------------------------------------- 12-43 (6) 12.6.5 Successive UART Transmission --------------------------------------------------------------------------- 12-43 12.6.6 Processing at End of UART Transmission --------------------------------------------------------------- 12-43 12.6.7 Transmit Interrupts --------------------------------------------------------------------------------------------- 12-43 12.6.8 Transmit DMA Transfer Request --------------------------------------------------------------------------- 12-44 12.6.9 Example of UART Transmit Operation -------------------------------------------------------------------- 12-45 12.7 Receive Operation in UART Mode ---------------------------------------------------------------------------------- 12-47 12.7.1 Initialization for UART Reception --------------------------------------------------------------------------- 12-47 12.7.2 Starting UART Reception ------------------------------------------------------------------------------------ 12-49 12.7.3 Processing at End of UART Reception ------------------------------------------------------------------- 12-49 12.7.4 Example of UART Receive Operation -------------------------------------------------------------------- 12-51 12.7.5 Start Bit Detection during UART Reception -------------------------------------------------------------- 12-53 12.8 Fixed Period Clock Output Function -------------------------------------------------------------------------------- 12-54 12.9 Precautions on Using UART Mode ---------------------------------------------------------------------------------- 12-55 CHAPTER 13 CAN MODULE 13.1 Outline of the CAN Module -------------------------------------------------------------------------------------------- 13-2 13.2 CAN Module Related Registers -------------------------------------------------------------------------------------- 13-4 13.2.1 CAN Control Registers ---------------------------------------------------------------------------------------- 13-15 13.2.2 CAN Status Registers ----------------------------------------------------------------------------------------- 13-18 13.2.3 CAN Frame Format Select Registers --------------------------------------------------------------------- 13-21 13.2.4 CAN Configuration Registers -------------------------------------------------------------------------------- 13-22 13.2.5 CAN Timestamp Count Registers -------------------------------------------------------------------------- 13-24 13.2.6 CAN Error Count Registers ---------------------------------------------------------------------------------- 13-25 13.2.7 CAN Baud Rate Prescalers ---------------------------------------------------------------------------------- 13-26 13.2.8 CAN Interrupt Related Registers --------------------------------------------------------------------------- 13-27 13.2.9 CAN Cause of Error Registers ------------------------------------------------------------------------------ 13-45 13.2.10 CAN Mode Registers ------------------------------------------------------------------------------------------ 13-46 13.2.11 CAN DMA Transfer Request Select Register ----------------------------------------------------------- 13-47 13.2.12 CAN Mask Registers ------------------------------------------------------------------------------------------ 13-48 13.2.13 CAN Single-Shot Mode Control Registers --------------------------------------------------------------- 13-52 13.2.14 CAN Message Slot Control Registers --------------------------------------------------------------------- 13-53 13.2.15 CAN Message Slots ------------------------------------------------------------------------------------------- 13-57 13.3 CAN Protocol ------------------------------------------------------------------------------------------------------------- 13-72 13.3.1 CAN Protocol Frames ----------------------------------------------------------------------------------------- 13-72 13.3.2 Data Formats during CAN Transmission/Reception --------------------------------------------------- 13-73 13.3.3 CAN Controller Error States --------------------------------------------------------------------------------- 13-74 13.4 Initializing the CAN Module -------------------------------------------------------------------------------------------- 13-75 13.4.1 Initializing the CAN Module ---------------------------------------------------------------------------------- 13-75 13.5 Transmitting Data Frames --------------------------------------------------------------------------------------------- 13-78 13.5.1 Data Frame Transmit Procedure --------------------------------------------------------------------------- 13-78 13.5.2 Data Frame Transmit Operation ---------------------------------------------------------------------------- 13-79 13.5.3 Transmit Abort Function -------------------------------------------------------------------------------------- 13-80 13.6 Receiving Data Frames ------------------------------------------------------------------------------------------------ 13-81 13.6.1 Data Frame Receive Procedure ---------------------------------------------------------------------------- 13-81 13.6.2 Data Frame Receive Operation ----------------------------------------------------------------------------- 13-82 13.6.3 Reading Out Received Data Frames ---------------------------------------------------------------------- 13-84 (7) 13.7 Transmitting Remote Frames ---------------------------------------------------------------------------------------- 13-86 13.7.1 Remote Frame Transmit Procedure ----------------------------------------------------------------------- 13-86 13.7.2 Remote Frame Transmit Operation ------------------------------------------------------------------------ 13-87 13.7.3 Reading Out Received Data Frames when Set for Remote Frame Transmission ------------- 13-89 13.8 Receiving Remote Frames -------------------------------------------------------------------------------------------- 13-91 13.8.1 Remote Frame Receive Procedure ------------------------------------------------------------------------ 13-91 13.8.2 Remote Frame Receive Operation ------------------------------------------------------------------------ 13-92 13.9 Precautions about CAN Module -------------------------------------------------------------------------------------- 13-95 CHAPTER 14 REAL TIME DEBUGGER (RTD) 14.1 Outline of the Real-Time Debugger (RTD) ------------------------------------------------------------------------ 14-2 14.2 Pin Functions of the RTD ---------------------------------------------------------------------------------------------- 14-3 14.3 Functional Description of the RTD ----------------------------------------------------------------------------------- 14-4 14.3.1 Outline of the RTD Operation ------------------------------------------------------------------------------ 14-4 14.3.2 Operation of RDR (Real-time RAM Content Output) ------------------------------------------------- 14-4 14.3.3 Operation of the WRR (RAM Content Forcible Rewrite) --------------------------------------------- 14-6 14.3.4 Operation of VER (Continuous Monitor) ----------------------------------------------------------------- 14-7 14.3.5 Operation of VEI (Interrupt Request) --------------------------------------------------------------------- 14-7 14.3.6 Operation of RCV (Recover from Runaway) ----------------------------------------------------------- 14-8 14.3.7 Method for Setting a Specified Address when Using the RTD ------------------------------------- 14-9 14.3.8 Resetting the RTD --------------------------------------------------------------------------------------------- 14-10 14.4 Typical Connection with the Host ------------------------------------------------------------------------------------ 14-11 CHAPTER 15 EXTERNAL BUS INTERFACE 15.1 Outline of the External Bus Interface ------------------------------------------------------------------------------- 15-2 15.1.1 External Bus Interface Related Signals ------------------------------------------------------------------ 15-2 15.2 External Bus Interface Related Registers ------------------------------------------------------------------------- 15-4 15.2.1 Port Operation Mode Registers ---------------------------------------------------------------------------- 15-4 15.2.2 Port Peripheral Output Select Register ------------------------------------------------------------------ 15-8 15.2.3 Bus Mode Control Register --------------------------------------------------------------------------------- 15-9 15.3 Read/Write Operations ------------------------------------------------------------------------------------------------- 15-10 15.4 Bus Arbitration ------------------------------------------------------------------------------------------------------------ 15-16 15.5 Typical Connection of External Extension Memory ------------------------------------------------------------- 15-18 15.6 Example of Bus Voltage Settings Using VCC-BUS ------------------------------------------------------------- 15-21 CHAPTER 16 WAIT CONTROLLER 16.1 Outline of the Wait Controller ----------------------------------------------------------------------------------------- 16-2 16.2 Wait Controller Related Registers ----------------------------------------------------------------------------------- 16-4 16.2.1 CS Area Wait Control Registers ---------------------------------------------------------------------------- 16-4 16.3 Typical Operation of the Wait Controller --------------------------------------------------------------------------- 16-6 CHAPTER 17 RAM BACKUP MODE 17.1 Outline of RAM Backup Mode ---------------------------------------------------------------------------------------- 17-2 17.2 Example of RAM Backup when Power is Off -------------------------------------------------------------------------- 17-3 17.2.1 Normal Operating State --------------------------------------------------------------------------------------- 17-3 17.2.2 RAM Backup State --------------------------------------------------------------------------------------------- 17-4 (8) 17.3 Example of RAM Backup for Saving Power Consumption ---------------------------------------------------- 17-5 17.3.1 Normal Operating State --------------------------------------------------------------------------------------- 17-5 17.3.2 RAM Backup State --------------------------------------------------------------------------------------------- 17-6 17.3.3 Precautions to Be Observed at Power-On --------------------------------------------------------------- 17-7 17.4 Exiting RAM Backup Mode (Wakeup) ------------------------------------------------------------------------------ 17-8 CHAPTER 18 OSCILLATOR CIRCUIT 18.1 Oscillator Circuit ---------------------------------------------------------------------------------------------------------- 18-2 18.1.1 Example of an Oscillator Circuit ---------------------------------------------------------------------------- 18-2 18.1.2 XIN Oscillation Stoppage Detection Circuit -------------------------------------------------------------- 18-3 18.1.3 Oscillation Drive Capability Select Function ------------------------------------------------------------- 18-5 18.1.4 System Clock Output Function ------------------------------------------------------------------------------ 18-7 18.1.5 Oscillation Stabilization Time at Power-On -------------------------------------------------------------- 18-7 18.2 Clock Generator Circuit ------------------------------------------------------------------------------------------------ 18-8 CHAPTER 19 JTAG 19.1 Outline of JTAG ---------------------------------------------------------------------------------------------------------- 19-2 19.2 Configuration of the JTAG Circuit ------------------------------------------------------------------------------------ 19-3 19.3 JTAG Registers ---------------------------------------------------------------------------------------------------------- 19-4 19.3.1 Instruction Register (JTAGIR) ------------------------------------------------------------------------------- 19-4 19.3.2 Data Register ---------------------------------------------------------------------------------------------------- 19-5 19.4 Basic Operation of JTAG ---------------------------------------------------------------------------------------------- 19-6 19.4.1 Outline of JTAG Operation ----------------------------------------------------------------------------------- 19-6 19.4.2 IR Path Sequence ---------------------------------------------------------------------------------------------- 19-8 19.4.3 DR Path Sequence -------------------------------------------------------------------------------------------- 19-9 19.4.4 Inspecting and Setting Data Registers -------------------------------------------------------------------- 19-10 19.5 Boundary Scan Description Language ----------------------------------------------------------------------------- 19-11 19.6 Notes on Board Design when Connecting JTAG ---------------------------------------------------------------------- 19-12 19.7 Processing Pins when Not Using JTAG ---------------------------------------------------------------------------- 19-13 CHAPTER 20 POWER SUPPLY CIRCUIT 20.1 Configuration of the Power Supply Circuit ------------------------------------------------------------------------- 20-2 20.2 Power-On Sequence ---------------------------------------------------------------------------------------------------- 20-3 20.2.1 Power-On Sequence when Not Using RAM Backup -------------------------------------------------- 20-3 20.2.2 Power-On Sequence when Using RAM Backup -------------------------------------------------------- 20-4 20.3 Power-Off Sequence ---------------------------------------------------------------------------------------------------- 20-5 20.3.1 Power-Off Sequence when Not Using RAM Backup -------------------------------------------------- 20-5 20.3.2 Power-Off Sequence when Using RAM Backup ------------------------------------------------------- 20-6 CHAPTER 21 ELECTRICAL CHARACTERISTICS 21.1 Absolute Maximum Ratings ------------------------------------------------------------------------------------------- 21-2 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz ---------------------------------------------- 21-3 21.2.1 Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 10 MHz) ------------------- 21-3 21.2.2 D.C. Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz) ----------------------------------------- 21-5 21.2.3 A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz) -------------------------- 21-6 (9) 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz ------------------------------------------------ 21-7 21.3.1 Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 8 MHz) -------------------- 21-7 21.3.2 D.C. Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz) ------------------------------------------- 21-9 21.3.3 A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz) ---------------------------- 21-10 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz -------------------------------------------- 21-11 21.4.1 Recommended Operating Conditions (when VCCE = 3.3 V 0.3 V, f(XIN) = 10 MHz) ------ 21-11 21.4.2 D.C. Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 10 MHz) ---------------------------- 21-13 21.4.3 A-D Conversion Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 10 MHz) ------------- 21-14 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz ---------------------------------------------- 21-15 21.5.1 Recommended Operating Conditions (when VCCE = 3.3 V 0.3 V f(XIN) = 8 MHz) -------- 21-15 21.5.2 D.C. Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 8 MHz) ------------------------------ 21-17 21.5.3 A-D Conversion Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 8 MHz) --------------- 21-18 21.6 Flash Memory Related Characteristics ----------------------------------------------------------------------------- 21-19 21.7 A.C. Characteristics (when VCCE = 5 V) -------------------------------------------------------------------------- 21-20 21.7.1 Timing Requirements ------------------------------------------------------------------------------------------ 21-20 21.7.2 Switching Characteristics ------------------------------------------------------------------------------------- 21-24 21.7.3 A.C. Characteristics -------------------------------------------------------------------------------------------- 21-27 21.8 A.C. Characteristics (when VCCE = 3.3 V) ----------------------------------------------------------------------- 21-36 21.8.1 Timing Requirements ------------------------------------------------------------------------------------------ 21-36 21.8.2 Switching Characteristics ------------------------------------------------------------------------------------- 21-40 21.8.3 A.C. Characteristics -------------------------------------------------------------------------------------------- 21-43 CHAPTER 22 TYPICAL CHARACTERISTICS To be written at a later time --------------------------------------------------------------------------------------------------- 22-2 APPENDIX 1 MECHANICAL SPECIFICAITONS Appendix 1.1 Dimensional Outline Drawing ------------------------------------------------------------------- Appendix 1-2 APPENDIX 2 INSTRUCTION PROCESSING TIME Appendix 2.1 32182 Instruction Processing Time ------------------------------------------------------------ Appendix 2-2 APPENDIX 3 PROCESSING OF UNUSED PINS Appendix 3.1 Example Processing of Unused Pins --------------------------------------------------------- Appendix 3-2 APPENDIX 4 SUMMARY OF PRECAUTIONS Appendix 4.1 Precautions about the CPU --------------------------------------------------------------------Appendix 4.1.1 Precautions Regarding Data Transfer -----------------------------------------------Appendix 4.2 Precautions about the Address Space ------------------------------------------------------Appendix 4.2.1 Virtual Flash Emulation Function ------------------------------------------------------Appendix 4.3 Precautions about EIT --------------------------------------------------------------------------Appendix 4.4 Precautions To Be Observed when Programming Internal Flash Memory --------Appendix 4.5 Precautions to Be Observed after Reset ---------------------------------------------------Appendix 4.5.1 Input/output Ports -------------------------------------------------------------------------- (10) Appendix 4-2 Appendix 4-2 Appendix 4-3 Appendix 4-3 Appendix 4-3 Appendix 4-3 Appendix 4-4 Appendix 4-4 Appendix 4.6 Precautions about Input/Output Ports --------------------------------------------------Appendix 4.6.1 When Using Input/Output Ports in Output Mode ------------------------------Appendix 4.6.2 About the Port Input Disable Function -------------------------------------------Appendix 4.7 Precautions about the DMAC -------------------------------------------------------------Appendix 4.7.1 About Writing to the DMAC Related Registers ---------------------------------Appendix 4.7.2 Manipulating the DMAC Related Registers by DMA Transfer -------------Appendix 4.7.3 About the DMA Interrupt Request Status Register ----------------------------Appendix 4.7.4 About the Stable Operation of DMA Transfer ----------------------------------Appendix 4.8 Precautions about the Multijunction Timers -------------------------------------------Appendix 4.8.1 Precautions on Using TOP Single-Shot Output Mode -----------------------Appendix 4.8.2 Precautions on Using TOP Delayed Single-Shot Output Mode -----------Appendix 4.8.3 Precautions on Using TOP Continuous Output Mode ------------------------Appendix 4.8.4 Precautions on Using TIO Measure Free-Run/Clear Input Modes --------Appendix 4.8.5 Precautions on Using TIO PWM Output Mode ---------------------------------Appendix 4.8.6 Precautions on Using TIO Single-Shot Output Mode ------------------------Appendix 4.8.7 Precautions on Using TIO Delayed Single-Shot Output Mode -------------Appendix 4.8.8 Precautions on Using TIO Continuous Output Mode -------------------------Appendix 4.8.9 Precautions on Using TMS Measure Input --------------------------------------Appendix 4.8.10 Precautions on Using TML Measure Input -------------------------------------Appendix 4.9 Precautions about the A-D Converters -------------------------------------------------Appendix 4.10 Precautions about Serial I/O --------------------------------------------------------------Appendix 4.10.1 Precautions on Using CSIO Mode ------------------------------------------------Appendix 4.10.2 Precautions on Using UART Mode -----------------------------------------------Appendix 4.11 Precautions about RAM Backup Mode ------------------------------------------------Appendix 4.11.1 Precautions to Be Observed at Power-On -------------------------------------Appendix 4.12 Precautions about JTAG ------------------------------------------------------------------Appendix 4.12.1 Notes on Board Design when Connecting JTAG ------------------------------Appendix 4.12.2 Processing Pins when Not Using JTAG -----------------------------------------Appendix 4.13 Precautions about Noise ------------------------------------------------------------------Appendix 4.13.1 Reduction of Wiring Length --------------------------------------------------------Appendix 4.13.2 Inserting a Bypass Capacitor between VSS and VCC Lines --------------Appendix 4.13.3 Processing Analog Input Pin Wiring ---------------------------------------------Appendix 4.13.4 Consideration about the Oscillator and VCNT Pin ---------------------------Appendix 4.13.5 Processing Input/Output Ports ----------------------------------------------------- (11) Appendix 4-4 Appendix 4-4 Appendix 4-4 Appendix 4-5 Appendix 4-5 Appendix 4-5 Appendix 4-5 Appendix 4-5 Appendix 4-6 Appendix 4-6 Appendix 4-8 Appendix 4-9 Appendix 4-9 Appendix 4-9 Appendix 4-9 Appendix 4-10 Appendix 4-10 Appendix 4-10 Appendix 4-11 Appendix 4-12 Appendix 4-15 Appendix 4-15 Appendix 4-16 Appendix 4-17 Appendix 4-17 Appendix 4-18 Appendix 4-18 Appendix 4-19 Appendix 4-20 Appendix 4-20 Appendix 4-23 Appendix 4-23 Appendix 4-24 Appendix 4-28 This page is blank for reasons of layout. (12) CHAPTER 1 OVERVIEW 1.1 1.2 1.3 1.4 Outline of the 32182 Group Block Diagram Pin Functions Pin Assignments OVERVIEW 1 1.1 Outline of the 32182 Group 1.1 Outline of the 32182 Group The 32182 group (hereafter simply the 32182) belongs to the M32R/ECU series in the M32R family of Renesas microcomputers. For details about the current development status of the 32182, please contact your nearest office of Renesas or its distributor. Table 1.1.1 Product List Type Name ROM Size RAM Size Package Type Operating Ambient Temperature M32182F3VFP 384 Kbytes 64 Kbytes 144-pin LQFP: 144P6Q-A (0.5 mm pitch) -40C to 125C (@64 MHz) M32182F3UFP 384 Kbytes 64 Kbytes 144-pin LQFP: 144P6Q-A (0.5 mm pitch) -40C to 105C (@80 MHz) M32182F3TFP 384 Kbytes 64 Kbytes 144-pin LQFP: 144P6Q-A (0.5 mm pitch) -40C to 85C (@80 MHz) M32182F8VFP 1 Mbyte 64 Kbytes 144-pin LQFP: 144P6Q-A (0.5 mm pitch) -40C to 125C (@64 MHz) M32182F8UFP 1 Mbyte 64 Kbytes 144-pin LQFP: 144P6Q-A (0.5 mm pitch) -40C to 105C (@80 MHz) M32182F8TFP 1 Mbyte 64 Kbytes 144-pin LQFP: 144P6Q-A (0.5 mm pitch) -40C to 85C (@80 MHz) 1.1.1 M32R Family CPU Core with Built-in FPU (M32R-FPU) (1) Based on a RISC architecture * The 32182 is a group of 32-bit RISC single-chip microcomputers. The M32R-FPU in this group of microcomputers incorporates a fully IEEE 754-compliant, single-precision FPU in order to materialize the common instruction set and the high-precision arithmetic operation of the M32R CPU. The 32182 products listed in the above table are built around the M32R-FPU and incorporates flash memory, RAM and various peripheral functions, all integrated into a single chip. * The M32R-FPU is constructed based on a RISC architecture. Memory is accessed using load/store instructions, and various arithmetic/logic operations are executed using register-to-register operation instructions. * The internally has sixteen 32-bit general-purpose registers. The instruction set consists of 100 discrete instructions in total (83 instructions common to the M32R family plus 17 FPU and extended instructions). These instructions are either 16 bits or 32 bits long. * In addition to the ordinary load/store instructions, the M32R-FPU supports compound instructions such as Load & Address Update and Store & Address Update. These instructions help to speed up data transfers. (2) Five-stage pipelined processing * The M32R-FPU supports five-stage pipelined instruction processing consisting of Instruction Fetch, Decode, Execute, Memory Access and Write Back (processed in six stages when performing floating-point arithmetic). Not just load/store instructions and register-to-register operation instructions, but also floating-point arithmetic instructions and compound instructions such as Load & Address Update and Store & Address Update are executed in one CPUCLK period (which is equivalent to 12.5 ns when f(CPUCLK) = 80 MHz). * Although instructions are supplied to the execution stage in the order in which they were fetched, it is possible that if the load/store instruction supplied first is extended by wait cycles inserted in memory access, the subsequent register-to-register operation instruction will be executed before that instruction. Using such a facility, which is known as the "out-of-order-completion" mechanism, the M32RFPU is able to control instruction execution without wasting clock cycles. (3) Compact instruction code * The M32R-FPU supports two instruction formats: one 16 bits long, and one 32 bits long. Use of the 16-bit instruction format especially helps to suppress the code size of a program. * Moreover, the availability of 32-bit instructions makes programming easier and provides higher performance at the same clock speed than in architectures where the address space is segmented. For example, some 32-bit instructions allow control to jump to an address 32 Mbytes forward or backward from the currently executed address in one instruction, making programming easy. 1-2 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.1 Outline of the 32182 Group 1.1.2 Built-in Multiplier/Accumulator (1) Built-in high-speed multiplier * The M32R-FPU contains a 32 bits x 16 bits high-speed multiplier which enables the M32R-FPU to execute a 32 bits x 32 bits integral multiplication instruction in three CPUCLK periods. (2) DSP-comparable sum-of-products instructions * The M32R-FPU supports the following four types of sum-of-products calculation instructions (or multiplication instructions) which each can be executed in one CPUCLK period using a 56-bit accumulator. (1) (2) (3) (4) 16 high-order bits of register x 16 high-order bits of register 16 low-order bits of register x 16 low-order bits of register Whole 32 bits of register x 16 high-order bits of register Whole 32 bits of register x 16 low-order bits of register * The M32R-FPU has some special instructions to round the value stored in the accumulator to 16 or 32 bits or shift the accumulator value before storing in a register to have its digits adjusted. Because these instructions are also executed in one CPUCLK period, when used in combination with highspeed data transfer instructions such as Load & Address Update or Store & Address Update, they enable the M32R-FPU to exhibit data processing capability comparable to that of a DSP. 1.1.3 Built-in Single-precision FPU * The M32R-FPU supports single-precision floating-point arithmetic fully compliant with IEEE 754 standards. Specifically, five exceptions specified in IEEE 754 standards (Inexact, Underflow, Division by Zero, Overflow and Invalid Operation) and four rounding modes (round to nearest, round toward 0, round toward + Infinity and round toward - Infinity) are supported. What's more, because generalpurpose registers are used to perform floating-point arithmetic, the overhead associated with transferring the operand data can be reduced. 1.1.4 Built-in Flash Memory and RAM * The 32182 contains a RAM that can be accessed with zero wait state, allowing to design a high-speed embedded system. * The internal flash memory can be written to while mounted on a printed circuit board (on-board writing). Use of flash memory facilitates development work, because the chip used at the development stage can be used directly in mass-production, allowing for a smooth transition from prototype to mass-production without the need to change the printed circuit board. * The internal flash memory can be rewritten as many as 100 times. * The internal flash memory has a virtual flash emulation function, allowing the internal RAM to be superficially mapped into part of the internal flash memory. When combined with the internal RealTime Debugger (RTD) and the M32R family's common debug interface (Scalable Debug Interface or SDI), this function makes the ROM table data tuning easy. * The internal RAM can be accessed for reading or rewriting data from an external device independently of the M32R-FPU by using the Real-Time Debugger. The external device is communicated using the Real-Time Debugger's exclusive clock-synchronized serial I/O. 1-3 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.1 Outline of the 32182 Group 1.1.5 Built-in Clock Frequency Multiplier * The 32182 contains a clock frequency multiplier, which is schematically shown in Figure 1.1.1 below. XIN pin (8MHz-10MHz) X8 CPUCLK (CPU clock) (64MHz-80MHz) PLL 1/4 BCLK (peripheral clock) (16MHz-20MHz) Figure 1.1.1 Conceptual Diagram of the Clock Frequency Multiplier Table 1.1.2 Clock Functional Block Features CPUCLK * CPU clock: Defined as f(CPUCLK) when it indicates the operating clock frequency for BCLK * Peripheral clock: Defined as f(BCLK) when it indicates the operating clock frequency the M32R-FPU core, internal flash memory and internal RAM. for the internal peripheral I/O and external data bus. Clock output (BCLK pin output) * A clock with the same frequency as f(BCLK) is output from this pin. 1.1.6 Powerful Peripheral Functions Built-in (1) Multijunction timer (MJT) (2) 10-channel DMAC (3) 12-channel A-D converter (ADC) (4) 4-channel high-speed serial I/O (SIO) (5) Real-time debugger (RTD) (6) 8-level interrupt controller (ICU) (7) Three operation modes (8) Wait controller (9) 2-channel Full-CAN (10) M32R family's common debug function (Scalable Debug Interface or SDI) 1-4 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.2 Block Diagram 1.2 Block Diagram Figure 1.2.1 shows a block diagram of the 32182. The features of each block are described in Table 1.2.1. Internal Bus Interface M32R-FPU Core (80 MHz) DMAC (10 channels) (M32182F3: 384 Kbytes) (M32182F8: 1 Mbyte) A-D Converter (A-D0: 10-bit converter, 12 channels) Internal 16-bit bus Internal Flash Memory Multijunction Timer (37 channels) Internal 32-bit bus Single-precision FPU (fully IEEE 754 compliant) Internal 32-bit bus Multiplier/Accumulator (32 bits x 16 bits + 56 bits) Internal RAM (64 Kbytes) Serial I/O (4 channels) Interrupt Controller (23 sources, 8 levels) Wait Controller Real-Time Debugger (RTD) Full CAN (2 channels) PLL Clock Generator External Bus Interface Internal Power Supply Generator (VDC) Data Address Input/output ports, 97 lines Figure 1.2.1 Block Diagram of the 32182 1-5 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.2 Block Diagram Table 1.2.1 Features of the 32182 (1/2) Functional Block Features M32R-FPU CPU core * Implementation: Five-stage pipelined instruction processing (processed in six stages when performing floating-point arithmetic) * Internal 32-bit structure of the core * Register configuration General-purpose registers: 32 bits x 16 registers Control registers: 32 bits x 6 registers * Instruction set 16 and 32-bit instruction formats 100 discrete instructions and six addressing modes * Internal multiplier/accumulator (32 bits x 16 bits + 56 bits) * Internal single-precision floating-point arithmetic unit (FPU) RAM * Capacity: 64 Kbytes, accessible with zero wait state * The internal RAM can be accessed for reading or rewriting data from the outside independently of the M32R-FPU by using the Real-Time Debugger, without ever causing the CPU performance to decrease. Flash memory * Capacity M32182F3: 384 Kbytes, 1M32182F8: 1 Mbyte * One-wait access * Durability: Rewritable 100 times Bus specification * Fundamental bus cycle: 12.5 ns (when f(CPUCLK = 80 MHz) * Logical address space : 4 Gbytes linear * Internal bus specification : Internal 32-bit data bus (for CPU <-> internal flash memory and RAM access) (or accessed in 64 bits when accessing the internal flash memory for instructions) : Internal 16-bit data bus (for internal peripheral I/O access) * Extended external area: Maximum 3 Mbytes (1 Mbytes x 3 blocks during external extension mode) * External data address: 20-bit address * External data bus: 16-bit data bus * Shortest external bus access: 1 BCLK period during read, 1 BCLK period during write Multijunction timer (MJT) * 37-channel multi-functional timer 16-bit output related timer x 11 channels, 16-bit input/output related timer x 10 channels, 16-bit input related timer x 8 channels, 32-bit input related timer x 8 channels * Flexible timer configuration is possible by interconnecting these timer channels. * Interrupt request: Counter underflow or overflow and rising or falling or both edges or high or low level from the TIN pin (These can be used as external interrupt inputs irrespective of timer operation.) * DMA transfer request: Counter underflow or overflow and rising or falling or both edges or high or low level from the TIN pin (These can be used as external DMA transfer request inputs irrespective of timer operation.) DMAC * Number of channels: 10 * Transfers between internal peripheral I/O's or internal RAM's or between internal peripheral I/O and internal RAM are supported. * Capable of advanced DMA transfers when used in combination with internal peripheral I/O * Transfer request: Software or internal peripheral I/O (A-D converter, MJT, serial I/O or CAN) * DMA channels can be cascaded. (DMA transfer on a channel can be started by completion of a transfer on another channel.) * Interrupt request: DMA transfer counter register underflow 1-6 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.2 Block Diagram Table 1.2.1 Features of the 32182 (2/2) Functional Block A-D converter (ADC) Features * 12 channels: 10-bit resolution A-D converter * Conversion modes: Ordinary conversion modes plus comparator mode * Operation modes: Single conversion mode and n-channel scan mode (n = 1-12) * Sample-and-hold function: Sample-and-hold function can be enabled or disabled as necessary. * A-D disconnection detection assist function: Influences of the analog input voltage leakage from any preceding channel during scan mode operation are suppressed. * An inflow current bypass circuit is built-in. * Can generate an interrupt or start DMA transfer upon completion of A-D conversion. * Either 8 or 10-bit conversion results can be read out. * Interrupt request: Completion of A-D conversion * DMA transfer request: Completion of A-D conversion Serial I/O (SIO) * 4-channel serial I/O * Can be chosen to be clock-synchronized serial I/O or UART. * Data can be transferred at high speed (2 Mbits per second during clock-synchronized mode or 156 Kbits per second during UART mode when f(BCLK) = 20 MHz). * Interrupt request: Reception completed, receive error, transmit buffer empty or transmission completed * DMA transfer request: Reception completed or transmit buffer empty CAN * 16 message slots x 2 blocks * Compliant with CAN specification 2.0B active. * Interrupt request: Transmission completed, reception completed, bus error, error-passive, bus-off or single shot * DMA transfer request: Failed to send, transmission completed or reception completed Real-Time Debugger (RTD) * Internal RAM can be rewritten or monitored independently of the CPU by entering a command from the outside. * Comes with exclusive clock-synchronized serial ports. * Interrupt request: RTD interrupt command input Interrupt Controller (ICU) * Controls interrupt requests from the internal peripheral I/O. * Supports 8-level interrupt priority including an interrupt disabled state. * External interrupt: 11 sources (SBI#, TIN0,TIN3, TIN16-TIN23) * TIN pin input sensing: Rising, falling or both edges or high or low level Wait Controller * Controls wait states for access to the extended external area. * Insertion of 0-7 wait states by setting up in software + wait state extension by entering WAIT# signal PLL * A multiply-by-8 clock generating circuit Clock * Maximum external input clock frequency (XIN) is 10.0 MHz. * CPUCLK: Operating clock for the M32R-FPU core, internal flash memory and internal RAM The maximum CPU clock is 80 MHz (when f(XIN) = 10 MHz). * BCLK: Operating clock for the internal peripheral I/O and external data bus The maximum peripheral clock is 20 MHz (peripheral module access when f(XIN) = 10 MHz). * Clock output (BCLK pin output): A clock with the same frequency as BCLK is output from this pin. JTAG * Boundary scan function VDC * Internal power supply generating circuit: Generates the internal power supply (2.5 V) from an external single power supply (5 or 3.3 V). Ports * Input/output pins: 97 pins * The port input threshold can be set in a program to one of three levels individually for each port group (with or without Schmitt circuit, selectable). 1-7 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.3 Pin Functions 1.3 Pin Functions OSC-VCC Figure 1.3.1 shows the 32182's pin function diagram. Pin functions are described in Table 1.3.1. XIN XOUT VCNT Clock P82/TXD0 P83/RXD0 P84/SCLKI0/SCLKO0 P85/TXD1 OSC-VCC P87/SCLKI1/SCLKO1 RESET# VCCE 5 MOD0 Mode MOD1 Port 10 8 Port 1 P10/DB8-P17/DB15 8 Port 2 P20/A23-P27/A30 8 VCC-BUS 8 Address bus P41/BLW#/BLE# P42/BHW#/BHE# Port 11 P124/TCLK0-P127/TCLK3 Port 12 5 P130/TIN16-P134/TIN20 P43/RD# Serial I/O CAN Port 13 P137/TIN23 P44/CS0# 2 P61-P63 3 VCC-BUS VCCE P46/A13, P47/A14 P70/BCLK/WR# P71/WAIT# P72/HREQ# Bus control P110/TO0-P117/TO7 4 P136/TIN22/CRX1 P45/CS1# Port 6 P103/TO11-P107/TO15 8 P73/HACK# Port 7 2 P150/TIN0, P153/TIN3 P174/TXD2 P175/RXD2 Port 15 Port 17 P220/CTX0 Serial I/O CAN P221/CRX0 Port 22 VCC-BUS Port 4 5 P135/TIN21/RXD3 32182 Group Bus control Multijunction timer P102/TO10/CTX1 VCCE P00/DB0-P07/DB7 P30/A15-P37/A22 Port 9 P101/TO9/TXD3 Port 0 Port 3 P93/TO16-P97/TO20 P100/TO8 FP Data bus Serial I/O P86/RXD1 OSC-VSS Reset Port 8 P224/A11/CS2# P225/A12/CS3# Address bus Bus control P74/RTDTXD P75/RTDRXD VCCE P76/RTDACK P77/RTDCLK Interrupt controller JTMS SBI# AD0IN0-AD0IN11 12 JTCK VCCE RTD JTRST JTAG JTDO AVCC0 A-D converter JTDI AVSS0 VREF0 VDDE 7 VSS EXCVDD 4 VCCE 2 EXCVCC VCC-BUS 2 Note * The symbol "#" suffixed to the pin (or signal) names means that the pins (or signals) are active-low. * VCCE : Operates with the VCCE power supply VCC-BUS : Operates with the VCC-BUS power supply OSC-VCC : Operates with the OSC-VCC power supply Figure 1.3.1 Pin Function Diagram 1-8 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.3 Pin Functions Table 1.3.1 Description of Pin Functions (1/5) Type Pin Name Signal Name Input/Output Description Power supply VCCE Main power supply - EXCVCC Internal power supply - This pin connects an external capacitor. VCC-BUS Bus power supply Power supply for the bus control pins (5.0 V 0.5 V or 3.3 V Power supply for the device (5.0 V 0.5 V or 3.3 V 0.3 V). - 0.3 V). VDDE RAM power supply - Backup power supply for the internal RAM (5.0 V 0.5 V or 3.3 V 0.3 V). EXCVDD Internal power - This pin connects an external capacitor for the internal power supply of RAM Clock supply of the internal RAM. VSS Ground - Connect all VSS pins to ground (GND). XIN, Clock input Input These are clock input/output pins. A PLL-based x8 frequency XOUT Clock output Output multiplier is included, which accepts as input a clock whose frequency is 1/8 of the internal CPU clock frequency. (XIN input is 10 MHz when f(CPUCLK) = 80 MHz.) BCLK System clock Output This pin outputs a clock whose frequency is twice that of the external input clock (XIN). (BCLK output is 20 MHz when f(CPUCLK) = 80 MHz.) Use this clock to synchronize the operation of external devices. OSC-VCC Clock power supply - Power supply for the oscillator circuit. Connect OSC-VCC to OSC-VSS Clock ground - Connect OSC-VSS to ground. VCNT PLL control - Connect a resistor and capacitor for control of the PLL circuit. Reset RESET# Reset Input Reset input pin for the internal circuit. Mode MOD0, Mode Input Set the microcomputer's operation mode. the main power supply. MOD1 MOD0 MOD1 Mode 0 0 Single-chip mode 0 1 External extension mode 1 0 Processor mode (Boot mode) (Note 1) 1 Flash protect FP Flash protect Input 1 (Settings inhibited) This special pin protects the flash memory against rewrites in hardware. Address bus A11-A30 Address bus Output Twenty address lines (A11-A30) are included that support up to 2 MB of memory space per chip select. However, A11 and A12 are shared with CS#2 and CS#3, respectively. A31 is not output. Note 1: Boot mode requires that the FP pin should be at the high level. For details about boot mode, see Chapter 6, "Internal Memory." 1-9 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.3 Pin Functions Table 1.3.1 Description of Pin Functions (2/5) Type Pin Name Signal Name Input/Output Description Data bus DB0-DB15 Data bus Input/output This 16-bit data bus is used to connect external devices. When writing in byte units during a write cycle, the output data at the invalid byte position is undefined. During a read cycle, data on the entire 16-bit bus is always read in. However, only the data at the valid byte position is transferred into the internal circuit. Bus control CS0#-CS3# Chip select Output These are chip select signals for external devices. RD# Read Output This signal is output when reading an external device. WR# Write Output This signal is output when writing to an external device. BHW#/BLW# Byte high/low write Output When writing to an external device, this signal indicates the valid byte position to which data is transferred. BHW# and BLW# correspond to the upper address side (bits 0-7 are valid) and the lower address side (bits 8-15 are valid), respectively. BHE# Byte high enable Output During an external device access, this signal indicates that the high-order data (bits 0-7) is valid. BLE# Byte low enable Output During an external device access, this signal indicates that the low-order data (bits 8-15) is valid. WAIT# Wait Input When accessing an external device, a low-level input on WAIT# pin extends the wait cycle. HREQ# Hold request Input This input is used by an external device to request control of the external bus. A low-level input on HREQ# pin places the CPU in a hold state. HACK# Hold acknowledge Output This signal notifies that the CPU has entered a hold state and relinquished control of the external bus. Multijunction TIN0, TIN3, timer TIN16-TIN23 Timer input Input Input pins for the multijunction timer. TO0-TO20 Timer output Output Output pins for the multijunction timer. TCLK0 Timer clock Input Clock input pins for the multijunction timer. -TCLK3 1-10 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.3 Pin Functions Table 1.3.1 Description of Pin Functions (3/5) Type Pin Name Signal Name Input/Output Description A-D converter AVCC0 Analog power supply - AVCC0 is the power supply for the A-D0 converter. Connect AVCC0 to the power supply rail. AVSS0 Analog ground - AVSS0 is the analog ground for the A-D0 converter. AD0IN0 Analog input Input 12-channel analog input pins for the A-D0 converter. Reference voltage Input VREF0 is the reference voltage input pin for the A-D0 Connect AVSS0 to ground. -AD0IN11 VREF0 input Interrupt SBI# controller Serial I/O System break converter. Input This is the system break interrupt (SBI) input pin for the interrupt SCLKI0/ SCLKO0 UART transmit/receive interrupt controller. Input/output When channel 0 is in UART mode: clock output or CSIO This pin outputs a clock derived from BRG output by transmit/receive clock dividing it by 2. input/output When channel 0 is in CSIO mode: This pin accepts as input a transmit/receive clock when external clock is selected or outputs a transmit/receive clock when internal clock is selected. SCLKI1/ UART transmit/receive Input/output When channel 1 is in UART mode: SCLKO1 clock output or CSIO This pin outputs a clock derived from BRG output by transmit/receive clock dividing it by 2. input/output When channel 1 is in CSIO mode: This pin accepts as input a transmit/receive clock when external clock is selected or outputs a transmit/receive clock when internal clock is selected. 1-11 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.3 Pin Functions Table 1.3.1 Description of Pin Functions (4/5) Type Pin Name Signal Name Input/Output Description Serial I/O TXD0 Transmit data Output Transmit data output pin for serial I/O channel 0. RXD0 Received data Input Received data input pin for serial I/O channel 0. TXD1 Transmit data Output Transmit data output pin for serial I/O channel 1. RXD1 Received data Input Received data input pin for serial I/O channel 1. TXD2 Transmit data Output Transmit data output pin for serial I/O channel 2. RXD2 Received data Input Received data input pin for serial I/O channel 2. TXD3 Transmit data Output Transmit data output pin for serial I/O channel 3. RXD3 Received data Input Received data input pin for serial I/O channel 3. Real-time RTDTXD RTD transmit data Output Serial data output pin for the real-time debugger. debugger RTDRXD RTD received data Input Serial data input pin for the real-time debugger. (RTD) RTDCLK RTD clock input Input Serial data transmit/receive clock input pin for the real-time debugger. RTDACK RTD acknowledge Output A low-level pulse is output from this pin synchronously with the start clock for the real-time debugger's serial data output word. The low-level pulse width indicates the type of command/ data received by the real-time debugger. CAN JTAG CTX0, CTX1 Transmit data Output This pin outputs data from the CAN module. CRX0, CRX1 Received data Input This pin accepts as input the data for the CAN module. JTMS Input Test mode select Test mode select input to control the state transition of the test circuit. JTCK Test clock Input JTRST Test reset Input Clock input for the debug module and test circuit. Test reset input to initialize the test circuit asynchronously with device operation. JTDI Test data input Input This pin accepts as input the test instruction code or test data that is serially received. JTDO Test data output Output This pin outputs the test instruction code or test data serially. 1-12 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.3 Pin Functions Table 1.3.1 Description of Pin Functions (5/5) Type Pin Name Signal Name Input/Output Description Input/output P00-P07 Input/output port 0 Input/output Programmable input/output port. ports P10-P17 Input/output port 1 (Note 1) P20-P27 Input/output port 2 P30-P37 Input/output port 3 P41-P47 Input/output port 4 P61-P63 Input/output port 6 P70-P77 Input/output port 7 P82-P87 Input/output port 8 P93-P97 Input/output port 9 P100-P107 Input/output port 10 P110-P117 Input/output port 11 P124-P127 Input/output port 12 P130-P137 Input/output port 13 P150-P153 Input/output port 15 P174, P175 Input/output port 17 P220, P221, Input/output port 22 P224, P225 Note 1: * Input/output port 5 is reserved for future use. * P221 is input-only port. * Input/output functions cannot be used for the ports listed below, because no external pins are available for these pins. P65-P67 P140-P147 P151, P152, P154-P157 P160-P167 P172, P173, P176, P177 P180-P187 P190-P197 P200-P203 P210-P217 P222, P223, P226, P227 1-13 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.4 Pin Assignments 1.4 Pin Assignments 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 P82/TXD0 P83/RXD0 P84/SCLKI0/SCLKO0 P85/TXD1 P86/RXD1 P87/SCLKI1/SCLKO1 VSS VCCE P44/CS0# P45/CS1# P224/A11/CS2# P225/A12/CS3# P46/A13 P47/A14 P30/A15 P31/A16 P32/A17 P33/A18 P34/A19 P35/A20 P36/A21 P37/A22 P20/A23 P21/A24 P22/A25 P23/A26 P24/A27 P25/A28 P26/A29 P27/A30 VCC-BUS VSS P93/TO16 P94/TO17 P95/TO18 P96/TO19 Figure 1.4.1 shows the 32182's pin assignment diagram. A pin assignment table is shown in Table 1.4.1. 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 32182 Group P97/TO20 P117/TO7 P116/TO6 P115/TO5 P114/TO4 P113/TO3 P112/TO2 P111/TO1 P110/TO0 P127/TCLK3 P126/TCLK2 P125/TCLK1 P124/TCLK0 EXCVCC VCCE VSS VSS SBI# P63 P62 P61 AD0IN11 AD0IN10 AD0IN9 AD0IN8 AVSS0 AD0IN7 AD0IN6 AD0IN5 AD0IN4 AD0IN3 AD0IN2 AD0IN1 AD0IN0 VREF0 AVCC0 P150/TIN0 P153/TIN3 P130/TIN16 P131/TIN17 P132/TIN18 P133/TIN19 P134/TIN20 P135/TIN21/RXD3 P136/TIN22/CRX1 P137/TIN23 P220/CTX0 P221/CRX0 VCCE VCNT OSC-VCC XIN OSC-VSS XOUT RESET# P74/RTDTXD P75/RTDRXD P76/RTDACK P77/RTDCLK JTDI JTDO JTRST JTCK JTMS P100/TO8 P101/TO9/TXD3 P102/TO10/CTX1 P103/TO11 P104/TO12 P105/TO13 P106/TO14 P107/TO15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 P174/TXD2 P175/RXD2 FP MOD0 MOD1 EXCVDD VSS EXCVCC VDDE VSS VCCE P17/DB15 P16/DB14 P15/DB13 P14/DB12 P13/DB11 P12/DB10 P11/DB9 P10/DB8 P07/DB7 P06/DB6 P05/DB5 P04/DB4 P03/DB3 P02/DB2 P01/DB1 P00/DB0 P73/HACK# P72/HREQ# P71/WAIT# P70/BCLK/WR# P43/RD# P42/BHW#/BHE# P41/BLW#/BLE# VCC-BUS VSS Package: 144P6Q-A (0.5 mm pitch) Note: * The symbol "#" suffixed to the pin (or signal) names means that the pins (or signals) are active-low. Figure 1.4.1 Pin Assignment Diagram (Top View) 1-14 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.4 Pin Assignments The pins directed for input go to a high-impedance state (Hi-z) when reset. The term "when reset" means that input on RESET# pin is held low (the device remains reset), and that the RESET# pin is released back high (the device comes out of reset). Table 1.4.1 Pin Assignments of the 32182 (1/4) Pin State When Reset Function Pin No. Symbol Port Other than port Other than port Type Condition Function Type State during State at reset release reset 1 P150/TIN0 P150 TIN0 - Input/output P150 Input Hi-z Hi-z 2 P153/TIN3 P153 TIN3 - Input/output P153 Input Hi-z Hi-z 3 P130/TIN16 P130 TIN16 - Input/output P130 Input Hi-z Hi-z 4 P131/TIN17 P131 TIN17 - Input/output P131 Input Hi-z Hi-z 5 P132/TIN18 P132 TIN18 - Input/output P132 Input Hi-z Hi-z 6 P133/TIN19 P133 TIN19 - Input/output P133 Input Hi-z Hi-z 7 P134/TIN20 P134 TIN20 - Input/output P134 Input Hi-z Hi-z 8 P135/TIN21/RXD3 P135 TIN21 RXD3 Input/output P135 Input Hi-z Hi-z 9 P136/TIN22/CRX1 P136 TIN22 CRX1 Input/output P136 Input Hi-z Hi-z 10 P137/TIN23 P137 TIN23 - Input/output P137 Input Hi-z Hi-z 11 P220/CTX0 P220 CTX0 - Input/output P220 Input Hi-z Hi-z 12 P221/CRX0 P221 CRX0 - Input P221 Input Hi-z Hi-z 13 VCCE - VCCE - - VCCE - - - 14 VCNT - VCNT - - VCNT - - - 15 OSC-VCC - OSC-VCC - - OSC-VCC - - 16 XIN - XIN - Input XIN Input - - 17 OSC-VSS - OSC-VSS - - OSC-VSS - - - 18 XOUT - XOUT - Output XOUT Output XOUT XOUT 19 RESET# - RESET# - Input RESET# Input Hi-z Hi-z 20 P74/RTDTXD P74 RTDTXD - Input/output P74 Input Hi-z Hi-z 21 P75/RTDRXD P75 RTDRXD - Input/output P75 Input Hi-z Hi-z 22 P76/RTDACK P76 RTDACK - Input/output P76 Input Hi-z Hi-z 23 P77/RTDCLK P77 RTDCLK - Input/output P77 Input Hi-z Hi-z 24 JTDI (Note 1) - JTDI - Input JTDI Input Hi-z Hi-z Hi-z 25 JTDO (Note 1) - JTDO - Output JTDO Output Hi-z 26 JTRST (Note 1) - JTRST - Input JTRST Input Hi-z Hi-z 27 JTCK (Note 1) - JTCK - Input JTCK Input Hi-z Hi-z 28 JTMS (Note 1) - JTMS - Input JTMS Input Hi-z Hi-z 29 P100/TO8 P100 TO8 - Input/output P100 Input Hi-z Hi-z 30 P101/TO9/TXD3 P101 TO9 TXD3 Input/output P101 Input Hi-z Hi-z 31 P102/TO10/CTX1 P102 TO10 CTX1 Input/output P102 Input Hi-z Hi-z 32 P103/TO11 P103 TO11 - Input/output P103 Input Hi-z Hi-z 33 P104/TO12 P104 TO12 - Input/output P104 Input Hi-z Hi-z 34 P105/TO13 P105 TO13 - Input/output P105 Input Hi-z Hi-z 35 P106/TO14 P106 TO14 - Input/output P106 Input Hi-z Hi-z 36 P107/TO15 P107 TO15 - Input/output P107 Input Hi-z Hi-z 37 AVCC0 - AVCC0 - - AVCC0 - - - 38 VREF0 - VREF0 - - VREF0 - - - 39 AD0IN0 - AD0IN0 - Input AD0IN0 Input Hi-z Hi-z 40 AD0IN1 - AD0IN1 - Input AD0IN1 Input Hi-z Hi-z 41 AD0IN2 - AD0IN2 - Input AD0IN2 Input Hi-z Hi-z 42 AD0IN3 - AD0IN3 - Input AD0IN3 Input Hi-z Hi-z 43 AD0IN4 - AD0IN4 - Input AD0IN4 Input Hi-z Hi-z 44 AD0IN5 - AD0IN5 - Input AD0IN5 Input Hi-z Hi-z 45 AD0IN6 - AD0IN6 - Input AD0IN6 Input Hi-z Hi-z 46 AD0IN7 - AD0IN7 - Input AD0IN7 Input Hi-z Hi-z 47 AVSS0 - AVSS0 - - AVSS0 - - - 48 AD0IN8 - AD0IN8 - Input AD0IN8 Input Hi-z Hi-z 49 AD0IN9 - AD0IN9 - Input AD0IN9 Input Hi-z Hi-z 50 AD0IN10 - AD0IN10 - Input AD0IN10 Input Hi-z Hi-z 51 AD01N11 - AD01N11 - Input AD01N11 Input Hi-z Hi-z Note 1: The JTCK, JTDI, JTDO and JTMS pins are reset by input from the JTRST pin, and not reset from the RESET# pin. 1-15 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.4 Pin Assignments Table 1.4.1 Pin Assignments of the 32182 (2/4) Function Pin No. Symbol Pin State When Reset Other than port Port Type Condition Function Type State during State at reset release reset 52 P61 P61 - - Input/output P61 Input Hi-z Hi-z 53 P62 P62 - - Input/output P62 Input Hi-z Hi-z 54 P63 P63 - - Input/output P63 Input Hi-z Hi-z 55 SBI# - SBI# - Input SBI# Input Hi-z Hi-z 56 VSS - VSS - - VSS - - - 57 VSS - VSS - - VSS - - - 58 VCCE - VCCE - - VCCE - - - 59 EXCVCC - EXCVCC - - EXCVCC - - - 60 P124/TCLK0 P124 TCLK0 - Input/output P124 Input Hi-z Hi-z 61 P125/TCLK1 P125 TCLK1 - Input/output P125 Input Hi-z Hi-z 62 P126/TCLK2 P126 TCLK2 - Input/output P126 Input Hi-z Hi-z 63 P127/TCLK3 P127 TCLK3 - Input/output P127 Input Hi-z Hi-z 64 P110/TO0 P110 TO0 - Input/output P110 Input Hi-z Hi-z 65 P111/TO1 P111 TO1 - Input/output P111 Input Hi-z Hi-z 66 P112/TO2 P112 TO2 - Input/output P112 Input Hi-z Hi-z 67 P113/TO3 P113 TO3 - Input/output P113 Input Hi-z Hi-z 68 P114/TO4 P114 TO4 - Input/output P114 Input Hi-z Hi-z 69 P115/TO5 P115 TO5 - Input/output P115 Input Hi-z Hi-z 70 P116/TO6 P116 TO6 - Input/output P116 Input Hi-z Hi-z 71 P117/TO7 P117 TO7 - Input/output P117 Input Hi-z Hi-z 72 P97/TO20 P97 TO20 - Input/output P97 Input Hi-z Hi-z 73 P96/TO19 P96 TO19 - Input/output P96 Input Hi-z Hi-z 74 P95/TO18 P95 TO18 - Input/output P95 Input Hi-z Hi-z 75 P94/TO17 P94 TO17 - Input/output P94 Input Hi-z Hi-z 76 P93/TO16 P93 TO16 - Input/output P93 Input Hi-z Hi-z 77 VSS - VSS - - VSS - - - 78 VCC-BUS - VCC-BUS - - VCC-BUS - - - 79 P27/A30 P27 A30 - Input/output During single-chip and external extension modes P27 Input Hi-z Hi-z Undefined Input/output During processor mode During single-chip and external extension modes 80 81 82 83 84 85 86 87 88 89 90 P26/A29 P25/A28 P24/A27 P23/A26 P22/A25 P21/A24 P20/A23 P37/A22 P36/A21 P35/A20 P34/A19 P26 P25 P24 P23 P22 P21 P20 P37 P36 P35 P34 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 - - - - - - - - - - - Input/output Input/output Input/output Input/output Input/output Input/output Input/output Hi-z Input Hi-z Hi-z A29 Output Hi-z Undefined P25 Input Hi-z Hi-z A28 Output Hi-z Undefined During single-chip and external extension modes P24 Input Hi-z Hi-z A27 Output Hi-z Undefined P23 Input Hi-z Hi-z A26 Output Hi-z Undefined P22 Input Hi-z Hi-z During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode A25 Output Hi-z Undefined During single-chip and external extension modes P21 Input Hi-z Hi-z During processor mode During single-chip and external extension modes During processor mode A24 Output Hi-z Undefined P20 Input Hi-z Hi-z Undefined During single-chip and external extension modes During processor mode During single-chip and external extension modes Input/output During processor mode During single-chip and external extension modes 1-16 Output During processor mode During single-chip and external extension modes During processor mode Input/output Input/output A30 P26 During processor mode During single-chip and external extension modes During processor mode A23 Output Hi-z P37 Input Hi-z Hi-z A22 Output Hi-z Undefined P36 Input Hi-z Hi-z A21 Output Hi-z Undefined P35 Input Hi-z Hi-z A20 Output Hi-z Undefined P34 Input Hi-z Hi-z A19 Output Hi-z Undefined 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.4 Pin Assignments Table 1.4.1 Pin Assignments of the 32182 (3/4) Function Pin No. 91 92 93 94 95 96 97 98 99 Symbol P33/A18 P32/A17 P31/A16 P30/A15 P47/A14 P46/A13 P225/A12/CS3# P224/A11/CS2# P45/CS1# 100 P44/CS0# Pin State When Reset Port Other than port Other than port P33 A18 - P32 P31 P30 P47 P46 P225 P224 P45 P44 A17 A16 A15 A14 A13 A12 A11 CS1# CS0# - - - - - CS3# CS2# - - Type Condition Function Input/output Input/output Input/output Input/output Input/output Input/output Input/output Input/output Input/output Input/output Type State during State at reset release reset During single-chip and external extension modes P33 Input Hi-z Hi-z During processor mode A18 Output Hi-z Undefined During single-chip and external extension modes P32 Input Hi-z Hi-z During processor mode A17 Output Hi-z Undefined During single-chip and external extension modes P31 Input Hi-z Hi-z During processor mode A16 Output Hi-z Undefined During single-chip and external extension modes P30 Input Hi-z Hi-z During processor mode A15 Output Hi-z Undefined During single-chip and external extension modes P47 Input Hi-z Hi-z During processor mode A14 Output Hi-z Undefined During single-chip and external extension modes P46 Input Hi-z Hi-z During processor mode A13 Output Hi-z Undefined During single-chip and external extension modes P225 Input Hi-z Hi-z During processor mode A12 Output Hi-z Undefined During single-chip and external extension modes P224 Input Hi-z Hi-z During processor mode A11 Output Hi-z Undefined During single-chip and external extension modes P45 Input Hi-z Hi-z During processor mode CS1# Output Hi-z High level During single-chip and external extension modes P44 Input Hi-z Hi-z During processor mode CS0# Output Hi-z High level 101 VCCE - VCCE - - VCCE - - - 102 VSS - VSS - - VSS - - - 103 P87/SCLKI1/SCLKO1 P87 SCLKI1 SCLKO1 Input/output P87 Input Hi-z Hi-z 104 P86/RXD1 P86 RXD1 - Input/output P86 Input Hi-z Hi-z 105 P85/TXD1 P85 TXD1 - Input/output P85 Input Hi-z Hi-z 106 P84/SCLKI0/SCLKO0 P84 SCLKI0 SCLKO0 Input/output P84 Input Hi-z Hi-z 107 P83/RXD0 P83 RXD0 - Input/output P83 Input Hi-z Hi-z 108 P82/TXD0 P82 TXD0 - Input/output P82 Input Hi-z Hi-z 109 P174/TXD2 P174 TXD2 - Input/output P174 Input Hi-z Hi-z 110 P175/RXD2 P175 RXD2 - Input/output P175 Input Hi-z Hi-z 111 FP - FP - Input FP Input Hi-z Hi-z 112 MOD0 - MOD0 - Input MOD0 Input Hi-z Hi-z 113 MOD1 - MOD1 - Input MOD1 Input Hi-z Hi-z 114 EXCVDD - EXCVDD - - EXCVDD - - - 115 VSS - VSS - - VSS - - - 116 EXCVCC - EXCVCC - - EXCVCC - - - 117 VDDE - VDDE - - VDDE - - - 118 VSS - VSS - - VSS - - - 119 VCCE - VCCE - - VCCE - - - P17 DB15 - Input/output P17 Input Hi-z Hi-z DB15 Input/output Hi-z Hi-z P16 Input Hi-z Hi-z DB14 Input/output Hi-z Hi-z P15 Input Hi-z Hi-z DB13 Input/output Hi-z Hi-z P14 Input Hi-z Hi-z DB12 Input/output Hi-z Hi-z 120 P17/DB15 121 P16/DB14 122 P15/DB13 123 P14/DB12 P16 P15 P14 DB14 DB13 DB12 - - - Input/output Input/output Input/output 1-17 During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode 32182 Group User's Manual (Rev.1.0) OVERVIEW 1 1.4 Pin Assignments Table 1.4.1 Pin Assignments of the 32182 (4/4) Pin No. Pin State When Reset Function Symbol 124 P13/DB11 125 P12/DB10 126 P11/DB9 127 P10/DB8 128 P07/DB7 129 P06/DB6 130 P05/DB5 131 P04/DB4 132 P03/DB3 133 P02/DB2 134 P01/DB1 Port Other than port Other than port P13 DB11 - P12 P11 P10 P07 P06 P05 P04 P03 P02 P01 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 - - - - - - - - - - Type Condition Type State during reset State at reset release P13 Input Hi-z Hi-z DB11 Input/output Hi-z Hi-z P12 Input Hi-z Hi-z DB10 Input/output Hi-z Hi-z Hi-z Function Input/output Input/output Input/output Input/output Input/output Input/output Input/output Input/output Input/output Input/output Input/output During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode During single-chip and external extension modes During processor mode P11 Input Hi-z DB9 Input/output Hi-z Hi-z P10 Input Hi-z Hi-z DB8 Input/output Hi-z Hi-z P07 Input Hi-z Hi-z DB7 Input/output Hi-z Hi-z P06 Input Hi-z Hi-z DB6 Input/output Hi-z Hi-z P05 Input Hi-z Hi-z DB5 Input/output Hi-z Hi-z P04 Input Hi-z Hi-z DB4 Input/output Hi-z Hi-z P03 Input Hi-z Hi-z DB3 Input/output Hi-z Hi-z Hi-z P02 Input Hi-z DB2 Input/output Hi-z Hi-z P01 Input Hi-z Hi-z DB1 Input/output Hi-z Hi-z P00 Input Hi-z Hi-z 135 P00/DB0 P00 DB0 - Input/output 136 P73/HACK# P73 HACK# - Input/output DB0 P73 Input/output Input Hi-z Hi-z Hi-z Hi-z 137 P72/HREQ# P72 HREQ# - Input/output P72 Input Hi-z Hi-z 138 P71/WAIT# P71 WAIT# - Input/output P71 Input Hi-z Hi-z 139 P70/BCLK/WR# P70 BCLK WR# Input/output P70 Input Hi-z Hi-z P43 Input Hi-z Hi-z RD# Output Hi-z High level During processor mode 140 P43/RD# P43 RD# - Input/output 141 P42/BHW#/BHE# P42 BHW# BHE# Input/output 142 P41/BLW#/BLE# P41 BLW# BLE# Input/output 143 VCC-BUS - VCC-BUS - - VCC-BUS - - - 144 VSS - VSS - - - - - - 1-18 During external extension and processor modes During processor mode During external extension and processor modes During processor mode During external extension and processor modes P42 Input Hi-z Hi-z BHE#/BHE# Output Hi-z High level P41 Input Hi-z Hi-z BLE#/BLE# Output Hi-z High level 32182 Group User's Manual (Rev.1.0) CHAPTER 2 CPU 2.1 2.2 2.3 2.4 2.5 2.6 2.7 CPU Registers General-purpose Registers Control Registers Accumulator Program Counter Data Formats Supplementary Explanation for BSET, BCLR, LOCK and UNLOCK Instruction Execution CPU 2 2.1 CPU Registers 2.1 CPU Registers The M32R-FPU has 16 general-purpose registers, 6 control registers, an accumulator and a program counter. The accumulator is of 56-bit configuration, and all other registers are of 32-bit configuration. 2.2 General-purpose Registers The 16 general-purpose registers (R0-R15) are of 32-bit width and are used to retain data and base address, as well as for integer calculations, floating-point operations, etc. R14 is used as the link register and R15 as the stack pointer. The link register is used to store the return address when executing a subroutine call instruction. The Interrupt Stack Pointer (SPI) and the User Stack Pointer (SPU) are alternately represented by R15 depending on the value of the Stack Mode (SM) bit in the Processor Status Word Register (PSW). After reset, the value of the general-purpose registers is undefined. b0 b0 b31 b31 R8 R9 R10 R11 R12 R13 R14 (Link register) R15 (Stack pointer) (Note 1) R0 R1 R2 R3 R4 R5 R6 R7 Note 1: The stack pointer functions as either the SPI or the SPU depending on the value of the SM bit in the PSW. Figure 2.2.1 General-purpose Registers 2.3 Control Registers There are 6 control registers which are the Processor Status Word Register (PSW), the Condition Bit Register (CBR), the Interrupt Stack Pointer (SPI), the User Stack Pointer (SPU), the Backup PC (BPC) and the Floatingpoint Status Register (FPSR). The dedicated MVTC and MVFC instructions are used for writing and reading these control registers. In addition, the SM bit, IE bit and C bit of the PSW can also be set by the SETPSW or CLRPSW instruction. CRn b0 CR0 CR1 CR2 CR3 PSW CBR SPI SPU Processor Status Word Register Condition Bit Register Interrupt Stack Pointer User Stack Pointer CR6 CR7 BPC FPSR Backup PC Floating-point Status Register b31 Notes: * CRn (n = 0-3, 6 and 7) denotes the control register number. * The dedicated MVTC and MVFC instructions are used for writing and reading these control registers. * The SM bit, IE bit and C bit of the PSW can also be set by the SETPSW or CLRPSW instructions. Figure 2.3.1 Control Registers 2-2 32182 Group User's Manual (Rev.1.0) CPU 2 2.3 Control Registers 2.3.1 Processor Status Word Register: PSW (CR0) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 b31 BSM BIE BC SM IE ? ? 0 0 0 0 0 ? 0 0 0 0 0 0 0 BPSW field C 0 PSW field b Bit Name 0-15 No function assigned. Fix to "0". 16 BSM Backup SM Bit 17 BIE Backup IE Bit 18-22 No function assigned. Fix to "0". 23 BC Backup C Bit 24 25 R W 0 0 Saves value of SM bit when EIT occurs R W Saves value of IE bit when EIT occurs R W 0 0 Saves value of C bit when EIT occurs R W SM Stack Mode Bit 0: Uses R15 as the interrupt stack pointer 1: Uses R15 as the user stack pointer R W IE Interrupt Enable Bit 0: Does not accept interrupt 1: Accepts interrupt R W 0 0 Indicates carry, borrow or overflow resulting from operations (instruction dependent) R W 26-30 No function assigned. Fix to "0". 31 C Condition Bit Function The Processor Status Word Register (PSW) indicates the M32R-FPU status. It consists of the current PSW field which is regularly used, and the BPSW field where a copy of the PSW field is saved when EIT occurs. The PSW field consists of the Stack Mode (SM) bit, the Interrupt Enable (IE) bit and the Condition (C) bit. The BPSW field consists of the Backup Stack Mode (BSM) bit, the Backup Interrupt Enable (BIE) bit and the Backup Condition (BC) bit. After reset, BSM, BIE and BC are undefined. All other bits are "0". 2-3 32182 Group User's Manual (Rev.1.0) CPU 2 2.3 Control Registers 2.3.2 Condition Bit Register: CBR (CR1) The Condition Bit Register (CBR) is derived from the PSW register by extracting its Condition (C) bit. The value written to the PSW register's C bit is reflected in this register. The register can only be read. (Writing to the register with the MVTC instruction is ignored.) After reset, the value of CBR is H'0000 0000. b0 0 CBR b31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 2.3.3 Interrupt Stack Pointer: SPI (CR2) and User Stack Pointer: SPU (CR3) The Interrupt Stack Pointer (SPI) and the User Stack Pointer (SPU) retain the address of the current stack pointer. These registers can be accessed as the general-purpose register R15. R15 switches between representing the SPI and SPU depending on the value of the Stack Mode (SM) bit in the PSW. After reset, the values of the SPI and SPU are undefined. b0 b31 SPI SPI b0 b31 SPU SPU 2.3.4 Backup PC: BPC (CR6) The Backup PC (BPC) is used to save the value of the Program Counter (PC) when an EIT occurs. Bit 31 is fixed to "0". When an EIT occurs, the register sets either the PC value when the EIT occurred or the PC value for the next instruction depending on the type of EIT. The BPC value is loaded to the PC when the RTE instruction is executed. However, the values of the lower 2 bits of the PC are always "00" when returned. (PC always returns to the word-aligned address.) After reset, the value of the BPC is undefined. b0 BPC b31 BPC 2-4 0 32182 Group User's Manual (Rev.1.0) CPU 2 2.3 Control Registers 2.3.5 Floating-point Status Register: FPSR (CR7) b0 1 2 3 4 5 FS FX FU FZ FO FV 0 0 0 0 0 b16 0 6 7 8 9 10 11 12 13 14 b15 0 0 0 0 0 0 0 0 0 0 0 22 30 17 18 19 20 21 EX EU EZ EO EV 0 0 0 0 0 0 23 24 25 26 27 28 29 DN CE CX CU CZ CO CV 1 0 0 0 0 0 0 b31 RM 0 0 b Bit Name Function R W 0 FS Reflects the logical sum of FU, FZ, FO and FV. Floating-point Exception Summary Bit R - 1 FX Inexact Exception Flag Set to "1" when an inexact exception occurs (if EIT processing is unexecuted (Note 1)). Once set, the flag retains the value "1" until it is cleared to "0" in software. R W 2 FU Underflow Exception Flag Set to "1" when an underflow exception occurs (if EIT processing is unexecuted (Note 1)). Once set, the flag retains the value "1" until it is cleared to "0" in software. R W 3 FZ Zero Divide Exception Flag Set to "1" when a zero divide exception occurs (if EIT processing is unexecuted (Note 1)). Once set, the flag retains the value "1" until it is cleared to "0" in software. R W 4 FO Overflow Exception Flag Set to "1" when an overflow exception occurs (if EIT processing is unexecuted (Note 1)). Once set, the flag retains the value "1" until it is cleared to "0" in software. R W 5 FV Invalid Operation Exception Flag Set to "1" when an invalid operation exception occurs (if EIT processing is unexecuted (Note 1)). Once set, the flag retains the value "1" until it is cleared to "0" in software. R W 6-16 No function assigned. Fix to "0". 0 0 17 EX Inexact Exception Enable Bit 0: Mask EIT processing to be executed when an inexact exception occurs. 1: Execute EIT processing when an inexact exception occurs. R W 18 EU Underflow Exception Enable Bit 0: Mask EIT processing to be executed when an underflow exception occurs. 1: Execute EIT processing when an underflow exception occurs. R W 19 EZ Zero Divide Exception Enable Bit 0: Mask EIT processing to be executed when a zero divide exception occurs. 1: Execute EIT processing when a zero divide exception occurs. R W 20 EO Overflow Exception Enable Bit 0: Mask EIT processing to be executed when an overflow exception occurs. 1: Execute EIT processing when an overflow exception occurs. R W 21 EV Invalid Operation Exception Enable Bit 0: Mask EIT processing to be executed when an invalid operation exception occurs. 1: Execute EIT processing when an invalid operation exception occurs. R W 22 No function assigned. Fix to "0". 0 0 23 DN Denormalized Number Zero Flush Bit (Note 2) 0: Handle the denormalized number as a denormalized number. 1: Handle the denormalized number as zero. R W 24 CE Unimplemented Operation Exception Cause Bit 0: No unimplemented operation exception occurred. 1: An unimplemented operation exception occurred. When the bit is set to "1", the execution of an FPU operation instruction will clear it to "0". R (Note 3) 25 CX Inexact Exception Cause Bit 0: No inexact exception occurred. 1: An inexact exception occurred. When the bit is set to "1", the execution of an FPU operation instruction will clear it to "0". R (Note 3) 2-5 32182 Group User's Manual (Rev.1.0) CPU 2 2.3 Control Registers 26 CU Underflow Exception Cause Bit 0: No underflow exception occurred 1: An underflow exception occurred. When the bit is set to "1", the execution of an FPU operation instruction will clear it to "0". R (Note 3) 27 CZ Zero Divide Exception Cause Bit 0: No zero divide exception occurred. 1: A zero divide exception occurred. When the bit is set to "1", the execution of an FPU operation instruction will clear it to "0". R (Note 3) 28 CO Overflow Exception Cause Bit 0: No overflow exception occurred. 1: An overflow exception occurred. When the bit is set to "1", the execution of an FPU operation instruction will clear it to "0". R (Note 3) 29 CV 0: No invalid operation exception occurred. Invalid Operation Exception Cause Bit 1: An invalid operation exception occurred. When the bit is set to "1", the execution of an FPU operation instruction will clear it to "0". R (Note 3) 30, 31 RM Rounding Mode Selection Bit R 00: Round to nearest 01: Round toward Zero 10: Round toward + Infinity 11: Round toward - Infinity W Note 1: The phrase "If EIT processing unexecuted" means whenever one of the exceptions occurs, enable bits 17 to 21 are set to "0" which masks the EIT processing so that it cannot be executed. If two exceptions occur at the same time and their corresponding exception enable bits are set differently (one enabled, and the other masked), EIT processing is executed. In this case, these two flags do not change state regardless of the enable bits settings. Note 2: If a denormalized number is given to the operand when DN = "0", an unimplemented exception occurs. Note 3: This bit is cleared by writing "0". Writing "1" has no effect (the bit retains the value it had before the write). 2-6 32182 Group User's Manual (Rev.1.0) CPU 2 2.4 Accumulator 2.4 Accumulator The Accumulator (ACC) is a 56-bit register used for DSP function instructions. The accumulator is handled as a 64-bit register when accessed for read or write. When reading data from the accumulator, the value of bit 8 is sign-extended. When writing data to the accumulator, bits 0 to 7 are ignored. The accumulator is also used for the multiply instruction "MUL," in which case the accumulator value is destroyed by instruction execution. Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO instructions write data to the high-order 32 bits (bits 0-31) and the low-order 32 bits (bits 32-63), respectively. Use the MVFACHI, MVFACLO and MVFACMI instructions for reading data from the accumulator. The MVFACHI, MVFACLO and MVFACMI instructions read data from the high-order 32 bits (bits 0-31), the low-order 32 bits (bits 32-63) and the middle 32 bits (bits 16-47), respectively. After reset, the value of accumulator is undefined. (Note 1) b0 Read range of MVFACMI instruction 78 15 16 31 32 47 48 b63 ACC Write and read ranges of MVTACHI and MVFACHI instructions Write and read ranges of MVTACLO and MVFACLO instructions Note 1: When read, bits 0 to 7 always show the sign-extended value of the value of bit 8. Writing to this bit field is ignored. 2.5 Program Counter The Program Counter (PC) is a 32-bit counter that retains the address of the instruction being executed. Since the M32R FPU instruction starts with even-numbered addresses, the LSB (bit 31) is always "0". After reset, the value of PC is H'0000 0000. b0 PC b31 PC 2-7 0 32182 Group User's Manual (Rev.1.0) CPU 2 2.6 Data Formats 2.6 Data Formats 2.6.1 Data Types The data types that can be handled by the M32R-FPU instruction set are signed or unsigned 8, 16 and 32-bit integers and single-precision floating-point numbers. The signed integers are represented by 2's complements. b0 Signed byte (8-bit) integer b7 S b0 b7 Unsigned byte (8-bit) integer b0 Signed halfword (16-bit) integer b15 S b0 b15 Unsigned halfword (16-bit) integer b0 Signed word (32-bit) integer b31 S b0 b31 Unsigned word (32-bit) integer b0 b1 Single-precision floating-point number S b8 b9 b31 E F S: Sign bit; E: Exponent field; F: Fraction field Figure 2.6.1 Data Types 2-8 32182 Group User's Manual (Rev.1.0) CPU 2 2.6 Data Formats 2.6.2 Data Formats (1) Data formats in registers The data sizes in the M32R-FPU registers are always words (32 bits). When loading byte (8-bit) or halfword (16-bit) data from memory into a register, the data is sign-extended (LDB, LDH instructions) or zero-extended (LDUB, LDUH instructions) to a word (32-bit) quantity before being loaded in the register. When storing data from a register into a memory, the 32-bit data, the 16-bit data on the LSB side and the 8bit data on the LSB side of the register are stored into memory by the ST, STH and STB instructions, respectively. From memory (LDB, LDUB instructions) b0 Sign-extended (LDB instruction) or zero-extended (LDUB instruction) b31 24 Byte Rn From memory (LDH, LDUH instructions) Sign-extended (LDH instruction) or b0 zero-extended (LDUH instruction) 16 b31 Halfword Rn From memory (LD instruction) b0 b31 Word Rn b0 24 b31 Byte Rn To memory (STB instruction) b0 16 b31 Halfword Rn To memory (STH instruction) b0 Rn b31 Word To memory (ST instruction) Figure 2.6.2 Data Formats in Registers 2-9 32182 Group User's Manual (Rev.1.0) CPU 2 2.6 Data Formats (2) Data formats in memory The data sizes in memory can be byte (8 bits), halfword (16 bits) or word (32 bits). Although byte data can be located at any address, halfword and word data must be located at the addresses aligned with a halfword boundary (least significant address bit = "0") or a word boundary (two low-order address bits = "00"), respectively. If an attempt is made to access memory data that overlaps the halfword or word boundary, an address exception occurs. Address +0 address b0 +1 address 7 8 +2 address 15 16 +3 address 23 24 b31 Byte Byte Byte Byte Byte b0 b31 15 Halfword Halfword Halfword b0 b31 Word Word Figure 2.6.3 Data Formats in Memory (3) Endian The diagrams below show a general endian system and the endian adopted for the M32R family microcomputers. Bit endian (H'01) Big endian B'0000001 b0 Little endian Byte endian (H'01234567) b7 B'0000001 b7 b0 H'01 H'23 H'45 H'67 HH HL LH LL H'67 H'45 H'23 H'01 LL LH HL HH Note: * Even when bits are arranged in big endian, H'01 is not B'10000000. Figure 2.6.4 General Endian System 2-10 32182 Group User's Manual (Rev.1.0) CPU 2 2.6 Data Formats Renesas microcomputer family name 7700 and M16C families Endian (bit/byte) Little/little M32R family Little/big Big/big Address +0 +1 +2 +3 +0 +1 +2 +3 +0 +1 +2 +3 Data arrangement LL LH HL HH HH HL LH LL HH HL LH LL 7-0 15-8 31-24 31-24 23-16 15-8 7-0 0-7 8-15 Bit number Example: 0x01234567 23-16 .byte 67,45,23,01 .byte 01,23,45,67 16-23 24-31 .byte 01,23,45,67 Note: * The M32R family uses the big endian for both bits and bytes. Figure 2.6.5 Endian Adopted for the M32R Family (4) Transfer instructions * Constant transfer LD24 Rdest, #imm24 imm24 LD24 Rdest, #imm24 LDI Rdest, #imm16 LDI Rdest, #imm8 SETH Rdest, #imm16 b0 b23 Rdest 00 b0 8 b31 SETH Rdest, #imm16 imm16 b0 b15 Rdest 00 b0 15 00 b31 * Register to register transfer MV MV Rdest, Rsrc Rdest, Rsrc Rsrc b31 b0 Rdest b0 b31 * Control register transfer MVTC Rsrc, CRdest MVFC Rdest, CRsrc Rsrc MVTC Rsrc, CRdest b0 b31 CRdest b0 b31 Note: * The condition bit C changes state when data is written to CR0 (PSW) using the MVTC instruction. Figure 2.6.6 Transfer Instructions 2-11 32182 Group User's Manual (Rev.1.0) CPU 2 2.6 Data Formats (5) Transfer from memory (signed) to registers LD24 Rsrc, #label LD Rdest, @Rsrc Register Memory * Signed 32 bits label Rdest +0 +1 +2 +3 b0 b31 * Signed 16 bits label LD24 Rsrc, #label LDH Rdest, @Rsrc * Signed 8 bits LD24 Rsrc, #label LDB Rdest, @Rsrc Rdest +0 +1 +2 +3 Determined by MSB 0: Positive number 1: Negative number label 00 00 FF FF b0 b31 Rdest +3 +0 +1 +2 Determined by MSB 0: Positive number 1: Negative number 00 00 00 FF FF FF b0 b31 Figure 2.6.7 Transfer from Memory (Signed) to Registers (6) Transfer from memory (unsigned) to registers Register Memory * Unsigned 32 bits LD24 Rsrc, #label LD Rdest, @Rsrc Rdest label +0 +1 +2 +3 b0 b31 * Unsigned 16 bits LD24 Rsrc, #label LDUH Rdest, @Rsrc * Unsigned 8 bits label Rdest 00 +0 +1 +2 +3 label 00 b0 b31 Rdest LD24 Rsrc, #label LDUB Rdest, @Rsrc 00 +0 +1 +2 +3 b0 00 00 b31 Figure 2.6.8 Transfer from Memory (Unsigned) to Registers 2-12 32182 Group User's Manual (Rev.1.0) CPU 2 2.6 Data Formats (7) Notes on data transfer When transferring data, be aware that data arrangements in registers and memory are different. Data in registers Data in memory * Word data (32 bits) (R0-R15) HH +0 HL LH b0 LL +1 HH b31 HL +2 +3 LH LL b0 b31 * Halfword data (16 bits) (R0-R15) H b0 +0 +1 H L L b31 b0 (R0-R15) b0 +3 +2 +3 H L b15 +0 H +2 +1 L b31 b16 b31 * Byte data (8 bits) (R0-R15) b0 +0 b31 (R0-R15) b0 b31 b8 +0 +3 +1 +2 +3 +2 +3 b15 +1 b31 (R0-R15) b0 +2 b7 +0 (R0-R15) b0 b0 +1 b16 b23 +0 b31 +1 +2 +3 b24 b31 Figure 2.6.9 Difference in Data Arrangements 2-13 32182 Group User's Manual (Rev.1.0) 2 CPU 2.7 Supplementary Explanation for BSET, BCLR, LOCK and UNLOCK Instruction Execution 2.7 Supplementary Explanation for BSET, BCLR, LOCK and UNLOCK Instruction Execution The LOCK bit is set when executing the BSET or BCLR instruction, and is cleared when the BSET or BCLR instruction finishes. The LOCK instruction sets the LOCK bit, as well as performs an ordinary load operation. The UNLOCK instruction is used to clear the LOCK bit. The LOCK bit is located inside the CPU, and cannot directly be accessed for read or write by users. This bit controls granting of bus control requested by devices other than the CPU. * When LOCK bit = "0" Control of the bus requested by devices other than the CPU is granted * When LOCK bit = "1" Control of the bus requested by devices other than the CPU is denied In the 32182 group, control of the bus may be requested by devices other than the CPU in the following two cases: * When DMA transfer is requested by the internal DMAC * When HREQ# input is pulled low to request that the CPU be placed in a hold state 2-14 32182 Group User's Manual (Rev.1.0) CHAPTER 3 ADDRESS SPACE 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Outline of the Address Space Operation Modes Internal ROM and Extended External Areas Internal RAM and SFR Areas EIT Vector Entry ICU Vector Table Notes about Address Space ADDRESS SPACE 3 3.1 Outline of the Address Space 3.1 Outline of the Address Space The logical addresses of the M32R are always handled in 32 bits, providing a linear address space of up to 4 Gbytes. The address space of the M32R/ECU consists of the following: (1) User space * Internal ROM area * Extended external area * Internal RAM area * SFR (Special Function Register) area (2) System space (not open to the user) (1) User space The 2 Gbytes from the address H'0000 0000 to the address H'7FFF FFFF comprise the user space. Located in this space are the internal ROM area, an extended external area, the internal RAM area and the SFR (Special Function Register) area (in which a set of internal peripheral I/O registers exist). Of these, the internal ROM and extended external areas are located differently depending on mode settings as will be described later. (2) System space The 2 Gbytes from the address H'8000 0000 to the address H'FFFF FFFF comprise the system space. This space is reserved for use by development tools such as an in-circuit emulator and debug monitor, and cannot be used by the user. 3-2 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.1 Outline of the Address Space EIT vector entry Logical address H'0000 0000 H'0000 0000 Internal ROM area 384 Mbytes (Note 1) H'0005 FFFF 16 Mbytes H'0006 0000 CS0 area H'001F FFFF H'0020 0000 CS1 area User space H'003F FFFF H'0040 0000 2 Gbytes Ghost area in 16-Mbyte units CS2 area H'005F FFFF H'0060 0000 CS3 area H'7FFF FFFF H'8000 0000 SFR area 16 Kbytes H'007F FFFF H'0080 0000 H'0080 3FFF H'0080 4000 RAM area 64 Kbytes H'0081 3FFF H'0081 4000 2 Gbytes Reserved area 48 Kbytes System space H'0081 FFFF H'0082 0000 Ghost area in 128-Kbyte units H'FFFF FFFF H'00FF FFFF Note 1: This area is located differently depending on how chip mode is set. Figure 3.1.1 Address Space of the M32182F3 3-3 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.1 Outline of the Address Space EIT vector entry Logical address H'0000 0000 H'0000 0000 Internal ROM area 1 Mbyte (Note 1) H'000F FFFF 16 Mbytes H'0010 0000 CS0 area H'001F FFFF H'0020 0000 CS1 area User space H'003F FFFF H'0040 0000 2 Gbytes Ghost area in 16-Mbyte units CS2 area H'005F FFFF H'0060 0000 CS3 area H'7FFF FFFF H'8000 0000 SFR area 16 Kbytes H'007F FFFF H'0080 0000 H'0080 3FFF H'0080 4000 RAM area 64 Kbytes H'0081 3FFF H'0081 4000 2 Gbytes Reserved area 48 Kbytes System space H'0081 FFFF H'0082 0000 Ghost area in 128-Kbyte units H'FFFF FFFF H'00FF FFFF Note 1: This area is located differently depending on how chip mode is set. Figure 3.1.2 Address Space of the M32182F8 3-4 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.2 Operation Modes 3.2 Operation Modes The microcomputer is placed in one of the following modes depending on how CPU operation mode is set by MOD0 and MOD1 pins. The operation mode used for rewriting the internal flash memory is described separately in Section 6.5, "Programming the Internal Flash Memory." Table 3.2.1 Operation Mode Settings MOD0 MOD1 (Note 1) Operation mode (Note 2) VSS VSS Single-chip mode VSS VCCE External extension mode VCCE VSS Processor mode (FP = VSS) VCCE VCCE Reserved (use inhibited) Note 1: Connect VCCE and VSS to the VCCE input power supply and ground, respectively. Note 2: For the operation mode used to rewrite the internal flash memory (FP = VCCE) which is not shown in the above table, see Section 6.5, "Programming the Internal Flash Memory." The internal ROM and extended external areas are located differently depending on how operation mode is set. (All other areas in the address space are located the same way.) The diagram below shows how the internal ROM and extended external areas are mapped into the address space in each operation mode. (For flash rewrite mode, see Section 6.5, "Programming the Internal Flash Memory.") 3-5 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.2 Operation Modes Pin function (Note 1) Logical address H'0000 0000 H'0005 FFFF H'0006 0000 CS0# CS0# CS0# CS1# CS1# CS1# CS0# CS1# A11 / CS2# A11 / CS2# A11 / CS2# A11 / CS2# A12 / CS3# A12 / CS3# A12 / CS3# A12 / CS3# Internal ROM (384 Kbytes) Internal ROM (384 Kbytes) Internal ROM (384 Kbytes) Internal ROM (384 Kbytes) Reserved area (640 Kbytes) Reserved area (640 Kbytes) Reserved area (640 Kbytes) Reserved area (640 Kbytes) CS0 area (512 Kbytes) CS0 area (512 Kbytes) CS1 area (512 Kbytes) CS1 area (512 Kbytes) H'000F FFFF H'0010 0000 CS0 area (1 Mbyte) CS0 area (1 Mbyte) H'001F FFFF H'0020 0000 CS1 area (1 Mbyte) CS1 area (2 Mbytes) CS1 area (512 Kbytes) H'003F FFFF H'0040 0000 CS2 area (512 Kbytes) CS2 area (1 Mbyte) H'005F FFFF H'0060 0000 CS3 area (512 Kbytes) CS3 area (512 Kbytes) CS3 area (512 Kbytes) H'007F FFFF Note 1: Enclosed in are the valid pin function. Figure 3.2.1 Internal ROM and Extended External Area of the M32182F3 in External Extension Mode 3-6 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.2 Operation Modes Pin function (Note 1) Logical address CS0# CS0# CS0# CS1# CS1# CS1# CS0# CS1# A11 / CS2# A11 / CS2# A11 / CS2# A11 / CS2# A12 / CS3# A12 / CS3# A12 / CS3# A12 / CS3# Internal ROM Internal ROM Internal ROM Internal ROM (1 Mbyte) (1 Mbyte) (1 Mbyte) (1 Mbyte) CS0 area (512 Kbytes) CS0 area (512 Kbytes) CS1 area (512 Kbytes) CS1 area (512 Kbytes) H'0000 0000 H'000F FFFF H'0010 0000 CS0 area (1 Mbyte) CS0 area (1 Mbyte) H'001F FFFF H'0020 0000 CS1 area (1 Mbyte) CS1 area (2 Mbytes) CS1 area (512 Kbytes) H'003F FFFF H'0040 0000 CS2 area (512 Kbytes) CS2 area (1 Mbyte) H'005F FFFF H'0060 0000 CS3 area (512 Kbytes) CS3 area (512 Kbytes) CS3 area (512 Kbytes) H'007F FFFF Note 1: Enclosed in are the valid pin function. Figure 3.2.2 Internal ROM and Extended External Area of the M32182F8 in External Extension Mode 3-7 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.2 Operation Modes Pin function (Note 2) CS0# CS0# CS0# CS1# CS1# CS1# CS0# CS1# A11 / CS2# A11 / CS2# A11 / CS2# A11 / CS2# A12 / CS3# A12 / CS3# A12 / CS3# A12 / CS3# CS0 area (512 Kbytes) CS0 area (512 Kbytes) H'0000 0000 CS0 area (1 Mbyte) CS0 area (2 Mbytes) CS0 area (512 Kbytes) H'001F FFFF H'0020 0000 CS1 area (512 Kbytes) CS1 area (512 Kbytes) CS1 area (1 Mbyte) CS1 area (2 Mbytes) CS1 area (512 Kbytes) H'003F FFFF H'0040 0000 CS2 area (512 Kbytes) CS2 area (1 Mbyte) H'005F FFFF H'0060 0000 CS3 area (512 Kbytes) CS3 area (512 Kbytes) CS3 area (512 Kbytes) H'007F FFFF Note 2: Enclosed in are the valid pin function. Figure 3.2.3 Extended External Area in Processor Mode 3-8 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.3 Internal ROM and Extended External Areas 3.3 Internal ROM and Extended External Areas The 8-Mbyte area in the user space from the address H'0000 0000 to the address H'007F FFFF comprise the internal ROM and extended external areas. For the address mapping of these areas that differs with each operation mode, see Section 3.2, "Operation Modes." 3.3.1 Internal ROM Area The internal ROM is allocated to the addresses shown below. Located at the beginning of this area is the EIT vector entry (and the ICU vector table). Table 3.3.1 Internal ROM Allocation Address Type Name Size Allocation Address M32182F3 384 Kbytes H'0000 0000 to H'0005 FFFF M32182F8 1 Mbyte H'0000 0000 to H'000F FFFF 3.3.2 Extended External Area The extended external area is only available when external extension or processor mode is selected by operation mode settings. When accessing the extended external area, the control signals necessary to access external devices are output. The CS0# through CS3# signals are output corresponding to the address mapping of the extended external area. The CS0#, CS1#, CS2# and CS3# signals are output for the CS0, CS1, CS2 and CS3 areas, respectively. Table 3.3.2 Address Mapping of the Extended External Area in Each Operation Mode Operation Mode Address Mapping of Extended External Area Single-chip mode None External extension mode H'0010 0000 to H'001F FFFF (CS0 area: 1 Mbyte) H'0020 0000 to H'003F FFFF (CS1 area: 2 Mbytes) H'0040 0000 to H'005F FFFF (CS2 area: 2 Mbytes) H'0060 0000 to H'007F FFFF (CS3 area: 2 Mbytes) Processor mode H'0000 0000 to H'001F FFFF (CS0 area: 2 Mbytes) H'0020 0000 to H'003F FFFF (CS1 area: 2 Mbytes) H'0040 0000 to H'005F FFFF (CS2 area: 2 Mbytes) H'0060 0000 to H'007F FFFF (CS3 area: 2 Mbytes) 3-9 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas 3.4 Internal RAM and SFR Areas The 8-Mbyte area from the address H'0080 0000 to the address H'00FF FFFF comprise the internal RAM and SFR (Special Function Register) areas. Of these, the space that the user can actually use is a 128-Kbyte area from the address H'0080 0000 to the address H'0081 FFFF. The other areas here are ghosts in 128-Kbyte units. (Do not use the ghost area intentionally during programming.) 3.4.1 Internal RAM Area The internal RAM area is allocated to the addresses shown below. Table 3.4.1 Internal RAM Allocation Address Type Name Size Allocation Address M32182F3 64 Kbytes H'0080 4000 to H'0081 3FFF M32182F8 64 Kbytes H'0080 4000 to H'0081 3FFF 3.4.2 SFR (Special Function Register) Area The addresses H'0080 0000 to H'0080 3FFFF comprise the SFR (Special Function Register) area. Located in this area are the internal peripheral I/O registers. H'0080 0000 SFR area (16 Kbytes) H'0080 3FFF H'0080 4000 H'0080 7FFF H'0080 8000 Virtual flash emulation areas separated in 4-Kbyte units can be allocated here. For details, see Section 6.6. Internal RAM (64 Kbytes) H'0080 FFFF H'0081 0000 H'0081 3FFF Figure 3.4.1 Internal RAM and SFR (Special Function Register) Areas of the M32182F3 3-10 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas 0 7 8 15 0 +0 address +1 address 7 8 15 +0 address +1 address H'0080 0000 H'0080 0FE0 H'0080 0FFE H'0080 1000 Interrupt Controller (ICU) H'0080 007E H'0080 0080 MJT(TML1) CAN0 A-D Converter H'0080 11FE H'0080 00EE H'0080 1400 H'0080 0100 Serial I/O CAN1 H'0080 0146 H'0080 15FE H'0080 0180 H'0080 0186 H'0080 01E0 H'0080 01F8 H'0080 0200 H'0080 023E H'0080 0240 Wait Controller H'0080 3FFE Flash control MJT (common part) MJT(TOP) H'0080 02FE H'0000 0300 Multijunction timer (MJT) MJT(TIO) H'0080 03BE H'0080 03C0 H'0080 03DE H'0080 03E0 H'0080 03FE H'0080 0400 MJT(TMS) MJT(TML0) DMAC H'0080 0478 H'0080 0700 Input/output port H'0080 0786 Note: * The Real-time Debugger (RTD) is an independent module that is operated from the outside, and is transparent to the CPU. Figure 3.4.2 Outline Mapping of the SFR Area 3-11 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (1/21) Address +0 address b0 H'0080 0000 H'0080 0002 H'0080 0004 H'0080 0006 | H'0080 0066 H'0080 0068 H'0080 006A H'0080 006C H'0080 006E H'0080 0070 H'0080 0072 H'0080 0074 H'0080 0076 H'0080 0078 H'0080 007A H'0080 007C H'0080 007E H'0080 0080 H'0080 0082 b15 Interrupt Request Mask Register (IMASK) SBI Control Register (SBICR) | H'0080 0060 +1 address b7 b8 Interrupt Vector Register (IVECT) (Use inhibited area) (Use inhibited area) 5-6 (Use inhibited area) 5-7 (Use inhibited area) 5-8 RTD Interrupt Control Register (IRTDCR) DMA5-9 Interrupt Control Register (IDMA59CR) 5-8 (Use inhibited area) CAN0 Transmit/Receive & Error Interrupt Control Register (ICAN0CR) (Use inhibited area) (Use inhibited area) SIO2, 3 Transmit/Receive Interrupt Control Register (ISIO23CR) (Use inhibited area) A-D0 Conversion Interrupt Control Register (IAD0CCR) SIO0 Receive Interrupt Control Register (ISIO0RXCR) SIO1 Receive Interrupt Control Register (ISIO1RXCR) TIO0-3 Output Interrupt Control Register (ITIO03CR) TOP0-5 Output Interrupt Control Register (ITOP05CR) TIO4-7 Output Interrupt Control Register (ITIO47CR) TIO8,9 Output Interrupt Control Register (ITOP89CR) (Use inhibited area) SIO0 Transmit Interrupt Control Register (ISIO0TXCR) SIO1 Transmit Interrupt Control Register (ISIO1TXCR) DMA0-4 Interrupt Control Register (IDMA04CR) TOP6, 7 Output Interrupt Control Register (ITOP67CR) TIO8, 9 Output Interrupt Control Register (ITIO89CR) TOP10 Output Interrupt Control Register (ITOP10CR) TMS0, 1 Output Interrupt Control Register (ITMS01CR) TIN0-2 Input Interrupt Control Register (ITIN02CR) TIN12-19 Input Interrupt Control Register TIN20-29 Input Interrupt Control Register (ITIN1219CR) (ITIN2029CR) TIN3-6 Input Interrupt Control Register CAN1 Transmit/Receive & Error Interrupt Control Register (ITIN36CR) (ICAN1CR) A-D0 Single Mode Register 0 A-D0 Single Mode Register 1 (AD0SIM0) (AD0SIM1) (Use inhibited area) H'0080 0084 A-D0 Scan Mode Register 0 A-D0 Scan Mode Register 1 (AD0SCM0) (AD0SCM1) H'0080 0086 A-D0 Disconnection Detection Assist Function Control Register A-D0 Conversion Speed Control Register (AD0DDACR) (AD0CVSCR) H'0080 0088 A-D0 Successive Approximation Register (AD0SAR) H'0080 008A A-D0 Disconnection Detection Assist Method Select Register (AD0DDASEL) H'0080 008C A-D0 Comparate Data Register (AD0CMP) H'0080 008E (Use inhibited area) H'0080 0090 H'0080 0092 H'0080 0094 H'0080 0096 H'0080 0098 H'0080 009A H'0080 009C See pages 5-5 10-bit A-D0 Data Register (AD0DT0) 10-bit A-D0 Data Register (AD0DT1) 10-bit A-D0 Data Register (AD0DT2) 10-bit A-D0 Data Register (AD0DT3) 10-bit A-D0 Data Register (AD0DT4) 10-bit A-D0 Data Register (AD0DT5) 10-bit A-D0 Data Register (AD0DT6) 3-12 5-8 5-8 5-8 5-8 5-8 5-8 5-8 5-8 5-8 5-8 5-8 11-14 11-16 11-18 11-20 11-23 11-22 11-27 11-24 11-28 0 11-29 1 11-29 2 11-29 3 11-29 4 11-29 5 11-29 6 11-29 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (2/21) Address +0 address b0 H'0080 009E H'0080 00A0 H'0080 00A2 H'0080 00A4 H'0080 00A6 | H'0080 00D0 (Use inhibited area) H'0080 00D2 (Use inhibited area) H'0080 00D4 (Use inhibited area) H'0080 00D6 (Use inhibited area) H'0080 00D8 (Use inhibited area) H'0080 00DA (Use inhibited area) H'0080 00DC (Use inhibited area) H'0080 00DE (Use inhibited area) H'0080 00E0 (Use inhibited area) H'0080 00E2 (Use inhibited area) H'0080 00E4 (Use inhibited area) H'0080 00E6 (Use inhibited area) | H'0080 0100 H'0080 0102 | H'0080 0110 H'0080 0112 H'0080 0114 H'0080 0116 | H'0080 0120 H'0080 0122 H'0080 0124 H'0080 0126 | H'0080 0130 H'0080 0132 H'0080 0134 +1 address b7 b8 10-bit A-D0 Data Register 7 (AD0DT7) 10-bit A-D0 Data Register 8 (AD0DT8) 10-bit A-D0 Data Register 9 (AD0DT9) 10-bit A-D0 Data Register 10 (AD0DT10) 10-bit A-D0 Data Register 11 (AD0DT11) (Use inhibited area) b15 See pages 11-29 11-29 11-29 11-29 11-29 8-bit A-D0 Data Register 0 (AD08DT0) 8-bit A-D0 Data Register 1 (AD08DT1) 8-bit A-D0 Data Register 2 (AD08DT2) 8-bit A-D0 Data Register 3 (AD08DT3) 8-bit A-D0 Data Register 4 (AD08DT4) 8-bit A-D0 Data Register 5 (AD08DT5) 8-bit A-D0 Data Register 6 (AD08DT6) 8-bit A-D0 Data Register 7 (AD08DT7) 8-bit A-D0 Data Register 8 (AD08DT8) 8-bit A-D0 Data Register 9 (AD08DT9) 8-bit A-D0 Data Register 10 (AD08DT10) 8-bit A-D0 Data Register 11 (AD08DT11) 11-30 11-30 11-30 11-30 11-30 11-30 11-30 11-30 11-30 11-30 11-30 11-30 (Use inhibited area) SIO23 Interrupt Request Status Register SIO03 Interrupt Request Enable Register (SI23STAT) (SI03EN) SIO03 Interrupt Request Source Select Register (Use inhibited area) (SI03SEL) (Use inhibited area) 12-9 12-10 12-11 SIO0 Transmit Control Register SIO0 Transmit/Receive Mode Register (S0TCNT) (S0MOD) SIO0 Transmit Buffer Register (S0TXB) SIO0 Receive Buffer Register (S0RXB) SIO0 Receive Control Register SIO0 Baud Rate Register (S0RCNT) (S0BAUR) (Use inhibited area) 12-13 12-14 12-17 SIO1 Transmit Control Register SIO1 Transmit/Receive Mode Register (S1TCNT) (S1MOD) SIO1 Transmit Buffer Register (S1TXB) SIO1 Receive Buffer Register (S1RXB) SIO1 Receive Control Register SIO1 Baud Rate Register (S1RCNT) (S1BAUR) (Use inhibited area) 12-13 12-14 12-17 SIO2 Transmit Control Register SIO2 Transmit/Receive Mode Register (S2TCNT) (S2MOD) SIO2 Transmit Buffer Register (S2TXB) SIO2 Receive Buffer Register (S2RXB) 12-13 12-14 12-17 3-13 12-18 12-19 12-22 12-18 12-19 12-22 12-18 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (3/21) Address +0 address +1 address b0 H'0080 0136 b7 b8 SIO2 Receive Control Register (S2RCNT) | H'0080 0140 H'0080 0142 H'0080 0144 H'0080 0146 | H'0080 0180 H'0080 0182 H'0080 01E2 H'0080 01E4 SIO2 Baud Rate Register (S2BAUR) SIO3 Transmit Control Register SIO3 Transmit/Receive Mode Register (S3TCNT) (S3MOD) SIO3 Transmit Buffer Register (S3TXB) SIO3 Receive Buffer Register (S3RXB) SIO3 Receive Control Register SIO3 Baud Rate Register (S3RCNT) (S3BAUR) (Use inhibited area) 12-13 12-14 12-17 CS0 Area Wait Control Register (CS0WTCR) CS2 Area Wait Control Register (CS2WTCR) CS1 Area Wait Control Register (CS1WTCR) CS3 Area Wait Control Register (CS3WTCR) 16-4 Flash Status Register 1 (FSTAT1) Flash Control Register 2 (FCNT2) Flash Control Register 4 (FCNT4) 6-5 6-6 6-8 6-9 6-10 Flash Mode Register (FMOD) Flash Control Register 1 (FCNT1) Flash Control Register 3 (FCNT3) (Use inhibited area) H'0080 01E8 Virtual Flash S Bank Register 0 (FESBANK0) Virtual Flash S Bank Register 1 (FESBANK1) Virtual Flash S Bank Register 2 (FESBANK2) Virtual Flash S Bank Register 3 (FESBANK3) Virtual Flash S Bank Register 4 (FESBANK4) Virtual Flash S Bank Register 5 (FESBANK5) Virtual Flash S Bank Register 6 (FESBANK6) Virtual Flash S Bank Register 7 (FESBANK7) (Use inhibited area) H'0080 01EA H'0080 01EC H'0080 01EE H'0080 01F0 H'0080 01F2 H'0080 01F4 H'0080 01F6 | H'0080 0200 (Use inhibited area) H'0080 0202 Prescaler Register 0 (PRS0) Prescaler Register 2 (PRS2) | H'0080 0210 H'0080 0212 | H'0080 0218 H'0080 021A | H'0080 0220 H'0080 0222 12-18 12-19 12-22 16-4 (Use inhibited area) H'0080 01E6 H'0080 0204 See Pages 12-19 12-22 (Use inhibited area) | H'0080 01E0 b15 6-12 6-12 6-12 6-12 6-12 6-12 6-12 6-12 Clock Bus & Input Event Bus Control Register (CKIEBCR) Prescaler Register 1 (PRS1) Output Event Bus Control Register (OEBCR) (Use inhibited area) 10-14 10-10 10-10 10-15 TCLK Input Processing Control Register (TCLKCR) TIN0-4 Input Processing Control Register (TIN04CR) (Use inhibited area) 10-18 TIN12-19 Input Processing Control Register (TIN1219CR) TIN20-23, TIN30-33 Input Processing Control Register (TIN2023_3033CR) (Use inhibited area) 10-20 10-19 F/F6-15 Source Select Register (FF615S) (Use inhibited area) F/F16-19 Source Select Register (FF1619S) 3-14 10-20 10-22 10-23 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (4/21) Address +0 address b0 H'0080 0224 H'0080 0226 H'0080 0228 (Use inhibited area) H'0080 022A (Use inhibited area) | H'0080 0230 H'0080 0232 H'0080 0234 H'0080 0236 H'0080 0238 H'0080 023A H'0080 023C H'0080 023E H'0080 0240 H'0080 0242 H'0080 0244 H'0080 0246 | H'0080 0250 H'0080 0252 H'0080 0254 H'0080 0256 | H'0080 0260 H'0080 0262 H'0080 0264 H'0080 0266 | H'0080 0270 H'0080 0272 H'0080 0274 H'0080 0276 | H'0080 0280 H'0080 0282 +1 address b7 b8 F/F0-15 Protect Register (FF015P) F/F0-15 Data Register (FF015D) b15 See pages 10-24 10-25 F/F16-20 Protect Register (FF1620P) F/F16-20 Data Register (FF1620D) 10-24 10-25 (Use inhibited area) TOP0-5 Interrupt Request Status Register TOP0-5 Interrupt Request Mask Register (TOP05IST) (TOP05IMA) TOP6, 7 Interrupt Request Mask & Status Register TOP8, 9 Interrupt Request Mask & Status Register (TOP67IMS) (TOP89IMS) TIO0-3 Interrupt Request Mask & Status Register TIO4-7 Interrupt Request Mask & Status Register (TIO03IMS) (TIO47IMS) TIO8, 9 Interrupt Request Mask & Status Register TMS0, 1 Interrupt Request Mask & Status Register (TIO89IMS) (TMS01IMS) TIN0-2 Interrupt Request Mask & Status Register TIN3-6 Interrupt Request Mask & Status Register (TIN02IMS) (TIN36IMS) (Use inhibited area) TIN12-19 Interrupt Request Status Register TIN12-19 Interrupt Request Mask Register (TIN1219IST) (TIN1219IMA) TIN20-23 Interrupt Request Mask & Status Register (Use inhibited area) (TIN2023IMS) TOP0 Counter (TOP0CT) TOP0 Reload Register (TOP0RL) (Use inhibited area) 10-30 10-32 10-33 10-34 10-35 10-36 10-37 10-38 10-39 10-40 10-42 10-54 10-55 TOP0 Correction Register (TOP0CC) (Use inhibited area) 10-56 TOP1 Counter (TOP1CT) TOP1 Reload Register (TOP1RL) (Use inhibited area) 10-54 10-55 TOP1 Correction Register (TOP1CC) (Use inhibited area) 10-56 TOP2 Counter (TOP2CT) TOP2 Reload Register (TOP2RL) (Use inhibited area) 10-54 10-55 TOP2 Correction Register (TOP2CC) (Use inhibited area) 10-56 TOP3 Counter (TOP3CT) TOP3 Reload Register (TOP3RL) (Use inhibited area) 10-54 10-55 TOP3 Correction Register (TOP3CC) (Use inhibited area) 10-56 TOP4 Counter (TOP4CT) TOP4 Reload Register (TOP4RL) 10-54 3-15 10-55 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFSFR Area Register Map (5/21) Address +0 address b0 H'0080 0284 H'0080 0286 | H'0080 0290 H'0080 0292 H'0080 0294 H'0080 0296 H'0080 0298 H'0080 029A H'0080 029C | H'0080 02A0 H'0080 02A2 H'0080 02A4 H'0080 02A6 H'0080 02A8 H'0080 02AA | H'0080 02B0 H'0080 02B2 H'0080 02B4 H'0080 02B6 | H'0080 02C0 H'0080 02C2 H'0080 02C4 H'0080 02C6 | H'0080 02D0 H'0080 02D2 H'0080 02D4 H'0080 02D6 | H'0080 02E0 H'0080 02E2 +1 address b7 b8 (Use inhibited area) b15 See pages TOP4 Correction Register (TOP4CC) (Use inhibited area) 10-56 TOP5 Counter (TOP5CT) TOP5 Reload Register (TOP5RL) (Use inhibited area) 10-54 10-55 TOP5 Correction Register (TOP5CC) (Use inhibited area) 10-56 TOP0-5 Control Register 0 (TOP05CR0) 10-50 (Use inhibited area) TOP0-5 Control Register 1 (TOP05CR1) 10-50 (Use inhibited area) TOP6 Counter (TOP6CT) TOP6 Reload Register (TOP6CC) (Use inhibited area) 10-54 10-55 TOP6 Correction Register (TOP6CC) (Use inhibited area) 10-56 TOP6, 7 Control Register (TOP67CR) (Use inhibited area) 10-52 TOP7 Counter (TOP7CT) TOP7 Reload Register (TOP7RL) (Use inhibited area) 10-54 10-55 TOP7 Correction Register (TOP7CC) (Use inhibited area) 10-56 TOP8 Counter (TOP8CT) TOP8 Reload Register (TOP8RL) (Use inhibited area) 10-54 10-55 TOP8 Correction Register (TOP8CC) (Use inhibited area) 10-56 TOP9 Counter (TOP9CT) TOP9 Reload Register (TOP9RL) (Use inhibited area) 10-54 10-55 TOP9 Correction Register (TOP9CC) (Use inhibited area) 10-56 TOP10 Counter (TOP10CT) TOP10 Reload Register (TOP10RL) 10-54 3-16 10-55 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (6/21) Address +0 address +1address b0 b7 b8 (Use inhibited area) H'0080 02E4 H'0080 02E6 10-56 TOP8-10 Control Register (TOP810CR) (Use inhibited area) 10-53 TOP External Enable Permit Register (TOPEEN) TOP Enable Protect Register (TOPPRO) TOP Count Enable Register (TOPCEN) TIO0 Counter (TIO0CT) (Use inhibited area) 10-57 H'0080 02EA | H'0080 02FC H'0080 02FE H'0080 0300 H'0080 0302 H'0080 0304 | H'0080 0310 H'0080 0312 H'0080 0314 H'0080 0316 H'0080 0318 H'0080 031A | H'0080 0320 H'0080 0322 H'0080 0324 H'0080 0326 | H'0080 0330 H'0080 0332 H'0080 0334 H'0080 0336 | H'0080 0340 H'0080 0343 H'0080 0344 H'0080 0346 10-57 10-58 10-88 TIO0 Reload 1 Register (TIO0RL1) TIO0 Reload 0/ Measure Register (TIO0RL0) (Use inhibited area) H'0080 0306 H'0080 031C See pages TOP10 Correction Register (TOP10CC) (Use inhibited area) H'0080 02E8 H'0080 02FA b15 10-90 10-89 TIO1 Counter (TIO1CT) (Use inhibited area) 10-88 TIO1 Reload 1 Register (TIO1RL1) TIO1 Reload 0/ Measure Register (TIO1RL0) (Use inhibited area) 10-90 10-89 TIO0-3 Control Register 0 (TIO03CR0) 10-81 (Use inhibited area) TIO0-3 Control Register 1 (TIO03CR1) 10-82 (Use inhibited area) TIO2 Counter (TIO2CT) (Use inhibited area) 10-88 TIO2 Reload 1 Register (TIO2RL1) TIO2 Reload 0/ Measure Register (TIO2RL0) (Use inhibited area) 10-90 TIO3 Counter (TIO3CT) (Use inhibited area) 10-88 TIO3 Reload 1 Register (TIO3RL1) TIO3 Reload 0/ Measure Register (TIO3RL0) (Use inhibited area) 10-90 10-89 10-89 TIO4 Counter (TIO4CT) (Use inhibited area) 10-88 TIO4 Reload 1 Register (TIO4RL1) TIO4 Reload 0/ Measure Register (TIO4RL0) 10-90 3-17 10-89 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (7/21) Address +0 address b0 H'0080 0348 H'0080 034A TIO4 Control Register (TIO4CR) | H'0080 0352 H'0080 0354 H'0080 0356 | H'0080 0360 H'0080 0362 H'0080 0364 H'0080 0366 H'0080 0368 H'0080 0372 H'0080 0374 H'0080 0376 | H'0080 0380 H'0080 0382 H'0080 0384 H'0080 0386 H'0080 0388 H'0080 0390 H'0080 0392 H'0080 0394 H'0080 0396 | H'0080 03BC H'0080 03BE H'0080 03C0 See pages 10-83 10-85 TIO5 Counter (TIO5CT) (Use inhibited area) 10-88 TIO5 Reload 1 Register (TIO5RL1) TIO5 Reload 0/ Measure Register (TIO5RL0) (Use inhibited area) 10-90 10-89 TIO6 Counter (TIO6CT) (Use inhibited area) 10-88 TIO6 Reload 1 Register (TIO6RL1) TIO6 Reload 0/ Measure Register (TIO6RL0) (Use inhibited area) 10-90 10-89 TIO7 Control Register (TIO7CR) 10-86 10-87 (Use inhibited area) H'0080 0370 | TIO5 Control Register (TIO5CR) TIO6 Control Register (TIO6CR) | H'0080 038A b15 (Use inhibited area) H'0080 0350 H'0080 036A +1 address b7 b8 (Use inhibited area) TIO7 Counter (TIO7CT) (Use inhibited area) 10-88 TIO7 Reload 1 Register (TIO7RL1) TIO7 Reload 0/ Measure Register (TIO7RL0) (Use inhibited area) 10-90 10-89 TIO8 Counter (TIO8CT) (Use inhibited area) 10-88 TIO8 Reload 1 Register (TIO8RL1) TIO8 Reload 0/ Measure Register (TIO8RL0) (Use inhibited area) 10-90 TIO8 Control Register (TIO8CR) 10-89 TIO9 Control Register (TIO9CR) 10-87 10-88 (Use inhibited area) TIO9 Counter (TIO9CT) (Use inhibited area) 10-88 TIO9 Reload 1 Register (TIO9RL1) TIO9 Reload 0/ Measure Register (TIO9RL0) (Use inhibited area) 10-90 TIO Enable Protect Register (TIOPRO) TIO Count Enable Register (TIOCEN) TMS0 Counter (TMS0CT) 3-18 10-89 10-91 10-92 10-109 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (8/21) Address +0 address +1address b0 H'0080 03C2 TMS0 H'0080 03C4 TMS0 H'0080 03C6 TMS0 H'0080 03C8 TMS0 H'0080 03CA b7 b8 Measure 3 Register (TMS0MR3) Measure 2 Register (TMS0MR2) Measure 1 Register (TMS0MR1) Measure 0 Register (TMS0MR0) TMS0 Control Register (TMS0CR) (Use inhibited area) H'0080 03D0 TMS1 Counter (TMS1CT) TMS1 Measure 3 Register (TMS1MR3) TMS1 Measure 2 Register (TMS1MR2) TMS1 Measure 1 Register (TMS1MR1) TMS1 Measure 0 Register (TMS1MR0) (Use inhibited area) H'0080 03D4 H'0080 03D6 H'0080 03D8 | H'0080 03E0 TML0 Counter (TML0CT) H'0080 03E2 (Use inhibited area) (Use inhibited area) H'0080 03F0 TML0 Measure 3 Register (TML0MR3) H'0080 03F2 TML0 Measure 2 Register (TML0MR2) TML0 Measure 1 Register (TML0MR1) | H'0080 0408 | H'0080 0410 H'0080 0412 H'0080 0414 H'0080 0416 H'0080 0418 H'0080 041A 10-109 10-109 10-109 10-109 (Upper) 10-114 TML0 Control Register (TML0CR) 10-113 (Upper) 10-114 (Upper) 10-114 (Upper) 10-114 (Lower) TML0 Measure 0 Register (TML0MR0) H'0080 03FE H'0080 0400 10-109 (Lower) H'0080 03FA H'0080 03FC 10-108 (Lower) H'0080 03F6 H'0080 03F8 10-109 (Use inhibited area) | H'0080 03F4 10-109 (Lower) | H'0080 03EA See pages 10-109 10-109 TMS1 Control Register (TMS1CR) | H'0080 03D2 b15 (Upper) 10-114 (Lower) DMA0-4 Interrupt Request Status Register DMA0-4 Interrupt Request Mask Register (DM04ITST) (DM04ITMK) (Use inhibited area) 9-24 9-25 DMA5-9 Interrupt Request Status Register DMA5-9 Interrupt Request Mask Register (DM59ITST) (DM59ITMK) (Use inhibited area) 9-24 9-25 DMA0 Channel Control Register 0 DMA0 Channel Control Register 1 (DM0CNT0) (DM0CNT1) DMA0 Source Address Register (DM0SA) DMA0 Destination Address Register (DM0DA) DMA0 Transfer Count Register (DM0TCT) DMA5 Channel Control Register 0 DMA5 Channel Control Register 1 (DM5CNT0) (DM5CNT1) DMA5 Source Address Register (DM5SA) 9-6 3-19 9-19 9-20 9-21 9-11 9-19 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (9/21) Address +0 address b0 H'0080 041C H'0080 041E H'0080 0420 DMA1 H'0080 0422 H'0080 0424 H'0080 0426 H'0080 0428 DMA6 H'0080 042A H'0080 042C H'0080 042E H'0080 0430 DMA2 H'0080 0432 H'0080 0434 H'0080 0436 H'0080 0438 DMA7 H'0080 043A H'0080 043C H'0080 043E H'0080 0440 DMA3 H'0080 0442 H'0080 0444 H'0080 0446 H'0080 0448 DMA8 H'0080 044A H'0080 044C H'0080 044E H'0080 0450 DMA4 H'0080 0452 H'0080 0454 H'0080 0456 H'0080 0458 H'0080 045A H'0080 045C H'0080 045E H'0080 0460 DMA9 +1 address b7 b8 DMA5 Destination Address Register (DM5DA) DMA5 Transfer Count Register (DM5TCT) Channel Control Register 0 DMA1 Channel Control (DM1CNT0) (DM1CNT1) DMA1 Source Address Register (DM1SA) DMA1 Destination Address Register (DM1DA) DMA1 Transfer Count Register (DM1TCT) Channel Control Register 0 DMA6 Channel Control (DM6CNT0) (DM6CNT1) DMA6 Source Address Register (DM6SA) DMA6 Destination Address Register (DM6DA) DMA6 Transfer Count Register (DM6TCT) Channel Control Register 0 DMA2 Channel Control (DM2CNT0) (DM2CNT1) DMA2 Source Address Register (DM2SA) DMA2 Destination Address Register (DM2DA) DMA2 Transfer Count Register (DM2TCT) Channel Control Register 0 DMA7 Channel Control (DM7CNT0) (DM7CNT1) DMA7 Source Address Register (DM7SA) DMA7 Destination Address Register (DM7DA) DMA7 Transfer Count Register (DM7TCT) Channel Control Register 0 DMA3 Channel Control (DM3CNT0) (DM3CNT1) DMA3 Source Address Register (DM3SA) DMA3 Destination Address Register (DM3DA) DMA3 Transfer Count Register (DM3TCT) Channel Control Register 0 DMA8 Channel Control (DM8CNT0) (DM8CNT1) DMA8 Source Address Register (DM8SA) DMA8 Destination Address Register (DM8DA) DMA8 Transfer Count Register (DM8TCT) Channel Control Register 0 DMA4 Channel Control (DM4CNT0) (DM4CNT1) DMA4 Source Address Register (DM4SA) DMA4 Destination Address Register (DM4DA) DMA4 Transfer Count Register (DM4TCT) Channel Control Register 0 DMA9 Channel Control (DM9CNT0) (DM9CNT1) DMA9 Source Address Register (DM9SA) DMA9 Destination Address Register (DM9DA) DMA9 Transfer Count Register (DM9TCT) DMA0 Software Request Generation Register (DM0SRI) 3-20 b15 See pages 9-20 9-21 Register 1 9-7 9-19 9-20 9-21 Register 1 9-12 9-19 9-20 9-21 Register 1 9-8 9-19 9-20 9-21 Register 1 9-13 9-19 9-20 9-21 Register 1 9-9 9-19 9-20 9-21 Register 1 9-14 9-19 9-20 9-21 Register 1 9-10 9-19 9-20 9-21 Register 1 9-15 9-19 9-20 9-21 9-18 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (10/21) Address +0 address b0 H'0080 0462 DMA1 H'0080 0464 DMA2 H'0080 0466 DMA3 H'0080 0468 DMA4 | H'0080 0470 H'0080 0472 H'0080 0474 H'0080 0476 H'0080 0478 | H'0080 0700 H'0080 0702 H'0080 0704 H'0080 0706 H'0080 0708 H'0080 070A H'0080 070C H'0080 070E H'0080 0710 H'0080 0712 H'0080 0714 H'0080 0716 DMA5 Software Request Generation (DM5SRI) DMA6 Software Request Generation (DM6SRI) DMA7 Software Request Generation (DM7SRI) DMA8 Software Request Generation (DM8SRI) DMA9 Software Request Generation (DM9SRI) (Use inhibited area) P0 Data Register (P0DATA) P2 Data Register (P2DATA) P4 Data Register (P4DATA) P6 Data Register (P6DATA) P8 Data Register (P8DATA) P10 Data Register (P10DATA) P12 Data Register (P12DATA) P14 Data Register (P14DATA) P16 Data Register (P16DATA) P18 Data Register (P18DATA) P20 Data Register (P20DATA) P22 Data Register (P22DATA) | H'0080 0720 H'0080 0722 H'0080 0724 H'0080 0726 H'0080 0728 H'0080 072A H'0080 072C H'0080 072E H'0080 0730 H'0080 0732 H'0080 0734 +1 address b7 b8 Software Request Generation (DM0SRI) Software Request Generation (DM2SRI) Software Request Generation (DM3SRI) Software Request Generation (DM4SRI) (Use inhibited area) Register See pages 9-18 Register 9-18 Register 9-18 Register 9-18 Register 9-18 Register 9-18 Register 9-18 Register 9-18 Register 9-18 b15 P1 Data Register (P1DATA) P3 Data Register (P3DATA) (Use inhibited area) P7 Data Register (P7DATA) P9 Data Register (P9DATA) P11 Data Register (P11DATA) P13 Data Register (P13DATA) P15 Data Register (P15DATA) P17 Data Register (P17DATA) P19 Data Register (P19DATA) P21 Data Register (P21DATA) (Use inhibited area) 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 (Use inhibited area) P0 Direction Register (P0DIR) P2 Direction Register (P2DIR) P4 Direction Register (P4DIR) P6 Direction Register (P6DIR) P8 Direction Register (P8DIR) P10 Direction Register (P10DIR) P12 Direction Register (P12DIR) P14 Direction Register (P14DIR) P16 Direction Register (P16DIR) P18 Direction Register (P18DIR) P20 Direction Register (P20DIR) P1 Direction Register (P1DIR) P3 Direction Register (P3DIR) (Use inhibited area) P7 Direction Register (P7DIR) P9 Direction Register (P9DIR) P11 Direction Register (P11DIR) P13 Direction Register (P13DIR) P15 Direction Register (P15DIR) P17 Direction Register (P17DIR) P19 Direction Register (P19DIR) P21 Direction Register (P21DIR) 3-21 8-8 8-8 8-8 8-8 8-8 8-8 8-8 8-8 8-8 8-8 8-8 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (11/21) Address +0 address b0 H'0080 0736 H'0080 0742 H'0080 0744 H'0080 0746 H'0080 0748 H'0080 074A H'0080 074C H'0080 074E H'0080 0750 H'0080 0752 H'0080 0754 H'0080 0756 H'0080 0762 H'0080 0764 | H'0080 076A | H'0080 0776 | H'0080 077E P0 Operation Mode Register (P0MOD) P2 Operation Mode Register (P2MOD) P4 Operation Mode Register (P4MOD) P6 Operation Mode Register (P6MOD) P8 Operation Mode Register (P8MOD) P10 Operation Mode Register (P10MOD) P12 Operation Mode Register (P12MOD) P14 Operation Mode Register (P14MOD) P16 Operation Mode Register (P16MOD) P18 Operation Mode Register (P18MOD) P20 Operation Mode Register (P20MOD) P22 Operation Mode Register (P22MOD) P1 Operation Mode Register (P1MOD) P3 Operation Mode Register (P3MOD) Port Input Special Function Control Register (PICNT) P7 Operation Mode Register (P7MOD) P9 Operation Mode Register (P9MOD) P11 Operation Mode Register (P11MOD) P13 Operation Mode Register (P13MOD) P15 Operation Mode Register (P15MOD) P17 Operation Mode Register (P17MOD) P19 Operation Mode Register (P19MOD) P21 Operation Mode Register (P21MOD) (Use inhibited area) Port Group 0, 1 Input Level Setting Register Port Group 2, 3 Input Level Setting Register (PG01LEV) (PG23LEV) Port Group 4, 5 Input Level Setting Register Port Group 6, 7 Input Level Setting Register (PG45LEV) (PG67LEV) Port Group 8 Input Level Setting Register (Use inhibited area) (PG8LEV) (Use inhibited area) 8-19 8-25 8-25 8-25 8-20 P22 Peripheral Output Select Register (P22SMOD) (Use inhibited area) (Use inhibited area) 8-20 Bus Mode Control Register (BUSMODC) 15-9 (Use inhibited area) 18-5 (Upper) 10-114 (Use inhibited area) (Use inhibited area) Clock Control Register (CLKCR) (Use inhibited area) TML1 Counter (TML1CT) H'0080 0FE2 (Lower) | H'0080 0FF0 8-11 8-21 8-11 8-12 8-12 8-13 8-13 8-14 8-14 8-15 8-15 8-16 8-16 8-17 8-17 8-18 8-18 (Use inhibited area) H'0080 0FE0 | 8-10 P10 Peripheral Output Select Register (P10SMOD) (Use inhibited area) | H'0080 0FEA 8-9 (Use inhibited area) | H'0080 0786 (Use inhibited area) See pages 8-8 (Use inhibited area) | H'0080 0760 b15 P22 Direction Register (P22DIR) | H'0080 0740 +1 address b7 b8 (Use inhibited area) (Use inhibited area) TML1 Control Register (TML1CR) 10-113 (Upper) 10-114 (Use inhibited area) TML1 Measure 3 Register (TML1MR2) H'0080 0FF2 (Lower) 3-22 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (12/21) Address +0 address b0 H'0080 0FF4 +1 address b7 b8 TML1 Measure 2 Register (TML1MR2) H'0080 0FF6 H'0080 0FF8 TML1 Measure 1 Register (TML1MR1) H'0080 1000 H'0080 1002 H'0080 1004 H'0080 1006 H'0080 1008 H'0080 100A H'0080 100C H'0080 100E H'0080 1010 H'0080 1012 H'0080 1014 H'0080 1016 H'0080 1018 | H'0080 1028 H'0080 102A H'0080 102C H'0080 102E H'0080 1030 H'0080 1032 H'0080 1034 H'0080 1036 H'0080 1038 H'0080 103A H'0080 103C H'0080 103E H'0080 1040 H'0080 1042 (Upper) 10-114 (Lower) TML1 Measure 0 Register (TML1MR0) H'0080 0FFE | (Upper) See pages 10-114 (Lower) H'0080 0FFA H'0080 0FFC b15 (Upper) 10-114 (Lower) (Use inhibited area) CAN0 Control Register (CAN0CNT) CAN0 Status Register (CAN0STAT) CAN0 Frame Format Select Register (CAN0FFS) CAN0 Configuration Register (CAN0CONF) CAN0 Timestamp Count Register (CAN0TSTMP) CAN0 Receive Error Count Register CAN0 Transmit Error Count Register (CAN0REC) (CAN0TEC) CAN0 Slot Interrupt Request Status Register (CAN0SLIST) (Use inhibited area) 13-15 13-18 13-21 13-22 13-24 13-25 13-29 CAN0 Slot Interrupt Request Enable Register (CAN0SLIEN) (Use inhibited area) 13-30 CAN0 Error Interrupt Request Status Register CAN0 Error Interrupt Request Enable Register (CAN0ERIST) (CAN0ERIEN) CAN0 Baud Rate Prescaler CAN0 Cause of Error Register (CAN0BRP) (CAN0EF) CAN0 Mode Register CAN0 DMA Transfer Request Select Register (CAN0MOD) (CAN0DMARQ) (Use inhibited area) 13-31 13-32 13-26 13-45 13-46 13-47 CAN0 Global Mask Register Standard ID 0 CAN0 Global Mask Register Standard ID 1 (C0GMSKS0) (C0GMSKS1) CAN0 Global Mask Register Extended ID 0 CAN0 Global Mask Register Extended ID 1 (C0GMSKE0) (C0GMSKE1) CAN0 Global Mask Register Extended ID 2 (Use inhibited area) (C0GMSKE2) (Use inhibited area) 13-48 13-49 13-50 CAN0 Local Mask Register A Standard ID 0 CAN0 Local Mask Register A Standard ID 1 (C0LMSKAS0) (C0LMSKAS1) CAN0 Local Mask Register A Extended ID 0 CAN0 Local Mask Register A Extended ID 1 (C0LMSKAE0) (C0LMSKAE1) CAN0 Local Mask Register A Extended ID 2 (Use inhibited area) (C0LMSKAE2) (Use inhibited area) 13-48 CAN0 Local Mask Register B Standard ID 0 CAN0 Local Mask Register B Standard ID 1 (C0LMSKBS0) (C0LMSKBS1) CAN0 Local Mask Register B Extended ID 0 CAN0 Local Mask Register B Extended ID 1 (C0LMSKBE0) (C0LMSKBE1) CAN0 Local Mask Register B Extended ID 2 (Use inhibited area) (C0LMSKBE2) (Use inhibited area) 13-48 CAN0 Single Shot Mode Control Register (CAN0SSMODE) (Use inhibited area) 13-52 3-23 13-49 13-50 13-49 13-50 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (13/21) Address +0 address b0 H'0080 1044 H'0080 1046 H'0080 1048 H'0080 1050 H'0080 1052 H'0080 1054 H'0080 1056 H'0080 1058 H'0080 105A H'0080 105C H'0080 105E | H'0080 1100 H'0080 1102 H'0080 1104 H'0080 1106 H'0080 1108 H'0080 110A H'0080 110C H'0080 110E H'0080 1110 H'0080 1112 H'0080 1114 H'0080 1116 H'0080 1118 H'0080 111A H'0080 111C H'0080 111E H'0080 1120 H'0080 1122 H'0080 1124 H'0080 1126 H'0080 1128 H'0080 112A H'0080 112C +1address b7 b8 CAN0 Single-Shot Interrupt Request Status Register (CAN0SSIST) (Use inhibited area) CAN0 Single-Shot Interrupt Request Enable Register (CAN0SSIEN) CAN0 Message Slot 0 Control Register CAN0 Message Slot 1 Control Register (C0MSL0CNT) (C0MSL1CNT) CAN0 Message Slot 2 Control Register CAN0 Message Slot 3 Control Register (C0MSL2CNT) (C0MSL3CNT) CAN0 Message Slot 4 Control Register CAN0 Message Slot 5 Control Register (C0MSL4CNT) (C0MSL5CNT) CAN0 Message Slot 6 Control Register CAN0 Message Slot 7 Control Register (C0MSL6CNT) (C0MSL7CNT) CAN0 Message Slot 8 Control Register CAN0 Message Slot 9 Control Register (C0MSL8CNT) (C0MSL9CNT) CAN0 Message Slot 10 Control Register CAN0 Message Slot 11 Control Register (C0MSL10CNT) (C0MSL11CNT) CAN0 Message Slot 12 Control Register CAN0 Message Slot 13 Control Register (C0MSL12CNT) (C0MSL13CNT) CAN0 Message Slot 14 Control Register CAN0 Message Slot 15 Control Register (C0MSL14CNT) (C0MSL15CNT) (Use inhibited area) CAN0 Message Slot 0 Standard ID 0 CAN0 Message Slot 0 Standard ID 1 (C0MSL0SID0) (C0MSL0SID1) CAN0 Message Slot 0 Extended ID 0 CAN0 Message Slot 0 Extended ID 1 (C0MSL0EID0) (C0MSL0EID1) CAN0 Message Slot 0 Extended ID 2 CAN0 Message Slot 0 Data Length Register (C0MSL0EID2) (C0MSL0DLC) CAN0 Message Slot 0 Data 0 CAN0 Message Slot 0 Data 1 (C0MSL0DT0) (C0MSL0DT1) CAN0 Message Slot 0 Data 2 CAN0 Message Slot 0 Data 3 (C0MSL0DT2) (C0MSL0DT3) CAN0 Message Slot 0 Data 4 CAN0 Message Slot 0 Data 5 (C0MSL0DT4) (C0MSL0DT5) CAN0 Message Slot 0 Data 6 CAN0 Message Slot 0 Data 7 (C0MSL0DT6) (C0MSL0DT7) CAN0 Message Slot 0 Timestamp (C0MSL0TSP) CAN0 Message Slot 1 Standard ID 0 CAN0 Message Slot 1 Standard ID 1 (C0MSL1SID0) (C0MSL1SID1) CAN0 Message Slot 1 Extended ID 0 CAN0 Message Slot 1 Extended ID 1 (C0MSL1EID0) (C0MSL1EID1) CAN0 Message Slot 1 Extended ID 2 CAN0 Message Slot 1 Data Length Register (C0MSL1EID2) (C0MSL1DLC) CAN0 Message Slot 1 Data 0 CAN0 Message Slot 1 Data 1 (C0MSL1DT0) (C0MSL1DT1) CAN0 Message Slot 1 Data 2 CAN0 Message Slot 1 Data 3 (C0MSL1DT2) (C0MSL1DT3) CAN0 Message Slot 1 Data 4 CAN0 Message Slot 1 Data 5 (C0MSL1DT4) (C0MSL1DT5) CAN0 Message Slot 1 Data 6 CAN0 Message Slot 1 Data 7 (C0MSL1DT6) (C0MSL1DT7) CAN0 Message Slot 1 Timestamp (C0MSL1TSP) CAN0 Message Slot 2 Standard ID 0 CAN0 Message Slot 2 Standard ID 1 (C0MSL2SID0) (C0MSL2SID1) CAN0 Message Slot 2 Extended ID 0 CAN0 Message Slot 2 Extended ID 1 (C0MSL2EID0) (C0MSL2EID1) CAN0 Message Slot 2 Extended ID 2 CAN0 Message Slot 2 Data Length Register (C0MSL2EID2) (C0MSL2DLC) CAN0 Message Slot 2 Data 0 CAN0 Message Slot 2 Data 1 (C0MSL2DT0) (C0MSL2DT1) CAN0 Message Slot 2 Data 2 CAN0 Message Slot 2 Data 3 (C0MSL2DT2) (C0MSL2DT3) CAN0 Message Slot 2 Data 4 CAN0 Message Slot 2 Data 5 (C0MSL2DT4) (C0MSL2DT5) CAN0 Message Slot 2 Data 6 CAN0 Message Slot 2 Data 7 (C0MSL2DT6) (C0MSL2DT7) 3-24 b15 See pages 13-33 13-34 13-53 13-53 13-53 13-53 13-53 13-53 13-53 13-53 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (14/21) Address +0 address b0 H'0080 112E H'0080 1130 H'0080 1132 H'0080 1134 H'0080 1136 H'0080 1138 H'0080 113A H'0080 113C H'0080 113E H'0080 1140 H'0080 1142 H'0080 1144 H'0080 1146 H'0080 1148 H'0080 114A H'0080 114C H'0080 114E H'0080 1150 H'0080 1152 H'0080 1154 H'0080 1156 H'0080 1158 H'0080 115A H'0080 115C H'0080 115E H'0080 1160 H'0080 1162 H'0080 1164 H'0080 1166 H'0080 1168 H'0080 116A H'0080 116C H'0080 116E H'0080 1170 H'0080 1172 +1 address b7 b8 b15 CAN0 Message Slot 2 Timestamp (C0MSL2TSP) CAN0 Message Slot 3 Standard ID 0 CAN0 Message Slot 3 Standard ID 1 (C0MSL3SID0) (C0MSL3SID1) CAN0 Message Slot 3 Extended ID 0 CAN0 Message Slot 3 Extended ID 1 (C0MSL3EID0) (C0MSL3EID1) CAN0 Message Slot 3 Extended ID 2 CAN0 Message Slot 3 Data Length Register (C0MSL3EID2) (C0MSL3DLC) CAN0 Message Slot 3 Data 0 CAN0 Message Slot 3 Data 1 (C0MSL3DT0) (C0MSL3DT1) CAN0 Message Slot 3 Data 2 CAN0 Message Slot 3 Data 3 (C0MSL3DT2) (C0MSL3DT3) CAN0 Message Slot 3 Data 4 CAN0 Message Slot 3 Data 5 (C0MSL3DT4) (C0MSL3DT5) CAN0 Message Slot 3 Data 6 CAN0 Message Slot 3 Data 7 (C0MSL3DT6) (C0MSL3DT7) CAN0 Message Slot 3 Timestamp (C0MSL3TSP) CAN0 Message Slot 4 Standard ID 0 CAN0 Message Slot 4 Standard ID 1 (C0MSL4SID0) (C0MSL4SID1) CAN0 Message Slot 4 Extended ID 0 CAN0 Message Slot 4 Extended ID 1 (C0MSL4EID0) (C0MSL4EID1) CAN0 Message Slot 4 Extended ID 2 CAN0 Message Slot 4 Data Length Register (C0MSL4EID2) (C0MSL4DLC) CAN0 Message Slot 4 Data 0 CAN0 Message Slot 4 Data 1 (C0MSL4DT0) (C0MSL4DT1) CAN0 Message Slot 4 Data 2 CAN0 Message Slot 4 Data 3 (C0MSL4DT2) (C0MSL4DT3) CAN0 Message Slot 4 Data 4 CAN0 Message Slot 4 Data 5 (C0MSL4DT4) (C0MSL4DT5) CAN0 Message Slot 4 Data 6 CAN0 Message Slot 4 Data 7 (C0MSL4DT6) (C0MSL4DT7) CAN0 Message Slot 4 Timestamp (C0MSL4TSP) CAN0 Message Slot 5 Standard ID 0 CAN0 Message Slot 5 Standard ID 1 (C0MSL5SID0) (C0MSL5SID1) CAN0 Message Slot 5 Extended ID 0 CAN0 Message Slot 5 Extended ID 1 (C0MSL5EID0) (C0MSL5EID1) CAN0 Message Slot 5 Extended ID 2 CAN0 Message Slot 5 Data Length Register (C0MSL5EID2) (C0MSL5DLC) CAN0 Message Slot 5 Data 0 CAN0 Message Slot 5 Data 1 (C0MSL5DT0) (C0MSL5DT1) CAN0 Message Slot 5 Data 2 CAN0 Message Slot 5 Data 3 (C0MSL5DT2) (C0MSL5DT3) CAN0 Message Slot 5 Data 4 CAN0 Message Slot 5 Data 5 (C0MSL5DT4) (C0MSL5DT5) CAN0 Message Slot 5 Data 6 CAN0 Message Slot 5 Data 7 (C0MSL5DT6) (C0MSL5DT7) CAN0 Message Slot 5 Timestamp (C0MSL5TSP) CAN0 Message Slot 6 Standard ID 0 CAN0 Message Slot 6 Standard ID 1 (C0MSL6SID0) (C0MSL6SID1) CAN0 Message Slot 6 Extended ID 0 CAN0 Message Slot 6 Extended ID 1 (C0MSL6EID0) (C0MSL6EID1) CAN0 Message Slot 6 Extended ID 2 CAN0 Message Slot 6 Data Length Register (C0MSL6EID2) (C0MSL6DLC) CAN0 Message Slot 6 Data 0 CAN0 Message Slot 6 Data 1 (C0MSL6DT0) (C0MSL6DT1) CAN0 Message Slot 6 Data 2 CAN0 Message Slot 6 Data 3 (C0MSL6DT2) (C0MSL6DT3) CAN0 Message Slot 6 Data 4 CAN0 Message Slot 6 Data 5 (C0MSL6DT4) (C0MSL6DT5) CAN0 Message Slot 6 Data 6 CAN0 Message Slot 6 Data 7 (C0MSL6DT6) (C0MSL6DT7) CAN0 Message Slot 6 Timestamp (C0MSL6TSP) CAN0 Message Slot 7 Standard ID 0 CAN0 Message Slot 7 Standard ID 1 (C0MSL7SID0) (C0MSL7SID1) CAN0 Message Slot 7 Extended ID 0 CAN0 Message Slot 7 Extended ID 1 (C0MSL7EID0) (C0MSL7EID1) 3-25 See pages 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (15/21) Address +0 address b0 H'0080 1174 H'0080 1176 H'0080 1178 H'0080 117A H'0080 117C H'0080 117E H'0080 1180 H'0080 1182 H'0080 1184 H'0080 1186 H'0080 1188 H'0080 118A H'0080 118C H'0080 118E H'0080 1190 H'0080 1192 H'0080 1194 H'0080 1196 H'0080 1198 H'0080 119A H'0080 119C H'0080 119E H'0080 11A0 H'0080 11A2 H'0080 11A4 H'0080 11A6 H'0080 11A8 H'0080 11AA H'0080 11AC H'0080 11AE H'0080 11B0 H'0080 11B2 H'0080 11B4 H'0080 11B6 H'0080 11B8 +1 address b7 b8 b15 CAN0 Message Slot 7 Extended ID 2 CAN0 Message Slot 7 Data Length Register (C0MSL7EID2) (C0MSL7DLC) CAN0 Message Slot 7 Data 0 CAN0 Message Slot 7 Data 1 (C0MSL7DT0) (C0MSL7DT1) CAN0 Message Slot 7 Data 2 CAN0 Message Slot 7 Data 3 (C0MSL7DT2) (C0MSL7DT3) CAN0 Message Slot 7 Data 4 CAN0 Message Slot 7 Data 5 (C0MSL7DT4) (C0MSL7DT5) CAN0 Message Slot 7 Data 6 CAN0 Message Slot 7 Data 7 (C0MSL7DT6) (C0MSL7DT7) CAN0 Message Slot 7 Timestamp (C0MSL7TSP) CAN0 Message Slot 8 Standard ID 0 CAN0 Message Slot 8 Standard ID 1 (C0MSL8SID0) (C0MSL8SID1) CAN0 Message Slot 8 Extended ID 0 CAN0 Message Slot 8 Extended ID 1 (C0MSL8EID0) (C0MSL8EID1) CAN0 Message Slot 8 Extended ID 2 CAN0 Message Slot 8 Data Length Register (C0MSL8EID2) (C0MSL8DLC) CAN0 Message Slot 8 Data 0 CAN0 Message Slot 8 Data 1 (C0MSL8DT0) (C0MSL8DT1) CAN0 Message Slot 8 Data 2 CAN0 Message Slot 8 Data 3 (C0MSL8DT2) (C0MSL8DT3) CAN0 Message Slot 8 Data 4 CAN0 Message Slot 8 Data 5 (C0MSL8DT4) (C0MSL8DT5) CAN0 Message Slot 8 Data 6 CAN0 Message Slot 8 Data 7 (C0MSL8DT6) (C0MSL8DT7) CAN0 Message Slot 8 Timestamp (C0MSL8TSP) CAN0 Message Slot 9 Standard ID 0 CAN0 Message Slot 9 Standard ID 1 (C0MSL9SID0) (C0MSL9SID1) CAN0 Message Slot 9 Extended ID 0 CAN0 Message Slot 9 Extended ID 1 (C0MSL9EID0) (C0MSL9EID1) CAN0 Message Slot 9 Extended ID 2 CAN0 Message Slot 9 Data Length Register (C0MSL9EID2) (C0MSL9DLC) CAN0 Message Slot 9 Data 0 CAN0 Message Slot 9 Data 1 (C0MSL9DT0) (C0MSL9DT1) CAN0 Message Slot 9 Data 2 CAN0 Message Slot 9 Data 3 (C0MSL9DT2) (C0MSL9DT3) CAN0 Message Slot 9 Data 4 CAN0 Message Slot 9 Data 5 (C0MSL9DT4) (C0MSL9DT5) CAN0 Message Slot 9 Data 6 CAN0 Message Slot 9 Data 7 (C0MSL9DT6) (C0MSL9DT7) CAN0 Message Slot 9 Timestamp (C0MSL9TSP) CAN0 Message Slot 10 Standard ID 0 CAN0 Message Slot 10 Standard ID 1 (C0MSL10SID0) (C0MSL10SID1) CAN0 Message Slot 10 Extended ID 0 CAN0 Message Slot 10 Extended ID 1 (C0MSL10EID0) (C0MSL10EID1) CAN0 Message Slot 10 Extended ID 2 CAN0 Message Slot 10 Data Length Register (C0MSL10EID2) (C0MSL10DLC) CAN0 Message Slot 10 Data 0 CAN0 Message Slot 10 Data 1 (C0MSL10DT0) (C0MSL10DT1) CAN0 Message Slot 10 Data 2 CAN0 Message Slot 10 Data 3 (C0MSL10DT2) (C0MSL10DT3) CAN0 Message Slot 10 Data 4 CAN0 Message Slot 10 Data 5 (C0MSL10DT4) (C0MSL10DT5) CAN0 Message Slot 10 Data 6 CAN0 Message Slot 10 Data 7 (C0MSL10DT6) (C0MSL10DT7) CAN0 Message Slot 10 Timestamp (C0MSL10TSP) CAN0 Message Slot 11 Standard ID 0 CAN0 Message Slot 11 Standard ID 1 (C0MSL11SID0) (C0MSL11SID1) CAN0 Message Slot 11 Extended ID 0 CAN0 Message Slot 11 Extended ID 1 (C0MSL11EID0) (C0MSL11EID1) CAN0 Message Slot 11 Extended ID 2 CAN0 Message Slot 11 Data Length Register (C0MSL11EID2) (C0MSL11DLC) CAN0 Message Slot 11 Data 0 CAN0 Message Slot 11 Data 1 (C0MSL11DT0) (C0MSL11DT1) CAN0 Message Slot 11 Data 2 CAN0 Message Slot 11 Data 3 (C0MSL11DT2) (C0MSL11DT3) 3-26 See pages 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (16/21) Address +0 address b0 H'0080 11BA H'0080 11BC H'0080 11BE H'0080 11C0 H'0080 11C2 H'0080 11C4 H'0080 11C6 H'0080 11C8 H'0080 11CA H'0080 11CC H'0080 11CE H'0080 11D0 H'0080 11D2 H'0080 11D4 H'0080 11D6 H'0080 11D8 H'0080 11DA H'0080 11DC H'0080 11DE H'0080 11E0 H'0080 11E2 H'0080 11E4 H'0080 11E6 H'0080 11E8 H'0080 11EA H'0080 11EC H'0080 11EE H'0080 11F0 H'0080 11F2 H'0080 11F4 H'0080 11F6 H'0080 11F8 H'0080 11FA H'0080 11FC +1 address b7 b8 b15 CAN0 Message Slot 11 Data 4 CAN0 Message Slot 11 Data 5 (C0MSL11DT4) (C0MSL11DT5) CAN0 Message Slot 11 Data 6 CAN0 Message Slot 11 Data 7 (C0MSL11DT6) (C0MSL11DT7) CAN0 Message Slot 11 Timestamp (C0MSL11TSP) CAN0 Message Slot 12 Standard ID 0 CAN0 Message Slot 12 Standard ID 1 (C0MSL12SID0) (C0MSL12SID1) CAN0 Message Slot 12 Extended ID 0 CAN0 Message Slot 12 Extended ID 1 (C0MSL12EID0) (C0MSL12EID1) CAN0 Message Slot 12 Extended ID 2 CAN0 Message Slot 12 Data Length Register (C0MSL12EID2) (C0MSL12DLC) CAN0 Message Slot 12 Data 0 CAN0 Message Slot 12 Data 1 (C0MSL12DT0) (C0MSL12DT1) CAN0 Message Slot 12 Data 2 CAN0 Message Slot 12 Data 3 (C0MSL12DT2) (C0MSL12DT3) CAN0 Message Slot 12 Data 4 CAN0 Message Slot 12 Data 5 (C0MSL12DT4) (C0MSL12DT5) CAN0 Message Slot 12 Data 6 CAN0 Message Slot 12 Data 7 (C0MSL12DT6) (C0MSL12DT7) CAN0 Message Slot 12 Timestamp (C0MSL12TSP) CAN0 Message Slot 13 Standard ID 0 CAN0 Message Slot 13 Standard ID 1 (C0MSL13SID0) (C0MSL13SID1) CAN0 Message Slot 13 Extended ID 0 CAN0 Message Slot 13 Extended ID 1 (C0MSL13EID0) (C0MSL13EID1) CAN0 Message Slot 13 Extended ID 2 CAN0 Message Slot 13 Data Length Register (C0MSL13EID2) (C0MSL13DLC) CAN0 Message Slot 13 Data 0 CAN0 Message Slot 13 Data 1 (C0MSL13DT0) (C0MSL13DT1) CAN0 Message Slot 13 Data 2 CAN0 Message Slot 13 Data 3 (C0MSL13DT2) (C0MSL13DT3) CAN0 Message Slot 13 Data 4 CAN0 Message Slot 13 Data 5 (C0MSL13DT4) (C0MSL13DT5) CAN0 Message Slot 13 Data 6 CAN0 Message Slot 13 Data 7 (C0MSL13DT6) (C0MSL13DT7) CAN0 Message Slot 13 Timestamp (C0MSL13TSP) CAN0 Message Slot 14 Standard ID 0 CAN0 Message Slot 14 Standard ID 1 (C0MSL14SID0) (C0MSL14SID1) CAN0 Message Slot 14 Extended ID 0 CAN0 Message Slot 14 Extended ID 1 (C0MSL14EID0) (C0MSL14EID1) CAN0 Message Slot 14 Extended ID 2 CAN0 Message Slot 14 Data Length Register (C0MSL14EID2) (C0MSL14DLC) CAN0 Message Slot 14 Data 0 CAN0 Message Slot 14 Data 1 (C0MSL14DT0) (C0MSL14DT1) CAN0 Message Slot 14 Data 2 CAN0 Message Slot 14 Data 3 (C0MSL14DT2) (C0MSL14DT3) CAN0 Message Slot 14 Data 4 CAN0 Message Slot 14 Data 5 (C0MSL14DT4) (C0MSL14DT5) CAN0 Message Slot 14 Data 6 CAN0 Message Slot 14 Data 7 (C0MSL14DT6) (C0MSL14DT7) CAN0 Message Slot 14 Timestamp (C0MSL14TSP) CAN0 Message Slot 15 Standard ID 0 CAN0 Message Slot 15 Standard ID 1 (C0MSL15SID0) (C0MSL15SID1) CAN0 Message Slot 15 Extended ID 0 CAN0 Message Slot 15 Extended ID 1 (C0MSL15EID0) (C0MSL15EID1) CAN0 Message Slot 15 Extended ID 2 CAN0 Message Slot 15 Data Length Register (C0MSL15EID2) (C0MSL15DLC) CAN0 Message Slot 15 Data 0 CAN0 Message Slot 15 Data 1 (C0MSL15DT0) (C0MSL15DT1) CAN0 Message Slot 15 Data 2 CAN0 Message Slot 15 Data 3 (C0MSL15DT2) (C0MSL15DT3) CAN0 Message Slot 15 Data 4 CAN0 Message Slot 15 Data 5 (C0MSL15DT4) (C0MSL15DT5) CAN0 Message Slot 15 Data 6 CAN0 Message Slot 15 Data 7 (C0MSL15DT6) (C0MSL15DT7) 3-27 See pages 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (17/21) Address +0 address b0 H'0080 11FE | H'0080 1400 H'0080 1402 H'0080 1404 H'0080 1406 H'0080 1408 H'0080 140A H'0080 140C H'0080 140E H'0080 1410 H'0080 1412 H'0080 1414 H'0080 1416 H'0080 1418 | H'0080 1428 H'0080 142A H'0080 142C H'0080 142E H'0080 1430 H'0080 1432 H'0080 1434 H'0080 1436 H'0080 1438 H'0080 143A H'0080 143C H'0080 143E H'0080 1440 H'0080 1442 H'0080 1444 H'0080 1446 H'0080 1448 | H'0080 1450 +1 address b7 b8 CAN0 Message Slot 15 Timestamp (C0MSL15TSP) (Use inhibited area) b15 CAN1 Control Register (CAN1CNT) CAN1 Status Register (CAN1STAT) CAN1 Frame Format Select Register (CAN1FFS) CAN1 Configuration Register (CAN1CONF) CAN1 Timestamp Count Register (CAN1TSTMP) CAN1 Receive Error Count Register CAN1 Transmit Error Count Register (CAN1REC) (CAN1TEC) CAN1 Slot Interrupt Request Status Register (CAN1SLIST) (Use inhibited area) See pages 13-71 13-15 13-18 13-21 13-22 13-24 13-25 13-29 CAN1 Slot Interrupt Request Enable Register (CAN1SLIEN) (Use inhibited area) 13-30 CAN1 Error Interrupt Request Status Register CAN1 Error Interrupt Request Enable Register (CAN1ERIST) (CAN1ERIEN) CAN1 Baud Rate Prescaler CAN1 Cause of Error Register (CAN1BRP) (CAN1EF) CAN1 Mode Register (Use inhibited area) (CAN1MOD) (Use inhibited area) 13-31 13-32 13-26 13-45 13-46 CAN1 Global Mask Register Standard ID 0 CAN1 Global Mask Register Standard ID 1 (C1GMSKS0) (C1GMSKS1) CAN1 Global Mask Register Extended ID 0 CAN1 Global Mask Register Extended ID 1 (C1GMSKE0) (C1GMSKE1) CAN1 Global Mask Register Extended ID 2 (Use inhibited area) (C1GMSKE2) (Use inhibited area) 13-48 13-49 13-50 CAN1 Local Mask Register A Standard ID 0 CAN1 Local Mask Register A Standard ID 1 (C1LMSKAS0) (C1LMSKAS1) CAN1 Local Mask Register A Extended ID 0 CAN1 Local Mask Register A Extended ID 1 (C1LMSKAE0) (C1LMSKAE1) CAN1 Local Mask Register A Extended ID 2 (Use inhibited area) (C1LMSKAE2) (Use inhibited area) 13-48 CAN1 Local Mask Register B Standard ID 0 CAN1 Local Mask Register B Standard ID 1 (C1LMSKBS0) (C1LMSKBS1) CAN1 Local Mask Register B Extended ID 0 CAN1 Local Mask Register B Extended ID 1 (C1LMSKBE0) (C1LMSKBE1) CAN1 Local Mask Register B Extended ID 2 (Use inhibited area) (C1LMSKBE2) (Use inhibited area) 13-48 CAN1 Single-Shot Mode Control Register (CAN1SSMODE) (Use inhibited area) 13-52 CAN1 Single-Shot Interrupt Request Status Register (CAN1SSIST) (Use inhibited area) 13-33 CAN1 Single-Shot Interrupt Request Enable Register (CAN1SSIEN) (Use inhibited area) 13-34 CAN1 Message Slot 0 Control Register (C1MSL0CNT) CAN1 Message Slot 1 Control Register (C1MSL1CNT) 3-28 13-49 13-50 13-49 13-50 13-53 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (18/21) Address +0 address b0 H'0080 1452 H'0080 1454 H'0080 1456 H'0080 1458 H'0080 145A H'0080 145C H'0080 145E | H'0080 1500 H'0080 1502 H'0080 1504 H'0080 1506 H'0080 1508 H'0080 150A H'0080 150C H'0080 150E H'0080 1510 H'0080 1512 H'0080 1514 H'0080 1516 H'0080 1518 H'0080 151A H'0080 151C H'0080 151E H'0080 1520 H'0080 1522 H'0080 1524 H'0080 1526 H'0080 1528 H'0080 152A H'0080 152C H'0080 152E H'0080 1530 H'0080 1532 H'0080 1534 +1 address b7 b8 b15 CAN1 Message Slot 2 Control Register CAN1 Message Slot 3 Control Register (C1MSL0CNT) (C1MSL3CNT) CAN1 Message Slot 4 Control Register CAN1 Message Slot 5 Control Register (C1MSL4CNT) (C1MSL5CNT) CAN1 Message Slot 6 Control Register CAN1 Message Slot 7 Control Register (C1MSL6CNT) (C1MSL7CNT) CAN1 Message Slot 8 Control Register CAN1 Message Slot 9 Control Register (C1MSL8CNT) (C1MSL9CNT) CAN1 Message Slot 10 Control Register CAN1 Message Slot 11 Control Register (C1MSL10CNT) (C1MSL11CNT) CAN1 Message Slot 12 Control Register CAN1 Message Slot 13 Control Register (C1MSL12CNT) (C1MSL13CNT) CAN1 Message Slot 14 Control Register CAN1 Message Slot 15 Control Register (C1MSL14CNT) (C1MSL15CNT) (Use inhibited area) CAN1 Message Slot 0 Standard ID 0 CAN1 Message Slot 0 Standard ID 1 (C1MSL0SID0) (C1MSL0SID1) CAN1 Message Slot 0 Extended ID 0 CAN1 Message Slot 0 Extended ID 1 (C1MSL0EID0) (C1MSL0EID1) CAN1 Message Slot 0 Extended ID 2 CAN1 Message Slot 0 Data Length Register (C1MSL0EID2) (C1MSL0DLC) CAN1 Message Slot 0 Data 0 CAN1 Message Slot 0 Data 1 (C1MSL0DT0) (C1MSL0DT1) CAN1 Message Slot 0 Data 2 CAN1 Message Slot 0 Data 3 (C1MSL0DT2) (C1MSL0DT3) CAN1 Message Slot 0 Data 4 CAN1 Message Slot 0 Data 5 (C1MSL0DT4) (C1MSL0DT5) CAN1 Message Slot 0 Data 6 CAN1 Message Slot 0 Data 7 (C1MSL0DT6) (C1MSL0DT7) CAN1 Message Slot 0 Timestamp (C1MSL0TSP) CAN1 Message Slot 1 Standard ID 0 CAN1 Message Slot 1 Standard ID 1 (C1MSL1SID0) (C1MSL1SID1) CAN1 Message Slot 1 Extended ID 0 CAN1 Message Slot 1 Extended ID 1 (C1MSL1EID0) (C1MSL1EID1) CAN1 Message Slot 1 Extended ID 2 CAN1 Message Slot 1 Data Length Register (C1MSL1EID2) (C1MSL1DLC) CAN1 Message Slot 1 Data 0 CAN1 Message Slot 1 Data 1 (C1MSL1DT0) (C1MSL1DT1) CAN1 Message Slot 1 Data 2 CAN1 Message Slot 1 Data 3 (C1MSL1DT2) (C1MSL1DT3) CAN1 Message Slot 1 Data 4 CAN1 Message Slot 1 Data 5 (C1MSL1DT4) (C1MSL1DT5) CAN1 Message Slot 1 Data 6 CAN1 Message Slot 1 Data 7 (C1MSL1DT6) (C1MSL1DT7) CAN1 Message Slot 1 Timestamp (C1MSL1TSP) CAN1 Message Slot 2 Standard ID 0 CAN1 Message Slot 2 Standard ID 1 (C1MSL2SID0) (C1MSL2SID1) CAN1 Message Slot 2 Extended ID 0 CAN1 Message Slot 2 Extended ID 1 (C1MSL2EID0) (C1MSL2EID1) CAN1 Message Slot 2 Extended ID 2 CAN1 Message Slot 2 Data Length Register (C1MSL2EID2) (C1MSL2DLC) CAN1 Message Slot 2 Data 0 CAN1 Message Slot 2 Data 1 (C1MSL2DT0) (C1MSL2DT1) CAN1 Message Slot 2 Data 2 CAN1 Message Slot 2 Data 3 (C1MSL2DT2) (C1MSL2DT3) CAN1 Message Slot 2 Data 4 CAN1 Message Slot 2 Data 5 (C1MSL2DT4) (C1MSL2DT5) CAN1 Message Slot 2 Data 6 CAN1 Message Slot 2 Data 7 (C1MSL2DT6) (C1MSL2DT7) CAN1 Message Slot 2 Timestamp (C1MSL2TSP) CAN1 Message Slot 3 Standard ID 0 CAN1 Message Slot 3 Standard ID 1 (C1MSL3SID0) (C1MSL3SID1) CAN1 Message Slot 3 Extended ID 0 CAN1 Message Slot 3 Extended ID 1 (C1MSL3EID0) (C1MSL3EID1) CAN1 Message Slot 3 Extended ID 2 CAN1 Message Slot 3 Data Length Register (C1MSL3EID2) (C1MSL3DLC) 3-29 See pages 13-53 13-53 13-53 13-53 13-53 13-53 13-53 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (19/21) Address +0 address b0 H'0080 1536 H'0080 1538 H'0080 153A H'0080 153C H'0080 153E H'0080 1540 H'0080 1542 H'0080 1544 H'0080 1546 H'0080 1548 H'0080 154A H'0080 154C H'0080 154E H'0080 1550 H'0080 1552 H'0080 1554 H'0080 1556 H'0080 1558 H'0080 155A H'0080 155C H'0080 155E H'0080 1560 H'0080 1562 H'0080 1564 H'0080 1566 H'0080 1568 H'0080 156A H'0080 156C H'0080 156E H'0080 1570 H'0080 1572 H'0080 1574 H'0080 1576 H'0080 1578 H'0080 157A +1 address b7 b8 b15 CAN1 Message Slot 3 Standard ID 0 CAN1 Message Slot 3 Standard ID 1 (C1MSL3DT0) (C1MSL3DT1) CAN1 Message Slot 3 Data 2 CAN1 Message Slot 3 Data 3 (C1MSL3DT2) (C1MSL3DT3) CAN1 Message Slot 3 Data 4 CAN1 Message Slot 3 Data 5 (C1MSL3DT4) (C1MSL3DT5) CAN1 Message Slot 3 Data 6 CAN1 Message Slot 3 Data 7 (C1MSL3DT6) (C1MSL3DT7) CAN1 Message Slot 3 Timestamp (C1MSL3TSP) CAN1 Message Slot 4 Standard ID 0 CAN1 Message Slot 4 Standard ID 1 (C1MSL4SID0) (C1MSL4SID1) CAN1 Message Slot 4 Extended ID 0 CAN1 Message Slot 4 Extended ID 1 (C1MSL4EID0) (C1MSL4EID1) CAN1 Message Slot 4 Extended ID 2 CAN1 Message Slot 4 Data Length Register (C1MSL4EID2) (C1MSL4DLC) CAN1 Message Slot 4 Data 0 CAN1 Message Slot 4 Data 1 (C1MSL4DT0) (C1MSL4DT1) CAN1 Message Slot 4 Data 2 CAN1 Message Slot 4 Data 3 (C1MSL4DT2) (C1MSL4DT3) CAN1 Message Slot 4 Data 4 CAN1 Message Slot 4 Data 5 (C1MSL4DT4) (C1MSL4DT5) CAN1 Message Slot 4 Data 6 CAN1 Message Slot 4 Data 7 (C1MSL4DT6) (C1MSL4DT7) CAN1 Message Slot 4 Timestamp (C1MSL4TSP) CAN1 Message Slot 5 Standard ID 0 CAN1 Message Slot 5 Standard ID 1 (C1MSL5SID0) (C1MSL5SID1) CAN1 Message Slot 5 Extended ID 0 CAN1 Message Slot 5 Extended ID 1 (C1MSL5EID0) (C1MSL5EID1) CAN1 Message Slot 5 Extended ID 2 CAN1 Message Slot 5 Data Length Register (C1MSL5EID2) (C1MSL5DLC) CAN1 Message Slot 5 Data 0 CAN1 Message Slot 5 Data 1 (C1MSL5DT0) (C1MSL5DT1) CAN1 Message Slot 5 Data 2 CAN1 Message Slot 5 Data 3 (C1MSL5DT2) (C1MSL5DT3) CAN1 Message Slot 5 Data 4 CAN1 Message Slot 5 Data 5 (C1MSL5DT4) (C1MSL5DT5) CAN1 Message Slot 5 Data 6 CAN1 Message Slot 5 Data 7 (C1MSL5DT6) (C1MSL5DT7) CAN1 Message Slot 5 Timestamp (C1MSL5TSP) CAN1 Message Slot 6 Standard ID 0 CAN1 Message Slot 6 Standard ID 1 (C1MSL6SID0) (C1MSL6SID1) CAN1 Message Slot 6 Extended ID 0 CAN1 Message Slot 6 Extended ID 1 (C1MSL6EID0) (C1MSL6EID1) CAN1 Message Slot 6 Extended ID 2 CAN1 Message Slot 6 Data Length Register (C1MSL6EID2) (C1MSL6DLC) CAN1 Message Slot 6 Data 0 CAN1 Message Slot 6 Data 1 (C1MSL6DT0) (C1MSL6DT1) CAN1 Message Slot 6 Data 2 CAN1 Message Slot 6 Data 3 (C1MSL6DT2) (C1MSL6DT3) CAN1 Message Slot 6 Data 4 CAN1 Message Slot 6 Data 5 (C1MSL6DT4) (C1MSL6DT5) CAN1 Message Slot 6 Data 6 CAN1 Message Slot 6 Data 7 (C1MSL6DT6) (C1MSL6DT7) CAN1 Message Slot 6 Timestamp (C1MSL6TSP) CAN1 Message Slot 7 Standard ID 0 CAN1 Message Slot 7 Standard ID 1 (C1MSL7SID0) (C1MSL7SID1) CAN1 Message Slot 7 Extended ID 0 CAN1 Message Slot 7 Extended ID 1 (C1MSL7EID0) (C1MSL7EID1) CAN1 Message Slot 7 Extended ID 2 CAN1 Message Slot 7 Data Length Register (C1MSL7EID2) (C1MSL7DLC) CAN1 Message Slot 7 Data 0 CAN1 Message Slot 7 Data 1 (C1MSL7DT0) (C1MSL7DT1) CAN1 Message Slot 7 Data 2 CAN1 Message Slot 7 Data 3 (C1MSL7DT2) (C1MSL7DT3) CAN1 Message Slot 7 Data 4 CAN1 Message Slot 7 Data 5 (C1MSL7DT4) (C1MSL7DT5) 3-30 See pages 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (20/21) Address +0 address b0 H'0080 157C H'0080 157E H'0080 1580 H'0080 1582 H'0080 1584 H'0080 1586 H'0080 1588 H'0080 158A H'0080 158C H'0080 158E H'0080 1590 H'0080 1592 H'0080 1594 H'0080 1596 H'0080 1598 H'0080 159A H'0080 159C H'0080 159E H'0080 15A0 H'0080 15A2 H'0080 15A4 H'0080 15A6 H'0080 15A8 H'0080 15AA H'0080 15AC H'0080 15AE H'0080 15B0 H'0080 15B2 H'0080 15B4 H'0080 15B6 H'0080 15B8 H'0080 15BA H'0080 15BC H'0080 15BE H'0080 15C0 +1address b7 b8 b15 CAN1 Message Slot 7 Data 6 CAN1 Message Slot 7 Data 7 (C1MSL7DT6) (C1MSL7DT7) CAN1 Message Slot 7 Timestamp (C1MSL7TSP) CAN1 Message Slot 8 Standard ID 0 CAN1 Message Slot 8 Standard ID 1 (C1MSL8SID0) (C1MSL8SID1) CAN1 Message Slot 8 Extended ID 0 CAN1 Message Slot 8 Extended ID 1 (C1MSL8EID0) (C1MSL8EID1) CAN1 Message Slot 8 Extended ID 2 CAN1 Message Slot 8 Data Length Register (C1MSL8EID2) (C1MSL8DLC) CAN1 Message Slot 8 Data 0 CAN1 Message Slot 8 Data 1 (C1MSL8DT0) (C1MSL8DT1) CAN1 Message Slot 8 Data 2 CAN1 Message Slot 8 Data 3 (C1MSL8DT2) (C1MSL8DT3) CAN1 Message Slot 8 Data 4 CAN1 Message Slot 8 Data 5 (C1MSL8DT4) (C1MSL8DT5) CAN1 Message Slot 8 Data 6 CAN1 Message Slot 8 Data 7 (C1MSL8DT6) (C1MSL8DT7) CAN1 Message Slot 8 Timestamp (C1MSL8TSP) CAN1 Message Slot 9 Standard ID 0 CAN1 Message Slot 9 Standard ID 1 (C1MSL9SID0) (C1MSL9SID1) CAN1 Message Slot 9 Extended ID 0 CAN1 Message Slot 9 Extended ID 1 (C1MSL9EID0) (C1MSL9EID1) CAN1 Message Slot 9 Extended ID 2 CAN1 Message Slot 9 Data Length Register (C1MSL9EID2) (C1MSL9DLC) CAN1 Message Slot 9 Data 0 CAN1 Message Slot 9 Data 1 (C1MSL9DT0) (C1MSL9DT1) CAN1 Message Slot 9 Data 2 CAN1 Message Slot 9 Data 3 (C1MSL9DT2) (C1MSL9DT3) CAN1 Message Slot 9 Data 4 CAN1 Message Slot 9 Data 5 (C1MSL9DT4) (C1MSL9DT5) CAN1 Message Slot 9 Data 6 CAN1 Message Slot 9 Data 7 (C1MSL9DT6) (C1MSL9DT7) CAN1 Message Slot 9 Timestamp (C1MSL9TSP) CAN1 Message Slot 10 Standard ID 0 CAN1 Message Slot 10 Standard ID 1 (C1MSL10SID0) (C1MSL10SID1) CAN1 Message Slot 10 Extended ID 0 CAN1 Message Slot 10 Extended ID 1 (C1MSL10EID0) (C1MSL10EID1) CAN1 Message Slot 10 Extended ID 2 CAN1 Message Slot 10 Data Length Register (C1MSL10EID2) (C1MSL10DLC) CAN1 Message Slot 10 Data 0 CAN1 Message Slot 10 Data 1 (C1MSL10DT0) (C1MSL10DT1) CAN1 Message Slot 10 Data 2 CAN1 Message Slot 10 Data 3 (C1MSL10DT2) (C1MSL10DT3) CAN1 Message Slot 10 Data 4 CAN1 Message Slot 10 Data 5 (C1MSL10DT4) (C1MSL10DT5) CAN1 Message Slot 10 Data 6 CAN1 Message Slot 10 Data 7 (C1MSL10DT6) (C1MSL10DT7) CAN1 Message Slot 10 Timestamp (C1MSL10TSP) CAN1 Message Slot 11 Standard ID 0 CAN1 Message Slot 11 Standard ID 1 (C1MSL11SID0) (C1MSL11SID1) CAN1 Message Slot 11 Extended ID 0 CAN1 Message Slot 11 Extended ID 1 (C1MSL11EID0) (C1MSL11EID1) CAN1 Message Slot 11 Extended ID 2 CAN1 Message Slot 11 Data Length Register (C1MSL11EID2) (C1MSL11DLC) CAN1 Message Slot 11 Data 0 CAN1 Message Slot 11 Data 1 (C1MSL11DT0) (C1MSL11DT1) CAN1 Message Slot 11 Data 2 CAN1 Message Slot 11 Data 3 (C1MSL11DT2) (C1MSL11DT3) CAN1 Message Slot 11 Data 4 CAN1 Message Slot 11 Data 5 (C1MSL11DT4) (C1MSL11DT5) CAN1 Message Slot 11 Data 6 CAN1 Message Slot 11 Data 7 (C1MSL11DT6) (C1MSL11DT7) CAN1 Message Slot 11 Timestamp (C1MSL11TSP) CAN1 Message Slot 12 Standard ID 0 CAN1 Message Slot 12 Standard ID 1 (C1MSL12SID0) (C1MSL12SID1) 3-31 See pages 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.4 Internal RAM and SFR Areas SFR Area Register Map (21/21) Address +0 address b0 H'0080 15C2 H'0080 15C4 H'0080 15C6 H'0080 15C8 H'0080 15CA H'0080 15CC H'0080 15CE H'0080 15D0 H'0080 15D2 H'0080 15D4 H'0080 15D6 H'0080 15D8 H'0080 15DA H'0080 15DC H'0080 15DE H'0080 15E0 H'0080 15E2 H'0080 15E4 H'0080 15E6 H'0080 15E8 H'0080 15EA H'0080 15EC H'0080 15EE H'0080 15F0 H'0080 15F2 H'0080 15F4 H'0080 15F6 H'0080 15F8 H'0080 15FA H'0080 15FC H'0080 15FE +1 address b7 b8 b15 CAN1 Message Slot 12 Extended ID 0 CAN1 Message Slot 12 Extended ID 1 (C1MSL12EID0) (C1MSL12EID1) CAN1 Message Slot 12 Extended ID 2 CAN1 Message Slot 12 Data Length Register (C1MSL12EID2) (C1MSL12DLC) CAN1 Message Slot 12 Data 0 CAN1 Message Slot 12 Data 1 (C1MSL12DT0) (C1MSL12DT1) CAN1 Message Slot 12 Data 2 CAN1 Message Slot 12 Data 3 (C1MSL12DT2) (C1MSL12DT3) CAN1 Message Slot 12 Data 4 CAN1 Message Slot 12 Data 5 (C1MSL12DT4) (C1MSL12DT5) CAN1 Message Slot 12 Data 6 CAN1 Message Slot 12 Data 7 (C1MSL12DT6) (C1MSL12DT7) CAN1 Message Slot 12 Timestamp (C1MSL12TSP) CAN1 Message Slot 13 Standard ID 0 CAN1 Message Slot 13 Standard ID 1 (C1MSL13SID0) (C1MSL13SID1) CAN1 Message Slot 13 Extended ID 0 CAN1 Message Slot 13 Extended ID 1 (C1MSL13EID0) (C1MSL13EID1) CAN1 Message Slot 13 Extended ID 2 CAN1 Message Slot 13 Data Length Register (C1MSL13EID2) (C1MSL13DLC) CAN1 Message Slot 13 Data 0 CAN1 Message Slot 13 Data 1 (C1MSL13DT0) (C1MSL13DT1) CAN1 Message Slot 13 Data 2 CAN1 Message Slot 13 Data 3 (C1MSL13DT2) (C1MSL13DT3) CAN1 Message Slot 13 Data 4 CAN1 Message Slot 13 Data 5 (C1MSL13DT4) (C1MSL13DT5) CAN1 Message Slot 13 Data 6 CAN1 Message Slot 13 Data 7 (C1MSL13DT6) (C1MSL13DT7) CAN1 Message Slot 13 Timestamp (C1MSL13TSP) CAN1 Message Slot 14 Standard ID 0 CAN1 Message Slot 14 Standard ID 1 (C1MSL14SID0) (C1MSL14SID1) CAN1 Message Slot 14 Extended ID 0 CAN1 Message Slot 14 Extended ID 1 (C1MSL14EID0) (C1MSL14EID1) CAN1 Message Slot 14 Extended ID 2 CAN1 Message Slot 14 Data Length Register (C1MSL14EID2) (C1MSL14DLC) CAN1 Message Slot 14 Data 0 CAN1 Message Slot 14 Data 1 (C1MSL14DT0) (C1MSL14DT1) CAN1 Message Slot 14 Data 2 CAN1 Message Slot 14 Data 3 (C1MSL14DT2) (C1MSL14DT3) CAN1 Message Slot 14 Data 4 CAN1 Message Slot 14 Data 5 (C1MSL14DT4) (C1MSL14DT5) CAN1 Message Slot 14 Data 6 CAN1 Message Slot 14 Data 7 (C1MSL14DT6) (C1MSL14DT7) CAN1 Message Slot 14 Timestamp (C1MSL14TSP) CAN1 Message Slot 15 Standard ID 0 CAN1 Message Slot 15 Standard ID 1 (C1MSL15SID0) (C1MSL15SID1) CAN1 Message Slot 15 Extended ID 0 CAN1 Message Slot 15 Extended ID 1 (C1MSL15EID0) (C1MSL15EID1) CAN1 Message Slot 15 Extended ID 2 CAN1 Message Slot 15 Data Length Register (C1MSL15EID2) (C1MSL15DLC) CAN1 Message Slot 15 Data 0 CAN1 Message Slot 15 Data 1 (C1MSL15DT0) (C1MSL15DT1) CAN1 Message Slot 15 Data 2 CAN1 Message Slot 15 Data 3 (C1MSL15DT2) (C1MSL15DT3) CAN1 Message Slot 15 Data 4 CAN1 Message Slot 15 Data 5 (C1MSL15DT4) (C1MSL15DT5) CAN1 Message Slot 15 Data 6 CAN1 Message Slot 15 Data 7 (C1MSL15DT6) (C1MSL15DT7) CAN1 Message Slot 15 Timestamp (C1MSL15TSP) 3-32 See pages 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.5 EIT Vector Entry 3.5 EIT Vector Entry The EIT vector entry is located at the beginning of the internal ROM/extended external areas. The branch instruction for jumping to the start address of each EIT event processing handler is written here. Note that it is the branch instruction and not the jump address itself that is written here. For details, see Chapter 4, "EIT." 0 31 H'0000 0000 H'0000 0004 RI (Reset Interrupt) H'0000 0008 H'0000 000C H'0000 0010 H'0000 0014 SBI (System Break Interrupt) H'0000 0018 H'0000 001C H'0000 0020 H'0000 0024 RIE (Reserved Instruction Exception) H'0000 0028 H'0000 002C H'0000 0030 H'0000 0034 AE (Address Exception) H'0000 0038 H'0000 003C H'0000 0040 TRAP0 H'0000 0044 TRAP1 H'0000 0048 TRAP2 H'0000 004C TRAP3 H'0000 0050 TRAP4 H'0000 0054 TRAP5 H'0000 0058 TRAP6 H'0000 005C TRAP7 H'0000 0060 TRAP8 H'0000 0064 TRAP9 H'0000 0068 TRAP10 H'0000 006C TRAP11 H'0000 0070 TRAP12 H'0000 0074 TRAP13 H'0000 0078 TRAP14 H'0000 007C TRAP15 H'0000 0080 EI (External Interrupt) (Note 1) H'0000 0090 FPE (Floating-Point Exception) Note 1: When flash entry bit = 1 (flash E/W enable mode), the EI vector entry is located at H'0080 4000. Figure 3.5.1 EIT Vector Entry 3-33 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.6 ICU Vector Table 3.6 ICU Vector Table The ICU vector table is used by the internal interrupt controller of the microcomputer. This table has the addresses shown below, at which the start addresses of interrupt handlers for the interrupt requests from respective internal peripheral I/Os are set. For details, see Chapter 5, "Interrupt Controller." ICU Vector Table Memory Map (1/2) Address +0 address b0 +1 address b7 b8 b15 H'0000 0094 TIN3-6 Input Interrupt Handler Start Address (A0-A15) H'0000 0096 TIN3-6 Input Interrupt Handler Start Address (A16-A31) H'0000 0098 TIN20-29 Input Interrupt Handler Start Address (A0-A15) H'0000 009A TIN20-29 Input Interrupt Handler Start Address (A16-A31) H'0000 009C TIN12-19 Input Interrupt Handler Start Address (A0-A15) H'0000 009E TIN12-19 Input Interrupt Handler Start Address (A16-A31) H'0000 00A0 TIN0-2 Input Interrupt Handler Start Address (A0-A15) H'0000 00A2 TIN0-2 Input Interrupt Handler Start Address (A16-A31) H'0000 00A4 (Note 1) H'0000 00A6 H'0000 00A8 TMS0, 1 Output Interrupt Handler Start Address (A0-A15) H'0000 00AA TMS0, 1 Output Interrupt Handler Start Address (A16-A31) H'0000 00AC TOP8, 9 Output Interrupt Handler Start Address (A0-A15) H'0000 00AE TOP8, 9 Output Interrupt Handler Start Address (A16-A31) H'0000 00B0 TOP10 Output Interrupt Handler Start Address (A0-A15) H'0000 00B2 TOP10 Output Interrupt Handler Start Address (A16-A31) H'0000 00B4 TIO4-7 Output Interrupt Handler Start Address (A0-A15) H'0000 00B6 TIO4-7 Output Interrupt Handler Start Address (A16-A31) H'0000 00B8 TIO8, 9 Output Interrupt Handler Start Address (A0-A15) H'0000 00BA TIO8, 9 Output Interrupt Handler Start Address (A16-A31) H'0000 00BC TOP0-5 Output Interrupt Handler Start Address (A0-A15) H'0000 00BE TOP0-5 Output Interrupt Handler Start Address (A16-A31) H'0000 00C0 TOP6, 7 Output Interrupt Handler Start Address (A0-A15) H'0000 00C2 TOP6, 7 Output Interrupt Handler Start Address (A16-A31) H'0000 00C4 TIO0-3 Output Interrupt Handler Start Address (A0-A15) H'0000 00C6 TIO0-3 Output Interrupt Handler Start Address (A16-A31) H'0000 00C8 DMA0-4 Interrupt Handler Start Address (A0-A15) H'0000 00CA DMA0-4 Interrupt Handler Start Address (A16-A31) H'0000 00CC SIO1 Receive Interrupt Handler Start Address (A0-A15) H'0000 00CE SIO1 Receive Interrupt Handler Start Address (A16-A31) H'0000 00D0 SIO1 Transmit Interrupt Handler Start Address (A0-A15) H'0000 00D2 SIO1 Transmit Interrupt Handler Start Address (A16-A31) H'0000 00D4 SIO0 Receive Interrupt Handler Start Address (A0-A15) H'0000 00D6 SIO0 Receive Interrupt Handler Start Address (A16-A31) 3-34 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3 3.6 ICU Vector Table ICU Vector Table Memory Map (2/2) Address +0 address +1 address b0 b7 b8 b15 H'0000 00D8 SIO0 Transmit Interrupt Handler Start Address (A0-A15) H'0000 00DA SIO0 Transmit Interrupt Handler Start Address (A16-A31) H'0000 00DC A-D0 Conversion Interrupt Handler Start Address (A0-A15) H'0000 00DE A-D0 Conversion Interrupt Handler Start Address (A16-A31) H'0000 00E0 (Note 1) H'0000 00E2 H'0000 00E4 (Note 1) H'0000 00E6 H'0000 00E8 DMA5-9 Interrupt Handler Start Address (A0-A15) H'0000 00EA DMA5-9 Interrupt Handler Start Address (A16-A31) H'0000 00EC SIO2, 3 Transmit/receive Interrupt Handler Start Address (A0-A15) H'0000 00EE SIO2, 3 Transmit/receive Interrupt Handler Start Address (A16-A31) H'0000 00F0 RTD Interrupt Handler Start Address (A0-A15) H'0000 00F2 RTD Interrupt Handler Start Address (A16-A31) H'0000 00F4 (Note 1) H'0000 00F6 H'0000 00F8 (Note 1) H'0000 00FA H'0000 00FC (Note 1) H'0000 00FE H'0000 0100 (Note 1) H'0000 0102 H'0000 0104 (Note 1) H'0000 0106 H'0000 0108 (Note 1) H'0000 010A H'0000 010C CAN0 Transmit/receive & Error Interrupt Handler Start Address (A0-A15) H'0000 010E CAN0 Transmit/receive & Error Interrupt Handler Start Address (A16-A31) H'0000 0110 CAN1 Transmit/receive & Error Interrupt Handler Start Address (A0-A15) H'0000 0112 CAN1 Transmit/receive & Error Interrupt Handler Start Address (A16-A31) Note 1: Valid for the interrupt requests in the 32180. No interrupt requests are generated in the 32182. 3-35 32182 Group User's Manual (Rev.1.0) ADDRESS SPACE 3.7 Notes about Address Space 3 3.7 Notes about Address Space * Virtual flash emulation function The microcomputer has the function to map 4-Kbyte memory blocks beginning with the address H'0080 8000 into areas (S banks) of the internal flash memory that are divided in 4-Kbyte units. This functions is referred to as the virtual flash emulation function. This function allows the data located in 4-Kbyte blocks of the internal RAM to be changed with the flash memory contents at the addresses specified by the Virtual Flash Bank Register. For details about this function, see Section 6.6, "Virtual Flash Emulation Function." 3-36 32182 Group User's Manual (Rev.1.0) CHAPTER 4 EIT 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 Outline of EIT EIT Events EIT Processing Procedure EIT Processing Mechanism Acceptance of EIT Events Saving and Restoring the PC and PSW EIT Vector Entry Exception Processing Interrupt Processing Trap Processing EIT Priority Levels Example of EIT Processing Precautions on EIT EIT 4 4.1 Outline of EIT 4.1 Outline of EIT If some event occurs when the CPU is executing an ordinary program, it may become necessary to suspend the program being executed and execute another program. Events like this one are referred to by a generic name as EIT (Exception, Interrupt and Trap). (1) Exception This is an event related to the context being executed. It is generated by an error or violation during instruction execution. This type of event includes Address Exception (AE), Reserved Instruction Exception (RIE) and FloatingPoint Exception (FPE). (2) Interrupt This is an event generated irrespective of the context being executed. It is generated by a hardware-derived signal from an external source, as well as by the internal peripheral I/O. This type of event includes Reset Interrupt (RI), System Break Interrupt (SBI) and External Interrupt (EI). (3) Trap This refers to a software interrupt generated by executing a TRAP instruction. This type of event is intentionally generated in a program as in the OS's system call by the programmer. EIT Exception (Exception) Reserved Instruction Exception (RIE) Address Exception (AE) Floating-Point Exception (FPE) Reset Interrupt (RI) Interrupt (Interrupt) System Break Interrupt (SBI) External Interrupt (EI) Trap (Trap) Trap (TRAP) Figure 4.1.1 Classification of EITs 4-2 32182 Group User's Manual (Rev.1.0) EIT 4 4.2 EIT Events 4.2 EIT Events 4.2.1 Exception (1) Reserved Instruction Exception (RIE) Reserved Instruction Exception (RIE) occurs when execution of a reserved instruction (unimplemented instruction) is detected. (2) Address Exception (AE) Address Exception (AE) occurs when an attempt is made to access a misaligned address in Load or Store instructions. (3) Floating-point Exception (FPE) Floating-point Exception (FPE) occurs when Unimplemented Exception (UIPL) or one of the five exceptions specified in the IEEE 754 standard (OVF/UDF/IXCT/DIV0/IVLD) is detected. Each exception processing is outlined below. 1) Overflow Exception (OVF) The exception occurs when the absolute value of the operation result exceeds the largest describable precision in the floating-point format. The following table shows the operation results when an OVF occurs. Table 4.2.1 Operation Results When an OVF Occurred Operation Result (Content of the Destination Register) Rounding Mode -Infinity +Infinity 0 Nearest Sign of the Result When the OVF EIT processing is masked (Note 1) + +MAX - -Infinity + +Infinity - -MAX + +MAX - -MAX + +Infinity - -Infinity When the OVF EIT processing is executed (Note 2) No change Note 1: When the overflow exception enable (EO) bit (FPSR register bit 20) = "0" Note 2: When the overflow exception enable (EO) bit (FPSR register bit 20) = "1" Note: * If an OVF occurs while EIT processing for OVF is masked, an IXCT occurs at the same time. * +MAX = H'7F7F FFFF, -MAX = H'FF7F FFFF 2) Underflow Exception (UDF) The exception occurs when the absolute value of the operation result is less than the largest describable precision in the floating-point format. The following table shows the operation results when a UDF occurs. Table 4.2.2 Operation Results when a UDF Occurred Operation Result (Content of the Destination Register) When UDF EIT processing is masked (Note 1) When UDF EIT processing is executed (Note 2) DN = 0: An unimplemented exception occurs No change DN = 1: 0 is returned Note 1: When the underflow exception enable (EU) bit (FPSR register bit 18) = "0" Note 2: When the underflow exception enable (EU) bit (FPSR register bit 18) = "1" 4-3 32182 Group User's Manual (Rev.1.0) EIT 4 4.2 EIT Events 3) Inexact Exception (IXCT) The exception occurs when the operation result differs from a result led out with an infinite range of precision. The following table shows the operation results and the respective conditions in which each IXCT occurs. Table 4.2.3 Operation Results when an IXCT Occurred Operation Result (Content of the Destination Register) Occurrence Condition When the IXCT EIT processing for is When the IXCT EIT processing is masked (Note 1) executed (Note 2) Overflow occurs in OVF masked condition Reference OVF operation results No change Rounding occurs Rounded value No change Note 1: When the inexact exception enable (EX) bit (FPSR register bit 17) = "0" Note 2: When the inexact exception enable (EX) bit (FPSR register bit 17) = "1" 4) Zero Division Exception (DIV0) The exception occurs when a finite nonzero value is divided by zero. The following table shows the operation results when a DIV0 is occurs. Table 4.2.4 Operation Results When a DIV0 Occurred Operation Result (Content of the Destination Register) Dividend Nonzero finite value When the DIV0 EIT processing is masked (Note 1) When the DIV0 EIT processing is executed (Note 2) +-Infinity (Sign is derived by exclusive ORing the signs of the divisor and dividend.) No change Note 1: When the zero division exception enable (EZ) bit (FPSR register bit 19) = "0" Note 2: When the zero division exception enable (EZ) bit (FPSR register bit 19) = "1" Please note that the DIV0 EIT processing does not occur in the following conditions. Table 4.2.5 Cases in Which No DIV0 Occur Dividend Behavior 0 An invalid operation exception occurs Infinity No exceptions occur (with the result = "Infinity") 4-4 32182 Group User's Manual (Rev.1.0) EIT 4 4.2 EIT Events 5) Invalid Operation Exception (IVLD) The exception occurs when an invalid operation is executed. The following table shows the operation results and the respective conditions in which each IVLD occurs. Table 4.2.6 Operation Results When an IVLD Occurred Operation Result (Content of the Destination Register) Occurrence Condition When the IVLD EIT When the IVLD EIT processing is masked (Note 1) processing is executed (Note 2) Operation for SNaN operand +Infinity-(+Infinity), -Infinity-(-Infinity) 0 x Infinity QNaN 0 / 0, Infinity / Infinity When FTOI Return value w hen pre-conversion signed bit is: instruction "0": H'7FFF FFFF overflow ed w as executed "1": H'8000 0000 * When NaN or Infinity w as converted When FTOS Return value w hen pre-conversion signed bit is: "0": H'0000 7FFF into an integer instruction w as executed "1": H'FFFF 8000 When < or > comparison w as performed on NaN Comparison results (comparison invalid) * When an integer conversion No change Note 1: When the invalid operation exception enable (EV) bit (FPSR register bit 21) = "0" Note 2: When the invalid operation exception enable (EV) bit (FPSR register bit 21) = "1" Note: * NaN (Not a Number) SNaN (Signaling NaN): a NaN in which the MSB of the decimal fraction is "0". When SNaN is used as the source operand in an operation, an IVLD occurs. SNaNs are useful in identifying program bugs when used as the initial value in a variable. However, SNaNs cannot be generated by hardware. QNaN (Quiet NaN): a NaN in which the MSB of the decimal fraction is "1". Even when QNaN is used as the source operand in an operation, an IVLD will not occur (excluding comparison and format conversion). Because a result can be checked by the arithmetic operations, QNaN allows the user to debug without executing an EIT processing. QNaNs are created by hardware. 6) Unimplemented Exception (UIPL) The exception occurs when the denormalized number zero flush (DN) bit (FPSR register bit 23) = "0" and a denormalized number is given as an operation operand. (Note 1) Because the UIPL has no enable bits available, it cannot be masked when they occur. The destination register remains unchanged. Note 1: A UDF occurs when the intermediate result of an operation is a denormalized number, in which case if the DN bit (FPSR register bit 23) = "0", an UIPL occurs. 4.2.2 Interrupt (1) Reset Interrupt (RI) Reset Interrupt (RI) is always accepted by entering the RESET# signal. The reset interrupt is assigned the highest priority. For details about the reset interrupt, see Chapter 7, "Reset." (2) System Break Interrupt (SBI) System Break Interrupt (SBI) is an emergency interrupt which is used when power outage is detected or a fault condition is notified by an external watchdog timer. This interrupt can only be used in cases when after interrupt processing, control will not return to the program that was being executed when the interrupt occurred. (3) External Interrupt (EI) External Interrupt (EI) is requested from internal peripheral I/Os managed by the interrupt controller. The interrupt controller manages these interrupts by assigning each one of eight priority levels including an interrupt-disabled state. 4-5 32182 Group User's Manual (Rev.1.0) EIT 4 4.2 EIT Events 4.2.3 Trap Traps are software interrupts which are generated by executing the TRAP instruction. Sixteen distinct vector addresses are provided corresponding to TRAP instruction operands 0-15. 4.3 EIT Processing Procedure EIT processing consists of two parts, one in which they are handled automatically by hardware, and one in which they are handled by user-created programs (EIT handlers). The procedure for processing EITs when accepted, except for a rest interrupt, is shown below. EIT request generated Program execution restarted Instruction Instruction Instruction A B C Program suspended and EIT request accepted Instruction Instruction C D Instruction processing-canceled type (RIE, AE) PCBPC PSWBPSW Hardware preprocessing (Note 1) Instruction processing-completed type (FPE, EI, TRAP) Hardware postprocessing (Note 1) BPSWPSW BPCPC User-created EIT handler EIT vector entry Branch instruction (SBI) EIT handler except for SBI BPC, PSW, FPSR and general-purpose registers are saved to the stack Processing by handler SBI (System Break Interrupt processing) General-purpose registers, PSW, FPSR and BPC are restored from the stack RTE instruction Program terminated or system is reset Note 1: Indicates saving and restoring the PSW register bits between its PSW and BPSW fields. Figure 4.3.1 Outline of the EIT Processing Procedure When an EIT is accepted, the CPU branches to the EIT vector after hardware preprocessing (as will be described later). The EIT vector has an entry address assigned for each EIT. This is where the BRA (branch) instruction for the EIT handler (not the jump address itself) is written. In the hardware preprocessing, the PC is transferred to the BPC (backup PC), and the content of the PSW register's PSW field is transferred to the BPSW field in that register. Other necessary operations must be performed in the user-created EIT handler. These include saving the BPC and PSW registers (including the BPSW field) and the general-purpose registers to be used in the EIT handler to the stack. In addition, the accumulator and the FPSR register must be saved to the stack as necessary. Remember that all these registers must be saved to the stack in a program by the user. When processing by the EIT handler is completed, restore the saved registers from the stack and finally execute the RTE instruction. Control is thereby returned from the EIT processing to the program that was being executed when the EIT occurred. (This does not apply to the System Break Interrupt, however.) In the hardware postprocessing, the BPC is returned to the PC, and the content of the PSW register's BPSW field is returned to the PSW field in that register. Note that the values stored in the BPC and the PSW register's BPSW field after executing the RTE instruction are undefined. 4-6 32182 Group User's Manual (Rev.1.0) EIT 4 4.4 EIT Processing Mechanism 4.4 EIT Processing Mechanism The EIT processing mechanism consists of the M32R CPU core and the interrupt controller for internal peripheral I/ Os. It also has the backup registers for the PC and PSW (the BPC register and the BPSW field of the PSW register). The EIT processing mechanism is shown below. M32R/ECU M32R CPU core RI RESET# RI High AE, RIE, FPE, TRAP Priority SBI# Internal peripheral I/Os Interrupt controller (ICU) SBI SBI EI EI Low IE flag (PSW) BPC register BPSW PSW PC register PSW register Figure 4.4.1 EIT Processing Mechanism 4-7 32182 Group User's Manual (Rev.1.0) EIT 4 4.5 Acceptance of EIT Events 4.5 Acceptance of EIT Events When an EIT event occurs, the CPU suspends the program it has hitherto been executing and branches to EIT processing by the relevant handler. Conditions under which each EIT event occurs and the timing at which they are accepted are shown below. Table 4.5.1 Acceptance of EIT Events EIT Event Type of Processing Acceptance Timing Values Set in BPC Register Reserved Instruction Exception (RIE) Address Exception (AE) Instruction processingcanceled type Instruction processingcanceled type Instruction processingcompleted type Instruction processingaborted type Instruction processingcompleted type Instruction processingcompleted type Instruction processingcompleted type During instruction execution PC value of the instruction that generated RIE PC value of the instruction that generated AE PC value of the instruction that generated FPE + 4 Undefined value Floating-Point Exception (FPE) Reset Interrupt (RI) System Break Interrupt (SBI) External Interrupt (EI) Trap (TRAP) During instruction execution Break in instructions Each machine cycle Break in instructions (word boundary only) Break in instructions (word boundary only) Break in instructions PC value of the next instruction PC value of the next instruction PC value of TRAP instruction + 4 4.6 Saving and Restoring the PC and PSW The following describes operation of the microcomputer at the time when it accepts an EIT and when it executes the RTE instruction. (1) Hardware preprocessing when an EIT is accepted [1] Save the PSW register's SM, IE and C bits in its backup field. BSM SM BIE IE BC C [2] Update the PSW register's SM, IE and C bits SM Remains unchanged (RIE, AE, FPE, TRAP) or cleared to "0" (SBI, EI, RI) IE Cleared to "0" C Cleared to "0" [3] Save the PC register BPC PC [4] Set the vector address in the PC register Branches to the EIT vector and executes the branch (BRA) instruction written in it, thereby transferring control to the user-created EIT handler. (2) Hardware postprocessing when the RTE instruction is executed [A] Restore the PSW register's SM, IE and C bits from its backup field. SM BSM IE BIE C BC [B] Restore the PC register from the BPC register. PC BPC Note: * The values stored in the BPC and the PSW register's BSM, BIE and BC bits after executing the RTE instruction are undefined. 4-8 32182 Group User's Manual (Rev.1.0) EIT 4 4.6 Saving and Restoring the PC and PSW [1] Saving the SM, IE and C bits BSM SM BIE IE BC C [3] Saving the PC BPC PC SM Unchanged or 0 IE 0 C 0 [A] Restoring the SM, IE and C bits from the backup field BSM IE BIE C BC PC [4] Setting the vector address in the PC [2] Updating the SM, IE and C bits SM Vector address [B] Restoring the PC from the BPC register The value stored in the BPC register after executing the RTE instruction is undefined. The values stored in the BSM, BIE and BC bits after executing the RTE instruction are undefined. PSW BPC PC [1] When EIT is accepted [3] [2] When RTE instruction is executed [4] [A] [B] BPSW field 0(MSB) PSW 7 8 15 16 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BSM PSW field 23 24 25 0 0 0 0 0 BIE BC 31(LSB) 0 0 0 0 0 SM IE C Figure 4.6.1 Saving and Restoring the PC and PSW 4-9 32182 Group User's Manual (Rev.1.0) EIT 4 4.7 EIT Vector Entry 4.7 EIT Vector Entry The EIT vector entry is located in the user space beginning with the address H'0000 0000. The table below lists the EIT vector entry. Table 4.7.1 EIT Vector Entry Name Abbreviation Vector Address Reset Interrupt RI System Break SM IE BPC H'0000 0000 (Note 1) 0 0 Undefined SBI H'0000 0010 0 0 PC of the next instruction RIE H'0000 0020 Unchanged 0 PC of the instruction that generated RIE Address Exception AE H'0000 0030 Unchanged 0 PC of the instruction that generated AE Trap TRAP0 H'0000 0040 Unchanged 0 PC of TRAP instruction + 4 TRAP1 H'0000 0044 Unchanged 0 PC of TRAP instruction + 4 TRAP2 H'0000 0048 Unchanged 0 PC of TRAP instruction + 4 TRAP3 H'0000 004C Unchanged 0 PC of TRAP instruction + 4 TRAP4 H'0000 0050 Unchanged 0 PC of TRAP instruction + 4 TRAP5 H'0000 0054 Unchanged 0 PC of TRAP instruction + 4 TRAP6 H'0000 0058 Unchanged 0 PC of TRAP instruction + 4 TRAP7 H'0000 005C Unchanged 0 PC of TRAP instruction + 4 TRAP8 H'0000 0060 Unchanged 0 PC of TRAP instruction + 4 TRAP9 H'0000 0064 Unchanged 0 PC of TRAP instruction + 4 TRAP10 H'0000 0068 Unchanged 0 PC of TRAP instruction + 4 TRAP11 H'0000 006C Unchanged 0 PC of TRAP instruction + 4 TRAP12 H'0000 0070 Unchanged 0 PC of TRAP instruction + 4 TRAP13 H'0000 0074 Unchanged 0 PC of TRAP instruction + 4 TRAP14 H'0000 0078 Unchanged 0 PC of TRAP instruction + 4 TRAP15 H'0000 007C Unchanged 0 PC of TRAP instruction + 4 External Interrupt EI H'0000 0080 (Note 2) 0 Floating-Point Exception FPE H'0000 0090 Interrupt Reserved Instruction Exception 0 Unchanged 0 PC of the next instruction PC of the instruction that generated FPE + 4 Note 1: During boot mode, the CPU starts executing the boot program after reset. For details, see Section 6.5, "Programming the Internal Flash Memory." Note 2: During flash E/W enable mode, this vector address is moved to the beginning of the internal RAM (address H'0080 4000). For details, see Section 6.5, "Programming the Internal Flash Memory." 4-10 32182 Group User's Manual (Rev.1.0) EIT 4 4.8 Exception Processing 4.8 Exception Processing 4.8.1 Reserved Instruction Exception (RIE) [Occurrence Conditions] Reserved Instruction Exception (RIE) occurs when a reserved instruction (unimplemented instruction) is detected. Instruction check is performed on the op-code part of the instruction. When a reserved instruction exception occurs, the instruction that generated it is not executed. If an external interrupt is requested at the same time a reserved instruction exception is detected, it is the reserved instruction exception that is accepted. [EIT Processing] (1) Saving SM, IE and C bits The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC. BSM SM BIE IE BC C (2) Updating SM, IE and C bits The PSW register's SM, IE and C bits are updated as shown below. SM Unchanged IE 0 C 0 (3) Saving the PC The PC value of the instruction that generated the reserved instruction exception is set in the BPC register. For example, if the instruction that generated the reserved instruction exception is at address 4, the value 4 is set in the BPC register. Similarly, if the instruction that generated the reserved instruction exception is at address 6, the value 6 is set in the BPC register. In this case, the value of the BPC register bit 30 indicates whether the instruction that generated the reserved instruction exception resides on a word boundary (BPC register bit 30 = "0") or not on a word boundary (BPC register bit 30 = "1"). However, in either case of the above, the address to which the RTE instruction returns after the EIT handler has terminated is address 4. (This is because the 2 low-order address bits are cleared to `00' when returned to the PC.) +0 +1 +2 +3 +0 Address H'04 H'08 +2 +3 Address H'00 Return address +1 H'00 Return address RIE occurred H'0C H'04 H'08 RIE occurred H'0C BPC BPC H'04 H'06 Figure 4.8.1 Example of a Return Address for Reserved Instruction Exception (RIE) 4-11 32182 Group User's Manual (Rev.1.0) EIT 4 4.8 Exception Processing (4) Branching to the EIT vector entry The CPU branches to the address H'0000 0020 in the user space. This is the last operation performed in hardware preprocessing. (5) Jumping from the EIT vector entry to the user-created handler The CPU executes the BRA instruction written by the user at the address H'0000 0020 of the EIT vector entry to jump to the start address of the user-created handler. At the beginning of the user-created EIT handler, first save the BPC and PSW registers and the necessary general-purpose registers to the stack. Also, save the accumulator and FPSR register as necessary. (6) Returning from the EIT handler At the end of the EIT handler, restore the saved registers from the stack and execute the RTE instruction. When the RTE instruction is executed, hardware postprocessing is automatically performed. At this time, the CPU restarts from a word-boundary instruction including the instruction that generated a RIE (see Figure 4.8.1). Except when using reserved instruction exceptions intentionally, occurrence of a reserved instruction exception suggests that the system has some fatal fault already existing in it. In such a case, therefore, do not return from the reserved instruction exception handler to the program that was being executed when the exception occurred. 4.8.2 Address Exception (AE) [Occurrence Conditions] Address Exception (AE) occurs when an attempt is made to access a misaligned address in Load or Store instructions. The following lists the combination of instructions and accessed addresses that may cause address exceptions to occur. * Two low-order address bits accessed in the LDH, LDUH or STH instruction are `01' or `11' * Two low-order address bits accessed in the LD, ST, LOCK or UNLOCK instruction are `01,' `10' or `11' When an address exception occurs, memory access by the instruction that generated the exception is not performed. If an external interrupt is requested at the same time an address exception is detected, it is the address exception that is accepted. [EIT Processing] (1) Saving SM, IE and C bits The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC. BSM SM BIE IE BC C (2) Updating SM, IE and C bits The PSW register's SM, IE and C bits are updated as shown below. SM Unchanged IE 0 C 0 (3) Saving the PC The PC value of the instruction that generated the address exception is set in the BPC register. For example, if the instruction that generated the address exception is at address 4, the value 4 is set in the BPC register. Similarly, if the instruction that generated the address exception is at address 6, the value 6 is set in the BPC register. In this case, the value of the BPC register bit 30 indicates whether the instruction that generated the reserved instruction exception resides on a word boundary (BPC register bit 30 = "0") or not on a word boundary (BPC register bit 30 = "1"). However, in either case of the above, the address to which the RTE instruction returns after the EIT handler has terminated is address 4. (This is because the 2 low-order address bits are cleared to `00' when returned to the PC.) 4-12 32182 Group User's Manual (Rev.1.0) EIT 4 4.8 Exception Processing +0 +1 +2 +3 +0 Address H'04 H'08 +2 +3 Address H'00 Return address +1 H'00 Return address AE occurred H'0C H'04 H'08 AE occurred H'0C BPC BPC H'04 H'06 Figure 4.8.2 Example of a Return Address for Address Exception (AE) (4) Branching to the EIT vector entry The CPU branches to the address H'0000 0030 in the user space. This is the last operation performed in hardware preprocessing. (5) Jumping from the EIT vector entry to the user-created handler The CPU executes the BRA instruction written by the user at the address H'0000 0030 of the EIT vector entry to jump to the start address of the user-created handler. At the beginning of the user-created EIT handler, first save the BPC and PSW registers and the necessary general-purpose registers to the stack. Also, save the accumulator and FPSR register as necessary. (6) Returning from the EIT handler At the end of the EIT handler, restore the saved registers from the stack and execute the RTE instruction. When the RTE instruction is executed, hardware postprocessing is automatically performed. At this time, the CPU restarts from a word-boundary instruction including the instruction that generated an AE (see Figure 4.8.2). Except when using address exceptions intentionally, occurrence of an address exception suggests that the system has some fatal fault already existing in it. In such a case, therefore, do not return from the address exception handler to the program that was being executed when the exception occurred. 4.8.3 Floating-Point Exception (FPE) [Occurrence Conditions] Floating-Point Exception (FPE) occurs when Unimplemented Exception (UIPL) or one of the five exceptions specified in IEEE 754 standards (OVF, UDF, IXCT, DIV0 or IVLD) is detected. Note, however, that the EIT processing described below is executed only when the exception that occurred is one whose exception enable bit in the FPSR register is set to "1" or an unimplemented exception. [EIT Processing] (1) Saving SM, IE and C bits The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC. BSM SM BIE IE BC C (2) Updating SM, IE and C bits The PSW register's SM, IE and C bits are updated as shown below. SM Unchanged IE 0 C 0 4-13 32182 Group User's Manual (Rev.1.0) EIT 4 4.8 Exception Processing (3) Saving the PC The PC value of the instruction that generated the FPE exception + 4 is set in the BPC register. Because all of the instructions that generate an FPE exception are 32 bits long, the address to which the RTE returns is always the instruction next to the one that generated the FPE exception. (4) Branching to the EIT vector entry The CPU branches to the address H'0000 0090 in the user space. This is the last operation performed in hardware preprocessing. (5) Jumping from the EIT vector entry to the user-created handler The CPU executes the BRA instruction written by the user at the address H'0000 0090 of the EIT vector entry to jump to the start address of the user-created handler. At the beginning of the user-created EIT handler, first save the BPC, PSW and FPSR registers and the necessary general-purpose registers to the stack. (6) Returning from the EIT handler At the end of the EIT handler, restore the saved registers from the stack and execute the RTE instruction. When the RTE instruction is executed, hardware postprocessing is automatically performed. 4-14 32182 Group User's Manual (Rev.1.0) EIT 4 4.9 Interrupt Processing 4.9 Interrupt Processing 4.9.1 Reset Interrupt (RI) [Occurrence Conditions] A reset interrupt is accepted in machine cycle by pulling the RESET# input signal low. The reset interrupt is assigned the highest priority among all EITs. [EIT Processing] (1) Initializing SM, IE and C bits The PSW register's SM, IE and C bits are initialized as shown below. SM 0 IE 0 C 0 For the reset interrupt, the values of BSM, BIE and BC bits are undefined. (2) Branching to the EIT vector entry The CPU branches to the address H'0000 0000 in the user space. However, when operating in boot mode, the CPU jumps to the boot program. For details, see Section 6.5, "Programming the Internal Flash Memory." (3) Jumping from the EIT vector entry to the user program The CPU executes the instruction written by the user at the address H'0000 0000 of the EIT vector entry. In the reset vector entry, be sure to initialize the PSW and SPI registers before jumping to the start address of the user program. 4.9.2 System Break Interrupt (SBI) System Break Interrupt (SBI) is an emergency interrupt which is used when power outage is detected or a fault condition is notified by an external watchdog timer. The system break interrupt cannot be masked by the PSW register IE bit. Therefore, the system break interrupt can only be used when the system has some fatal event already existing in it when the interrupt is detected. Also, this interrupt must be used on condition that after processing by the SBI handler, control will not return to the program that was being executed when the system break interrupt occurred. [Occurrence Conditions] A system break interrupt is accepted by a falling edge on SBI# input pin. (The system break interrupt cannot be masked by the PSW register IE bit.) In no case will a system break interrupt be activated immediately after executing a 16-bit instruction that starts from a word boundary. (For 16-bit branch instructions, however, the interrupt is accepted immediately after branching.) Note also that because of the instruction processing-completed type, a system break interrupt is accepted after the instruction is completed. 4-15 32182 Group User's Manual (Rev.1.0) EIT 4 4.9 Interrupt Processing Order in which instructions are executed Address 1000 Address 1002 Address 1004 Address 1008 32-bit instruction 16-bit instruction 16-bit instruction x Interrupt may be accepted Interrupt cannot Interrupt may be accepted be accepted Interrupt may be accepted Figure 4.9.1 Timing at Which System Break Interrupt (SBI) is Accepted [EIT Processing] (1) Saving SM, IE and C bits The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC. BSM SM BIE IE BC C (2) Updating SM, IE and C bits The PSW register's SM, IE and C bits are updated as shown below. SM 0 IE 0 C 0 (3) Saving the PC The address of the next instruction (always on word boundary) following one in which the interrupt was detected is stored in the BPC register. If the interrupt was detected in a branch instruction, then the next instruction is one that exists at the jump address. (4) Branching to the EIT vector entry The CPU branches to the address H'0000 0010 in the user space. This is the last operation performed in hardware preprocessing. (5) Jumping from the EIT vector entry to the user-created handler The CPU executes the BRA instruction written by the user at the address H'0000 0010 of the EIT vector entry to jump to the start address of the user-created handler. The system break interrupt can only be used when the system has some fatal event already existing in it when the interrupt is detected. Also, this interrupt must be used on condition that after processing by the SBI handler, control will not return to the program that was being executed when the system break interrupt occurred. 4-16 32182 Group User's Manual (Rev.1.0) EIT 4 4.9 Interrupt Processing 4.9.3 External Interrupt (EI) An external interrupt is generated upon an interrupt request which is output by the microcomputer's internal interrupt controller. The interrupt controller manages interrupt requests by assigning each one of seven priority levels. For details, see Chapter 5, "Interrupt Controller." For details about the interrupt request sources, see each section in which the relevant internal peripheral I/O is described. [Occurrence Conditions] External interrupts are managed based on interrupt requests from each internal peripheral I/O by the microcomputer's internal interrupt controller, and are sent to the CPU via the interrupt controller. The CPU checks these interrupt requests at a break in instructions residing on word boundaries, and when an interrupt request is detected and the PSW register IE flag = "1", accepts it as an external interrupt. In no case will an external interrupt be activated immediately after executing a 16-bit instruction that starts from a word boundary. (For 16-bit branch instructions, however, the interrupt is accepted immediately after branching.) Order in which instructions are executed Address 1000 Address 1002 Address 1004 Address 1008 32-bit instruction 16-bit instruction 16-bit instruction x Interrupt may be accepted Interrupt cannot be accepted Interrupt may be accepted Interrupt may be accepted Figure 4.9.2 Timing at Which External Interrupt (EI) is Accepted [EIT Processing] (1) Saving SM, IE and C bits The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC. BSM SM BIE IE BC C (2) Updating SM, IE and C bits The PSW register's SM, IE and C bits are updated as shown below. SM 0 IE 0 C 0 (3) Saving the PC The content of the PC register (always on word boundary) is saved to the BPC register. (4) Branching to the EIT vector entry The CPU branches to the address H'0000 0080 in the user space. However, when operating in flash E/W enable mode, the CPU goes to the beginning of the internal RAM (address H'0080 4000). (For details, see Section 6.5, "Programming the Internal Flash Memory.") This is the last operation performed in hardware preprocessing. (5) Jumping from the EIT vector entry to the user-created handler The CPU executes the BRA instruction written by the user at the address H'0000 0080 of the EIT vector entry to jump to the start address of the user-created handler. At the beginning of the user-created EIT handler, first save the BPC and PSW registers and the necessary general-purpose registers to the stack. Also, save the accumulator and FPSR register as necessary. 4-17 32182 Group User's Manual (Rev.1.0) EIT 4 4.9 Interrupt Processing (6) Returning from the EIT handler At the end of the EIT handler, restore the saved registers from the stack and execute the RTE instruction. When the RTE instruction is executed, hardware postprocessing is automatically performed. 4.10 Trap Processing 4.10.1 Trap [Occurrence Conditions] Traps are software interrupts which are generated by executing the TRAP instruction. Sixteen traps are generated, each corresponding to one of TRAP instruction operands 0-15. Accordingly, sixteen vector entries are provided. [EIT Processing] (1) Saving SM, IE and C bits The PSW register's SM, IE and C bits are saved to the respective backup bits: BSM, BIE and BC. BSM SM BIE IE BC C (2) Updating SM, IE and C bits The PSW register's SM, IE and C bits are updated as shown below. SM Unchanged IE 0 C 0 (3) Saving the PC When the trap instruction is executed, the PC value of TRAP instruction + 4 is set in the BPC register. For example, if the TRAP instruction is located at address 4, the value H'08 is set in the BPC register. Similarly, if the TRAP instruction is located at address 6, the value H'0A is set in the BPC register. The value of the BPC register bit 30 indicates whether the trap instruction resides on a word boundary (BPC register bit 30 = "0") or not on a word boundary (BPC register bit 30 = "1"). However, in either case of the above, the address to which the RTE instruction returns after the EIT handler has terminated is address 8. (This is because the 2 low-order address bits are cleared to `00' when returned to the PC.) +0 +1 +2 +3 +0 Address Return address +1 +2 +3 Address H'00 H'04 TRAP instruction H'08 H'00 Return address H'0C H'04 H'08 TRAP instruction H'0C BPC BPC H'08 H'0A Figure 4.10.1 Example of a Return Address for Trap (TRAP) 4-18 32182 Group User's Manual (Rev.1.0) EIT 4 4.10 Trap Processing (4) Branching to the EIT vector entry The CPU branches to the addresses H'0000 0040-H'0000 007C in the user space. This is the last operation performed in hardware preprocessing. (5) Jumping from the EIT vector entry to the user-created handler The CPU executes the BRA instruction written by the user at the addresses H'0000 0040-H'0000 007C of the EIT vector entry to jump to the start address of the user-created handler. At the beginning of the usercreated EIT handler, first save the BPC and PSW registers and the necessary general-purpose registers to the stack. Also, save the accumulator and FPSR register as necessary. (6) Returning from the EIT handler At the end of the EIT handler, restore the general-purpose registers and the BPC and PSW registers from the stack and execute the RTE instruction. When the RTE instruction is executed, hardware postprocessing is automatically performed. At this time, the CPU restarts from the next word-boundary instruction including the instruction that generates a trap (see Figure 4.10.1). 4.11 EIT Priority Levels The table below lists the priority levels of EIT events. When two or more EITs occur simultaneously, the event with the highest priority is accepted first. Table 4.11.1 Priority of EIT Events and How Returned from EIT Priority EIT Event Type of Processing Values Set in BPC Register 1 (Highest) Reset Interrupt (RI) Instruction processing-aborted type Undefined 2 Address Exception (AE) Instruction processing-canceled type PC of the instruction that Reserved Instruction Instruction processing-canceled type generated AE Exception (RIE) Floating-Point Exception generated RIE Instruction processing-completed type (FPE) 3 PC of the instruction that PC of the instruction that generated FPE + 4 Trap (TRAP) Instruction processing-completed type TRAP instruction + 4 System Break Interrupt Instruction processing-completed type PC of the next instruction Instruction processing-completed type PC of the next instruction (SBI) 4 External Interrupt (EI) Note that for External Interrupt (EI), the priority levels of interrupt requests from each peripheral I/O are set by the microcomputer's internal interrupt controller. For details, see Chapter 5, "Interrupt Controller." 4-19 32182 Group User's Manual (Rev.1.0) EIT 4 4.12 Example of EIT Processing 4.12 Example of EIT Processing (1) When RIE, AE, FPE, SBI, EI or TRAP occurs singly IE = 1 BPC register = Return address A IE = 0 RIE, AE, FPE, SBI, EI or TRAP occurs singly If IE = 0, no events but reset and SBI are accepted. Return address A: IE = 1 RTE instruction : EIT handler Figure 4.12.1 Processing of Events When RIE, AE, FPE, SBI, EI or TRAP Occurs Singly (2) When RIE, AE, FPE or TRAP and EI occur simultaneously RIE, AE, FPE or TRAP is accepted first. BPC register = Return address A IE = 1 IE = 0 RIE, AE, FPE or TRAP and EI occur simultaneously Return address A: RTE instruction IE = 1 IE = 0 IE = 1 EI is accepted next. BPC register = Return address A RTE instruction : EIT handler Figure 4.12.2 Processing of Events When RIE, AE, FPE or TRAP and EI Occur Simultaneously 4-20 32182 Group User's Manual (Rev.1.0) EIT 4 4.12 Example of EIT Processing EIT vector entry BRA instruction (Other than SBI) (SBI) EIT handler PCBPC Hardware PSWBPSW preprocessing (Note 1) Save BPC to the stack Save PSW to the stack System Break Interrupt (SBI) processing Program being executed Save general-purpose registers to the stack EIT event occurs Processing by EIT handler Program terminated or system reset Restore general-purpose registers from the stack (Note 1) Hardware BPSWPSW postprocessing BPCPC Restore PSW from the stack Restore BPC from the stack RTE Note 1: Indicates saving and restoring the PSW register bits between its PSW and BPSW fields. Figure 4.12.3 Example of EIT Processing 4-21 32182 Group User's Manual (Rev.1.0) EIT 4 4.13 Precautions on EIT 4.13 Precautions on EIT The Address Exception (AE) requires caution because if one of the instructions that use "register indirect + register update" addressing mode (following three) generates an address exception when it is executed, the values of the registers to be automatically updated (Rsrc and Rsrc2) become undefined. Except that the values of Rsrc and Rsrc2 become undefined, these instructions behave the same way as when used in other addressing modes. * Applicable instructions LD Rdest, @Rsrc+ ST Rsrc1, @-Rsrc2 ST Rsrc1, @+Rsrc2 If the above case applies, consider the fact that the register values become undefined when you design the processing to be performed after executing said instructions. (If an address exception occurs, it means that the system has some fatal fault already existing in it. Therefore, address exceptions must be used on condition that control will not be returned from the address exception handler to the program that was being executed when the exception occurred.) 4-22 32182 Group User's Manual (Rev.1.0) CHAPTER 5 INTERRUPT CONTROLLER (ICU) 5.1 5.2 5.3 5.4 5.5 5.6 Outline of the Interrupt Controller ICU Related Registers Interrupt Request Sources in Internal Peripheral I/O ICU Vector Table Description of Interrupt Operation Description of System Break Interrupt (SBI) Operation INTERRUPT CONTROLLER (ICU) 5 5.1 Outline of the Interrupt Controller 5.1 Outline of the Interrupt Controller The Interrupt Controller (ICU) manages maskable interrupts from internal peripheral I/Os and a system break interrupt (SBI). The maskable interrupts from internal peripheral I/Os are sent to the M32R CPU as external interrupts (EI). The maskable interrupts from internal peripheral I/Os are managed by assigning them one of eight priority levels including an interrupt-disabled state. If two or more interrupt requests with the same priority level occur at the same time, their priorities are resolved by predetermined hardware priority. The source of an interrupt request generated in internal peripheral I/Os is identified by reading the relevant interrupt status register provided for internal peripheral I/Os. On the other hand, the system break interrupt (SBI) is recognized when a low-going transition occurs on the SBI# signal input pin. This interrupt is used for emergency purposes such as when power outage is detected or a fault condition is notified by an external watchdog timer, so that it is always accepted irrespective of the PSW register IE bit status. After processing of an SBI, shut down or reset the system without returning to the program that was being executed when the interrupt occurred. Specifications of the Interrupt Controller are outlined below. Table 5.1.1 Outline of the Interrupt Controller (ICU) Item Specification Interrupt request source Maskable interrupt requests from internal peripheral I/Os: 23 sources (Note 1) System break interrupt request: 1 source (input from SBI# pin) Priority management 8 priority levels including an interrupt-disabled state (However, interrupts with the same priority level have their priorities resolved by fixed hardware priority.) Note 1: There are actually a total of 123 interrupt request resources when counted individually, which are grouped into 23 interrupt request resources. 5-2 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.1 Outline of the Interrupt Controller Interrupt Controller System Break Interrupt (SBI) request generated (nonmaskable) SBI Control Register (SBICR) SBIREQ SBI SBI# To the CPU core Peripheral circuits Edge Interrupt request Edge IREQ IREQ IREQ IREQ Interrupt control circuit Level IREQ Interrupt control circuit Level Interrupt control circuit Level IREQ ILEVEL Priority resolved by fixed hardware priority Edge Interrupt request Priority resolved by interrupt priority levels set Interrupt request External Interrupt (EI) request generated (maskable) Interrupt Vector Register (IVECT) EI IMASK comparison To the CPU core NEW_IMASK Interrupt Request Mask Register (IMASK) Interrupt Control Register Figure 5.1.1 Block Diagram of the Interrupt Controller 5-3 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.2 ICU Related Registers 5.2 ICU Related Registers The diagram below shows a register map associated with the Interrupt Controller (ICU). ICU Related Register Map Address +0 address b0 H'0080 0000 H'0080 0002 H'0080 0004 H'0080 0006 Interrupt Request Mask Register (IMASK) SBI Control Register (SBICR) | H'0080 0060 | H'0080 0066 H'0080 0068 H'0080 006A H'0080 006C H'0080 006E H'0080 0070 H'0080 0072 H'0080 0074 H'0080 0076 H'0080 0078 H'0080 007A H'0080 007C H'0080 007E +1 address b7 b8 Interrupt Vector Register (IVECT) (Use inhibited area) See pages b15 5-5 (Use inhibited area) 5-6 (Use inhibited area) 5-7 (Use inhibited area) 5-8 RTD Interrupt Control Register (IRTDCR) DMA5-9 Interrupt Control Register (IDMA59CR) 5-8 (Use inhibited area) CAN0 Transmit/Receive & Error Interrupt Control Register (ICAN0CR) (Use inhibited area) (Use inhibited area) SIO2,3 Transmit/Receive Interrupt Control Register (ISIO23CR) (Use inhibited area) A-D0 Conversion Interrupt Control Register (IAD0CCR) SIO0 Receive Interrupt Control Register (ISIO0RXCR) SIO1 Receive Interrupt Control Register (ISIO1RXCR) TIO0-3 Output Interrupt Control Register (ITIO03CR) TOP0-5 Output Interrupt Control Register (ITOP05CR) TIO4-7 Output Interrupt Control Register (ITIO47CR) TOP8,9 Output Interrupt Control Register (ITOP89CR) (Use inhibited area) SIO0 Transmit Interrupt Control Register (ISIO0TXCR) SIO1 Transmit Interrupt Control Register (ISIO1TXCR) DMA0-4 Interrupt Control Register (IDMA04CR) TOP6,7 Output Interrupt Control Register (ITOP67CR) TIO8,9 Output Interrupt Control Register (ITIO89CR) TOP10 Output Interrupt Control Register (ITOP10CR) TMS0,1 Output Interrupt Control Register (ITMS01CR) TIN0-2 Input Interrupt Control Register (ITIN02CR) TIN20-29 Input Interrupt Control Register (ITIN2029CR) CAN1 Transmit/Receive & Error Interrupt Control Register (ICAN1CR) TIN12-19 Input Interrupt Control Register (ITIN1219CR) TIN3-6 Input Interrupt Control Register (ITIN36CR) 5-4 5-8 5-8 5-8 5-8 5-8 5-8 5-8 5-8 5-8 5-8 5-8 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.2 ICU Related Registers 5.2.1 Interrupt Vector Register Interrupt Vector Register (IVECT) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ? ? ? ? ? ? ? b15 IVECT ? ? ? ? ? ? ? ? ? b Bit Name Function R W 0-15 IVECT When an interrupt request is accepted, the 16-low-order R N 16 low-order bits of ICU vector table address bits of the ICU vector table address for the accepted interrupt request source are stored in this register. Note: * This register must always be accessed in halfwords (2 bytes). (This is a read-only register.) The Interrupt Vector Register (IVECT) is used when an interrupt request is accepted to store the 16-low-order bits of the ICU vector table address for the accepted interrupt request source. Before this function can work, the ICU vector table (addresses H'0000 0094 through H'0000 0113) must have set in it the start addresses of interrupt handlers for each internal peripheral I/O. When an interrupt request is accepted, the 16-low-order bits of the ICU vector table address for the accepted interrupt request source are stored in the IVECT register. In the EIT handler, read the content of this IVECT register using the LDH instruction to get the ICU vector table address. When the IVECT register is read, operations (1) to (4) below are automatically performed in hardware. (1) The interrupt priority level of the accepted interrupt request source (ILEVEL) is set in the IMASK register as a new IMASK value. (Interrupts with lower priority levels than that of the accepted interrupt request source are masked.) (2) The interrupt request bit for the accepted interrupt request source is cleared (not cleared for level-recognized interrupt request sources). (3) The interrupt request (EI) to the CPU core is deasserted. (4) The ICU's internal sequencer is activated to start internal processing (interrupt priority resolution). Notes: * Do not read the Interrupt Vector Register (IVECT) in the EIT handler unless interrupts are disabled (PSW register IE bit = "0"). In the EIT handler, furthermore, read the Interrupt Request Mask Register (IMASK) first before reading the IVECT register. * To reenable interrupts (by setting the IE bit to "1") after reading the Interrupt Vector Register (IVECT), perform a dummy access to the internal memory, etc. before reenabling interrupts. (The ICU vector table readout in the EI handler processing example in Figure 5.5.2 Typical Handler Operation for Interrupts from Internal Peripheral I/O is an access to the internal ROM and, therefore, does not require adding a dummy access.) 5-5 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.2 ICU Related Registers 5.2.2 Interrupt Request Mask Register Interrupt Request Mask Register (IMASK) b0 1 2 3 4 5 6 b7 IMASK 0 0 0 0 0 1 1 1 b Bit Name 0-4 No function assigned. Fix to "0" 5-7 IMASK Interrupt request mask bit Function R W 0 0 000: Disable maskable interrupts 001: Accept interrupts with priority level 0 010: Accept interrupts with priority levels 0-1 011: Accept interrupts with priority levels 0-2 100: Accept interrupts with priority levels 0-3 101: Accept interrupts with priority levels 0-4 110: Accept interrupts with priority levels 0-5 111: Accept interrupts with priority levels 0-6 R W The Interrupt Request Mask Register (IMASK) is used to finally determine whether or not to accept an interrupt request after comparing its priority with the priority levels (Interrupt Control Register ILEVEL bits) that have been set for each interrupt request source. When the Interrupt Vector Register (IVECT) described above is read, the interrupt priority level of the accepted interrupt request source is set in this IMASK register as a new mask value. When any value is written to the IMASK register, operations (1) to (2) below are automatically performed in hardware. (1) The interrupt request (EI) to the CPU core is deasserted. (2) The ICU's internal sequencer is activated to start internal processing (interrupt priority resolution). Notes: * Do not write to the Interrupt Request Mask Register (IMASK) in the EIT handler unless interrupts are disabled (PSW register IE bit = "0"). * To reenable interrupts (by setting the IE bit to "1") after writing to the Interrupt Request Mask Register (IMASK), perform a dummy access to the internal memory, etc. before reenabling interrupts. 5-6 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.2 ICU Related Registers 5.2.3 SBI (System Break Interrupt) Control Register SBI (System Break Interrupt) Control Register (SBICR) b0 1 2 3 4 5 6 b7 SBIREQ 0 0 0 0 0 0 0 0 b Bit Name Function 0-6 7 No function assigned. Fix to "0" SBIREQ SBI request bit 0: SBI not requested 1: SBI requested R W 0 0 R(Note 1) Note 1: This bit can only be cleared (see below) The System Break Interrupt (SBI) is an interrupt request generated by a falling edge on the SBI# signal input pin. When a falling edge on the SBI# signal input pin is detected and this bit is set to "1", a system break interrupt (SBI) request is generated to the CPU. This bit cannot be set to "1" in software, it can only be cleared. To clear this bit to "0", follow the procedure described below. 1. Write "1" to the SBI request bit. 2. Write "0" to the SBI request bit. Note: * Unless this bit is set to "1", do not perform the above clearing operation. 5-7 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.2 ICU Related Registers 5.2.4 Interrupt Control Registers CAN0 Transmit/Receive & Error Interrupt Control Register (ICAN0CR) RTD Interrupt Control Register (IRTDCR) SIO2,3 Transmit/Receive Interrupt Control Register (ISIO23CR) DMA5-9 Interrupt Control Register (IDMA59CR) A-D0 Conversion Interrupt Control Register (IAD0CCR) SIO0 Transmit Interrupt Control Register (ISIO0TXCR) SIO0 Receive Interrupt Control Register (ISIO0RXCR) SIO1 Transmit Interrupt Control Register (ISIO1TXCR) SIO1 Receive Interrupt Control Register (ISIO1RXCR) DMA0-4 Interrupt Control Register (IDMA04CR) TIO0-3 Output Interrupt Control Register (ITIO03CR) TOP6,7 Output Interrupt Control Register (ITOP67CR) TOP0-5 Output Interrupt Control Register (ITOP05CR) TIO8,9 Output Interrupt Control Register (ITIO89CR) TIO4-7 Output Interrupt Control Register (ITIO47CR) TOP10 Output Interrupt Control Register (ITOP10CR) TOP8,9 Output Interrupt Control Register (ITOP89CR) TMS0,1 Output Interrupt Control Register (ITMS01CR) TIN0-2 Input Interrupt Control Register (ITIN02CR) TIN12-19 Input Interrupt Control Register (ITIN1219CR) TIN20-29 Input Interrupt Control Register (ITIN2029CR) TIN3-6 Input Interrupt Control Register (ITIN36CR) CAN1 Transmit/Receive & Error Interrupt Control Register (ICAN1CR) b0 (b8 1 9 2 10 0 0 0 3 11 4 12 5 13 0 1 IREQ 0 6 14 b7 b15) ILEVEL 1 1 b Bit Name 0-2 (8-10) No function assigned. Fix to "0" 3 (11) IREQ Interrupt request bit 4 (12) No function assigned. Fix to "0" 5-7 (13-15) ILEVEL Interrupt priority level bits Function R W 0 0 At read 0: Interrupt not requested 1: Interrupt requested At write 0: Clear interrupt request 1: Generate interrupt request R W At read 0: Interrupt not requested 1: Interrupt requested R 0 0 0 R W 000: 001: 010: 011: 100: 101: 110: 111: 5-8 Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt priority priority priority priority priority priority priority priority level 0 level 1 level 2 level 3 level 4 level 5 level 6 level 7 (interrupt disabled) 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.2 ICU Related Registers (1) IREQ (Interrupt Request) bit (Bit 3 or 11) When an interrupt request from some internal peripheral I/O occurs, the corresponding IREQ (Interrupt Request) bit is set to "1". This bit can be set and cleared in software for only edge-recognized interrupt request sources (and not for level-recognized interrupt request sources). Also, when this bit is set by an edge-recognized interrupt request generated, it is automatically cleared to "0" by reading the Interrupt Vector Register (IVECT) (not cleared in the case of level-recognized interrupt request). If the IREQ bit is cleared in software at the same time it is set by an interrupt request generated, clearing in software has priority. Also, if the IREQ bit is cleared by reading the Interrupt Vector Register (IVECT) at the same time it is set by an interrupt request generated, clearing by a read of the IVECT register has priority. Note: * External Interrupt (EI) to the CPU core is not deasserted by clearing the IREQ bit. External Interrupt (EI) to the CPU core can only be deasserted by the following operation: (1) Reset (2) IVECT register read (3) Write to the IMASK register Interrupt request from each internal peripheral I/O Data bus IREQ Set Bit 3 or 11 Set/clear F/F Interrupt enabled Reset IVECT read IMASK write Clear Bits 5-7 or bits 13-15 3 ILEVEL (levels 0-7) Interrupt priority resolving circuit Set F/F EI To the CPU core Figure 5.2.1 Configuration of the Interrupt Control Register (Edge-recognized Type) Interrupt request from each group internal peripheral I/O Group interrupt Read Data bus b3, b11 Read-only circuit IREQ Interrupt enabled Reset IVECT read IMASK write Clear b5-b7, b13-b15 3 ILEVEL (levels 0-7) Interrupt priority resolving circuit Set F/F EI To the CPU core Figure 5.2.2 Configuration of the Interrupt Control Register (Level-recognized Type) 5-9 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.2 ICU Related Registers (2) ILEVEL (Interrupt Priority Level) (Bits 5-7 or bits 13-15) These bits set the priority levels of interrupt requests from each internal peripheral I/O. Set these bits to `111' to disable or any value `000' through `110' to enable the interrupt from some internal peripheral I/O. When an interrupt occurs, the Interrupt Controller resolves priority between this interrupt and other interrupt sources based on ILEVEL settings and finally compares priority with the IMASK value to determine whether to forward an EI request to the CPU or keep the interrupt request pending. The table below shows the relationship between ILEVEL settings and the IMASK values at which interrupts are accepted. Table 5.2.1 ILEVEL Settings and Accepted IMASK Values ILEVEL values set IMASK values at which interrupts are accepted 0 (ILEVEL = "000") Accepted when IMASK is 1-7 1 (ILEVEL = "001") Accepted when IMASK is 2-7 2 (ILEVEL = "010") Accepted when IMASK is 3-7 3 (ILEVEL = "011") Accepted when IMASK is 4-7 4 (ILEVEL = "100") Accepted when IMASK is 5-7 5 (ILEVEL = "101") Accepted when IMASK is 6-7 6 (ILEVEL = "110") Accepted when IMASK is 7 7 (ILEVEL = "111") Not accepted (interrupts disabled) 5-10 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.3 Interrupt Request Sources in Internal Peripheral I/O 5.3 Interrupt Request Sources in Internal Peripheral I/O The Interrupt Controller receives as inputs the interrupt requests from MJT (multijunction timer), DMAC, serial I/O, A-D converter, RTD and CAN. For details about these interrupts, see each section in which the relevant internal peripheral I/O is described. Table 5.3.1 Interrupt Request Sources in Internal Peripheral I/O Interrupt Request Sources Contents Number of Input Sources ICU Type of Input Source ( Note 1) TIN3-6 input interrupt request TIN20-29 input interrupt request TIN12-19 input interrupt request TIN0-2 input interrupt request TMS0,1 output interrupt request TOP8,9 output interrupt request TOP10 output interrupt request TIO4-7 output interrupt request TIO8,9 output interrupt request TIN3 input TIN20-TIN23 inputs TIN16-TIN19 inputs TIN0 input TMS0, TMS1 output TOP8, TOP9 output TOP10 output TIO4-TIO7 outputs TIO8, TIO9 outputs 1 4 4 1 2 2 1 4 2 Level-recognized Level-recognized Level-recognized Level-recognized Level-recognized Level-recognized Edge-recognized Level-recognized Level-recognized TOP0-5 output interrupt request TOP0-TOP5 outputs TOP6,7 output interrupt request TOP6-TOP7 outputs TIO0-3 output interrupt request TIO0-TIO3 outputs DMA0-4 interrupt request DMA0-4 transfer completed SIO1 receive interrupt request SIO1 reception-completed or receive error interrupt SIO1 transmit interrupt request SIO1 transmission-completed or transmit buffer empty interrupt SIO0 receive interrupt request SIO0 reception-completed or receive error interrupt SIO0 transmit interrupt request SIO0 transmission-completed or transmit buffer empty interrupt A-D0 conversion interrupt request A-D0 converter's scan mode one-shot operation, single mode or comparate mode completed DMA5-9 interrupt request DMA5-9 transfer completed SIO2,3 transmit/receive interrupt SIO2,3 reception-completed or receive error interrupt, request transmission-completed or transmit buffer empty interrupt RTD interrupt request RTD interrupt generation command CAN0 transmit/receive & error CAN0 transmission or reception completed, CAN0 error interrupt request passive, CAN0 error bus-off, CAN0 bus error, single shot CAN1 transmit/receive & error CAN1 transmission or reception completed, CAN1 error 6 2 4 5 1 1 Level-recognized Level-recognized Level-recognized Level-recognized Edge-recognized Edge-recognized 1 1 Edge-recognized Edge-recognized 1 Edge-recognized 5 4 Level-recognized Level-recognized 1 35 Edge-recognized Level-recognized 35 Level-recognized interrupt request passive, CAN1 error bus-off, CAN1 bus error, single shot Note 1: ICU type of input source * Edge-recognized: Interrupt requests are generated on a falling edge of the interrupt signal supplied to the ICU. * Level-recognized: Interrupt requests are generated when the interrupt signal supplied to the ICU is held low. For this type of interrupt, the ICU's Interrupt Control Register IRQ bit cannot be set or cleared in software. 5-11 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.4 ICU Vector Table 5.4 ICU Vector Table The ICU vector table is used to set the start addresses of interrupt handlers for each internal peripheral I/O. The 32-source interrupt requests (of these, 23 sources are used in the 32182) are assigned the following vector table addresses. Table 5.4.1 ICU Vector Table Addresses Interrupt Request Source ICU Vector Table Addresses TIN3-6 input interrupt request H'0000 0094 - H'0000 0097 TIN20-23 input interrupt request H'0000 0098 - H'0000 009B TIN12-19 input interrupt request H'0000 009C - H'0000 009F TIN0-2 input interrupt request H'0000 00A0 - H'0000 00A3 (Note 1) H'0000 00A4 - H'0000 00A7 TMS0,1 output interrupt request H'0000 00A8 - H'0000 00AB TOP8,9 output interrupt request H'0000 00AC - H'0000 00AF TOP10 output interrupt request H'0000 00B0 - H'0000 00B3 TIO4-7 output interrupt request H'0000 00B4 - H'0000 00B7 TIO8,9 output interrupt request H'0000 00B8 - H'0000 00BB TOP0-5 output interrupt request H'0000 00BC - H'0000 00BF TOP6,7 output interrupt request H'0000 00C0 - H'0000 00C3 TIO0-3 output interrupt request H'0000 00C4 - H'0000 00C7 DMA0-4 interrupt request H'0000 00C8 - H'0000 00CB SIO1 receive interrupt request H'0000 00CC - H'0000 00CF SIO1 transmit interrupt request H'0000 00D0 - H'0000 00D3 SIO0 receive interrupt request H'0000 00D4 - H'0000 00D7 SIO0 transmit interrupt request H'0000 00D8 - H'0000 00DB A-D0 conversion interrupt request H'0000 00DC - H'0000 00DF (Note 1) H'0000 00E0 - H'0000 00E3 (Note 1) H'0000 00E4 - H'0000 00E7 DMA5-9 interrupt request H'0000 00E8 - H'0000 00EB SIO2,3 transmit/receive interrupt request H'0000 00EC - H'0000 00EF RTD interrupt request H'0000 00F0 - H'0000 00F3 (Note 1) H'0000 00F4 - H'0000 00F7 (Note 1) H'0000 00F8 - H'0000 00FB (Note 1) H'0000 00FC - H'0000 00FF (Note 1) H'0000 0100 - H'0000 0103 (Note 1) H'0000 0104 - H'0000 0107 (Note 1) H'0000 0108 - H'0000 010B CAN0 transmit/receive & error interrupt request H'0000 010C - H'0000 010F CAN1 transmit/receive & error interrupt request H'0000 0110 - H'0000 0113 Note 1: Valid for the interrupt requests in the 32180. No interrupt requests are generated in the 32182. 5-12 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.5 Description of Interrupt Operation 5.5 Description of Interrupt Operation 5.5.1 Acceptance of Internal Peripheral I/O Interrupts An interrupt request from any internal peripheral I/O is checked to see whether or not to accept by comparing its ILEVEL value set in the Interrupt Control Register and the IMASK value of the Interrupt Request Mask Register. If its priority is higher than the IMASK value, the interrupt request is accepted. However, if two or more interrupt requests occur simultaneously, the Interrupt Controller resolves priority between these interrupt requests following the procedure described below. 1) The ILEVEL values set in the Interrupt Control Registers for the respective internal peripheral I/Os are compared with each other. 2) If the ILEVEL values are the same, priorities are resolved according to the predetermined hardware priority. 3) The ILEVEL and IMASK values are compared. If two or more interrupt requests occur simultaneously, the Interrupt Controller first compares their priority levels set in each Interrupt Control Register's ILEVEL bit to select an interrupt request that has the highest priority. If the interrupt requests have the same ILEVEL value, their priorities are resolved according to the hardware fixed priority. The interrupt request thus selected has its ILEVEL value compared with the IMASK value and if its priority is higher than the IMASK value, the Interrupt Controller sends an EI request to the CPU. Interrupt requests may be masked by setting the Interrupt Request Mask Register and the Interrupt Control Register's ILEVEL bit (disabled at level 7) provided for each internal peripheral I/O and the PSW register IE bit. Interrupt requested or not 1) 2) 3) Resolve priority according to Interrupt Priority Level (ILEVEL) Resolve priority according to hardware priority Compare with IMASK value Can be accepted when IMASK = 4-7 (ILEVEL settings) TIN3-6 input interrupt request TIO4-7 output interrupt request TOP8,9 output interrupt request SIO0 transmit interrupt request DMA0-4 interrupt request A-D0 conversion interrupt request Level 3 Requested Level 4 Requested Level 5 Requested Level 3 Requested Level 1 Not requested Level 3 Requested Accept interrupt if PSW register IE bit = 1 Level 3 Hardware fixed priority Level 3 Level 3 Figure 5.5.1 Example of Priority Resolution when Accepting Interrupt Requests 5-13 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.5 Description of Interrupt Operation Table 5.5.1 Hardware Fixed Priority Levels Priority High Interrupt Request Source ICU Vector Table Address ICU Type of Input Source TIN3-6 input interrupt request H'0000 0094 - H'0000 0097 Level-recognized TIN20-23 input interrupt request H'0000 0098 - H'0000 009B Level-recognized TIN12-19 input interrupt request H'0000 009C - H'0000 009F Level-recognized TIN0-2 input interrupt request H'0000 00A0 - H'0000 00A3 Level-recognized TMS0,1 output interrupt request H'0000 00A8 - H'0000 00AB Level-recognized TOP8,9 output interrupt request H'0000 00AC - H'0000 00AF Level-recognized TOP10 output interrupt request H'0000 00B0 - H'0000 00B3 Edge-recognized TIO4-7 output interrupt request H'0000 00B4 - H'0000 00B7 Level-recognized TIO8,9 output interrupt request H'0000 00B8 - H'0000 00BB Level-recognized TOP0-5 output interrupt request H'0000 00BC - H'0000 00BF Level-recognized TOP6,7 output interrupt request H'0000 00C0 - H'0000 00C3 Level-recognized TIO0-3 output interrupt request H'0000 00C4 - H'0000 00C7 Level-recognized DMA0-4 interrupt request H'0000 00C8 - H'0000 00CB Level-recognized SIO1 receive interrupt request H'0000 00CC - H'0000 00CF Edge-recognized SIO1 transmit interrupt request H'0000 00D0 - H'0000 00D3 Edge-recognized SIO0 receive interrupt request H'0000 00D4 - H'0000 00D7 Edge-recognized SIO0 transmit interrupt request H'0000 00D8 - H'0000 00DB Edge-recognized A-D0 conversion interrupt request H'0000 00DC - H'0000 00DF Edge-recognized DMA5-9 interrupt request H'0000 00E8 - H'0000 00EB Level-recognized SIO2,3 transmit/receive interrupt request H'0000 00EC - H'0000 00EF Level-recognized RTD interrupt request H'0000 00F0 - H'0000 00F3 Edge-recognized CAN0 transmit/receive & error interrupt H'0000 010C - H'0000 010F Level-recognized H'0000 0110 - H'0000 0113 Level-recognized request CAN1 transmit/receive & error interrupt Low request Table 5.5.2 ILEVEL Settings and Accepted IMASK Values ILEVEL values set IMASK values at which interrupts are accepted 0 (ILEVEL = "000") Accepted when IMASK is 1-7 1 (ILEVEL = "001") Accepted when IMASK is 2-7 2 (ILEVEL = "010") Accepted when IMASK is 3-7 3 (ILEVEL = "011") Accepted when IMASK is 4-7 4 (ILEVEL = "100") Accepted when IMASK is 5-7 5 (ILEVEL = "101") Accepted when IMASK is 6-7 6 (ILEVEL = "110") Accepted when IMASK is 7 7 (ILEVEL = "111") Not accepted (interrupts disabled) 5-14 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.5 Description of Interrupt Operation 5.5.2 Processing by Internal Peripheral I/O Interrupt Handlers (1) Branching to the interrupt handler Upon accepting an interrupt request, the CPU branches to the EIT vector entry after performing the hardware preprocessing as described in Section 4.3, "EIT Processing Procedure." The EIT vector entry for External Interrupt (EI) is located at the address H'0000 0080. This address is where the instruction (not the jump address itself) for branching to the beginning of the interrupt handler routine for external interrupt requests is written. (2) Processing in the External Interrupt (EI) handler A typical operation of the External Interrupt (EI) handler (for interrupts from internal peripheral I/O) is shown in Figure 5.5.2. [1] Saving each register to the stack Save the BPC, PSW and general-purpose registers to the stack. Also, save the accumulator and FPSR register to the stack as necessary. [2] Reading the Interrupt Request Mask Register (IMASK) and saving to the stack Read the Interrupt Request Mask Register and save its content to the stack. [3] Reading the Interrupt Vector Register (IVECT) Read the Interrupt Vector Register. This register holds the 16 low-order address bits of the ICU vector table for the accepted interrupt request source that was stored in it when accepting an interrupt request. When the Interrupt Vector Register is read, the following processing is automatically performed in hardware: * The interrupt priority level of the accepted interrupt request (ILEVEL) is set in the IMASK register as a new IMASK value. (Interrupts with lower priority levels than that of the accepted interrupt request source are masked.) * The accepted interrupt request source is cleared (not cleared for level-recognized interrupt request sources). * The interrupt request (EI) to the CPU core is dropped. * The ICU's internal sequencer is activated to start internal processing (interrupt priority resolution). [4] Reading and overwriting the Interrupt Request Mask Register (IMASK) Read the Interrupt Request Mask Register and overwrite it with the read value. This write to the IMASK register causes the following processing to be automatically performed in hardware: * The interrupt request (EI) to the CPU core is dropped. * The ICU's internal sequencer is activated to start internal processing (interrupt priority resolution). Note: * Processing in [4] here is unnecessary when multiple interrupts are to be enabled in [6] below. [5] Reading the ICU vector table Read the ICU vector table for the accepted interrupt request source. The relevant ICU vector table address can be obtained by zero-extending the content of the Interrupt Vector Register that was read in [3] (i.e., the 16 low-order address bits of the ICU vector table for the accepted interrupt request source). The ICU vector table must have set in it the start address of the interrupt handler for the interrupt request source concerned.) [6] Enabling multiple interrupts To enable another higher priority interrupt while processing the accepted interrupt (i.e., enabling multiple interrupts), set the PSW register IE bit to "1". [7] Branching to the internal peripheral I/O interrupt handler Branch to the start address of the interrupt handler that was read out in [5]. [8] Processing in the internal peripheral I/O interrupt handler [9] Disabling interrupts Clear the PSW register IE bit to "0" to disable interrupts. 5-15 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.5 Description of Interrupt Operation [10] Restoring the Interrupt Request Mask Register (IMASK) Restore the Interrupt Request Mask Register that was saved to the stack in [2]. [11] Restoring registers from the stack Restore the registers that were saved to the stack in [1]. [12] Completion of external interrupt processing Execute the RTE instruction to complete the external interrupt processing. The program returns to the state in which it was before the currently processed interrupt request was accepted. (3) Identifying the source of the interrupt request generated If any internal peripheral I/O has two or more interrupt request sources, check the Interrupt Request Status Register provided for each internal peripheral I/O to identify the source of the interrupt request generated. (4) Enabling multiple interrupts To enable multiple interrupts in the interrupt handler, set the PSW register IE (Interrupt Enable) bit to enable interrupt requests to be accepted. However, before writing "1" to the IE bit, be sure to save each register (BPC, PSW, general-purpose registers and IMASK) to the stack. Note: * Before enabling multiple interrupts, read the Interrupt Vector Register (IVECT) and then the ICU vector table, as shown in Figure 5.5.2, "Typical Handler Operation for Interrupts from Internal Peripheral I/O." 5-16 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.5 Description of Interrupt Operation EI (External Interrupt) vector entry H'0000 0080 BRA instruction EI (External Interrupt) handler Hardware preprocessing when EIT is accepted (Note 1) Save BPC to the stack [1] Save PSW to the stack Save general-purpose registers to the stack Program being executed [2] Read and save Interrupt Request Mask Register (IMASK) to the stack [3] Read Interrupt Vector Register (IVECT) Interrupt generated [4] [5] Read and overwrite Interrupt Request Mask Register (IMASK) H'0080 0004 H'0080 0000 (Note 2) (Note 3) ICU vector table Read ICU vector table H'0000 0113 Branch to the interrupt handler for each internal peripheral I/O Hardware postprocessing when RTE instruction is executed Interrupt handler (Note 1) [9] [10] Interrupt handler start address Set PSW register IE bit to 1 (Note 4) (Note 5) [7] IVECT (Note 2) H'0000 0094 [6] IMASK Clear PSW register IE bit to 0 Restore Interrupt Request Mask Register (IMASK) from the stack Interrupt handler [8] (Note 4) (Note 2) Restore general-purpose registers from the stack [11] Restore PSW from the stack [1] to [12]: Processing of EI by interrupt handler Restore BPC from the stack [12] RTE Note 1: For operations at EIT acceptance and return from EIT, also see Section 4.3, "EIT Processing Procedure." Note 2: Do not read the Interrupt Vector Register (IVECT) or write to the Interrupt Request Mask Register (IMASK) in the EIT handler unless interrupts are disabled (PSW register IE bit = 0). Note 3: When multiple interrupts are disabled, execute processing in [4]. Processing in [4] is unnecessary if multiple interrupts are enabled by executing processing in [6] and [9]. Note 4: To enable multiple interrupts, execute processing in [6] and [9]. Note 5: To reenable interrupts (by setting the IE bit to 1) after reading the Interrupt Vector Register (IVECT), perform a dummy access to the internal memory, etc. before reenabling interrupts. In the example here, there is no need to add a dummy access because the ICU vector table is read after reading the IVECT register. Similarly, to reenable interrupts (by setting the IE bit to 1) after writing to the Interrupt Request Mask Register (IMASK), perform a dummy access to the internal memory, etc. before reenabling interrupts. Figure 5.5.2 Typical Handler Operation for Interrupts from Internal Peripheral I/O 5-17 32182 Group User's Manual (Rev.1.0) INTERRUPT CONTROLLER (ICU) 5 5.6 Description of System Break Interrupt (SBI) Operation 5.6 Description of System Break Interrupt (SBI) Operation 5.6.1 Acceptance of SBI System Break Interrupt (SBI) is an emergency interrupt which is used when power outage is detected or a fault condition is notified by an external watchdog timer. The system break interrupt is accepted anytime upon detection of a falling edge on the SBI# signal input pin no matter how the PSW register IE bit is set, and cannot be masked. 5.6.2 SBI Processing by Handler When the system break interrupt generated has been serviced, shut down or reset the system without returning to the program that was being executed when the interrupt occurred. SBI (System Break Interrupt) vector entry H'0000 0010 BRA instruction SBI (System Break Interrupt) handler Program being executed Processing to shut down the system (Note 1) SBI generated Shut down or reset the system Note 1: Do not return to the program that was being executed when the interrupt occurred. Figure 5.6.1 Typical SBI Operation 5-18 32182 Group User's Manual (Rev.1.0) CHAPTER 6 INTERNAL MEMORY 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 Outline of the Internal Memory Internal RAM Internal Flash Memory Registers Associated with the Internal Flash Memory Programming the Internal Flash Memory Virtual Flash Emulation Function Connecting to A Serial Programmer Internal Flash Memory Protect Function Precautions To Be Taken when Rewriting the Internal Flash Memory INTERNAL MEMORY 6 6.1 Outline of the Internal Memory 6.1 Outline of the Internal Memory The 32182 internally contains the following types of memory: * 64-Kbyte RAM * 384-Kbytes flash memory 6.2 Internal RAM Specifications of the internal RAM are shown below. Table 6.2.1 Specifications of the Internal RAM Item Specification Size 64 Kbytes Location address H'0080 4000 to H'0081 3FFF Wait insertion Operates with zero wait states Internal bus connection Connected by 32-bit bus Dual port By using the Real-Time Debugger (RTD), data can be read (monitored) or written to any area of the internal RAM via serial communication from external devices independently of the CPU. (See Chapter 14, "Real-Time Debugger.") Notes: * Immediately after power-on reset (for the power-on case in which VDDE also goes up from GND), the value of the RAM is undefined. * If the RAM is reset during RAM backup (power for only VDDE is on), the RAM retains the value it had immediately before being reset. 6.3 Internal Flash Memory Specifications of the internal flash memory are shown below. Table 6.3.1 Specifications of the Internal Flash Memory Item Specification Size M32182F3: 384 Kbytes M32182F8: 1 Mbyte Location address M32182F3: H'0000 0000 to H'0005 FFFF M32182F8: H'0000 0000 to H'000F FFFF Wait insertion Operates with one wait state Durability Can be rewritten 100 times Internal bus connection Instruction access: Connected by 64-bit bus (Transfer rates equivalent to zero wait states on 32-bit bus are possible.) Data access: Connected by 32-bit bus Other Virtual flash emulation function is incorporated. (See Section 6.6, "Virtual Flash Emulation Function.") 6-2 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.3 Internal Flash Memory Internal flash memory area of the M32182F3 (384 Kbytes) H'0000 0000 16KB Block 0 H'0000 4000 H'0000 6000 H'0000 8000 8KB 8KB Block 1 Block 2 32KB Block 3 64KB Block 4 64KB Block 5 64KB Block 6 64KB Block 7 64KB Block 8 Unequal blocks H'0001 0000 H'0002 0000 H'0003 0000 Equal blocks H'0004 0000 H'0005 0000 H'0005 FFFF Figure 6.3.1 Block Configuration of the M32182F3's Internal Flash Memory 6-3 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 Internal flash memory area of the M32182F8 (1 Mbyte) H'0000 0000 16KB H'0000 4000 H'0000 6000 H'0000 8000 8KB 8KB Block 0 Block 1 Block 2 Unequal blocks 32KB Block 3 64KB Block 4 64KB Block 5 64KB Block 6 64KB Block 7 64KB Block 8 64KB Block 9 64KB Block 10 64KB Block 11 Equal blocks 64KB Block 12 64KB Block 13 64KB Block 14 64KB Block 15 64KB Block 16 64KB Block 17 64KB Block 18 H'0001 0000 H'0002 0000 H'0003 0000 H'0004 0000 H'0005 0000 H'0006 0000 H'0007 0000 H'0008 0000 H'0009 0000 H'000A 0000 H'000B 0000 H'000C 0000 H'000D 0000 H'000E 0000 H'000F 0000 H'000F FFFF Figure 6.3.2 Block Configuration of the M32182F8's Internal Flash Memory 6-4 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.4 Registers Associated with the Internal Flash Memory 6.4 Registers Associated with the Internal Flash Memory A register map associated with the internal flash memory is shown below. Internal Flash Memory Related Register Map Address +0 address +1 address b0 b7 b8 H'0080 01E0 Flash Mode Register (FMOD) Flash Control Register 1 (FCNT1) Flash Control Register 3 (FCNT3) H'0080 01E2 H'0080 01E4 See pages b15 Flash Status Register 1 (FSTAT1) Flash Control Register 2 (FCNT2) Flash Control Register 4 (FCNT4) H'0080 01E6 6-5 6-6 6-8 6-9 6-10 (Use inhibited area) H'0080 01E8 Virtual Flash S Bank Register (FESBANK0) Virtual Flash S Bank Register (FESBANK1) Virtual Flash S Bank Register (FESBANK2) Virtual Flash S Bank Register (FESBANK3) Virtual Flash S Bank Register (FESBANK4) Virtual Flash S Bank Register (FESBANK5) Virtual Flash S Bank Register (FESBANK6) Virtual Flash S Bank Register (FESBANK7) H'0080 01EA H'0080 01EC H'0080 01EE H'0080 01F0 H'0080 01F2 H'0080 01F4 H'0080 01F6 0 6-12 1 6-12 2 6-12 3 6-12 4 6-12 5 6-12 6 6-12 7 6-12 6.4.1 Flash Mode Register Flash Mode Register (FMOD) b0 1 2 3 4 5 6 b7 FPMOD 0 0 0 0 0 0 0 ? b Bit Name 0-6 No function assigned. Fix to "0" 7 FPMOD External FP pin status bit Function R W 0 0 0: FP pin = "low" 1: FP pin = "high" R - The Flash Mode Register (FMOD) is a read-only status register, with its FPMOD bit indicating the FP (Flash Protect) pin status. The internal flash memory is enabled for programming or erase operation only when FPMOD = "1", and is protected against programming or erase operation when FPMOD = "0". 6-5 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.4 Registers Associated with the Internal Flash Memory 6.4.2 Flash Status Registers There are two registers to indicate the status of the internal flash memory: Flash Status Register 1 (FSTAT1) located in the SFR area (H'0080 01E1) and Flash Status Register 2 (FSTAT2) included in the internal flash memory. Use these two status registers (FSTAT1 and FSTAT2) to control the programming or erase operation performed on the internal flash memory. Flash Status Register 1 (FSTAT1) b8 9 10 11 12 13 14 b15 FSTAT 0 0 0 0 0 0 0 1 b Bit Name Function 8-14 No function assigned. Fix to "0". 15 FSTAT Ready/busy status bit 0: Busy 1: Ready R W 0 0 R - Flash Status Register 1 (FSTAT1) is a read-only status register used to know the status of the programming or erase operation performed on the internal flash memory. When FSTAT = "0" (busy), the internal flash memory is being programmed or erased, during which time do not start a new programming or erase operation on it. When FSTAT = "1" (ready), a new programming or erase operation can be started on it. Furthermore, while FSTAT = "0" (busy), do not operate on the FCNT4 register FRESET bit described later. 6.4.3 Flash Status Register 2 (FSTAT2) Flash Status Register 2 (FSTAT2) b8 9 FBUSY 1 10 11 12 13 14 b15 0 0 0 ERASE WRERR1 WRERR2 0 0 0 0 b Bit Name Function R W 8 FBUSY Flash busy bit 0: Being programmed or erased 1: Ready state R - 9 No function assigned. Fix to "0". 0 - 10 ERASE Erase status confirmation bit 0: Erase normally operating or terminated 1: Erase error occurred R - 11 WRERR1 Write status confirmation bit 1 0: Programming normally operating or terminated 1: Programming error occurred R - 12 WRERR2 Write status confirmation bit 2 0: Programming normally operating or terminated 1: Over-programming occurred R - 13-15 No function assigned. Fix to "0". 0 0 6-6 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.4 Registers Associated with the Internal Flash Memory This status register is included in the internal flash memory, and can be enabled for read by writing the Read Status command (H'7070) to any address of the internal flash memory. For details, see Section 6.5, "Programming the Internal Flash Memory." Flash Status Register 2 (FSTAT2) consists of the following four read-only status bits that indicate the operation condition of the internal flash memory. (1) FBUSY (Flash Busy) bit (Bit 8) The FBUSY bit is used to determine whether the operation on the internal flash memory is finished when it is being programmed or erased. When FBUSY = "0", it means that the programming or erase operation is being executed; when FBUSY = "1", the operation is finished. (2) ERASE (Erase status) bit (Bit 10) The ERASE bit is used to determine after execution of processing whether the erase operation performed on the internal flash memory resulted in an error. When ERASE = "0", it means that the erase operation terminated normally; when ERASE = "1", the erase operation terminated in an error. (3) WRERR1 (Write status 1) bit (Bit 11) The WRERR1 bit is used to determine after completion of processing whether the programming operation performed on the internal flash memory resulted in an error. When WRERR1 = "0", it means that the programming operation terminated normally; when WRERR1 = "1", the programming operation terminated in an error. The condition under which WRERR1 is set to "1" is when any bit other than those that must be "0" is found to be "0" by comparison between the write data and the data in the internal flash memory. (4) WRERR2 (Write status 2) bit (Bit 12) The WRERR2 bit is used to determine after execution of processing whether the programming operation performed on the internal flash memory resulted in an error. When WRERR2 = "0", it means that the programming operation terminated normally; when WRERR2 = "1", the programming operation terminated in an error. The condition under which WRERR2 is set to "1" is when the internal flash memory cannot be written to even by repeating the programming operation a specified number of times. 6-7 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.4 Registers Associated with the Internal Flash Memory 6.4.4 Flash Control Registers Flash Control Register 1 (FCNT1) b0 1 2 3 4 5 6 FENTRY 0 0 0 0 b7 FEMMOD 0 0 0 0 b Bit Name 0-2 No function assigned. Fix to "0". 3 FENTRY Flash E/W enable mode entry bit 4-6 No function assigned. Fix to "0". 7 FEMMOD Virtual flash emulation mode bit Function R 0 0 0: Normal read 1: Program/erase enable R W 0 0 R W 0: Normal mode 1: Virtual flash emulation mode W Flash Control Register 1 (FCNT1) consists of the following two bits to control the internal flash memory. (1) FENTRY (Flash Mode Entry) bit (Bit 3) The FENTRY bit controls entry to flash E/W enable mode. Flash E/W enable mode can only be entered when FENTRY = "1". To set the FENTRY bit to "1", write "0" and then "1" to the FENTRY bit in succession while the FP pin = "high". To clear the FENTRY bit, check to see that the FSTAT1 register FSTAT bit = "1" (ready) and then write "0" to the FENTRY bit. Note that the following operations cannot be performed while programming or erasing the internal flash memory (FSTAT1 register FSTAT bit = "0" (busy)). If one of these operations is attempted, the FENTRY bit is cleared to "0" in hardware. 1) Writing "0" to the FENTRY bit 2) Entering a low-level signal to the FP pin 3) Entering a low-level signal to the RESET# pin When running a program resident in the internal flash memory while the FENTRY bit = "0", the EI vector entry is located at the address H'0000 0080 of the internal flash memory. When running the flash write/erase program in the RAM while the FENTRY bit = "1", the EI vector entry is located at the address H'0080 4000 of the RAM, allowing the flash programming/erase operation to be controlled using interrupts. Table 6.4.1 Changes of the EI Vector Entry by FENTRY FENTRY EI Vector Entry Address 0 Internal flash memory area H'0000 0080 1 Internal RAM area H'0080 4000 (2) FEMMOD (Virtual Flash Emulation Mode) bit (Bit 7) The FEMMOD bit controls entry to virtual flash emulation mode. Virtual flash emulation mode is entered by setting the FEMMOD bit to "1" while the FENTRY bit = "0". (For details, see Section 6.6, "Virtual Flash Emulation Function.") 6-8 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.4 Registers Associated with the Internal Flash Memory Flash Control Register 2 (FCNT2) b8 9 10 11 12 13 14 b15 FPROT 0 0 0 0 0 0 0 0 b Bit Name Function 8-14 No function assigned. Fix to "0". 15 FPROT Unlock bit 0: Protection by lock bit effective 1: Protection by lock bit invalidated R W 0 0 R W Flash Control Register 2 (FCNT2) controls invalidation of the internal flash memory protection by a lock bit (protection against programming/erase operation). Protection of the internal flash memory is invalidated by setting the FPROT bit to "1", so that any blocks protected by a lock bit can now be programmed or erased. To set the FPROT bit to "1", write "0" and then "1" to the FPROT bit in succession while the FENTRY bit = "1". To clear the FPROT bit to "0", write "0" to the FPROT bit. If one of the following operations is attempted, the FPROT bit is cleared to "0". 1) Writing "0" to the FPROT bit 2) Entering a low-level signal to the FP pin 3) Clearing the FENTRY bit to "0" 4) Entering a low-level signal to the RESET# pin FENTRY = 1 NO FPROT = 0 YES FENTRY = 1 FPROT = 0 FPROT is not set to 1 if a write cycle to any other area occurs during this time. FPROT = 1 FPROT = 1 Figure 6.4.1 Protection Unlocking Flow 6-9 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.4 Registers Associated with the Internal Flash Memory Flash Control Register 3 (FCNT3) b0 1 2 3 4 5 6 b7 FELEVEL 0 0 0 0 0 0 0 0 b Bit Name 0-6 No function assigned. Fix to "0". Function 7 FELEVEL Erase margin-up bit 0: Normal level 1: Raise erase margin up R W 0 0 R W Flash Control Register 3 (FCNT3) controls the depth of erase levels when erasing the internal flash memory with one of erase commands. The internal flash memory erase level can be deepened by setting the FELEVEL bit to "1". Flash Control Register 4 (FCNT4) b8 9 10 11 12 13 14 b15 FRESET 0 0 0 0 0 0 0 0 b Bit Name 8-14 No function assigned. Fix to "0". 15 FRESET Flash reset bit Function R W 0 0 0: No operation 1: Reset R W Flash Control Register 4 (FCNT4) controls initializing each status bit of Flash Status Register 2 (FSTAT2) or canceling a programming/erase operation. Setting the FRESET bit to "1" initializes each status bit of the FSTAT2 register or cancels a programming/erase operation. The FRESET bit is effective only when the FENTRY bit = "1". If the FENTRY bit = "0", the FRESET bit information is ignored. When programming or easing the internal flash memory, make sure the FRESET bit remains "0". An example for clearing each status of FSTAT2 during a programming/erase operation, and an example for forcibly terminating (canceling) a programming/erase operation due to time-out are shown below. 6-10 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.4 Registers Associated with the Internal Flash Memory FENTRY = 0 FENTRY = 1 Program/erase the flash memory * At this point in time, the FSTAT1 register FSTAT bit = 1 (ready). Error found NO YES FRESET = 1 Programming/erase operation terminated normally FRESET = 0 Program/erase the flash memory Figure 6.4.2 Example of FCNT4 Register Operation 1 (Clearing each status of the FSTAT2 register) Flash programming/erase operation has timed out Forcibly terminate FRESET = 1 FRESET = 0 Figure 6.4.3 Example of FCNT4 Register Operation 2 (Forcibly terminating operation when programming/ erasing the internal flash memory) 6-11 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.4 Registers Associated with the Internal Flash Memory 6.4.5 Virtual Flash S Bank Registers Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Flash Flash Flash Flash Flash Flash Flash Flash b0 1 S S S S S S S S Bank Bank Bank Bank Bank Bank Bank Bank Register Register Register Register Register Register Register Register 2 3 0 1 2 3 4 5 6 7 4 (FESBANK0) (FESBANK1) (FESBANK2) (FESBANK3) (FESBANK4) (FESBANK5) (FESBANK6) (FESBANK7) 5 6 7 8 9 10 MODENS 0 11 12 13 14 0 0 b15 SBANKAD 0 0 0 0 0 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 MODENS Virtual flash emulation enable bit 0: Disable virtual flash emulation function 1: Enable virtual flash emulation function R W 1-7 No function assigned. Fix to "0". 0 0 8-15 SBANKAD S bank address R W Start address A12-A19 of the relevant S bank Note: * These registers must always be accessed in halfwords. (1) MODENS (Virtual Flash Emulation Enable) bit (Bit 0) The MODENS bit can be set to "1" after entering virtual flash emulation mode (by setting the FEMMOD bit to "1" while the FENTRY bit = "0"). This causes the virtual flash emulation function to be enabled for the S bank area selected by the SBANKAD bits. (2) SBANKAD (S Bank Address) bits (Bits 8-15) The SBANKAD bits are provided for selecting one of the S banks that are separated every 4 KB. Use these SBANKAD bits to set the eight bits A12-A19 of the 32-bit start address of the desired S bank. Note: * For details, see Section 6.6, "Virtual Flash Emulation Function." 6-12 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory 6.5 Programming the Internal Flash Memory 6.5.1 Outline of Internal Flash Memory Programming To program or erase the internal flash memory, there are following two methods to choose depending on the situation: (1) When the flash write/erase program does not exist in the internal flash memory (2) When the flash write/erase program already exists in the internal flash memory For (1), set the FP pin = "high", MOD0 = "high" and MOD1 = "low" to enter boot mode. In this case, the CPU starts running the boot program immediately after reset. The boot program transfers the flash write/erase program into the internal RAM. After the transfer, jump to a location in the RAM and use the RAM-resident program to set the Flash Control Register 1 (FCNT1) FENTRY bit to "1" to make the internal flash memory ready for programming/erase operation (i.e., placed in boot mode + flash E/W enable mode). When the above is done, use the flash write/erase program that has been transferred into the internal RAM to program or erase the internal flash memory. For (2), set the FP pin = "high", MOD0 = "low" and MOD1 = "low" to enter single-chip mode. Transfer the flash write/erase program from the internal flash memory in which it has been prepared into the internal RAM. After the transfer, jump to the RAM and use the program transferred into the RAM to set the Flash Control Register 1 (FCNT1) FENTRY bit to "1" to make the internal flash memory ready for programming/erase operation (i.e., placed in single-chip mode + flash E/W enable mode). When the above is done, use the flash write/erase program that has been transferred into the internal RAM to program or erase the internal flash memory. Or flash E/W enable mode can be entered from external extension mode by setting the FP pin = "high", MOD0 = "low" and MOD1 = "high". During flash E/W enable mode (FP pin = 1, FENTRY = 1), the EIT vector entry for External Interrupt (EI) is relocated to the start address (H'0080 4000) of the internal RAM. During normal mode, it is located in the flash area (H'0000 0080). Flash E/W enable mode (FENTRY = 1) Normal mode (FENTRY = 0) H'0000 0000 H'0000 0000 EI vector entry (H'0000 0080) Internal ROM area Internal ROM area EI vector entry H'0080 3FFF H'0080 4000 (H'0080 4000) H'0080 3FFF H'0080 4000 Internal RAM Internal RAM H'00FF FFFF H'00FF FFFF Figure 6.5.1 EI Vector Entry during Flash E/W Enable Mode 6-13 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory (1) When the flash write/erase program does not exist in the internal flash memory In this case, the boot program is used to program or erase the internal flash memory. To transfer the write data, use serial I/O1 in clock-synchronized serial mode. To program or erase the internal flash memory using a flash programmer, follow the procedure described below. FP = L or H MOD1 = L MOD0 = L RESET = L * Initial state (Flash write/erase program nonexistent in the internal flash memory) CPU RAM Boot program Flash memory Write data SIO1 External device (e.g., flash programmer) M32R/ECU FP = H RAM MOD1 = L MOD0 = H RESET = H Flash write/ erase program * Set the FP pin high, MOD0 pin high and MOD1 pin low to place the flash memory in boot mode + flash E/W enable mode. * Dessert reset signal and start up with the boot program. * Transfer the flash write/erase program into the RAM. * Jump to the flash write/erase program in the RAM. CPU Boot program Flash memory Write data SIO1 External device (e.g., flash programmer) M32R/ECU FP = H RAM Flash memory MOD1 = L MOD0 = H RESET = H Flash write/ erase program Flash write data CPU Boot program SIO1 M32R/ECU * Using the flash write/erase program in the RAM, set the Flash Control Register 1 (FCNT1) FENTRY bit to 1. * Program or erase the internal flash memory using the flash write/erase program. * When finished, reset MOD0 low and jump to the internal flash memory or apply a reset to enter normal mode. Write data External device (e.g., flash programmer) Figure 6.5.2 Procedure for Programming/Erasing the Internal Flash Memory (when the flash write/erase program does not exist in it) 6-14 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory Reset signal deasserted (Boot program starts) POWER ON Mode selected Reset signal deasserted Mode selected RESET# pin MOD0 pin MOD1 pin FP pin Settings by the boot program FENTRY bit Flash programming/erasing by the boot program Figure 6.5.3 Internal Flash Memory Write/Erase Timing (when the flash write/erase program does not exist in it) 6-15 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory (2) When the flash write/erase program already exists in the internal flash memory In this case, the flash write/erase program prepared in the internal flash memory is used to program or erase the internal flash memory. For programming/erase operation here, use the internal peripheral circuits in the manner suitable for the programming system. (All resources of the internal peripheral circuits such as the data bus, serial I/O and ports can be used.) The following shows an example for programming or erasing the internal flash memory by using serial I/O0 in single-chip mode. FP = L or H MOD1 = L MOD0 = L RAM CPU Flash write/ erase program SIO0 * Initial state (Flash write/erase program existing in the internal flash memory) * An ordinary program in the internal flash memory is being executed. Write data External device M32R/ECU FP = H RAM MOD1 = L MOD0 = L Flash write/ erase program CPU Flash memory SIO0 * Set the FP pin high, MOD1 pin low and MOD0 pin low to place the flash memory in single-chip + flash E/W enable mode. * After determining the FP pin and MOD1 pin levels, transfer the flash write/erase program from the internal flash memory area into the RAM. * Jump to the flash write/erase program in the RAM. Write data External device M32R/ECU FP = H RAM Flash memory MOD1 = L Flash write/ erase program Flash write data MOD0 = L * Using the flash write/erase program in the RAM, set the Flash Control Register 1 (FCNT1) FENTRY bit to 1. * Program or erase the internal flash memory using the flash write/erase program in the RAM. * When finished, jump to the program in the flash memory or apply a reset to enter normal mode. CPU SIO0 Write data External device M32R/ECU Figure 6.5.4 Procedure for Programming/Erasing the Internal Flash Memory (when the flash write/erase program already exists in it) 6-16 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory Flash rewrite Flash mode turned on starts Flash mode turned off RESET# pin High or low MOD0 pin Low MOD1 pin High or low (single-chip or external extension) FP pin High or low FENTRY bit Flash programming/erasing by the flash write/erase program Flash write/erase program transferred into the RAM Figure 6 .5.5 Internal Flash Memory Write/Erase Timing (when the flash write/erase program already exists in it) 6-17 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory 6.5.2 Controlling Operation Modes during Flash Programming The microcomputer's operation mode is set by MOD0, MOD1 and Flash Control Register 1 (FCNT1) FENTRY bit. The table below lists operation modes that may be used when programming or erasing the internal flash memory. Table 6.5.1 Operation Modes Set during Flash Programming/Erase FP MOD0 MOD1 FENTRY (Note 1) Operation Mode Reset Vector Entry EI Vector Entry 0 0 0 0 Start address of internal Flash area 1 0 0 0 flash memory (H'0000 0080) Single-chip mode (H'0000 0000) 0 1 0 0 Processor mode Start address of external External area area (H'0000 0000) (H'0000 0080) 0 0 1 0 External extension Start address of internal Flash area 1 0 1 0 mode flash memory (H'0000 0080) 1 0 0 1 Single-chip mode Start address of internal Beginning of internal RAM + flash E/W enable flash memory (H'0080 4000) (H'0000 0000) (H'0000 0000) 1 1 1 - 1 1 0 1 0 0 1 1 0 1 1 - Boot mode Boot program starts Flash area running (H'0000 0080) Boot mode + flash Boot program starts Beginning of internal RAM E/W enable running (H'0080 4000) External extension Start address of internal Beginning of internal RAM mode + flash E/W flash memory (H'0080 4000) enable (H'0000 0000) Use inhibited - - Note 1: Indicates the Flash Control Register 1 (FCNT1) FENTRY bit status (- denotes "Don't care"). However, if FP = "0", writing "1" to FENTRY only results in it cleared to "0". (1) Flash E/W enable mode Flash E/W enable mode is a mode in which the internal flash memory can be programmed or erased. In flash E/W enable mode, no programs can be executed in the internal flash memory. Therefore, the necessary program must be transferred into the internal RAM before entering flash E/W enable mode, so that it can be executed in the RAM. (2) Entering flash E/W enable mode Flash E/W enable mode can only be entered when operating in single-chip, external extension or boot mode. Furthermore, it is only when the FP pin = "high" and the Flash Control Register 1 (FCNT1) FENTRY bit = "1" that flash E/W enable mode can be entered. Flash E/W enable mode cannot be entered when operating in processor mode or the FP pin = "low". 6-18 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory (3) Detecting the MOD0 and MOD1 pin levels The MOD0 and MOD1 pin levels ("high" or "low") can be known by checking the P8 Data Register (Port Data Register, H'0080 0708) MOD0DT and MOD1DT bits. P8 Data Register (P8DATA) b0 1 2 MOD0DT MOD1DT P82DT ? ? 3 4 5 6 b7 P83DT P84DT P85DT P86DT P87DT ? ? ? ? ? ? b Bit Name Function R W 0 MOD0DT MOD0 data bit 0: MOD0 pin = "low" 1: MOD0 pin = "high" R - 1 MOD1DT MOD1 data bit 0: MOD1 pin = "low" 1: MOD1 pin = "high" R - 2 P82DT Port P82 data bit At read Depends on how the Port Direction Register is set R W 3 P83DT Port P83 data bit * If direction bit = "0" (input mode) 0: Port input pin = "low" 4 P84DT Port P84 data bit 1: Port input pin = "high" * If direction bit = "1" (output mode) (Note 1) 5 P85DT Port P85 data bit 6 P86DT Port P86 data bit 7 P87DT Port P87 data bit 0: Port output latch = "0" / Port pin level = "low" 1: Port output latch = "1" / Port pin level = "high" At write Write to the port output latch Note 1: To select the port data to read, use the Port Input Special Function Control Register's port input data select bit (PISEL). 6-19 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory START Enter one of the following modes: * Single-chip mode * Boot mode * External extension mode Check MOD0/1 and FP pin levels FMOD(H'0080 01E0) FPMOD P8DATA(H'0080 0708) D0 = MOD0DT D1 = MOD1DT NO OK END Transfer the flash write/erase program into the internal RAM Set the Flash Control Register in SFR area (FCNT1, H'0080 01E2) FENTRY bit to 0 Set the Flash Control Register in SFR area (FCNT1, H'0080 01E2) FENTRY bit to 1 Switched to the flash write/erase program Go to flash E/W enable mode Wait for 1 s (using a hardware or software timer) Execute flash write/erase command and various read commands (Note 1) Jump to the flash memory or apply reset Switched to normal mode END Note 1: For details about each command, see Section 6.5.4, "Procedure for Programming/Erasing the Internal Flash Memory." Figure 6.5.6 Procedure for Entering Flash E/W Enable Mode 6-20 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory 6.5.3 Procedure for Programming/Erasing the Internal Flash Memory To program or erase the internal flash memory, set up chip mode to enter flash E/W enable mode and execute the flash write/erase program in the internal RAM into which it has been transferred from the internal flash memory. In flash E/W enable mode, because the internal flash memory cannot be accessed for read as in normal mode, no programs present in it can be executed. Therefore, the flash write/erase program must be made available in the internal RAM before entering flash E/W enable mode. (Once flash E/W enable mode is entered into, only flash commands and no other commands can be used to access the internal flash memory.) To access the internal flash memory in flash E/W enable mode, issue commands for the internal flash memory address to be operated on. The table below lists the commands that can be issued in flash E/W enable mode. Note: * During flash E/W enable mode, the internal flash memory cannot be accessed for read or write wordwise. Table 6.5.2 Commands in Flash E/W Enable Mode Command Name Issued Command Data Read Array command H'FFFF Page Program command H'4141 Lock Bit Program command H'7777 Block Erase command H'2020 Erase All Unlocked Blocks command H'A7A7 Read Status Register command H'7070 Clear Status Register command H'5050 Read Lock Bit Status command H'7171 Verify command (Note 1) H'D0D0 Note 1: * This command is used in conjunction with Lock Bit Program, Block Erase and Erase All Unlocked Blocks operations. * This command must be issued immediately after the Lock Bit Program, Block Erase or Erase All Unlocked Blocks command. * If the Lock Bit Program, Block Erase or Erase All Unlocked Blocks command is followed by the Read Array command (H'FFFF), the Lock Bit Program, Block Erase or Erase All Unlocked Blocks command is canceled. * If the Lock Bit Program, Block Erase or Erase All Unlocked Blocks command is followed by other than the Verify (H'D0D0) or Read Array (H'FFFF) command, the Lock Bit Program, Block Erase or Erase All Unlocked Blocks command is not executed normally and terminated in error. (1) Read Array command Writing the command (H'FFFF) to any address of the internal flash memory places it in read mode. Then read the desired flash memory address, and the content of that address will be read out. Before exiting flash E/W enable mode, always be sure to execute the Read Array command. START Write the Read Array command (H'FFFF) to any address of the internal flash memory Read the desired flash memory address END Figure 6.5.7 Read Array Command 6-21 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory (2) Page Program command The internal flash memory is programmed one page at a time, each page consisting of 256 bytes (lower addresses H'00 to H'FF). To program the flash memory, write the Page Program command (H'4141) to any address of the internal flash memory and then the program data to the address to be programmed. The protected flash memory blocks cannot be accessed for write by the Page Program command. Page programming is automatically performed by the internal control circuit, and whether the Page Program command has finished can be known by checking the Flash Status Register 1 (FSTAT1) FSTAT bit. (See Section 6.4.2, "Flash Status Registers.") While the FSTAT bit = "0" (busy), the next programming (by the Page Program command) cannot be performed. START Write the Page Program command (H'4141) to any address of the internal flash memory Write the program data to the internal flash memory address to be programmed (Note 1) Write the next program data to the previously programmed address + 2 NO Finished programming one page? YES Internal flash memory is programmed by Page Program (Note 2) Wait for 1 s (using a hardware or software timer) NO FSTAT bit = 1 YES To next page Read any address of the internal flash memory (Note 3) to check for programming error (see Figure 6.4.2) NO TIME OUT? 0.5s NO YES Forcibly terminated (see Figure 6.4.3.) Last address? YES END Note 1: Start programming from the beginning of a 256-byte boundary (lower address H'00). Note 2: When a programming operation started, the internal flash memory is automatically readied to run the Read Status command, so that there is no need to enter the Read Status command until another command is entered. Note 3: Inspect the Flash Status Register 2 ERASE (erase status), WRERR1 (write status 1) and WRERR2 (write status 2) bits to check for programming error. Figure 6.5.8 Page Program Command 6-22 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory (3) Lock Bit Program command The internal flash memory can be protected against programming/erase operation one block at a time. The Lock Bit Program command is provided for protecting the flash memory blocks. Write the Lock Bit Program command (H'7777) to any address of the internal flash memory. Next, write the Verify command (H'D0D0) to the last even address of the flash memory block to be protected, and this memory block is thereby protected against programming/erase operation. To remove protection, use the Flash Control Register 2 (FCNT2) FPROT bit to invalidate protection by a lock bit (see Section 6.4.3, "Flash Control Registers") and erase the flash memory block whose protection is to be removed. (The content of that memory block is also erased.) Executing a programming/erase operation on flash memory blocks protected by a lock bit results in an error. If erased, the FSTAT2 register ERASE bit is set to "1" (erase error occurred); if programmed, the FSTAT2 register WRERR1 bit is set to "1" (programming error occurred). The table below lists the target flash memory blocks and their addresses to be specified when writing the Verify command. Table 6.5.3 M32182F3 Target Blocks and Specified Addresses Target Block Specified Address 0 H'0000 3FFE 1 H'0000 5FFE 2 H'0000 7FFE 3 H'0000 FFFE 4 H'0001 FFFE 5 H'0002 FFFE 6 H'0003 FFFE 7 H'0004 FFFE 8 H'0005 FFFE Table 6.5.4 M32182F8 Target Blocks and Specified Addresses Target Block Specified Address 0 H'0000 3FFE 1 H'0000 5FFE 2 H'0000 7FFE 3 H'0000 FFFE 4 H'0001 FFFE 5 H'0002 FFFE 6 H'0003 FFFE 7 H'0004 FFFE 8 H'0005 FFFE 9 H'0006 FFFE 10 H'0007 FFFE 11 H'0008 FFFE 12 H'0009 FFFE 13 H'000A FFFE 14 H'000B FFFE 15 H'000C FFFE 16 H'000D FFFE 17 H'000E FFFE 18 H'000F FFFE 6-23 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory START Write the Lock Bit Program command (H'7777) to any address of the internal flash memory Write the Verify command (H'D0D0) to the last even address of the flash memory block to be protected Lock bit is programmed by Lock Bit Program (Note 1) Wait for 1 s (using a hardware or software timer) NO FSTAT bit = 1 YES TIME OUT? 0.5s Read any address of the internal flash memory (Note 2) to check for programming error (see Figure 6.4.2) NO YES Forcibly terminated (see Figure 6.4.3.) END Note 1: When a programming operation started, the internal flash memory is automatically readied to run the Read Status command, so that there is no need to enter the Read Status command until another command is entered. Note 2: Inspect the Flash Status Register 2 ERASE (erase status), WRERR1 (write status 1) and WRERR2 (write status 2) bits to check for programming error. Figure 6.5.9 Lock Bit Program Command 6-24 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory (4) Block Erase command The Block Erase command erases the content of the internal flash memory one block at a time. To perform this operation, write the Block Erase command (H'2020) to any address of the internal flash memory. Next, write the Verify command (H'D0D0) to the last even address of the flash memory block to be erased (see Table 6.5.3, "M32182F3 Target Blocks and Specified Addresses"). The protected flash memory blocks cannot be erased by the Block Erase command. Block erase operation is automatically performed by the internal control circuit, and whether the Block Erase command has finished can be known by checking the Flash Status Register 1 (FSTAT1) FSTAT bit. (See Section 6.4.2, "Flash Status Registers.") While the FSTAT bit = "0" (busy), the next block erase operation (by the Block Erase command) cannot be performed. START Write the Block Erase command (H'2020) to any address of the internal flash memory Write the Verify command (H'D0D0) to the last even address of the flash memory block to be erased Internal flash memory contents are erased by the Block Erase command (Note 1) Wait for 1 s (using a hardware or software timer) NO FSTAT bit = 1 YES TIME OUT? 1s Read any address of the internal flash memory (Note 2) to check for erase error (see Figure 6.4.2) NO YES Forcibly terminated (see Figure 6.4.3.) END Note 1: When an erase operation started, the internal flash memory is automatically readied to run the Read Status command, so that there is no need to enter the Read Status command until another command is entered. Note 2: Inspect the Flash Status Register 2 ERASE (erase status), WRERR1 (write status 1) and WRERR2 (write status 2) bits to check for erase error. Figure 6.5.10 Block Erase Command 6-25 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory (5) Erase All Unlocked Blocks command The Erase All Unlocked Blocks command erases all flash memory blocks that are not protected. To erase all unlocked blocks, write the command (H'A7A7) to any address of the internal flash memory. Next, write the Verify command (H'D0D0) to any address of the internal flash memory, and all unlocked memory blocks are thereby erased. START Write the Erase All Unlocked Blocks command (H'A7A7) to any address of the internal flash memory Write the Verify command (H'D0D0) to any address of the internal flash memory Flash memory contents are erased by Erase All Unlocked Blocks (Note 1) Wait for 1 s (using a hardware or software timer) NO FSTAT bit = 1 YES TIME OUT? 10s Read any address of the internal flash memory (Note 2) to check for erase error (see Figure 6.4.2) NO YES Forcibly terminated (see Figure 6.4.3.) END Note 1: When an erase operation started, the internal flash memory is automatically readied to run the Read Status command, so that there is no need to enter the Read Status command until another command is entered. Note 2: Inspect the Flash Status Register 2 ERASE (erase status), WRERR1 (write status 1) and WRERR2 (write status 2) bits to check for erase error. Figure 6.5.11 Erase All Unlocked Blocks Command 6-26 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory (6) Read Status Register command The Read Status Register command reads the content of Flash Status Register 2 (FSTAT2) that indicates whether flash memory programming or erase operation has terminated normally. To read Flash Status Register 2, write the Read Status Register command (H'7070) to any address of the internal flash memory. Next, read any address of the internal flash memory, and Flash Status Register 2 (FSTAT2) will be read out. START Write the Read Status Register command (H'7070) to any address of the internal flash memory Read any address of the internal flash memory END Figure 6.5.12 Read Status Register Command (7) Clear Status Register command The Clear Status Register command clears the Flash Status Register 2 ERASE (erase status), WRERR1 (write status 1) and WRERR2 (write status 2) bits to "0". Write the Clear Status Register command (H'5050) to any address of the internal flash memory, and Flash Status Register 2 is thereby initialized. If an error occurs when programming or erasing the internal flash memory and the Flash Status Register 2 ERASE (erase status), WRERR1 (write status 1) or WRERR2 (write status 2) bit is set to "1", the next programming or erase operation cannot be executed unless each status bit is cleared to "0". START Write the Clear Status Register command (H'5050) to any address of the internal flash memory END Figure 6.5.13 Clear Status Register Command 6-27 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory (8) Read Lock Bit Status command The Read Lock Bit Status command is provided for checking whether a flash memory block is protected against programming/erase operation. Write the Read Lock Bit Status command (H'7171) to any address of the internal flash memory. Next, read the last even address of the flash memory block to be checked (see Table 6.5.3, "M32182F3 Target Blocks and Specified Addresses"), and the read data shows whether the target block is protected. If the FLBST0 (lock bit 0) and FLBST1 (lock bit 1) in the read data both are "0", it means that the target memory block is protected. If the FLBST0 (lock bit 0) and FLBST1 (lock bit 1) both are "1", it means that the target memory block is not protected. START Write the Read Lock Bit Status command (H'7171) to any address of the internal flash memory Read the last even address of the flash memory block to be checked END Figure 6.5.14 Read Lock Bit Status Command 6-28 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory Lock Bit Status Register (FLBST) b0 1 2 3 4 5 6 7 8 FLBST0 ? ? 9 10 11 12 13 14 ? ? ? ? ? b15 FLBST1 ? ? ? ? ? ? ? ? ? b Bit Name 0 No function assigned. 1 FLBST0 Lock bit 0 2-8 No function assigned. 9 FLBST1 Lock bit 1 10-15 No function assigned. Function R W ? - 0: Protected 1: Not protected R - ? - R - ? - 0: Protected 1: Not protected (Same content as FLBST0 is output) The Lock Bit Status Register is a read-only register, which is included for each memory block independently of one another. The following shows how the lock bits in this register are set. a) Setting the lock bit to "0" (protected) Issue the Lock Bit Program command (H'7777) to the memory block to be protected. b) Setting the lock bit to "1" (not protected) Set the Flash Control Register 2 FPROT bit to invalidate protection by a lock bit, then issue the Block Erase command (H'2020) or Erase All Unlocked Blocks command (H'A7A7) to erase the memory block which is to be unprotected. This is the only way to set the lock bit to "1". In no way can the lock bit alone be set to "1". c) Lock bit status after reset Because the lock bits are nonvolatile, they are unaffected by a reset and power-off. 6-29 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.5 Programming the Internal Flash Memory 6.5.4 Flash Programming Time (Reference) The following shows the time needed to program internal flash memory for reference. (1) Time required for transfer by SIO (for a transfer data size of 384 KB) 1/57,600 bps x 1 (frame) x 11 (number of bits transferred) x 384 KB = approx. 75.1 [s] (2) Time required for programming the flash memory 384 KB / 256-byte block x 8 ms = approx. 12.3 [s] (3) Time required for erasing the entire area 50 ms x 9 (blocks) = approx. 450 [ms] (4) Total flash programming time (entire 384 KB area) When communicating at 57,600 bps via UART, the flash programming time can be ignored because it is very short compared to the serial communication time. Therefore, the total flash programming time can be calculated using the equation below. (1) + (3) = approx. 76 [s] If the transfer time can be ignored by speeding up the serial communication or by other means, the fastest programming time possible can be calculated using the equation below. (2) + (3) = approx. 13 [s] 6-30 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.6 Virtual Flash Emulation Function 6.6 Virtual Flash Emulation Function The microcomputer has the function to map 4-Kbyte memory blocks beginning with the address H'0080 8000 into areas (S banks) of the internal flash memory that are divided in 4-Kbyte units. This functions is referred to as the Virtual Flash Emulation Function. This function allows the data located in 4-Kbyte blocks of the internal RAM to be changed with the contents of internal flash memory at the addresses specified by the Virtual Flash S Bank Register. That way, the relevant RAM data can read out by reading the content of internal flash memory. For applications that require modifying the contents of internal flash memory (e.g., data table) during operation, this function enables dynamic data modification by modifying the relevant RAM data. The RAM blocks allocated for virtual flash emulation can be accessed for read and write the same way as in usual RAM. This function, when used in combination with the microcomputer's internal Real-Time Debugger (RTD), allows the data table, etc. created in the internal flash memory to be referenced or rewritten from the outside, thereby facilitating data table tuning from an external device. Note: * Before programming/erasing the internal flash memory, always be sure to exit this virtual flash emulation mode. H'0080 4000 (Cannot be used for virtual flash emulation) H'0080 8000 RAM bank block 0 (FESBANK0) 4 Kbytes H'0080 9000 RAM bank block 1 (FESBANK1) 4 Kbytes H'0080 A000 RAM bank block 2 (FESBANK2) 4 Kbytes H'0080 B000 RAM bank block 3 (FESBANK3) 4 Kbytes H'0080 C000 RAM bank block 4 (FESBANK4) 4 Kbytes H'0080 D000 RAM bank block 5 (FESBANK5) 4 Kbytes H'0080 E000 RAM bank block 6 (FESBANK6) 4 Kbytes H'0080 F000 RAM bank block 7 (FESBANK7) 4 Kbytes Internal RAM area H'0081 0000 (Cannot be used for virtual flash emulation) H'0081 3FFF Figure 6.6.1 Internal RAM Bank Configuration of the M32182F3 6-31 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.6 Virtual Flash Emulation Function 6.6.1 Virtual Flash Emulation Area The following shows the internal flash memory areas in which the Virtual Flash Emulation Function is applicable. Using the Virtual Flash S Bank Register (FESBANK0-FESBANK7), select one among all S banks of internal flash memory that are divided in 4-Kbyte units (by setting the eight start address bits A12-A19 of the desired S bank in the Virtual Flash S Bank Register SBANKAD bits). Then set the Virtual Flash S Bank Register's flash emulation enable bit (MODENS) to "1", and the selected S bank area will be replaced with 4-Kbyte blocks of the internal RAM beginning with the address H'0080 8000, up to eight such blocks in all. Notes: * If the same bank area is set in two or more Virtual Flash S Bank Registers (FESBANK0- FESBANK7) and each register's flash emulation enable bit (MODENS) is set to "1" (enabled), the bank is assigned the corresponding internal RAM area (4-Kbyte) according to the priority of Virtual Flash S Bank Registers given below. FESBANK0 > FESBANK1 > FESBANK2 > FESBANK3 > FESBANK4 > FESBANK5 > FESBANK6 > FESBANK7 * During virtual flash emulation mode, RAM can be accessed for read and write from both the internal RAM area and the flash emulation areas set in the internal flash memory. * Before reading any flash emulation area after setting the Flash Control Register 1 (FCNT1) flash emulation mode bit (FEMMOD) to "1", be sure to check that the flash emulation mode bit (FEMMOD) has been set to "1" by reading it once. * Before reading any flash emulation area after setting the Virtual Flash S Bank Register (FESBANK0-FESBANK7) flash emulation enable bit (MODENS) and bank address bits (SBANKAD), be sure to check that those MODENS and SBANKAD bits have been set to the intended values by reading them once. 6-32 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.6 Virtual Flash Emulation Function H'0000 0000 H'0000 1000 H'0000 2000 H'0005 D000 H'0005 E000 H'0005 F000 S bank 0 (4 Kbytes) H'0080 4000 S bank 1 (4 Kbytes) S bank 2 (4 Kbytes) 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes S bank 93 (4 Kbytes) S bank 94 (4 Kbytes) S bank 95 (4 Kbytes) H'0080 8000 H'0080 9000 H'0080 A000 H'0080 B000 H'0080 C000 H'0080 D000 H'0080 E000 H'0080 F000 H'0081 3FFF Notes: * If the same bank area is set in two or more Virtual Flash S Bank Registers (FESBANK0-FESBANK7) and each register's flash emulation enable bit (MODENS) is set to 1, the bank is assigned the corresponding internal RAM area in order of priority: FESBANK0 > FESBANK1 > FESBANK2 > FESBANK3 > FESBANK4 > FESBANK5 > FESBANK6 > FESBANK7. * If any 4-Kbyte area (S bank) specified by the Virtual Flash S Bank Register is accessed, its corresponding internal RAM area is accessed. During virtual flash emulation mode, RAM can be accessed for read and write from both the internal RAM area and the flash emulation areas set in the internal flash memory. Figure 6.6.2 Virtual Flash Emulation Area of the M32182F3 H'0000 0000 H'0000 1000 H'0000 2000 H'000F D000 H'000F E000 H'000F F000 S bank 0 (4 Kbytes) H'0080 4000 S bank 1 (4 Kbytes) S bank 2 (4 Kbytes) 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes 4 Kbytes S bank 253 (4 Kbytes) S bank 254 (4 Kbytes) S bank 255 (4 Kbytes) H'0080 8000 H'0080 9000 H'0080 A000 H'0080 B000 H'0080 C000 H'0080 D000 H'0080 E000 H'0080 F000 H'0081 3FFF Notes: * If the same bank area is set in two or more Virtual Flash S Bank Registers (FESBANK0-FESBANK7) and each register's flash emulation enable bit (MODENS) is set to 1, the bank is assigned the corresponding internal RAM area in order of priority: FESBANK0 > FESBANK1 > FESBANK2 > FESBANK3 > FESBANK4 > FESBANK5 > FESBANK6 > FESBANK7. * If any 4-Kbyte area (S bank) specified by the Virtual Flash S Bank Register is accessed, its corresponding internal RAM area is accessed. During virtual flash emulation mode, RAM can be accessed for read and write from both the internal RAM area and the flash emulation areas set in the internal flash memory. Figure 6.6.3 Virtual Flash Emulation Area of the M32182F8 6-33 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 S bank Start address of S bank in flash memory Values set in S bank address (SBANKAD) bits S bank 0 H'0000 0000 (Note 1) H'00 S bank 1 H'0000 1000 (Note 1) H'01 S bank 2 H'0000 2000 (Note 1) H'02 S bank 94 H'0005 E000 (Note 1) H'5E S bank 95 H'0005 F000 (Note 1) H'5F Note 1: Set the eight start address bits A12-A19 of each S bank of internal flash memory that is divided in 4-Kbyte units in the Virtual Flash S Bank Register's S bank address (SBANKAD) bits. Figure 6.6.4 Values Set in the M32182F3's Virtual Flash S Bank Register S bank Start address of S bank in flash memory Values set in S bank address (SBANKAD) bits S bank 0 H'0000 0000 (Note 1) H'00 S bank 1 H'0000 1000 (Note 1) H'01 S bank 2 H'0000 2000 (Note 1) H'02 S bank 254 H'000F E000 (Note 1) H'FE S bank 255 H'000F F000 (Note 1) H'FF Note 1: Set the eight start address bits A12-A19 of each S bank of internal flash memory that is divided in 4-Kbyte units in the Virtual Flash S Bank Register's S bank address (SBANKAD) bits. Figure 6.6.5 Values Set in the M32182F8's Virtual Flash S Bank Register 6-34 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.6 Virtual Flash Emulation Function 6.6.2 Entering Virtual Flash Emulation Mode To enter virtual flash emulation mode, set the Flash Control Register 1 (FCNT1) FEMMOD bit by writing "1". After entering virtual flash emulation mode, set the Virtual Flash S Bank Register MODENS bit to "1" to enable the Virtual Flash Emulation Function. Even during virtual flash emulation mode, the internal RAM area (H'0080 8000 through H'0080 FFFF) can be accessed the same way as in usual internal RAM. Settings start Write flash data to RAM Enter virtual flash emulation mode FEMMOD 1 Set RAM location address in Virtual Flash S Bank Register SBANKADn Address A12-A19 Enable virtual flash emulation MODENS 1 Settings completed Figure 6.6.6 Virtual Flash Emulation Mode Sequence 6-35 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.6 Virtual Flash Emulation Function 6.6.3 Application Example of Virtual Flash Emulation Mode By using two RAM areas that have been set in the same flash area by the Virtual Flash Emulation Function, the data in the flash memory can be replaced successively. (1) Operation when reset Flash memory Bank xx Replace area Initial value RAM block 0 Data write to RAM0 RAM block 1 (2) Programming operation using RAM block 0 Flash memory Replaced Bank xx RAM block 0 Initial value Bank xx specified RAM block 0 RAM block 1 Data write to RAM1 (3) Programming operation switched from RAM block 0 to RAM block 1 Flash memory Replaced Bank xx Initial value RAM block 0 RAM block 1 Bank xx specified Bank xx specified (settings invalid) RAM block 0 RAM block 1 Figure 6.6.7 Application Example of Virtual Flash Emulation Mode (1/2) 6-36 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.6 Virtual Flash Emulation Function (4) Programming operation using RAM block 1 Flash memory Replaced Bank xx Initial value RAM block 0 RAM block 1 (Bank specification cleared) Data write to RAM0 Bank xx specified RAM block 1 (5) Programming operation switched from RAM block 1 to RAM block 0 Flash memory Replaced Bank xx Initial value RAM block 0 RAM block 1 Bank xx specified Bank xx specified (settings invalid) RAM block 0 RAM block 1 (6) Go to (2) Note: Enclosed in are the valid area. Figure 6.6.8 Application Example of Virtual Flash Emulation Mode (2/2) 6-37 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.7 Connecting to A Serial Programmer 6.7 Connecting to A Serial Programmer For the internal flash memory to be rewritten in boot mode + flash E/W enable mode by using a general-purpose serial programmer, several pins on the microcomputer must be processed to make them suitable for the serial programmer, as shown below. Table 6.7.1 Processing Microcomputer Pins before Using a Serial Programmer Pin Name Pin No. Function Remark SCLKI1 103 Transfer clock input Need to be pulled high RXD1 104 Serial data input (received data) Need to be pulled high TXD1 105 Serial data output (transmit data) P84 106 Transmit/receive enable output Need to be pulled high FP 111 Flash memory protect Connect to the main power supply MOD0 112 Operation mode 0 Connect to the main power supply MOD1 113 Operation mode 1 Connect to ground RESET# 19 Reset After setting MOD0/MOD1, ground and back to main power supply JTRST 26 JTAG reset Pull low via resistor XIN 16 Clock input XOUT 18 Clock output VCNT 14 Control input for PLL circuit OSC-VCC 15 PLL circuit power supply Connect to the main power supply OSC-VSS 17 PLL circuit ground Connect to ground VREF0 38 Reference voltage input for A-D converter Connect to the main power supply AVCC0 37 Analog power supply Connect to the main power supply AVSS0 47 Analog ground Connect to ground VDDE 117 RAM backup power supply Connect to the main power supply VCCE 13,58,101,119 Main power supply 5 V + - 10% or 3.3 V + - 10% VCC-BUS 78,143 Bus power supply Depends on the target system EXCVCC EXCVDD 59,116 114 Internal power supply Need to be grounded to earth via bypass capacitor VSS 56,57,77,102,115,118,144 Ground 0V 6-38 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.7 Connecting to A Serial Programmer The diagram below shows an example of a user system configuration which has had a serial programmer connected. After the user system is powered on, the serial programmer writes to the internal flash memory in clocksynchronized serial mode. No communication problems associated with the oscillator frequency may occur. If the system uses any pins that are to be connected to a serial programmer, care must be taken to prevent adverse effects on the system when a serial programmer is connected. Note that the serial programmer uses the addresses H'0000 0084 through H'0000 008F as an area in which to check the ID for flash memory protection. If the internal flash memory needs to be protected, set any ID in this area. User system board Connect to the VCCE (5 or 3.3 V) power supply rail VCCE VDDE OSC-VCC AVCC0 Connect to Main power supply the user Connect to the system power VCCE (5 or 3.3V) supply rail power supply rail VREF0 EXCVCC EXCVDD Flash programmer signals Connector VCC-BUS Main power supply (for reference) RxD (input) P85/TXD1 TxD (output) SCLK0 (output) P86/RXD1 P87/SCLKI1/SCLKO1 BUSY (input) P84/SCLKI0/SCLKO0 MOD0 MOD0 (output) FP (output) RESET (output) FP RESET# GND (common) VSS AVSS0 OSC-VSS To system circuit MOD1 JTRST 2kW Set microcomputer operating conditions XIN XOUT VCNT 32182 Notes: * Turn on the power for the user system before writing to the internal flash memory. * If P84-P87 are used in the system circuit, connection to a serial programmer must be taken into consideration. * SBI# must be fixed high or low to ensure that no interrupts will be generated. * The pullup resistance values of P84, P86 and P87 must be selected to suit the system design condition. * The typical pullup resistance values of P84, P86 and P87 are 4.7 to 10 KW. * The status of any other ports that are not shown here will not affect flash memory programming. * Make sure the mode setting pin/power supply voltages do not fluctuate to prevent unintended changes of modes while rewriting the internal flash memory. Figure 6.7.1 Pin Connection Diagram 6-39 32182 Group User's Manual (Rev.1.0) INTERNAL MEMORY 6 6.8 Internal Flash Memory Protect Function 6.8 Internal Flash Memory Protect Function The internal flash memory has the following four types of protect functions to prevent it from being inadvertently rewritten or illegally copied, programmed or erased. (1) Flash memory protect ID When using a tool to program/erase the internal flash memory such as a general-purpose programmer or emulator, the ID entered by a tool and the ID stored in the internal flash memory are collated. Unless the correct ID is entered, no programming/erase operations can be performed. (For some tools, tool execution is enabled after erasing the entire flash memory area, and the internal flash memory becomes accessible for write.) (2) Protection by FP pin The internal flash memory is protected in hardware against programming/erase operation by pulling the FP (Flash Protect) pin low. Furthermore, because the FP pin level can be known by reading the Flash Mode Register (FMOD)'s FPMOD (external FP pin status) bit in the flash write/erase program, the internal flash memory can also be protected in software. For systems that do not require protection by setting external pins, the FP pin may be fixed high to simplify the operation to program/erase the internal flash memory. (3) Protection by FENTRY bit Flash E/W enable mode cannot be entered into unless the Flash Control Register 1 (FCNT1)'s FENTRY (flash mode entry) bit is set to "1". To set the FENTRY bit to "1", write "0" and then "1" in succession while the FP pin is high. (4) Protection by a lock bit Any block of internal flash memory can be protected by setting the lock bit provided for it to "0". That memory block is disabled against programming/erase operation. 6-40 32182 Group User's Manual (Rev.1.0) 6 INTERNAL MEMORY 6.9 Precautions To Be Taken when Rewriting the Internal Flash Memory 6.9 Precautions To Be Taken when Rewriting the Internal Flash Memory The following describes precautions to be taken when programming/erasing the internal flash memory. * When the internal flash memory is programmed or erased, a high voltage is generated internally. Because mode transitions during programming/erase operation may cause the chip to break down, make sure the mode setting pin/power supply voltages do not fluctuate to prevent unintended changes of modes. * If the system uses any pins that are to be used by a general-purpose programming/erase tool, care must be taken to prevent adverse effects on the system when the tool is connected. * If the internal flash memory needs to be protected while using a general-purpose programming/erase tool, set any ID in the flash memory protect ID verification area (H'0000 0084 to H'0000 008F). * If the internal flash memory does not need to be protected while using a general-purpose programming/erase tool, fill the entire flash memory protect ID verification area (H'0000 0084 to H'0000 008F) with H'FF. * If the Flash Status Register 2 (FSTAT2)'s each error status is to be cleared (initialized to H'80) by resetting the Flash Control Register 4 (FCNT4) FRESET bit, check to see that the Flash Status Register 1 (FSTAT1) FSTAT bit = "1" (ready) before clearing the error status. * Before resetting the Flash Control Register 1 (FCNT1) FENTRY bit from "1" to "0", check to see that the Flash Status Register 1 (FSTAT1) FSTAT bit = "1" (ready) or the Flash Status Register 2 (FSTAT2) FBUSY bit = "1" (ready). * Do not clear the FENTRY bit if the Flash Control Register 1 (FCNT1) FENTRY bit = "1" and the Flash Status Register 1 (FSTAT1) FSTAT bit = "0" (busy), or the Flash Status Register 2 (FSTAT2) FBUSY bit = "0" (being programmed or erased). 6-41 32182 Group User's Manual (Rev.1.0) 6 INTERNAL MEMORY 6.9 Precautions To Be Taken when Rewriting the Internal Flash Memory This page is blank for reasons of layout. 6-42 32182 Group User's Manual (Rev.1.0) CHAPTER 7 RESET 7.1 7.2 7.3 7.4 Outline of Reset Reset Operation Internal State Immediately after Reset Things to Be Considered after Reset RESET 7 7.1 Outline of Reset 7.1 Outline of Reset The microcomputer is reset by applying a low-level signal to the RESET# input pin. The microcomputer is gotten out of a reset state by releasing the RESET# input back high, upon which the reset vector entry address is set in the Program Counter (PC) and the CPU starts executing from the reset vector entry. 7.2 Reset Operation When a low-level signal in width of more than 200 ns (a duration needed for noise cancellation) is applied to the RESET# pin, the microcomputer is reset. At this time, pins on the microcomputer are reset (see the Pin State When Reset in Table 1.4.1, "Pin Assignments"), and an internal bus hold request signal is output internally. Furthermore, the internal circuits (including the CPU) are reset 9-10 BCLK periods later. When the RESET# input is returned high, the microcomputer pins get out of a reset state and the internal bus hold request is deasserted 17-18 BCLK periods later. Then the internal circuits get out of a reset state 15 BCLK periods after that. Flip-flop Counter Pin reset signal RESET# Noise Canceller S R OVF Internal circuit reset signal Figure 7.2.1 Reset Circuit Extended for a duration during which the RESET# input is held low Duration needed for noise cancellation (Note 1) RESET# pin 200ns Reset signal (internal signal) past the noise canceller 17-18BCLK Pin reset (Note 2) and internal bus hold request (internal signal) 15BCLK Internal circuit reset (internal signal) 9-10BCLK Note 1: If the low level duration of the reset signal is less than 200 ns, it is cancelled by the noise canceller. Note 2: The port-related registers also are reset. Figure 7.2.2 Reset Sequence 7-2 32180 Group User's Manual (Rev.1.0) RESET 7 7.2 Reset Operation 7.2.1 Reset at Power-on When powering on the microcomputer, hold the RESET# signal input pin low until the rated power supply voltage is reached and the microcomputer's internal x8 clock generator becomes oscillating stably. 7.2.2 Reset during Operation To reset the microcomputer during operation, hold the RESET# signal input pin low for more than 200 ns. 7.2.3 Reset at Entering RAM Backup Mode To prevent the RAM access by the CPU or DMA from becoming interrupted by a reset, first an internal bus hold request is output internally after accepting the reset input. Then the internal circuits are reset after the internal bus is placed in a hold state. Note: * Reset input at entering RAM backup mode cannot be used in the following cases (because the internal bus hold request may not be accepted and the RAM contents may be corrupted): * When the lock bit = 1 (see Section 2.7, "Supplementary Explanation for BSET, BCLR, LOCK and UNLOCK Instruction Execution") * When executing any instruction present in external memory 7.2.4 Reset Vector Relocation during Flash Programming When entering the boot mode, the reset vector entry address is relocated to the start address (H'8000 0000) of the boot program space. For details, see Section 6.5, "Programming the Internal Flash Memory." 7-3 32180 Group User's Manual (Rev.1.0) RESET 7 7.3 Internal State Immediately after Reset 7.3 Internal State Immediately after Reset The table below lists the internal state of the microcomputer immediately after it has gotten out of a reset state. For details about the initial register state of each internal peripheral I/O, see each section in this manual in which the relevant internal peripheral I/O is described. Table 7.3.1 Internal State Immediately after Reset Register State after Reset PSW (CR0) B'0000 0000 0000 0000 ??00 000? 0000 0000 (BSM, BIE, BC bits = undefined) CBR (CR1) H'0000 0000 (C bits = 0) SPI (CR2) Undefined SPU (CR3) Undefined BPC (CR6) Undefined FPSR (CR7) H'0000 0100 (Only DN bit = 1) PC H'0000 0000 (Executed beginning with the address H'0000 0000) (Note 1) R0-R15 Undefined ACC (accumulator) Undefined RAM Undefined when reset at power-on. (However, if the RAM is gotten out of reset after returning from backup mode, it retains the content it had before being reset.) Note 1: When in boot mode, the CPU executes the boot program. 7.4 Things to Be Considered after Reset * Input/output ports After reset, the microcomputer's input/output ports are disabled against input in order to prevent current from flowing through the port. To use any ports in input mode, set the Port Input Special Function Control Register (PICNT) PIEN0 bit to enable them for input. For details, see Section 8.3, "Input/Output Port Related Registers." 7-4 32180 Group User's Manual (Rev.1.0) CHAPTER 8 INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8.1 8.2 8.3 8.4 8.5 8.6 Outline of Input/Output Ports Selecting Pin Functions Input/Output Port Related Registers Port Input Level Switching Function Port Peripheral Circuits Precautions on Input/Output Ports INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.1 Outline of Input/Output Ports 8.1 Outline of Input/Output Ports The 32182 has a total of 97 input/output ports from P0-P13, P15, P17 and P22 (except P5, which is reserved for future use). These input/output ports can be used as input or output ports by setting the respective direction registers. Each input/output port is a dual-function or triple-function pin, sharing the pin with other internal peripheral I/O or extended external bus signal line. Pin functions are selected depending on the current operation mode or by setting the input/output port operation mode registers. (If any internal peripheral I/O has still another function, it is also necessary to set the register provided for that peripheral I/O.) The microcomputer also has a port input function enable bit that can be used to prevent current from flowing into the input ports. This helps to simplify the software and hardware processing to be performed immediately after reset or during flash programming. Note that before any ports can be used in input mode, this port input function enable bit must be set accordingly. The input/output ports are outlined below. Table 8.1.1 Outline of Input/Output Ports Item Specification Number of ports Total 97 ports Port function P0 : P00-P07 (8 ports) P1 : P10-P17 (8 ports) P2 : P20-P27 (8 ports) P3 : P30-P37 (8 ports) P4 : P41-P47 (7 ports) P6 : P61-P63 (3 ports) P7 : P70-P77 (8 ports) P8 : P82-P87 (6 ports) P9 : P93-P97 (5 ports) P10 : P100-P107 (8 ports) P11 : P110-P117 (8 ports) P12 : P124-P127 (4 ports) P13 : P130-P137 (8 ports) P15 : P150, P153 (2 ports) P17 : P174, P175 (2 ports) P22 : P220, P221, P224, P225 (4 ports) The input/output ports can individually be set for input or output mode using the direction control register provided for each input/output port. (However, P221 is input-only port.) Pin function Shared with peripheral I/O or extended external signals to serve dual-functions (or shared with two or more peripheral I/O functions to serve triple-functions) Pin function P0-P4, P224, P225: Depends on the CPU operation mode (that is set by MOD0 and MOD1 pins). (Note 1) selection P6-P22: As set by each input/output port's operation mode register. (However, peripheral I/O pin functions are selected by peripheral I/O registers.) Note 1: If the CPU operation mode is external extension mode, P0-P3, P44-P47, P224 and P225 initially are input/output port pins, and are switched to extended external signal pin functions by setting the respective port operation mode registers. P41-P43, when in external extension mode, serve as dedicated external bus interface signal pins. Note: * P14, P16, P18-P21 are nonexist. 8-2 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.2 Selecting Pin Functions 8.2 Selecting Pin Functions Each input/output port serves dual functions sharing the pin with other internal peripheral I/O or extended external bus signal line (or triple functions sharing the pin with two or more peripheral I/O functions). Pin functions are selected depending on the current operation mode or by setting the input/output port operation mode registers. P0-P4, P224 and P225, when the CPU is set to operate in processor mode, all are switched to serve as signal pins for external access. The CPU operation mode is determined depending on how the MOD0 and MOD1 pins are set (see the table below). Table 8.2.1 CPU Operation Modes and P0-P4, P224 and P225 Pin Functions MOD0 MOD1 Operation Mode P0-P4, P224 and P225 Pin Function VSS VSS Single-chip mode Input/output port pin VSS VCCE External extension mode Input/output port pin or extended external signal pin (Note 1) VCCE VSS Processor mode (FP pin = VSS) Extended external signal pin VCCE VCCE Reserved (use inhibited) - Note 1: P41-P43 serve as dedicated external bus interface signal pins. Note: * VCCE and VSS are connected to 5 or 3.3 V and GND, respectively. Each input/output port has their functions switched between input/output port pins and internal peripheral I/O pins by setting the respective port operation mode registers. If any internal peripheral I/O has two or more pin functions, use the register provided for that peripheral I/O to select the desired pin function. Note that FP and MOD1 pin settings during internal flash memory programming do not affect the pin functions. 8-3 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.2 Selecting Pin Functions CPU operation mode settings (Note 1) 0 1 2 3 4 5 6 7 P0 DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 P1 DB8 DB9 DB10 DB11 DB12 DB13 DB14 DB15 P2 A23 A24 A25 A26 A27 A28 A29 A30 P3 A15 A16 A17 A18 A19 A20 A21 A22 BLW# / BLE# BHW# / BHE# RD# CS0# CS1# A13 A14 (P61) (P62) (P63) WAIT# HREQ# HACK# TXD0 RXD0 SCLKI0 / SCLKO0 TXD1 RXD1 SCLKI1 / SCLKO1 TO16 TO17 TO18 TO19 TO20 TO11 TO12 TO13 TO14 TO15 TO3 TO4 TO5 TO6 TO7 TCLK0 TCLK1 TCLK2 TCLK3 P4 (Reserved) P5 P6 P7 P8 BCLK / WR# MOD0 MOD1 (Note 3) (Note 3) P9 P10 TO8 P11 TO0 TO9 / TO10 / TXD3(Note 2) CTX1(Note 2) TO1 TO2 SBI# (Note 3) (P67) RTDTXD RTDRXD RTDACK RTDCLK P12 Input/output port operation mode setting SCLKI4 / SCLKI5 / SCLKO4 SCLKO5 P13 TIN16 TIN17 TIN18 TIN19 TIN20 TIN21 / RXD3 TIN22 / CRX1 TIN23 P14 TIN8 TIN9 TIN10 TIN11 TIN12 TIN13 TIN14 TIN15 P15 TIN0 TIN1 TIN2 TIN3 TIN4 TIN5 TIN6 TIN7 P16 TO21 TO22 TO23 TO24 TO25 TO26 TO27 TO28 TIN24 TIN25 TXD2 RXD2 TXD3 RXD3 P17 P18 TO29 TO30 TO31 TO32 TO33 TO34 TO35 TO36 P19 TIN26 TIN27 TIN28 TIN29 TIN30 TIN31 TIN32 TIN33/ PWMOFF2 P20 TXD4 RXD4 TXD5 RXD5 P21 TO37 TO38 TO39 TO40 TO41 TO42 TO43 TO44 P22 CTX0 CRX0 CTX1 CRX1 CS2# CS3# A11 / A12 / CS2#(Note 2)CS3#(Note 2) (Note 1) Note 1: During processor mode, these ports are switched to function as extended external signal pins. During external extension mode, only P41-P43 are switched to function as external bus interface pins. Other pins become input/output port pins when reset, so that some of these pins, if needed, must be set to function as external bus interface pins. Note 2: These are triple-function pins. Their desired output function must be selected using the peripheral output select register. Note 3: These ports cannot be used for input/output port function. The SBI#, MOD0 and MOD1 pin input levels can be read from these ports. Note: * No pins are available for those in shaded sections . However, because internal circuits are included, make sure the ports are set for low-level output when initialized (to prevent current from flowing in through the port). These pins exist in only the 32180 and are nonexistent in the 32182. However, P223 is an input-only pin and internally pulled high, so that there is no need to set it for output. Figure 8.2.1 Input/Output Ports and Pin Function Assignments 8-4 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers 8.3 Input/Output Port Related Registers The input/output port related registers included in the microcomputer consists of the port data register, port direction register and port operation mode register. Note that P5 is reserved for future use. The tables below show an input/output port related register map. Input/Output Port Related Register Map (1/2) Address +0 address b0 H'0080 0700 H'0080 0702 H'0080 0704 H'0080 0706 H'0080 0708 H'0080 070A H'0080 070C H'0080 070E H'0080 0710 H'0080 0712 H'0080 0714 H'0080 0716 P0 Data Register (P0DATA) P2 Data Register (P2DATA) P4 Data Register (P4DATA) P6 Data Register (P6DATA) P8 Data Register (P8DATA) P10 Data Register (P10DATA) P12 Data Register (P12DATA) P14 Data Register (P14DATA) P16 Data Register (P16DATA) P18 Data Register (P18DATA) P20 Data Register (P20DATA) P22 Data Register (P22DATA) | H'0080 0720 H'0080 0722 H'0080 0724 H'0080 0726 H'0080 0728 H'0080 072A H'0080 072C H'0080 072E H'0080 0730 H'0080 0732 H'0080 0734 H'0080 0736 | +1 address b7 b8 See pages b15 P1 Data Register (P1DATA) P3 Data Register (P3DATA) (Use inhibited area) P7 Data Register (P7DATA) P9 Data Register (P9DATA) P11 Data Register (P11DATA) P13 Data Register (P13DATA) P15 Data Register (P15DATA) P17 Data Register (P17DATA) P19 Data Register (P19DATA) P21 Data Register (P21DATA) (Use inhibited area) 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 (Use inhibited area) P0 Direction Register (P0DIR) P2 Direction Register (P2DIR) P4 Direction Register (P4DIR) P6 Direction Register (P6DIR) P8 Direction Register (P8DIR) P10 Direction Register (P10DIR) P12 Direction Register (P12DIR) P14 Direction Register (P14DIR) P16 Direction Register (P16DIR) P18 Direction Register (P18DIR) P20 Direction Register (P20DIR) P22 Direction Register (P22DIR) P1 Direction Register (P1DIR) P3 Direction Register (P3DIR) (Use inhibited area) P7 Direction Register (P7DIR) P9 Direction Register (P9DIR) P11 Direction Register (P11DIR) P13 Direction Register (P13DIR) P15 Direction Register (P15DIR) P17 Direction Register (P17DIR) P19 Direction Register (P19DIR) P21 Direction Register (P21DIR) (Use inhibited area) 8-8 8-8 8-8 8-8 8-8 8-8 8-8 8-8 8-8 8-8 8-8 8-8 (Use inhibited area) Note: * Although no pins are available for P65-P67, P140-P147, P151, P152, P154-P157, P160-P167, P172, P173, P176, P177, P180-P187, P190-P197, P200-P203, P210-P217, P222, P226 and P227, because internal circuits are included, make sure the ports are set for low-level output when initialized (to prevent current from flowing in through the port). 8-5 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers Input/Output Port Related Register Map (2/2) Address +0 address +1 address b0 H'0080 0740 H'0080 0742 H'0080 0744 H'0080 0746 H'0080 0748 H'0080 074A H'0080 074C H'0080 074E H'0080 0750 H'0080 0752 H'0080 0754 H'0080 0756 | H'0080 0760 H'0080 0762 H'0080 0764 | H'0080 076A | H'0080 0776 b7 b8 P0 Operation Mode Register (P0MOD) P2 Operation Mode Register (P2MOD) P4 Operation Mode Register (P4MOD) P6 Operation Mode Register (P6MOD) P8 Operation Mode Register (P8MOD) P10 Operation Mode Register (P10MOD) P12 Operation Mode Register (P12MOD) P14 Operation Mode Register (P14MOD) P16 Operation Mode Register (P16MOD) P18 Operation Mode Register (P18MOD) P20 Operation Mode Register (P20MOD) P22 Operation Mode Register (P22MOD) See pages b15 P1 Operation Mode Register (P1MOD) P3 Operation Mode Register (P3MOD) Port Input Special Function Control Register (PICNT) P7 Operation Mode Register (P7MOD) P9 Operation Mode Register (P9MOD) P11 Operation Mode Register (P11MOD) P13 Operation Mode Register (P13MOD) P15 Operation Mode Register (P15MOD) P17 Operation Mode Register (P17MOD) P19 Operation Mode Register (P19MOD) P21 Operation Mode Register (P21MOD) (Use inhibited area) 8-9 8-10 8-11 8-21 8-11 8-12 8-12 8-13 8-13 8-14 8-14 8-15 8-15 8-16 8-16 8-17 8-17 8-18 8-18 8-19 (Use inhibited area) Port Group 0,1 Input Level Setting Register Port Group 2,3 Input Level Setting Register (PG01LEV) (PG23LEV) Port Group 4,5 Input Level Setting Register Port Group 6,7 Input Level Setting Register (PG45LEV) (PG67LEV) Port Group 8 Input Level Setting Register (Use inhibited area) (PG8LEV) (Use inhibited area) 8-25 8-25 8-25 P10 Peripheral Output Select Register (P10SMOD) (Use inhibited area) (Use inhibited area) 8-20 P22 Peripheral Output Select Register (P22SMOD) (Use inhibited area) 8-20 Note: * Although no pins are available for P65-P67, P140-P147, P151, P152, P154-P157, P160-P167, P172, P173, P176, P177, P180-P187, P190-P197, P200-P203, P210-P217, P222, P226 and P227, because internal circuits are included, make sure the ports are set for low-level output when initialized (to prevent current from flowing in through the port). 8-6 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers 8.3.1 Port Data Registers P0 Data Register (P0DATA) P1 Data Register (P1DATA) P2 Data Register (P2DATA) P3 Data Register (P3DATA) P4 Data Register (P4DATA) P6 Data Register (P6DATA) P7 Data Register (P7DATA) P8 Data Register (P8DATA) P9 Data Register (P9DATA) P10 Data Register (P10DATA) P11 Data Register (P11DATA) P12 Data Register (P12DATA) P13 Data Register (P13DATA) P14 Data Register (P14DATA) P15 Data Register (P15DATA) P16 Data Register (P16DATA) P17 Data Register (P17DATA) P18 Data Register (P18DATA) P19 Data Register (P19DATA) P20 Data Register (P20DATA) P21 Data Register (P21DATA) P22 Data Register (P22DATA) b0 (b8 1 9 Pn0DT Pn1DT ? ? 2 10 3 11 Pn2DT Pn3DT ? ? 4 12 5 13 6 14 Pn4DT Pn5DT Pn6DT ? ? ? b7 b15) Pn7DT ? n = 0-22 (not including P5) b Bit Name Function R W 0(b8) Pn0DT (Port Pn0 data bit) R W 1(b9) Pn1DT (Port Pn1 data bit) Depends on how the Port Direction Register is set 2(b10) Pn2DT (Port Pn2 data bit) If direction bit = "0" (input mode) 3(b11) Pn3DT (Port Pn3 data bit) 0: Port input pin = "low" 4(b12) Pn4DT (Port Pn4 data bit) 1: Port input pin = "high" 5(b13) Pn5DT (Port Pn5 data bit) If direction bit = "1" (output mode) (Note 1) 6(b14) Pn6DT (Port Pn6 data bit) 0: Port output latch = "0" / Port pin level = "low" 7(b15) Pn7DT (Port Pn7 data bit) 1: Port output latch = "1" / Port pin level = "high" Write to the port output latch Note 1: To select the port data to read, use the Port Input Special Function Control Register's port input data select bit (PISEL). Notes: * No data bits are provided for the following ports (read as "0", writing has no effect): P40, P60, P90-P92, P120-P123, P170, P171, P204-P207 * The SBI# pin level can be read out by reading the P64DT bit. Writing to the P64DT bit has no effect. * The MOD0 and MOD1 pin levels can be read out by reading the P80DT and P81DT bits, respectively. Writing to the P80DT and P81DT bits has no effect. * P221 is input-only port. Writing to the P221DT bit has no effect. * Although no pins are available for P65-P67, P140-P147, P151, P152, P154-P157, P160-P167, P172, P173, P176, P177, P180-P187, P190-P197, P200-P203, P210-P217, P222, P226 and P227, because internal circuits are included, make sure the ports are set for low-level output when initialized (to prevent current from flowing in through the port). * Alhough no pins are available for P223, it is internally pulled high (read as "0", writing has no effect). 8-7 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers 8.3.2 Port Direction Registers P0 Direction Register (P0DIR) P1 Direction Register (P1DIR) P2 Direction Register (P2DIR) P3 Direction Register (P3DIR) P4 Direction Register (P4DIR) P6 Direction Register (P6DIR) P7 Direction Register (P7DIR) P8 Direction Register (P8DIR) P9 Direction Register (P9DIR) P10 Direction Register (P10DIR) P11 Direction Register (P11DIR) P12 Direction Register (P12DIR) P13 Direction Register (P13DIR) P14 Direction Register (P14DIR) P15 Direction Register (P15DIR) P16 Direction Register (P16DIR) P17 Direction Register (P17DIR) P18 P19 P20 P21 P22 0733> 0734> 0735> 0736> b7 b15) Pn4DR Pn5DR Pn6DR Pn7DR 0 0 0 0 n = 0-22 (not including P5) b Bit Name Function 0(b8) Pn0DR (Port Pn0 direction bit) 0: Input mode 1(b9) Pn1DR (Port Pn1 direction bit) 1: Output mode 2(b10) Pn2DR (Port Pn2 direction bit) 3(b11) Pn3DR (Port Pn3 direction bit) 4(b12) Pn4DR (Port Pn4 direction bit) 5(b13) Pn5DR (Port Pn5 direction bit) 6(b14) Pn6DR (Port Pn6 direction bit) 7(b15) Pn7DR (Port Pn7 direction bit) R W R W Notes: * No direction bits are provided for the following ports (read as 0, writing has no effect): P40, P60, P64, P80, P81, P90-P92, P120-P123, P170, P171, P204-P207, P221, P223 * After reset, all ports are set for input mode. * Although no pins are available for P65-P67, P140-P147, P151, P152, P154-P157, P160-P167, P172, P173, P176, P177, P180-P187, P190-P197, P200-P203, P210-P217, P222, P226 and P227, because internal circuits are included, make sure the ports are set for low-level output when initialized (to prevent current from flowing in through the port). 8-8 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers 8.3.3 Port Operation Mode Registers P0 Operation Mode Register (P0MOD) b0 1 2 3 4 5 6 b7 P00MD P01MD P02MD P03MD P04MD P05MD P06MD P07MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 P00MD Port P00 operation mode bit 0: P00 1: DB0 R W 1 P01MD Port P01 operation mode bit 0: P01 1: DB1 R W 2 P02MD Port P02 operation mode bit 0: P02 1: DB2 R W 3 P03MD Port P03 operation mode bit 0: P03 1: DB3 R W 4 P04MD Port P04 operation mode bit 0: P04 1: DB4 R W 5 P05MD Port P05 operation mode bit 0: P05 1: DB5 R W 6 P06MD Port P06 operation mode bit 0: P06 1: DB6 R W 7 P07MD Port P07 operation mode bit 0: P07 1: DB7 R W Note: * P0 Operation Mode Register is useful only when the CPU operates in external extension mode. P1 Operation Mode Register (P1MOD) b8 9 10 11 12 13 14 b15 P10MD P11MD P12MD P13MD P14MD P15MD P16MD P17MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P10MD Port P10 operation mode bit 0: P10 1: DB8 R W 9 P11MD Port P11 operation mode bit 0: P11 1: DB9 R W 10 P12MD Port P12 operation mode bit 0: P12 1: DB10 R W 11 P13MD Port P13 operation mode bit 0: P13 1: DB11 R W 12 P14MD Port P14 operation mode bit 0: P14 1: DB12 R W 13 P15MD Port P15 operation mode bit 0: P15 1: DB13 R W 14 P16MD Port P16 operation mode bit 0: P16 1: DB14 R W 15 P17MD Port P17 operation mode bit 0: P17 1: DB15 R W Note: * P1 Operation Mode Register is useful only when the CPU operates in external extension mode. 8-9 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P2 Operation Mode Register (P2MOD) b0 1 2 3 4 5 6 b7 P20MD P21MD P22MD P23MD P24MD P25MD P26MD P27MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 P20MD Port P20 operation mode bit 0: P20 1: A23 R W 1 P21MD Port P21 operation mode bit 0: P21 1: A24 R W 2 P22MD Port P22 operation mode bit 0: P22 1: A25 R W 3 P23MD Port P23 operation mode bit 0: P23 1: A26 R W 4 P24MD Port P24 operation mode bit 0: P24 1: A27 R W 5 P25MD Port P25 operation mode bit 0: P25 1: A28 R W 6 P26MD Port P26 operation mode bit 0: P26 1: A29 R W 7 P27MD Port P27 operation mode bit 0: P27 1: A30 R W Note: * P2 Operation Mode Register is useful only when the CPU operates in external extension mode. P3 Operation Mode Register (P3MOD) b8 9 10 11 12 13 14 b15 P30MD P31MD P32MD P33MD P34MD P35MD P36MD P37MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P30MD Port P30 operation mode bit 0: P30 1: A15 R W 9 P31MD Port P31 operation mode bit 0: P31 1: A16 R W 10 P32MD Port P32 operation mode bit 0: P32 1: A17 R W 11 P33MD Port P33 operation mode bit 0: P33 1: A18 R W 12 P34MD Port P34 operation mode bit 0: P34 1: A19 R W 13 P35MD Port P35 operation mode bit 0: P35 1: A20 R W 14 P36MD Port P36 operation mode bit 0: P36 1: A21 R W 15 P37MD Port P37 operation mode bit 0: P37 1: A22 R W Note: * P3 Operation Mode Register is useful only when the CPU operates in external extension mode. 8-10 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P4 Operation Mode Register (P4MOD) b0 1 2 3 0 0 0 0 4 5 6 b7 P44MD P45MD P46MD P47MD 0 0 0 0 b Bit Name Function R W 0-3 No function assigned. Fix to "0". 0 0 4 P44MD Port P44 operation mode bit 0: P44 1: CS0# R W 5 P45MD Port P45 operation mode bit 0: P45 1: CS1# R W 6 P46MD Port P46 operation mode bit 0: P46 1: A13 R W 7 P47MD Port P47 operation mode bit 0: P47 1: A14 R W Note: * P4 Operation Mode Register is useful only when the CPU operates in external extension mode. P6 Operation Mode Register (P6MOD) b0 0 1 0 2 0 3 0 4 0 5 6 P65MD P66MD 0 0 b7 0 b Bit Name 0-4 Function R W No function assigned. Fix to "0". 0 0 5, 6 Fix to "0". 0 0 7 No function assigned. Fix to "0". 0 0 Notes: * Port P60 is nonexistent. * P61-P63 are always input/output ports (single-function pins). * Port P64 is the SBI# input-only pin. The pin level can be known by reading the data register for P64. * Although no pins are available for P65 and P66, because internal circuits are included, make sure the ports are set for lowlevel output when initialized (to prevent current from flowing in through the port). 8-11 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P7 Operation Mode Register (P7MOD) b8 9 10 11 12 13 14 b15 P70MD P71MD P72MD P73MD P74MD P75MD P76MD P77MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P70MD Port P70 operation mode bit 0: P70 1: BCLK/WR# R W 9 P71MD Port P71 operation mode bit 0: P71 1: WAIT# R W 10 P72MD Port P72 operation mode bit 0: P72 1: HREQ# R W 11 P73MD Port P73 operation mode bit 0: P73 1: HACK# R W 12 P74MD Port P74 operation mode bit 0: P74 1: RTDTXD R W 13 P75MD Port P75 operation mode bit 0: P75 1: RTDRXD R W 14 P76MD Port P76 operation mode bit 0: P76 1: RTDACK R W 15 P77MD Port P77 operation mode bit 0: P77 1: RTDCLK R W P8 Operation Mode Register (P8MOD) b0 0 1 0 2 3 4 5 6 b7 P82MD P83MD P84MD P85MD P86MD P87MD 0 0 0 0 0 0 b Bit Name 0,1 No function assigned. Fix to "0". 2 P82MD Port P82 operation mode bit 3 Function R W 0 0 0: P82 1: TXD0 R W P83MD Port P83 operation mode bit 0: P83 1: RXD0 R W 4 P84MD Port P84 operation mode bit 0: P84 1: SCLKI0/SCLKO0 R W 5 P85MD Port P85 operation mode bit 0: P85 1: TXD1 R W 6 P86MD Port P86 operation mode bit 0: P86 1: RXD1 R W 7 P87MD Port P87 operation mode bit 0: P87 1: SCLKI1/SCLKO1 R W Note: * Ports P80 and P81 are nonexistent. 8-12 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P9 Operation Mode Register (P9MOD) b8 0 9 0 10 0 11 12 13 14 b15 P93MD P94MD P95MD P96MD P97MD 0 0 0 0 0 b Bit Name Function R W 8-10 No function assigned. Fix to "0". 0 0 11 P93MD Port P93 operation mode bit 0: P93 1: TO16 R W 12 P94MD Port P94 operation mode bit 0: P94 1: TO17 R W 13 P95MD Port P95 operation mode bit 0: P95 1: TO18 R W 14 P96MD Port P96 operation mode bit 0: P96 1: TO19 R W 15 P97MD Port P97 operation mode bit 0: P97 1: TO20 R W Note: * Ports P90-P92 are nonexistent. P10 Operation Mode Register (P10MOD) b0 1 2 3 4 5 6 b7 P100MD P101MD P102MD P103MD P104MD P105MD P106MD P107MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 P100MD Port P100 operation mode bit 0: P100 1: TO8 R W 1 P101MD Port P101 operation mode bit 0: P101 1: TO9/TXD3 (Note 1) R W 2 P102MD Port P102 operation mode bit 0: P102 1: TO10/CTX1 (Note 1) R W 3 P103MD Port P103 operation mode bit 0: P103 1: TO11 R W 4 P104MD Port P104 operation mode bit 0: P104 1: TO12 R W 5 P105MD Port P105 operation mode bit 0: P105 1: TO13 R W 6 P106MD Port P106 operation mode bit 0: P106 1: TO14 R W 7 P107MD Port P107 operation mode bit 0: P107 1: TO15 R W Note 1: These functions are selected using the P10 Peripheral Output Select Register. 8-13 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P11 Operation Mode Register (P11MOD) b8 9 10 11 12 13 14 b15 P110MD P111MD P112MD P113MD P114MD P115MD P116MD P117MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P110MD Port P110 operation mode bit 0: P110 1: TO0 R W 9 P111MD Port P111 operation mode bit 0: P111 1: TO1 R W 10 P112MD Port P112 operation mode bit 0: P112 1: TO2 R W 11 P113MD Port P113 operation mode bit 0: P113 1: TO3 R W 12 P114MD Port P114 operation mode bit 0: P114 1: TO4 R W 13 P115MD Port P115 operation mode bit 0: P115 1: TO5 R W 14 P116MD Port P116 operation mode bit 0: P116 1: TO6 R W 15 P117MD Port P117 operation mode bit 0: P117 1: TO7 R W P12 Operation Mode Register (P12MOD) b0 0 1 0 2 0 3 0 4 5 6 b7 P124MD P125MD P126MD P127MD 0 0 0 0 b Bit Name Function R W 0-3 No function assigned. Fix to "0". 0 0 4 P124MD Port P124 operation mode bit 0: P124 1: TCLK0 R W 5 P125MD Port P125 operation mode bit 0: P125 1: TCLK1 R W 6 P126MD Port P126 operation mode bit 0: P126 1: TCLK2 R W 7 P127MD Port P127 operation mode bit 0: P127 1: TCLK3 R W Note: * Ports P120-P123 are nonexistent. 8-14 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P13 Operation Mode Register (P13MOD) b8 9 10 11 12 13 14 b15 P130MD P131MD P132MD P133MD P134MD P135MD P136MD P137MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P130MD Port P130 operation mode bit 0: P130 1: TIN16 R W 9 P131MD Port P131 operation mode bit 0: P131 1: TIN17 R W 10 P132MD Port P132 operation mode bit 0: P132 1: TIN18 R W 11 P133MD Port P133 operation mode bit 0: P133 1: TIN19 R W 12 P134MD Port P134 operation mode bit 0: P134 1: TIN20 R W 13 P135MD Port P135 operation mode bit 0: P135 1: TIN21/RXD3 (Note 1) R W 14 P136MD Port P136 operation mode bit 0: P136 1: TIN22/CRX1 (Note 1) R W 15 P137MD Port P137 operation mode bit 0: P137 1: TIN23 R W Note 1: Both inputs are enabled. P14 Operation Mode Register (P14MOD) b0 1 2 3 4 5 6 b7 P140MD P141MD P142MD P143MD P144MD P145MD P146MD P147MD 0 0 0 0 0 0 0 0 b Bit Name 0-7 Fix to "0". Function R W 0 0 Note : * Although no pins are available for P140 to P147, because internal circuits are included, make sure the ports are set for lowlevel output when initialized (to prevent current from flowing in through the port). 8-15 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P15 Operation Mode Register (P15MOD) b8 9 10 11 12 13 14 b15 P150MD P151MD P152MD P153MD P154MD P155MD P156MD P157MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P150MD Port P150 operation mode bit 0: P150 1: TIN0 R W 0 0 0: P153 1: TIN3 R W 0 0 9, 10 Fix to "0". 11 P153MD Port P153 operation mode bit 12-15 Fix to "0". Note : * Although no pins are available for P151, P152 and P154-P157, because internal circuits are included, make sure the ports are set for low-level output when initialized (to prevent current from flowing in through the port). P16 Operation Mode Register (P16MOD) b0 1 2 3 4 5 6 b7 P160MD P161MD P162MD P163MD P164MD P165MD P166MD P167MD 0 0 0 0 0 0 0 0 b Bit Name 0-7 Fix to "0". Function R W 0 0 Note : * Although no pins are available for P160 to P167, because internal circuits are included, make sure the ports are set for lowlevel output when initialized (to prevent current from flowing in through the port). 8-16 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P17 Operation Mode Register (P17MOD) b8 0 9 0 10 11 12 13 14 b15 P172MD P173MD P174MD P175MD P176MD P177MD 0 0 0 0 0 0 b Bit Name Function 8, 9 No function assigned. Fix to "0". R W 0 0 10, 11 Fix to "0". 0 0 12 P174MD Port P174 operation mode bit 0: P174 1: TXD2 R W 13 P175MD Port P175 operation mode bit 0: P175 1: RXD2 R W 14, 15 Fix to "0". 0 0 Notes: * Ports P170 and P171 are nonexistent. * Although no pins are available for P172, P173, P176 and P177, because internal circuits are included, make sure the ports are set for low-level output when initialized (to prevent current from flowing in through the port). P18 Operation Mode Register (P18MOD) b0 1 2 3 4 5 6 b7 P180MD P181MD P182MD P183MD P184MD P185MD P186MD P187MD 0 0 0 0 0 0 0 0 b Bit Name 0-7 Fix to "0". Function R W 0 0 Note : * Although no pins are available for P180 to P187, because internal circuits are included, make sure the ports are set for lowlevel output when initialized (to prevent current from flowing in through the port). 8-17 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P19 Operation Mode Register (P19MOD) b8 9 10 11 12 13 14 b15 P190MD P191MD P192MD P193MD P194MD P195MD P196MD P197MD 0 0 0 0 0 0 0 0 b Bit Name 8-15 Fix to "0" Function R W 0 0 Note : * Although no pins are available for P190 to P197, because internal circuits are included, make sure the ports are set for lowlevel output when initialized (to prevent current from flowing in through the port). P20 Operation Mode Register (P20MOD) b0 1 2 3 P200MD P201MD P202MD P203MD 0 0 0 0 4 5 6 b7 0 0 0 0 b Bit Name Function R W 0-3 Fix to "0". 0 0 4-7 No function assigned. Fix to "0". 0 0 Notes : * Although no pins are available for P200 to P203, because internal circuits are included, make sure the ports are set for low level output when initialized (to prevent current from flowing in through the port). * Ports P204-P207 are nonexistent. P21 Operation Mode Register (P21MOD) b8 9 10 11 12 13 14 b15 P210MD P211MD P212MD P213MD P214MD P215MD P216MD P217MD 0 0 0 0 0 0 0 0 b Bit Name 8-15 Fix to "0". Function R W 0 0 Note : * Although no pins are available for P210 to P217, because internal circuits are included, make sure the ports are set for lowlevel output when initialized (to prevent current from flowing in through the port). 8-18 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers P22 Operation Mode Register (P22MOD) b0 1 P220MD 0 0 2 3 4 5 6 b7 P222MD P223MD P224MD P225MD P226MD P227MD 0 0 0 0 0 0 b Bit Name Function R W 0 P220MD Port P220 operation mode bit 0: P220 1: CTX0 R W 1 No function assigned. Fix to "0". 0 0 2, 3 Fix to "0". 0 0 4 P224MD Port P224 operation mode bit (Note 1) 0: P224 1: A11/CS2# (Note 2) R W 5 P225MD Port P225 operation mode bit (Note 1) 0: P225 1: A12/CS3# (Note 2) R W 6, 7 Fix to "0". 0 0 Note 1: Port P224, P225 operation mode bits are useful only when the CPU operates in external extension mode. Note 2: These functions are selected using the P22 Peripheral Output Select Register. Notes: * P221 is the CAN input-only pin. * Although no pins are available for P222, P223, P226 and P227, because internal circuits are included, make sure the ports are set for low-level output when initialized (to prevent current from flowing in through the port). Port 223 is an input-only pin so that there is no need to set it for output. 8-19 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers 8.3.4 Port Peripheral Output Select Registers P10 Peripheral Output Select Register (P10SMOD) b0 1 2 3 4 5 6 b7 0 P101 SMD 0 P102 SMD 0 0 0 0 0 0 b Bit Name Function 0 No function assigned. Fix to "0". 1 P101SMD Port P101 peripheral output select mode bit 2 P102SMD Port P102 peripheral output select mode bit 3-7 No function assigned. Fix to "0". R W 0 0 0: TO9 1: TXD3 R W 0: TO10 1: CTX1 R W 0 0 P22 Peripheral Output Select Register (P22SMOD) b0 0 1 0 2 0 3 4 5 6 b7 0 P224 SMD 0 P225 SMD 0 0 0 b Bit Name Function R W 0-3 No function assigned. Fix to "0". 0 0 4 P224SMD Port P224 peripheral output select mode bit 0: A11 1: CS2# R W 5 P225SMD Port P225 peripheral output select mode bit 0: A12 1: CS3# R W 6-7 No function assigned. Fix to "0". 0 0 8-20 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers 8.3.5 Port Input Special Function Control Register Port Input Special Function Control Register (PICNT) b8 9 10 11 12 13 XSTAT 0 0 0 0 0 0 14 b15 PISEL PIEN0 0 0 b Bit Name 8-10 No function assigned. Fix to "0". 11 XSTAT XIN oscillation status bit 12-13 No function assigned. Fix to "0". 14 PISEL Port input data select bit 15 Function R W 0 0 0: XIN oscillating 1: XIN inactive R(Note 1) 0 0 0: Content of port output latch 1: Port pin level R W PIEN0 0: Disable input R W Port input enable bit 1: Enable input Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. (1) XSTAT (XIN oscillation status) bit (Bit 11) 1) Conditions under which XSTAT is set to "1" XSTAT is set to "1" upon detecting that XIN oscillation has stopped. When XIN remains at the same level for a predetermined time (3 BCLK periods up to 4 BCLK periods), XIN oscillation is assumed to have stopped. When operating normally, XIN changes state (high or low) once every BCLK period. 2) Conditions under which XSTAT is cleared to "0" XSTAT is cleared to "0" by a system reset or by writing "0". If XSTAT is cleared at the same time it is set in (1) above, the former has priority. Writing "1" to XSTAT is ignored. 3) Method for using XSTAT to detect XIN oscillation stoppage Because the M32R/ECU internally contains a PLL, the internal clock remains active even when XIN oscillation has stopped. By reading XSTAT without clearing it never once after reset, it is possible to know whether XIN has ever stopped since the reset signal was deasserted. Similarly, by reading XSTAT after clearing it by writing "0", it is possible to know the current oscillating status of XIN. (However, there must be an interval of at least 5 BCLK periods (20 CPU clock periods) between read and write.) 8-21 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers (1) To know whether XIN oscillation has ever stopped after being reset Read XSTAT (2) To know the current status of XIN oscillation Write XSTAT = 0 Wait before inspecting XSTAT Wait for 20 CPU clock periods or more Read XSTAT Figure 8.3.1 Procedure for Setting XSTAT (2) PISEL (Port input data select) bit (Bit 14) When the Port Direction Register is set for output, this bit selects the target data to be read from the Port Data Register. This bit is unaffected by the Port Operation Mode Register. Table 8.3.1 PISEL Bit Settings and the Target Data To Be Read from the Port Data Register Direction Register PISEL Settings Target Data to Be Read 0 (input) 0/1 Port pin level 1 (output) 0 Port output latch 1 Port pin level 8-22 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.3 Input/Output Port Related Registers (3) PIEN0 (Port input enable) bit (Bit 15) This bit is used to prevent current from flowing into the port input pins. Because the input/output ports are disabled against input after reset, if any ports need to be used in input mode they must be enabled for input by setting this bit to "1". When disabled against input, the input/output ports are in a state equivalent to a situation where the pin has a low-level input applied. Consequently, if a peripheral input function is selected for any port (uncontrolled pin) while disabled against input by using the Port Operation Mode Register, the port may operate unexpectedly due to the low-level input on it. The following shows the procedure for selecting a peripheral input function. (1) Enable the port for input when its pin level is valid (high or low) (2) Select a function using the port operation mode bit During boot mode, the pins shared with serial I/O functions are enabled for input and can therefore be protected against current flowing in from the pins other than serial I/O functions during flash programming by clearing PIEN0. The table below lists the pins that can be controlled by the PIEN0 bit in each operation mode. Table 8.3.2 Pins Controllable by PIEN0 Bit Mode Name Single-chip External extension Microprocessor Boot (single-chip) Controllable Pins Uncontrolled Pins P00-P07, P10-P17, P20-P27 P30-P37, P41-P47, P61-P63 P65-P67, P70-P77, P82-P87 P93-P97, P100-P107, P110-P117 P124-P127, P130-P137, P140-P147 P150-P157, P160-P167, P172-P177 P180-P187, P190-P197, P200-P203 P210-P217, P220, P222, P224-P227 P221, P223, FP, MOD0, MOD1, SBI#, RESET# P61-P63, P65-P67, P70-P77 P82-P87, P93-P97, P100-P107 P110-P117, P124-P127, P130-P137 P140-P147, P150-P157, P160-P167 P172-P177, P180-P187, P190-P197 P200-P203, P210-P217, P220, P222 P00-P07, P10-P17 P20-P27, P30-P37 P41-P47, P221, P223-P227 FP, MOD0, MOD1, SBI#, RESET# P00-P07, P10-P17, P20-P27 P30-P37, P41-P47, P61-P63 P67, P70-P77, P93-P97 P100, P102-P107, P110-P117, P124-P127 P130-P134, P137, P140-P147, P150-P157 P160-P167, P172-P173, P180-P187 P190-P197, P210-P217, P220 P222, P224-P227 P65, P66, P82-P87, P101 P135-P136, P174-P177, P200-P203 P221, P223, FP, MOD0, MOD1, SBI#, RESET# Note : * No pins are available for P65-P67, P140-P147, P151, P152, P154-P157, P160-P167, P172, P173, P176, P177, P180-P187, P190-P197, P200-P203, P210-P217, P222, P223, P226 and P227. 8-23 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.4 Port Input Level Switching Function 8.4 Port Input Level Switching Function The port input level switching function allows the port threshold to be switched to one of three voltage levels (with or without Schmitt as selected) in units of the following port group. Port group 0 Port group 3 Port group 4 32182 Group Port group 5 Port group 6 Port group 6 Port group 7 Port group 7 Port group 8 Port group 0 Port group 8 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 P97/TO20 P117/TO7 P116/TO6 P115/TO5 P114/TO4 P113/TO3 P112/TO2 P111/TO1 P110/TO0 P127/TCLK3 P126/TCLK2 P125/TCLK1 P124/TCLK0 EXCVCC VCCE VSS VSS SBI# P63 P62 P61 AD0IN11 AD0IN10 AD0IN9 AD0IN8 AVSS0 AD0IN7 AD0IN6 AD0IN5 AD0IN4 AD0IN3 AD0IN2 AD0IN1 AD0IN0 VREF0 AVCC0 P150/TIN0 P153/TIN3 P130/TIN16 P131/TIN17 P132/TIN18 P133/TIN19 P134/TIN20 P135/TIN21/RXD3 P136/TIN22/CRX1 P137/TIN23 P220/CTX0 P221/CRX0 VCCE VCNT OSC-VCC XIN OSC-VSS XOUT RESET# P74/RTDTXD P75/RTDRXD P76/RTDACK P77/RTDCLK JTDI JTDO JTRST JTCK JTMS P100/TO8 P101/TO9/TXD3 P102/TO10/CTX1 P103/TO11 P104/TO12 P105/TO13 P106/TO14 P107/TO15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 P174/TXD2 P175/RXD2 FP MOD0 MOD1 EXCVDD VSS EXCVCC VDDE VSS VCCE P17/DB15 P16/DB14 P15/DB13 P14/DB12 P13/DB11 P12/DB10 P11/DB9 P10/DB8 P07/DB7 P06/DB6 P05/DB5 P04/DB4 P03/DB3 P02/DB2 P01/DB1 P00/DB0 P73/HACK# P72/HREQ# P71/WAIT# P70/BCLK/WR# P43/RD# P42/BHW#/BHE# P41/BLW#/BLE# VCC-BUS VSS Port group 1 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 P82/TXD0 P83/RXD0 P84/SCLKI0/SCLKO0 P85/TXD1 P86/RXD1 P87/SCLKI1/SCLKO1 VSS VCCE P44/CS0# P45/CS1# P224/A11/CS2# P225/A12/CS3# P46/A13 P47/A14 P30/A15 P31/A16 P32/A17 P33/A18 P34/A19 P35/A20 P36/A21 P37/A22 P20/A23 P21/A24 P22/A25 P23/A26 P24/A27 P25/A28 P26/A29 P27/A30 VCC-BUS VSS P93/TO16 P94/TO17 P95/TO18 P96/TO19 Group 0: P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224-P227 Group 1: P65-P67, P82-P87, P172-P177 Group 2: P160-P167, P210-P217 Group 3: P93-P97, P110-P117 Group 4: P124-P127, P140-P147, P190-P197 Group 5: P61-P63, SBI# Group 6: P74-P77, P180-P187, P100-P107 Group 7: P136, P220-P223 Group 8: P130-P135, P137, P150-P157, P200-P203 Figure 8.4.1 Port Input Level Switching Groups 8-24 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.4 Port Input Level Switching Function Port Group 0,1 Input Level Setting Register (PG01LEV) b0 1 2 3 4 5 6 b7 WF0SEL PT0SEL VT0SEL0 VT0SEL1 WF1SEL PT1SEL VT1SEL0 VT1SEL1 0 0 0 1 0 0 0 1 Port Group 2,3 Input Level Setting Register (PG23LEV) b8 9 10 11 12 13 14 b15 WF2SEL PT2SEL VT2SEL0 VT2SEL1 WF3SEL PT3SEL VT3SEL0 VT3SEL1 0 0 0 1 0 0 0 1 Port Group 4,5 Input Level Setting Register (PG45LEV) b0 1 2 3 4 5 6 b7 WF4SEL PT4SEL VT4SEL0 VT4SEL1 WF5SEL PT5SEL VT5SEL0 VT5SEL1 0 0 0 1 0 0 0 1 Port Group 6,7 Input Level Setting Register (PG67LEV) b8 9 10 11 12 13 14 b15 WF6SEL PT6SEL VT6SEL0 VT6SEL1 WF7SEL PT7SEL VT7SEL0 VT7SEL1 0 0 0 1 0 0 0 1 Port Group 8 Input Level Setting Register (PG8LEV) b0 1 2 3 4 5 6 b7 0 0 0 0 WF8SEL PT8SEL VT8SEL0 VT8SEL1 0 0 0 1 Note: * The PG8LEV register bits 4-7 have no functions assigned. b Bit Name Function R W 0(4) 8(12) WFnSEL Group n dual-function input select bit 0: Select standard input for each pin 1: Select threshold switching function R W 1(5) 9(13) PTnSEL Group n port input select bit 0: Select CMOS input 1: Select Schmitt input R W 2-3 (6-7) 10-11 (14-15) VTnSEL Group n input threshold select bit 00: Select 0.35 VCCE 01: Select 0.5 VCCE 10: Select 0.7 VCCE 11: Settings inhibited 00: VT+ = 0.5 VCCE VT- = 0.35 VCCE 01: Settings inhibited 10: VT+ = 0.7 VCCE VT- = 0.35 VCCE 11: VT+ = 0.7 VCCE VT- = 0.5VCCE R W Notes: * The following ports operate with the VCC-BUS power supply, and not with the VCCE power supply. Therefore, the reference voltages for these ports are the VCC-BUS input voltage. P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224-P227 * No pins are available for P65-P67, P140-P147, P151, P152, P154-P157, P160-P167, P172, P173, P176, P177, P180P187, P190-P197, P200-P203, P210-P217, P222, P223, P226 and P227. 8-25 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.4 Port Input Level Switching Function 0.7VCCE S VT+ S VT- Schmitt 0.5VCCE Pin Port input S Input function enable 0.35VCCE Threshold S CMOS PTnSEL VTnSELL Standard input level for each peripheral function pin S Peripheral function input WFnSEL Figure 8.4.2 Port Level Switching Function 8-26 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.5 Port Peripheral Circuits 8.5 Port Peripheral Circuits Figures 8.5.1 through 8.5.4 show the peripheral circuit diagrams of the input/output ports described in the preceding pages. P00-P07(DB0-DB7) P10-P17(DB8-DB15) P20-P27(A23-A30) P30-P37(A15-A22) P46, P47(A13, A14) P71(WAIT#) P73(HACK#) P74(RTDTXD) P76(RTDACK) P224(A11/CS2#) P225(A12/CS3#) Direction register Data bus Port output latch Input data select bit Operation mode register (Note 1) Port level switching function (Standard: peripheral TTL) Peripheral function input Input function enable P44(CS0#) P45(CS1#) P70(BCLK/WR#) P82(TXD0) P85(TXD1) P93-P97(TO16-TO20) P100(TO8) P103-P107(TO11-TO15) P110-P117(TO0-TO7) P174(TXD2) P220(CTX0) Direction register Data bus Port output latch Input data select bit Operation mode register (Note 1) Port level switching function (No peripheral input) Peripheral function output Input function enable Note 1: For details about the port level switching function, see Section 8.4, "Port Input Level Switching Function." Notes: * During processor mode, P00-P07, P10-P17, P20-P27, P30-P37, P45-P47, P224, and P225 are external bus interface control signal pins, but their functional description in this block diagram is omitted. * Although P224 and P225 serve triple functions, their functional description in this block diagram is omitted. * The circle denotes a pin. * The symbol denotes a parasitic diode. Make sure the voltage applied to each pin does not exceed the VCCE voltage. * The input capacitance of each pin is approximately 10 pF. Figure 8.5.1 Port Peripheral Circuit Diagram (1) 8-27 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.5 Port Peripheral Circuits P101(TO9/TXD3) P102(TO10/CTX1) Direction register Data bus Port output latch Input data select bit Operation mode register (Note 1) Port level switching function (No peripheral input) Peripheral output select register Input function enable Peripheral function output 1 Peripheral function output 2 P72(HREQ#) P75(RTDRXD) P77(RTDCLK) P83(RXD0) P86(RXD1) P124-P127(TCLK0-TCLK3) P130-P134(TIN16-TIN20) P137(TIN23) P150, P153(TIN0, TIN3) P175(RXD2) Direction register Data bus Port output latch Input data select bit (Note 1) Port level switching function (Standard: peripheral Schmitt) Operation mode register Peripheral function input Input function enable P135(TIN21/RXD3) P136(TIN22/CRX1) Direction register Data bus Port output latch Input data select bit (Note 1) Port level switching function (Standard: peripheral Schmitt) Operation mode register Peripheral function input 1 Peripheral function input 2 Input function enable Note 1: For details about the port level switching function, see Section 8.4, "Port Input Level Switching Function." Notes: * The circle denotes a pin. * The symbol denotes a parasitic diode. Make sure the voltage applied to each pin does not exceed the VCCE voltage. * The input capacitance of each pin is approximately 10 pF. Figure 8.5.2 Port Peripheral Circuit Diagram (2) 8-28 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.5 Port Peripheral Circuits P41(BLW#/BLE#) P42(BHW#/BHE#) P43(RD#) P61-P63 Direction register Data bus Port output latch Input data select bit (Note 1) Port level switching function (No peripheral input) Input function enable Direction register Data bus Port output latch Input data select bit P84(SCLKI0/SCLKO0) P87(SCLKI1/SCLKO1) Operation mode register UART/CSIO function select bit Internal/external clock select bit (Note 1) Port level switching function (Standard: peripheral Schmitt) SCLKOi output SCLKIi input Input function enable Note 1: For details about the port level switching function, see Section 8.4, "Port Input Level Switching Function." Notes: * During processor and external extension modes, P41-P43 are external bus interface control signal pins, but their functional description in this block diagram is omitted. * The circle denotes a pin. * The symbol denotes a parasitic diode. Make sure the voltage applied to each pin does not exceed the VCCE voltage. * The input capacitance of each pin is approximately 10 pF. Figure 8.5.3 Port Peripheral Circuit Diagram (3) 8-29 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.5 Port Peripheral Circuits SBI# P221(CRX0) Data bus Port level switching function (Standard: peripheral Schmitt) SBI#, CRX0 MOD0, MOD1 FP JTDI, JTCK, JTMS Output control JTDO RESET#, XIN, JTRST OSC-VCC, VCCE, VDDE VCC-BUS, EXCVCC, EXCVDD AD0IN0-12, VREF0, XOUT Note 1: For details about the port level switching function, see Section 8.4, "Port Input Level Switching Function." Notes: * The circle denotes a pin. * The symbol denotes a parasitic diode. Make sure the voltage applied to each pin does not exceed the VCCE voltage. Figure 8.5.4 Port Peripheral Circuit Diagram (4) 8-30 32182 Group User's Manual (Rev.1.0) INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8 8.6 Precautions on Input/Output Ports 8.6 Precautions on Input/Output Ports * When using input/output ports in output mode Because the value of the Port Data Register is undefined after reset, the Port Data Register must have its initial value set in it before the Port Direction Register can be set for output. Conversely, if the Port Direction Register is set for output before setting data in the Port Data Register, the Port Data Register outputs an undefined value until any data is written into it. * About the port input disable function Because the input/output ports are disabled against input after reset, they must be enabled for input by setting the Port Input Enable (PIEN0) bit to "1" before their input functions can be used. When disabled against input, the input/output ports are in a state equivalent to a situation where the pin has a low-level input applied. Consequently, if a peripheral input function is selected for any port (uncontrolled pin) while disabled against input by using the Port Operation Mode Register, the port may operate unexpectedly due to the low-level input on it. 8-31 32182 Group User's Manual (Rev.1.0) 8 INPUT/OUTPUT PORTS AND PIN FUNCTIONS 8.6 Precautions on Input/Output Ports This page is blank for reasons of layout. 8-32 32182 Group User's Manual (Rev.1.0) CHAPTER 9 DMAC 9.1 9.2 9.3 9.4 Outline of the DMAC DMAC Related Registers Functional Description of the DMAC Precautions about the DMAC DMAC 9 9.1 Outline of the DMAC 9.1 Outline of the DMAC The microcomputer internally contains a 10-channel DMAC (Direct Memory Access Controller). It allows data to be transferred at high speed between internal peripheral I/Os, between internal RAM and internal peripheral I/O, or between internal RAMs, as initiated by a software trigger or requested from an internal peripheral I/O. Table 9.1.1 Outline of the DMAC Item Description Number of channels 10 channels Transfer request sources * Software trigger * Request from internal peripheral I/Os: A-D converter, multijunction timer, serial I/O (reception completed, transmit buffer empty) or CAN * DMA channels can be cascaded (Note 1) Maximum number of 65,536 times times transferred Transferable address * 64 Kbytes (address space from H'0080 0000 to H'0080 FFFF) space * Transfers between internal peripheral I/Os, between internal RAM and internal peripheral I/O, and between internal RAMs are supported. Transfer data size 16 or 8 bits Transfer method Single transfer DMA (control of the internal bus is relinquished for each transfer performed), dualaddress transfer Transfer mode Single transfer mode Direction of transfer One of three modes can be selected for the source and destination: * Address fixed * Address incremental * Ring buffered Channel priority DMA0 > DMA1 > DMA2 > DMA3 > DMA4 > DMA5 > DMA6 > DMA7 > DMA8 > DMA9 (Priority is fixed) Maximum transfer rate 13.3 Mbytes per second (when internal peripheral clock BCLK = 20 MHz) Interrupt request Group interrupt request can be generated when each transfer count register underflows. Transfer area 64 Kbytes from H'0080 0000 to H'0080 FFFF (Note 2) Note 1: The DMA channels can be cascaded in the manner described below. * Start DMA transfer on DMA1 upon completion of one DMA transfer on DMA0 * Start DMA transfer on DMA5 upon completion of all DMA transfers on DMA0 (upon underflow of the transfer count register) * Start DMA transfer on DMA2 upon completion of one DMA transfer on DMA1 * Start DMA transfer on DMA0 upon completion of one DMA transfer on DMA2 * Start DMA transfer on DMA3 upon completion of one DMA transfer on DMA2 * Start DMA transfer on DMA4 upon completion of one DMA transfer on DMA3 * Start DMA transfer on DMA6 upon completion of one DMA transfer on DMA5 * Start DMA transfer on DMA7 upon completion of one DMA transfer on DMA6 * Start DMA transfer on DMA5 upon completion of one DMA transfer on DMA7 * Start DMA transfer on DMA8 upon completion of one DMA transfer on DMA7 * Start DMA transfer on DMA9 upon completion of one DMA transfer on DMA8 Note 2: Address space from H'0081 0000 to H'0081 3FFF cannot be transferred into the internal RAM area. 9-2 32182 Group User's Manual (Rev.1.0) DMAC 9 9.1 Outline of the DMAC Input event bus Output event bus 3 2 1 0 0 1 2 3 AD0 conversion completed TIO8_udf TIN0S S AD0 conversion completed TIO8_udf S Software start DMA0 udf end DMA1 udf end DMA2 udf end DMA3 udf end DMA4 udf end CAN0_S0/S15 TIN3S S Software start S TIN18S Software start S SIO0_TXD SIO1_RXD Software start S SIO0_RXD Software start S CAN0_S1/S14 S TIN0S S TIN19S SIO0_TXD S TIN20S DMA0-4 interrupt Software start S SIO1_RXD SIO2_RXD S DMA5 udf end DMA6 udf end DMA7 udf end DMA8 udf end DMA9 udf end SIO1_TXD S Software start S SIO3_TXD SIO2_TXD S S Software start SIO3_RXD Software start S S SIO3_TXD S Software start 3 2 1 0 S DMA5-9 interrupt 0 1 2 3 Figure 9.1.1 Block Diagram of the DMAC 9-3 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers 9.2 DMAC Related Registers The diagram below shows a memory map of the DMAC related registers. DMAC Related Register Map (1/2) Address +0 address b0 H'0080 0400 | H'0080 0408 | H'0080 0410 H'0080 0412 H'0080 0414 H'0080 0416 H'0080 0418 H'0080 041A H'0080 041C H'0080 041E H'0080 0420 H'0080 0422 H'0080 0424 H'0080 0426 H'0080 0428 H'0080 042A H'0080 042C H'0080 042E H'0080 0430 H'0080 0432 H'0080 0434 H'0080 0436 H'0080 0438 H'0080 043A H'0080 043C H'0080 043E +1 address See pages b7 b8 b15 DMA0-4 Interrupt Request Status Register DMA0-4 Interrupt Request Mask Register (DM04ITST) (DM04ITMK) (Use inhibited area) 9-24 9-25 DMA5-9 Interrupt Request Status Register DMA5-9 Interrupt Request Mask Register (DM59ITST) (DM59ITMK) (Use inhibited area) 9-24 9-25 DMA0 Channel Control Register 0 DMA0 Channel Control (DM0CNT0) (DM0CNT1) DMA0 Source Address Register (DM0SA) DMA0 Destination Address Register (DM0DA) DMA0 Transfer Count Register (DM0TCT) DMA5 Channel Control Register 0 DMA5 Channel Control (DM5CNT0) (DM5CNT1) DMA5 Source Address Register (DM5SA) DMA5 Destination Address Register (DM5DA) DMA5 Transfer Count Register (DM5TCT) DMA1 Channel Control Register 0 DMA1 Channel Control (DM1CNT0) (DM1CNT1) DMA1 Source Address Register (DM1SA) DMA1 Destination Address Register (DM1DA) DMA1 Transfer Count Register (DM1TCT) DMA6 Channel Control Register 0 DMA6 Channel Control (DM6CNT0) (DM6CNT1) DMA6 Source Address Register (DM6SA) DMA6 Destination Address Register (DM6DA) DMA6 Transfer Count Register (DM6TCT) DMA2 Channel Control Register 0 DMA2 Channel Control (DM2CNT0) (DM2CNT1) DMA2 Source Address Register (DM2SA) DMA2 Destination Address Register (DM2DA) DMA2 Transfer Count Register (DM2TCT) DMA7 Channel Control Register 0 DMA7 Channel Control (DM7CNT0) (DM7CNT1) DMA7 Source Address Register (DM7SA) DMA7 Destination Address Register (DM7DA) DMA7 Transfer Count Register (DM7TCT) 9-4 Register 1 9-6 9-19 9-20 9-21 Register 1 9-11 9-19 9-20 9-21 Register 1 9-7 9-19 9-20 9-21 Register 1 9-12 9-19 9-20 9-21 Register 1 9-8 9-19 9-20 9-21 Register 1 9-13 9-19 9-20 9-21 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMAC Related Register Map (2/2) Address +0 address b0 H'0080 0440 H'0080 0442 H'0080 0444 H'0080 0446 H'0080 0448 H'0080 044A H'0080 044C H'0080 044E H'0080 0450 H'0080 0452 H'0080 0454 H'0080 0456 H'0080 0458 H'0080 045A H'0080 045C H'0080 045E H'0080 0460 H'0080 0462 H'0080 0464 H'0080 0466 H'0080 0468 | H'0080 0470 H'0080 0472 H'0080 0474 H'0080 0476 H'0080 0478 +1 address See pages b7 b8 b15 DMA3 Channel Control Register 0 DMA3 Channel Control (DM3CNT0) (DM3CNT1) DMA3 Source Address Register (DM3SA) DMA3 Destination Address Register (DM3DA) DMA3 Transfer Count Register (DM3TCT) DMA8 Channel Control Register 0 DMA8 Channel Control (DM8CNT0) (DM8CNT1) DMA8 Source Address Register (DM8SA) DMA8 Destination Address Register (DM8DA) DMA8 Transfer Count Register (DM8TCT) DMA4 Channel Control Register 0 DMA4 Channel Control (DM4CNT0) (DM4CNT1) DMA4 Source Address Register (DM4SA) DMA4 Destination Address Register (DM4DA) DMA4 Transfer Count Register (DM4TCT) DMA9 Channel Control Register 0 DMA9 Channel Control (DM9CNT0) (DM9CNT1) DMA9 Source Address Register (DM9SA) DMA9 Destination Address Register (DM9DA) DMA9 Transfer Count Register (DM9TCT) DMA0 Software Request Generation Register (DM0SRI) DMA1 Software Request Generation Register (DM1SRI) DMA2 Software Request Generation Register (DM2SRI) DMA3 Software Request Generation Register (DM3SRI) DMA4 Software Request Generation Register (DM4SRI) (Use inhibited area) DMA5 Software Request Generation (DM5SRI) DMA6 Software Request Generation (DM6SRI) DMA7 Software Request Generation (DM7SRI) DMA8 Software Request Generation (DM8SRI) DMA9 Software Request Generation (DM9SRI) 9-5 Register 1 9-9 9-19 9-20 9-21 Register 1 9-14 9-19 9-20 9-21 Register 1 9-10 9-19 9-20 9-21 Register 1 9-15 9-19 9-20 9-21 9-18 9-18 9-18 9-18 9-18 Register 9-18 Register 9-18 Register 9-18 Register 9-18 Register 9-18 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers 9.2.1 DMA Channel Control Registers DMA0 Channel Control Register 0 (DM0CNT0) b0 1 2 MDSEL0 TREQF0 0 0 3 0 4 TENL0 REQSL0 0 5 6 b7 TSZSL0 SADSL0 DADSL0 0 0 0 0 b Bit Name Function R W 0 MDSEL0 DMA0 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF0 DMA0 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL0 DMA0 transfer request source select bit 00: 01: 10: 11: R W 4 TENL0 DMA0 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL0 DMA0 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL0 DMA0 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL0 DMA0 destination address direction select bit 0: Fixed 1: Increment R W Software start or one DMA2 transfer completed A-D0 conversion completed MJT (TIO8_udf) Extended DMA0 transfer request source select (DMA0 Channel Control Register 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA0 Channel Control Register 1 (DM0CNT1) b8 9 10 11 12 13 14 b15 REQESEL0 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL0 Extended DMA0 transfer request source select bit Function 0000: MJT (input event bus 2) 0001: Settings inhibited 0010: CAN (CAN0_S0/S15) 0011: Common 1) MJT (input event bus 1) 0100: Common 2) MJT (input event bus 3) 0101: Common 3) MJT (output event bus 2) 0110: Common 4) MJT (output event bus 3) 0111: Common 5) AD0 conversion completed 1000: Common 6) MJT (TIN0S) 1001: Common 7) MJT (TIO8_udf) 1010: Settings inhibited | | R W 0 0 R W 1111: Settings inhibited 9-6 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA1 Channel Control Register 0 (DM1CNT0) b0 1 2 MDSEL1 TREQF1 0 0 3 0 4 TENL1 REQSL1 0 5 6 b7 TSZSL1 SADSL1 DADSL1 0 0 0 0 b Bit Name Function R W 0 MDSEL1 DMA1 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF1 DMA1 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL1 DMA1 transfer request source select bit 00: 01: 10: 11: R W 4 TENL1 DMA1 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL1 DMA1 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL1 DMA1 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL1 DMA1 destination address direction select bit 0: Fixed 1: Increment R W Software start MJT (output event bus 0) Settings inhibited Extended DMA1 transfer request source select (DMA1 Channel Control Register 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA1 Channel Control Register 1 (DM1CNT1) b8 9 10 11 12 13 14 b15 REQESEL1 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL1 Extended DMA1 transfer request source select bit Function 0000: 0001: 0010: 0011: 0100: 0101: 0110: 0111: 1000: 1001: 1010: | One DMA0 transfer completed MJT(TIN3S) Settings inhibited Common 1) MJT (input event bus 1) Common 2) MJT (input event bus 3) Common 3) MJT (output event bus 2) Common 4) MJT (output event bus 3) Common 5) AD0 conversion completed Common 6) MJT (TIN0S) Common 7) MJT (TIO8_udf) Settings inhibited | R W 0 0 R W 1111: Settings inhibited 9-7 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA2 Channel Control Register 0 (DM2CNT0) b0 1 2 MDSEL2 TREQF2 0 0 3 REQSL2 0 0 4 5 TENL2 TSZSL2 0 0 6 b7 SADSL2 DADSL2 0 0 b Bit Name Function R W 0 MDSEL2 DMA2 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF2 DMA2 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL2 DMA2 transfer request source select bit 00: 01: 10: 11: R W 4 TENL2 DMA2 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL2 DMA2 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL2 DMA2 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL2 DMA2 destination address direction select bit 0: Fixed 1: Increment R W Software start MJT (output event bus 1) MJT (TIN18S) Extended DMA2 transfer request source select (DMA2 Channel Control Register 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA2 Channel Control Register 1 (DM2CNT1) b8 9 10 11 12 13 14 b15 REQESEL2 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL2 Extended DMA2 transfer request source select bit Function 0000: 0001: 0010: 0011: 0100: 0101: 0110: 0111: 1000: 1001: 1010: | One DMA1 transfer completed Settings inhibited CAN(CAN0_S1/S14) Common 1) MJT (input event bus 1) Common 2) MJT (input event bus 3) Common 3) MJT (output event bus 2) Common 4) MJT (output event bus 3) Common 5) AD0 conversion completed Common 6) MJT (TIN0S) Common 7) MJT (TIO8_udf) Settings inhibited | R W 0 0 R W 1111: Settings inhibited 9-8 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA3 Channel Control Register 0 (DM3CNT0) b0 1 2 MDSEL3 TREQF3 0 0 3 REQSL3 0 0 4 5 TENL3 TSZSL3 0 0 6 b7 SADSL3 DADSL3 0 0 b Bit Name Function R W 0 MDSEL3 DMA3 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF3 DMA3 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL3 DMA3 transfer request source select bit 00: 01: 10: 11: R W 4 TENL3 DMA3 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL3 DMA3 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL3 DMA3 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL3 DMA3 destination address direction select bit 0: Fixed 1: Increment R W Software start SIO0_TXD (transmit buffer empty) SIO1_RXD Extended DMA3 transfer request source select (DMA3 Channel Control Register 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA3 Channel Control Register 1 (DM3CNT1) b8 9 10 11 12 13 14 b15 REQESEL3 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL3 Extended DMA3 transfer request source select bit Function 0000: MJT(TIN0) 0001: One DMA2 transfer completed 0010: Settings inhibited 0011: Common 1) MJT (input event bus 1) 0100: Common 2) MJT (input event bus 3) 0101: Common 3) MJT (output event bus 2) 0110: Common 4) MJT (output event bus 3) 0111: Common 5) AD0 conversion completed 1000: Common 6) MJT (TIN0S) 1001: Common 7) MJT (TIO8_udf) 1010: Settings inhibited | | R W 0 0 R W 1111: Settings inhibited 9-9 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA4 Channel Control Register 0 (DM4CNT0) b0 1 2 MDSEL4 TREQF4 0 0 3 REQSL4 0 0 4 5 TENL4 TSZSL4 0 0 6 b7 SADSL4 DADSL4 0 0 b Bit Name Function R W 0 MDSEL4 DMA4 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF4 DMA4 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL4 DMA4 transfer request source select bit 00: Software start 01: One DMA3 transfer completed 10: SIO0_RXD 11: Extended DMA4 transfer request source select (DMA4 Channel Control Register 1) R W 4 TENL4 DMA4 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL4 DMA4 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL4 DMA4 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL4 DMA4 destination address direction select bit 0: Fixed 1: Increment R W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA4 Channel Control Register 1 (DM4CNT1) b8 9 10 11 12 13 14 b15 REQESEL4 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL4 Extended DMA4 transfer request source select bit Function 0000: 0001: 0010: 0011: 0100: 0101: 0110: 0111: 1000: 1001: 1010: | MJT(TIN19S) SIO0_TXD (transmit buffer empty) Settings inhibited Common 1) MJT (input event bus 1) Common 2) MJT (input event bus 3) Common 3) MJT (output event bus 2) Common 4) MJT (output event bus 3) Common 5) AD0 conversion completed Common 6) MJT (TIN0S) Common 7) MJT (TIO8_udf) Settings inhibited | R W 0 0 R W 1111: Settings inhibited 9-10 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA5 Channel Control Register 0 (DM5CNT0) b0 1 2 MDSEL5 TREQF5 0 0 3 REQSL5 0 0 4 5 6 b7 TENL5 TSZSL5 SADSL5 DADSL5 0 0 0 0 b Bit Name Function R W 0 MDSEL5 DMA5 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF5 DMA5 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL5 DMA5 transfer request source select bit 00: 01: 10: 11: R W 4 TENL5 DMA5 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL5 DMA5 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL5 DMA5 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL5 DMA5 destination address direction select bit 0: Fixed 1: Increment R W Software start or one DMA7 transfer completed All DMA0 transfers completed SIO2_RXD Extended DMA5 transfer request source select (DMA5 Channel Control Register 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA5 Channel Control Register 1 (DM5CNT1) b8 9 10 11 12 13 14 b15 REQESEL5 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL5 Extended DMA5 transfer request source select bit Function 0000: 0001: 0010: 0011: 0100: 0101: 0110: 0111: 1000: 1001: 1010: | MJT(TIN20S) Settings inhibited Settings inhibited Common 1) MJT (input event bus 1) Common 2) MJT (input event bus 3) Common 3) MJT (output event bus 2) Common 4) MJT (output event bus 3) Common 5) AD0 conversion completed Common 6) MJT (TIN0S) Common 7) MJT (TIO8_udf) Settings inhibited | R W 0 0 R W 1111: Settings inhibited 9-11 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA6 Channel Control Register 0 (DM6CNT0) b0 1 2 MDSEL6 TREQF6 0 0 3 0 4 TENL6 REQSL6 0 5 6 b7 TSZSL6 SADSL6 DADSL6 0 0 0 0 b Bit Name Function R W 0 MDSEL6 DMA6 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF6 DMA6 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL6 DMA6 transfer request source select bit 00: 01: 10: 11: R W 4 TENL6 DMA6 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL6 DMA6 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL6 DMA6 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL6 DMA6 destination address direction select bit 0: Fixed 1: Increment R W Software start SIO1_TXD (transmit buffer empty) Settings inhibited Extended DMA6 transfer request source select (DMA6 Channel Control Register 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA6 Channel Control Register 1 (DM6CNT1) b8 9 10 11 12 13 14 b15 REQESEL6 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL6 Extended DMA6 transfer request source select bit Function 0000: 0001: 0010: 0011: 0100: 0101: 0110: 0111: 1000: 1001: 1010: | One DMA5 transfer completed Settings inhibited SIO1_RXD Common 1) MJT (input event bus 1) Common 2) MJT (input event bus 3) Common 3) MJT (output event bus 2) Common 4) MJT (output event bus 3) Common 5) AD0 conversion completed Common 6) MJT (TIN0S) Common 7) MJT (TIO8_udf) Settings inhibited | R W 0 0 R W 1111: Settings inhibited 9-12 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA7 Channel Control Register 0 (DM7CNT0) b0 1 2 MDSEL7 TREQF7 0 0 3 REQSL7 0 0 4 5 TENL7 TSZSL7 0 0 6 b7 SADSL7 DADSL7 0 0 b Bit Name Function R W 0 MDSEL7 DMA7 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF7 DMA7 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL7 DMA7 transfer request source select bit 00: 01: 10: 11: R W 4 TENL7 DMA7 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL7 DMA7 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL7 DMA7 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL7 DMA7 destination address direction select bit 0: Fixed 1: Increment R W Software start SIO2_TXD (transmit buffer empty) Settings inhibited Extended DMA7 transfer request source select (DMA7 Channel Control Register 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA7 Channel Control Register 1 (DM7CNT1) b8 9 10 11 12 13 14 b15 REQESEL7 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL7 Extended DMA7 transfer request source select bit Function 0000: 0001: 0010: 0011: 0100: 0101: 0110: 0111: 1000: 1001: 1010: | One DMA6 transfer completed Settings inhibited SIO3_TXD (transmit buffer empty) Common 1) MJT (input event bus 1) Common 2) MJT (input event bus 3) Common 3) MJT (output event bus 2) Common 4) MJT (output event bus 3) Common 5) AD0 conversion completed Common 6) MJT (TIN0S) Common 7) MJT (TIO8_udf) Settings inhibited | R W 0 0 R W 1111: Settings inhibited 9-13 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA8 Channel Control Register 0 (DM8CNT0) b0 1 2 MDSEL8 TREQF8 0 0 3 REQSL8 0 0 4 5 TENL8 TSZSL8 0 0 6 b7 SADSL8 DADSL8 0 0 b Bit Name Function R W 0 MDSEL8 DMA8 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF8 DMA8 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL8 DMA8 transfer request source select bit 00: 01: 10: 11: R W 4 TENL8 DMA8 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL8 DMA8 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL8 DMA8 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL8 DMA8 destination address direction select bit 0: Fixed 1: Increment R W Software start MJT (input event bus 0) SIO3_RXD Extended DMA8 transfer request source select (DMA8 Channel Control Register 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA8 Channel Control Register 1 (DM8CNT1) b8 9 10 11 12 13 14 b15 REQESEL8 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL8 Extended DMA8 transfer request source select bit Function 0000: Settings inhibited 0001: Settings inhibited 0010: One DMA7 transfer completed 0011: Common 1) MJT (input event bus 1) 0100: Common 2) MJT (input event bus 3) 0101: Common 3) MJT (output event bus 2) 0110: Common 4) MJT (output event bus 3) 0111: Common 5) AD0 conversion completed 1000: Common 6) MJT (TIN0S) 1001: Common 7) MJT (TIO8_udf) 1010: Settings inhibited | | R W 0 0 R W 1111: Settings inhibited 9-14 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA9 Channel Control Register 0 (DM9CNT0) b0 1 2 MDSEL9 TREQF9 0 0 3 0 4 TENL9 REQSL9 0 5 6 b7 TSZSL9 SADSL9 DADSL9 0 0 0 0 b Bit Name Function R W 0 MDSEL9 DMA9 transfer mode select bit 0: Normal mode 1: Ring buffer mode R W 1 TREQF9 DMA9 transfer request flag bit 0: Transfer not requested 1: Transfer requested R(Note 1) 2, 3 REQSL9 DMA9 transfer request source select bit 00: 01: 10: 11: R W 4 TENL9 DMA9 transfer enable bit 0: Disable transfer 1: Enable transfer R W 5 TSZSL9 DMA9 transfer size select bit 0: 16 bits 1: 8 bits R W 6 SADSL9 DMA9 source address direction select bit 0: Fixed 1: Increment R W 7 DADSL9 DMA9 destination address direction select bit 0: Fixed 1: Increment R W Software start SIO3_TXD (transmit buffer empty) Settings inhibited Extended DMA9 transfer request source select (DMA9 Channel Control Register 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA9 Channel Control Register 1 (DM9CNT1) b8 9 10 11 12 13 14 b15 REQESEL9 0 0 0 0 0 0 0 0 b Bit Name 8-11 No function assigned. Fix to "0". 12-15 REQESEL9 Extended DMA9 transfer request source select bit Function 0000: 0001: 0010: 0011: 0100: 0101: 0110: 0111: 1000: 1001: 1010: | One DMA8 transfer completed Settings inhibited Settings inhibited Common 1) MJT (input event bus 1) Common 2) MJT (input event bus 3) Common 3) MJT (output event bus 2) Common 4) MJT (output event bus 3) Common 5) AD0 conversion completed Common 6) MJT (TIN0S) Common 7) MJT (TIO8_udf) Settings inhibited | R W 0 0 R W 1111: Settings inhibited 9-15 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers The DMA Channel Control Register consists of the bits to select DMA transfer mode on each channel, set the DMA transfer request flag, select the cause or source of DMA request and enable DMA transfer, as well as those to set the transfer size and the source/destination address directions. [DMnCNT0 Register] (1) MDSELn (DMAn Transfer Mode Select) bit (Bit 0) When performing DMA transfer in single transfer mode, this bit selects normal mode or ring buffer mode. Setting this bit to "0" selects normal mode and setting it to "1" selects ring buffer mode. In ring buffer mode, transfer begins from the transfer start address and after performing transfers 32 times, control is recycled back to the transfer start address, from which transfer operation is repeated. In this case, the Transfer Count Register counts in free-run mode, during which time transfer operation is continued until the transfer enable bit is reset to "0" (to disable transfer). In ring buffer mode, no interrupt is generated at completion of DMA transfer. (2) TREQFn (DMAn Transfer Request Flag) bit (Bit 1) This flag is set to "1" when a DMA transfer request occurs, and is cleared to "0" when the transfer for that transfer request is completed. Reading this flag helps to know DMA transfer requests on each channel. Writing "0" to this bit clears the generated DMA transfer request. Writing "1" has no effect; the bit retains the value it had before the write. If a new DMA transfer request occurs on a channel for which the DMA transfer request flag has already been set to "1", the next DMA transfer request is not accepted until the transfer being performed on that channel is completed. (3) REQSLn (DMAn Transfer Request Source Select) bits (Bits 2-3) These bits select the cause or source of DMA transfer request on each DMA channel. (4) TENLn (DMAn Transfer Enable) bit (Bit 4) Setting this bit to "1" enables transfer, and the channel is made ready for DMA transfer. When all transfers on that channel are completed (i.e., the Transfer Counter Register underflows), the bit is cleared to "0". Setting this bit to "0" disables transfer. However, if a transfer request has already been accepted, transfers on that channel are not disabled until after the requested transfer is completed. (5) TSZSLn (DMAn Transfer Size Select) bit (Bit 5) This bit selects the number of bits to be transferred in one DMA transfer operation (the unit of one transfer). The unit of one transfer is 16 bits when TSZSL = "0" or 8 bits when TSZSL = "1". (6) SADSLn (DMAn Source Address Direction Select) bit (Bit 6) This bit selects the direction in which the source address changes. This mode can be selected from two choices: Address fixed or Address incremental. (7) DADSLn (DMAn Destination Address Direction Select) bit (Bit 7) This bit selects the direction in which the destination address changes. This mode can be selected from two choices: Address fixed or Address incremental. [DMnCNT1 Register] (1) REQESELn (Extended DMAn Transfer Request Source Select) bits (Bits 12-15) These bits select the cause or source of extended DMA transfer request on each DMA channel. Note: * The extended DMA transfer request sources selected by the REQESELn (Extended DMAn Transfer Request Source Select) bits have no effect unless the "Extended" DMA transfer request source is selected with the DMA Channel Control Register's DMA Request Source Select (REQSLn) bits. 9-16 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers Extended DMA transfer request source selected S DMAn transfer request source DMAn S Figure 9.2.1 Block Diagram of Extended DMAn Transfer Request Source Selection 9-17 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers 9.2.2 DMA Software Request Generation Registers DMA0 DMA1 DMA2 DMA3 DMA4 DMA5 DMA6 DMA7 DMA8 DMA9 Software Software Software Software Software Software Software Software Software Software b0 ? Request Request Request Request Request Request Request Request Request Request 1 ? 2 ? Generation Generation Generation Generation Generation Generation Generation Generation Generation Generation 3 ? 4 ? Register Register Register Register Register Register Register Register Register Register (DM0SRI) (DM1SRI) (DM2SRI) (DM3SRI) (DM4SRI) (DM5SRI) (DM6SRI) (DM7SRI) (DM8SRI) (DM9SRI) 0462> 0464> 0466> 0468> 0470> 0472> 0474> 0476> 0478> 5 6 9 10 11 12 13 14 b15 ? DM0SRI-DM9SRI ? ? ? ? ? ? ? ? ? ? b Bit Name Function R W 0-15 DM0SRI-DM9SRI DMA software request generation bits DMA transfer request is generated by writing any data to these bits. ? W Note: * This register may be accessed in either bytes or halfwords. The DMA Software Request Generation Register is used to generate DMA transfer requests in software. A DMA transfer request can be generated by writing any data to this register when "Software start" has been selected for the cause of DMA transfer request. (1) DM0SRI-DM9SRI (DMA Software Request Generation) bits A software DMA transfer request is generated by writing any data to this register in halfword (16 bits) or in byte (8 bits) beginning with an even or odd address when "Software start" is selected as the cause of DMA transfer request (by setting the DMAn Channel Control Register 0 bits 2-3 to `00'). 9-18 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers 9.2.3 DMA Source Address Registers DMA0 DMA1 DMA2 DMA3 DMA4 DMA5 DMA6 DMA7 DMA8 DMA9 Source Source Source Source Source Source Source Source Source Source b0 ? Address Address Address Address Address Address Address Address Address Address 1 ? Register Register Register Register Register Register Register Register Register Register 2 ? 3 ? (DM0SA) (DM1SA) (DM2SA) (DM3SA) (DM4SA) (DM5SA) (DM6SA) (DM7SA) (DM8SA) (DM9SA) 4 ? 5 ? 6 ? 7 8 DM0SA-DM9SA ? ? 9 10 11 12 13 14 b15 ? ? ? ? ? ? ? b Bit Name Function R W 0-15 DM0SA-DMA9SA Source address bits A16-A31 (A0-A15 are fixed to H'0080) R W Note: * This register must always be accessed in halfwords. The DMA Source Address Register is used to set the source address of DMA transfer in such a way that bit 0 and bit 15 correspond to A16 and A31, respectively. Because this register is comprised of a current register, the values read from this register are always the current value. When DMA transfer finishes (i.e., the Transfer Count Register underflows), the value in this register if "Address fixed" is selected, is the same source address that was set in it before the DMA transfer began; if "Address incremental" is selected, the value in this register is the last transfer address + 1 (for 8-bit transfer) or the last transfer address + 2 (for 16-bit transfer). The DMA Source Address Register must always be accessed in halfwords (16 bits) beginning with an even address. If accessed in bytes, the value in this register is undefined. (1) DM0SA-DM9SA (Source Address bits A16-A31) Set this register to specify the source address of DMA transfer in the internal I/O or RAM space from the address H'0080 0000 to the address H'0080 FFFF. The 16 high-order source address bits (A0-A15) are always fixed to H'0080. Use this register to set the 16 low-order source address bits (with bit 0 corresponding to the source address A16, and bit 15 corresponding to the source address A31). 9-19 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers 9.2.4 DMA Destination Address Registers DMA0 DMA1 DMA2 DMA3 DMA4 DMA5 DMA6 DMA7 DMA8 DMA9 Destination Destination Destination Destination Destination Destination Destination Destination Destination Destination b0 ? 1 ? Address Address Address Address Address Address Address Address Address Address 2 ? 3 ? Register Register Register Register Register Register Register Register Register Register 4 ? (DM0DA) (DM1DA) (DM2DA) (DM3DA) (DM4DA) (DM5DA) (DM6DA) (DM7DA) (DM8DA) (DM9DA) 5 ? 6 ? 7 8 DM0DA-DM9DA ? ? 9 10 11 12 13 14 b15 ? ? ? ? ? ? ? b Bit Name Function R W 0-15 DM0DA-DM9DA Destination address bits A16-A31 (A0-A15 are fixed to H'0080) R W Note: * This register must always be accessed in halfwords The DMA Destination Address Register is used to set the destination address of DMA transfer in such a way that bit 0 and bit 15 correspond to A16 and A31, respectively. Because this register is comprised of a current register, the values read from this register are always the current value. When DMA transfer finishes (i.e., the Transfer Count Register underflows), the value in this register if "Address fixed" is selected, is the same source address that was set in it before the DMA transfer began; if "Address incremental" is selected, the value in this register is the last transfer address + 1 (for 8-bit transfer) or the last transfer address + 2 (for 16-bit transfer). The DMA Destination Address Register must always be accessed in halfwords (16 bits) beginning with an even address. If accessed in bytes, the value in this register is undefined. (1) DM0DA-DM9DA (Destination Address bits A16-A31) Set this register to specify the destination address of DMA transfer in the internal I/O or RAM space from the address H'0080 0000 to the address H'0080 FFFF. The 16 high-order destination address bits (A0-A15) are always fixed to H'0080. Use this register to set the 16 low-order destination address bits (with bit 0 corresponding to the destination address A16, and bit 15 corresponding to the destination address A31). 9-20 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers 9.2.5 DMA Transfer Count Registers DMA0 DMA1 DMA2 DMA3 DMA4 DMA5 DMA6 DMA7 DMA8 DMA9 Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer b0 ? Count Count Count Count Count Count Count Count Count Count 1 ? 2 ? Register Register Register Register Register Register Register Register Register Register 3 ? (DM0TCT) (DM1TCT) (DM2TCT) (DM3TCT) (DM4TCT) (DM5TCT) (DM6TCT) (DM7TCT) (DM8TCT) (DM9TCT) 4 ? 5 6 9 10 11 12 13 14 b15 ? DM0TCT-DM15TCT ? ? ? ? 7 8 ? ? ? ? ? ? b Bit Name Function R W 0-15 DM0TCT-DM9TCT (Has no effect during ring buffer mode) DMA transfer count R W Note: * This register must always be accessed in halfwords. The DMA Transfer Count Register is used to set the number of times data is transferred on each channel. However, the value in this register has no effect during ring buffer mode. The transfer count is the (value set in the transfer count register + 1). Because the DMA Transfer Count Register is comprised of a current register, the values read from this register are always the current value. (However, if the register is read in a cycle immediately after transfer, the value obtained is one that was stored in the count register before the transfer began.) When transfer finishes, this count register underflows and the value read from it is H'FFFF. When transfer is enabled, this register is protected in hardware and cannot be accessed for write. During ring buffer mode, the transfer count register counts down in free-run mode and continues counting until transfer is disabled. No interrupt is generated at underflow. If any cascaded channel exists, each time one DMA transfer (byte or halfword) is completed or when all transfers on a channel are completed (i.e., the transfer count register underflows), transfer on the cascaded channel starts. 9-21 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers 9.2.6 DMA Interrupt Related Registers The DMA interrupt related registers are used to control the interrupt request signals sent from the DMAC to the Interrupt Controller. (1) Interrupt request status bit This status bit is used to determine whether there is an interrupt request. When an interrupt request occurs, this bit is set in hardware (cannot be set in software). The status bit is cleared by writing "0". Writing "1" has no effect; the bit retains the status it had before the write. Because this status bit is unaffected by the interrupt request mask bit, it can be used to inspect the operating status of peripheral functions. In interrupt handling, make sure that within the grouped interrupt request status, only the status bit for the interrupt request that has been serviced is cleared. If the status bit for any interrupt request that has not been serviced is cleared, the pending interrupt request is cleared simultaneously with its status bit. (2) Interrupt request mask bit This bit is used to disable unnecessary interrupt requests within the grouped interrupt request. Set this bit to "0" to enable interrupt requests or "1" to disable interrupt requests. Group interrupt Interrupt request from each peripheral function Set Data bus Data = 0 clear Interrupt request status F/F To the Interrupt Controller F/F Interrupt request enabled Figure 9.2.2 Interrupt Request Status and Mask Registers 9-22 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers Example for clearing interrupt request status Interrupt request status Initial state b4 5 6 b7 0 0 0 0 Interrupt request Event occurs on bit 6 0 0 1 0 Event occurs on bit 4 1 0 1 0 1 0 0 0 Write to the interrupt request status b4 5 6 b7 1 1 0 1 Only bit 6 cleared Bit 4 data retained Program example * To clear the Interrupt Request Status Register 0 (ISTREG) interrupt request status 1, ISTAT1 (0x02 bit) ISTREG = 0xfd; /* Clear ISTAT1 (0x02 bit) only */ To clear an interrupt request status, always be sure to write "1" to all other interrupt request status bits. At this time, avoid using a logic operation like the one shown below. Because it requires three step-ISTREG read, logic operation and write, if another interrupt request occurs between the read and write, status may be inadvertently cleared. ISTREG &= 0xfd; /* Clear ISTAT1 (0x02 bit) only */ Interrupt request status Event occurs on bit 6 b4 5 6 b7 0 0 1 0 Read 0 Event occurs on bit 4 1 0 1 0 0 1 0 0 Clear bit 6 (AND'ing with 1101) 0 0 0 0 0 0 0 Write Only bit 6 cleared Bit 4 also cleared Figure 9.2.3 Example for Clearing Interrupt Request Status 9-23 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA0-4 Interrupt Request Status Register (DM04ITST) b0 1 2 3 4 5 6 b7 DMITST4 DMITST3 DMITST2 DMITST1 DMITST0 0 0 0 0 0 0 0 0 b Bit Name Function 0-2 No function assigned. Fix to "0". 3 DMITST4 (DMA4 interrupt request status bit) 0: Interrupt not requested 4 DMITST3 (DMA3 interrupt request status bit) 1: Interrupt requested 5 DMITST2 (DMA2 interrupt request status bit) 6 DMITST1 (DMA1 interrupt request status bit) 7 DMITST0 (DMA0 interrupt request status bit) R W 0 0 R(Note 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. DMA5-9 Interrupt Request Status Register (DM59ITST) b0 1 2 0 0 0 3 4 5 6 b7 DMITST9 DMITST8 DMITST7 DMITST6 DMITST5 0 0 0 0 0 b Bit Name Function R W 0 0 R(Note 1) 0-2 No function assigned. Fix to "0". 3 DMITST9 (DMA9 interrupt request status bit) 0: Interrupt not requested 4 DMITST8 (DMA8 interrupt request status bit) 1: Interrupt requested 5 DMITST7 (DMA7 interrupt request status bit) 6 DMITST6 (DMA6 interrupt request status bit) 7 DMITST5 (DMA5 interrupt request status bit) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. The Interrupt Request Status Register helps to know the status of interrupt requests on each channel. If the DMAn interrupt request status bit (n = 0-9) is set to "1", it means that a DMA interrupt request on the corresponding channel has been generated. (1) DMITSTn (DMAn Interrupt Request Status) bit (n = 0-9) [Setting the DMAn interrupt request status bit] This bit is set in hardware, and cannot be set in software. [Clearing the DMAn interrupt request status bit] This bit is cleared by writing "0" in software. Note: * The DMAn interrupt request status bit cannot be cleared by writing "0" to the DMA Interrupt Control Register's "interrupt request bit" included in the Interrupt Controller. When writing to the DMA Interrupt Request Status Register, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write. 9-24 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DMA0-4 Interrupt Request Mask Register (DM04ITMK) b8 9 10 11 12 13 14 b15 DMITMK4 DMITMK3 DMITMK2 DMITMK1 DMITMK0 0 0 0 0 0 0 0 0 b Bit Name Function 8-10 No function assigned. Fix to "0". 11 DMITMK4 (DMA4 interrupt request mask bit) 0: Enable interrupt request 12 DMITMK3 (DMA3 interrupt request mask bit) 1: Mask (disable) interrupt request 13 DMITMK2 (DMA2 interrupt request mask bit) 14 DMITMK1 (DMA1 interrupt request mask bit) 15 DMITMK0 (DMA0 interrupt request mask bit) DMA5-9 Interrupt Request Mask Register (DM59ITMK) b8 9 10 11 12 13 14 R W 0 0 R W b15 DMITMK9 DMITMK8 DMITMK7 DMITMK6 DMITMK5 0 0 0 0 0 0 0 0 b Bit Name 8-10 No function assigned. Fix to "0". Function 11 DMITMK9 (DMA9 interrupt request mask bit) 0: Enable interrupt request 12 DMITMK8 (DMA8 interrupt request mask bit) 1: Mask (disable) interrupt request 13 DMITMK7 (DMA7 interrupt request mask bit) 14 DMITMK6 (DMA6 interrupt request mask bit) 15 DMITMK5 (DMA5 interrupt request mask bit) R W 0 0 R W The DMA Interrupt Request Mask Register is used to mask interrupt requests on each DMA channel. (1) DMITMKn (DMAn Interrupt Request Mask) bit (n = 0-9) Setting the DMAn interrupt request mask bit to "1" masks the interrupt requests on DMAn channel. However, if an interrupt request occurs, the DMAn interrupt request status bit is always set to "1" irrespective of the contents of this mask register. 9-25 32182 Group User's Manual (Rev.1.0) DMAC 9 9.2 DMAC Related Registers DM04ITST (H'0080 0400) DM04ITMK (H'0080 0401) DMA4UDF Data bus b3 DMITST4 F/F b11 DMITMK4 F/F 5-source inputs (Level) DMA transfer interrupt request 0 DMA3UDF b4 DMITST3 F/F b12 DMITMK3 F/F DMA2UDF b5 DMITST2 F/F b13 DMITMK2 F/F DMA1UDF b6 DMITST1 F/F b14 DMITMK1 F/F DMA0UDF b7 DMITST0 F/F b15 DMITMK0 F/F Figure 9.2.4 Block Diagram of DMA Transfer Interrupt Request 0 DM59ITST (H'0080 0408) DM59ITMK (H'0080 0409) DMA9UDF Data bus b3 DMITST9 F/F b11 DMITMK9 F/F 5-source inputs (Level) DMA transfer interrupt request 1 DMA8UDF b4 DMITST8 F/F b12 DMITMK8 F/F DMA7UDF b5 DMITST7 F/F b13 DMITMK7 F/F DMA6UDF b6 DMITST6 F/F b14 DMITMK6 F/F DMA5UDF b7 DMITST5 F/F b15 DMITMK5 F/F Figure 9.2.5 Block Diagram of DMA Transfer Interrupt Request 1 9-26 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC 9.3 Functional Description of the DMAC 9.3.1 DMA Transfer Request Sources For each DMA channel (channels 0-9), DMA transfer can be requested from two or more sources. There are various causes or sources of DMA transfer request, so that DMA transfer can be started by a request from some internal peripheral I/O, started in software by a program, or can be started upon completion of one transfer or all transfers on another DMA channel (cascade mode). The causes or sources of DMA transfer requests are selected using the transfer request source select bits REQSLn on each channel (DMAn Channel Control Register 0 bits 2-3) or the extended transfer request source select bits REQESELn (DMAn Channel Control Register 1 bits 12-15). The tables below list the causes or sources of DMA transfer requests on each channel. Table 9.3.1 DMA Transfer Request Sources and Generation Timings on DMA0 REQSL0 0 0 DMA Transfer Request Source DMA Transfer Request Generation Timing Software start or one DMA2 When any data is written to the DMA0 Software Request Generation Register transfer completed (software start) or when one DMA2 transfer is completed (cascade mode) 0 1 A-D0 conversion completed When A-D0 conversion is completed 1 0 MJT (TIO8_udf) When MJT TIO8 underflows 1 1 Extended DMA0 transfer request The source selected by the DMA0 Channel Control Register 1 (DM0CNT1) source selected REQESEL0 bits (see below) REQESEL0 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 MJT (input event bus 2) When MJT input event bus 2 signal is generated 0001 Settings inhibited - 0010 CAN (CAN0_S0/S15) When CAN0 slot 0 transmission failed or slot 15 transmission reception finished 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 9-27 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC Table 9.3.2 DMA Transfer Request Sources and Generation Timings on DMA1 REQSL1 DMA Transfer Request Source DMA Transfer Request Generation Timing 0 0 Software start When any data is written to the DMA1 Software Request Generation Register 0 1 MJT (output event bus 0) When MJT output event bus 0 signal is generated 1 0 Settings inhibited - 1 1 Extended DMA1 transfer request The source selected by the DMA1 Channel Control Register 1 (DM1CNT1) source selected REQESEL1 bits (see below) REQESEL1 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 One DMA0 transfer completed When one DMA0 transfer is completed (cascade mode) 0001 MJT (TIN3 input signal) When MJT TIN3 input signal is generated 0010 Settings inhibited - 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 Table 9.3.3 DMA Transfer Request Sources and Generation Timings on DMA2 REQSL2 DMA Transfer Request Source DMA Transfer Request Generation Timing 0 0 Software start When any data is written to the DMA2 Software Request Generation Register 0 1 MJT (output event bus 1) When MJT output event bus 1 signal is generated 1 0 MJT (TIN18 input signal) When MJT TIN18 input signal is generated 1 1 Extended DMA2 transfer request The source selected by the DMA2 Channel Control Register 1 (DM2CNT1) source selected REQESEL2 bits (see below) REQESEL2 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 One DMA1 transfer completed When one DMA1 transfer is completed (cascade mode) 0001 Settings inhibited - 0010 CAN(CAN0_S1/S14) When CAN0 slot 1 transmission failed or slot 14 transmission reception finished 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 9-28 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC Table 9.3.4 DMA Transfer Request Sources and Generation Timings on DMA3 REQSL3 DMA Transfer Request Source DMA Transfer Request Generation Timing When any data is written to the DMA3 Software Request Generation Register 0 0 Software start 0 1 Serial I/O0 (transmit buffer empty) When serial I/O0 transmit buffer is empty 1 0 Serial I/O1 (reception completed) When serial I/O1 reception is completed 1 1 Extended DMA3 transfer request The source selected by the DMA3 Channel Control Register 1 (DM3CNT1) source selected REQESEL3 bits (see below) REQESEL3 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 0001 One DMA2 transfer completed When one DMA2 transfer is completed (cascade mode) 0010 Settings inhibited - 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 Table 9.3.5 DMA Transfer Request Sources and Generation Timings on DMA4 REQSL4 DMA Transfer Request Source DMA Transfer Request Generation Timing 0 0 Software start When any data is written to the DMA4 Software Request Generation Register 0 1 One DMA3 transfer completed When one DMA3 transfer is completed (cascade mode) 1 0 Serial I/O0 (reception completed) When serial I/O0 reception is completed 1 1 Extended DMA4 transfer request The source selected by the DMA4 Channel Control Register 1 (DM4CNT1) source selected REQESEL4 bits (see below) REQESEL4 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 MJT (TIN19 input signal) When MJT TIN19 input signal is generated 0001 Serial I/O0 (transmit buffer empty) When serial I/O0 transmit buffer is empty 0010 Settings inhibited - 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 9-29 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC Table 9.3.6 DMA Transfer Request Sources and Generation Timings on DMA5 REQSL5 0 0 DMA Transfer Request Source DMA Transfer Request Generation Timing Software start or one DMA7 When any data is written to the DMA5 Software Request Generation Register transfer completed (software start) or when one DMA7 transfer is completed (cascade mode) When all DMA0 transfers are completed (cascade mode) 0 1 All DMA0 transfers completed 1 0 Serial I/O2 (reception completed) When serial I/O2 reception is completed 1 1 Extended DMA5 transfer request The source selected by the DMA5 Channel Control Register 1 (DM5CNT1) source selected REQESEL5 bits (see below) REQESEL5 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 MJT (TIN20 input signal) When MJT TIN20 input signal is generated 0001 Settings inhibited - 0010 Settings inhibited - 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 Table 9.3.7 DMA Transfer Request Sources and Generation Timings on DMA6 REQSL6 DMA Transfer Request Source DMA Transfer Request Generation Timing 0 Software start When any data is written to the DMA6 Software Request Generation Register 0 0 1 Serial I/O1 (transmit buffer empty) When serial I/O1 transmit buffer is empty 1 0 Settings inhibited - 1 1 Extended DMA6 transfer request The source selected by the DMA6 Channel Control Register 1 (DM6CNT1) source selected REQESEL6 bits (see below) REQESEL6 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 One DMA5 transfer completed When one DMA5 transfer is completed (cascade mode) 0001 Settings inhibited - 0010 Serial I/O1 (reception completed) When serial I/O1 reception is completed 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 9-30 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC Table 9.3.8 DMA Transfer Request Sources and Generation Timings on DMA7 REQSL7 DMA Transfer Request Source DMA Transfer Request Generation Timing When any data is written to the DMA7 Software Request Generation Register 0 0 Software start 0 1 Serial I/O2 (transmit buffer empty) When serial I/O2 transmit buffer is empty 1 0 Settings inhibited 1 1 - Extended DMA7 transfer request The source selected by the DMA7 Channel Control Register 1 (DM7CNT1) source selected REQESEL7 bits (see below) REQESEL7 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 One DMA6 transfer completed When one DMA6 transfer is completed (cascade mode) 0001 Settings inhibited - 0010 Serial I/O3 (reception completed) When serial I/O3 reception is completed 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 Table 9.3.9 DMA Transfer Request Sources and Generation Timings on DMA8 REQSL8 DMA Transfer Request Source DMA Transfer Request Generation Timing 0 0 Software start When any data is written to the DMA8 Software Request Generation Register 0 1 MJT (input event bus 0) When MJT input event bus 0 signal is generated 1 0 Serial I/O3 (reception completed) When serial I/O3 reception is completed 1 1 Extended DMA8 transfer request The source selected by the DMA8 Channel Control Register 1 (DM8CNT1) source selected REQESEL8 bits (see below) REQESEL8 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 Settings inhibited - 0001 Settings inhibited - 0010 One DMA7 transfer completed When one DMA7 transfer is completed (cascade mode) 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 9-31 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC Table 9.3.10 DMA Transfer Request Sources and Generation Timings on DMA9 REQSL9 DMA Transfer Request Source DMA Transfer Request Generation Timing When any data is written to the DMA9 Software Request Generation Register 0 0 Software start 0 1 Serial I/O3 (transmit buffer empty) When serial I/O3 transmit buffer is empty 1 0 Settings inhibited 1 1 - Extended DMA9 transfer request The source selected by the DMA9 Channel Control Register 1 (DM9CNT1) source selected REQESEL9 bits (see below) REQESEL9 DMA Transfer Request Source DMA Transfer Request Generation Timing 0000 One DMA8 transfer completed When one DMA8 transfer is completed (cascade mode) 0001 Settings inhibited - 0010 Settings inhibited - 0011 MJT (input event bus 1) When MJT input event bus 1 signal is generated 0100 MJT (input event bus 3) When MJT input event bus 3 signal is generated 0101 MJT (output event bus 2) When MJT output event bus 2 signal is generated 0110 MJT (output event bus 3) When MJT output event bus 3 signal is generated 0111 A-D0 conversion completed When A-D0 conversion is completed 1000 MJT (TIN0 input signal) When MJT TIN0 input signal is generated 1001 MJT (TIO8_udf) When MJT TIO8 underflow occurs Settings inhibited - 1010 | 1111 9-32 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC 9.3.2 DMA Transfer Processing Procedure Shown below is an example of how to control DMA transfer in cases when performing transfer on DMA channel 0. DMA transfer processing starts Setting interrupt controller-related registers Set the interrupt controller's DMA0-4 Interrupt Control Register Set DMA0 Channel Control Register 0 Set DMA0-4 Interrupt Request Status Registers 0 and 1 Setting DMAC-related registers Starting DMA transfer * Interrupt priority level * Transfers disabled * Interrupt request status bits cleared Set DMA0-4 Interrupt Request Mask Register * Interrupt request enabled Set DMA0 Source Address Register * Source address of transfer Set DMA0 Destination Address Register * Destination address of transfer Set DMA0 Count Register * Number of times DMA transfer is performed Set DMA0 Channel Control Registers 0 and 1 * Transfer mode, request source, transfer size, address direction and transfer enable DMA transfer starts as requested by internal peripheral I/O Transfer count register underflows DMA transfer completed Interrupt request generated DMA operation completed Figure 9.3.1 Example of a DMA Transfer Processing Procedure 9-33 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC 9.3.3 Starting DMA Use the DMAn Channel Control Register 0 REQSL (DMA transfer request source select) and DMAn Channel Control Register 1 REQESEL (extended DMA transfer request source select) bits to set the cause or source of DMA transfer request. To enable DMA, set the TENL (DMA transfer enable) bit to "1". DMA transfer begins when the specified cause or source of DMA transfer request becomes effective after setting the TENL (DMA transfer enable) bit to "1". Note: * If the transfer request source selected by the REQSL (DMA transfer request source select) and REQESEL (extended DMA transfer request source select) bits is MJT (TIN input signal), the time required for DMA transfer to begin after detecting the rising or falling or both edges of the TIN input signal is three cycles (150 ns when the internal peripheral clock = 20 MHz) at the shortest. Or, depending on the preceding or following bus usage condition, up to five cycles (250 ns when the internal peripheral clock = 20 MHz) may be required. (However, this applies when the external bus, HOLD and the LOCK instruction all are unused.) To ensure that changes of the TIN input signal state will be detected correctly, make sure the TIN input signal is held active for a duration of more than 7tc (BCLK)/2. (For details, see Section 21.7, "AC Characteristics (when VCCE = 5 V)," and Section 21.8, "AC Characteristics (when VCCE = 3.3 V).") 9.3.4 DMA Channel Priority DMA0 has the highest priority. The priority of this and other channels is shown below. DMA0 > DMA1 > DMA2 > DMA3 > DMA4 > DMA5 > DMA6 > DMA7 > DMA8 > DMA9 This order of priority is fixed and cannot be changed. Among channels on which DMA transfer is requested, the channel that has the highest priority is selected. 9.3.5 Gaining and Releasing Control of the Internal Bus For any channel, control of the internal bus is gained and released in "single transfer DMA" mode. In single transfer DMA, the DMAC gains control of the internal bus (in one peripheral clock cycle) when DMA transfer request is accepted and after executing one DMA transfer (in one read and one write internal clock cycle), returns bus control to the CPU. The diagram below shows the operation in single transfer DMA. Requested Gained Requested Gained Requested Gained Internal bus arbitration (requests from the DMAC) CPU Released Internal bus DMAC R Released W R One DMA transfer W Released R One DMA transfer W One DMA transfer R: Read W: Write Figure 9.3.2 Gaining and Releasing Control of the Internal Bus 9-34 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC 9.3.6 Transfer Units Use the TSZSL (DMA transfer size select) bit to set for each channel the number of bits (8 or 16 bits) to be transferred in one DMA transfer. 9.3.7 Transfer Counts Use the DMA Transfer Count Register to set transfer counts for each channel. Transfer can be performed up to 65,536 times. The value of the DMA Transfer Count Register is decremented by one every time one transfer unit is transferred. In ring buffer mode, the DMA Transfer Count Register operates in free-run mode, with the value set in it ignored. 9.3.8 Address Space The address space in which data can be transferred by DMA is 64 Kbytes of internal peripheral I/O or RAM space (H'0080 0000 through H'0080 FFFF) for both source and destination. To set the source and destination addresses on each DMA channel, use the DMA Source Address Register and DMA Destination Address Register. 9.3.9 Transfer Operation (1) Dual-address transfer Irrespective of the size of transfer unit, data is transferred in two bus cycles, one for source read access and one for destination write access. (The transfer data is taken into the DMAC's internal temporary register before being transferred.) (2) Bus protocol and bus timing Because the bus interface is shared with the CPU, DMA transfer is performed with the same bus protocol and the same bus timing as when peripheral modules are accessed by the CPU. (3) Transfer rate Transfer is performed using a total of three peripheral clock cycles, one cycle to gain control of the bus and one read and one write cycle to perform one transfer. Therefore, the maximum transfer rate is calculated by the equation below: 1 Maximum transfer rate [bytes per second] = 2 bytes x 1/f(BCLK) x 3 cycles (4) Address count direction and address changes The direction in which the source and destination addresses are counted as transfer proceeds ("Address fixed" or "Address incremental") is set for each channel using the SADSL (source address direction select) and DADSL (destination address direction select) bits. When the transfer size is 16 bits, the address is incremented by two for each DMA transfer performed; when the transfer size is 8 bits, the address is incremented by one. Table 9.3.11 Address Count Direction and Address Changes Address Count Direction Address fixed Address incremental Transfer Unit Address Change for One DMA 8 bits 0 16 bits 0 8 bits +1 16 bits +2 9-35 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC (5) Transfer count value The transfer count value is decremented one at a time, irrespective of the size of transfer unit (8 or 16 bits). (6) Transfer byte positions When the transfer unit is 8 bits, the LSB of the address register is effective for both source and destination. (Therefore, in addition to data transfers between even addresses or between odd addresses, data may be transferred from even address to odd address or vice versa.) When the transfer unit is 16 bits, the LSB of the address register (= bit 15) is ignored, and data are always transferred in two bytes aligned to the 16-bit bus. The diagram below shows the valid byte positions in DMA transfer. +0 b0 +1 b7 b8 +0 b15 b0 +1 b7 b8 Source 8 bits 8 bits 16 bits Destination 8 bits 8 bits 16 bits b15 Figure 9.3.3 Transfer Byte Positions (7) Ring buffer mode When ring buffer mode is selected, transfer begins from the transfer start address and after performing transfers 32 times, control returns to the transfer start address, from which transfer operation is repeated. In this case, however, the five low-order bits of the ring buffer start address must always be B'00000 (if transfer size = 16 bits, the six low-order bits must be B'000000). The following describes how addresses are incremented in ring buffer mode. [1] When the transfer size is 8 bits The 27 high-order bits of the transfer start address are fixed, and the five low-order bits are incremented by one at a time. When as transfer proceeds the five low-order bits reach B'11111, they are recycled to B'00000 by the next increment operation, thus returning to the start address again. [2] When the transfer size is 16 bits The 26 high-order bits of the transfer start address are fixed, and the six low-order bits are incremented by two at a time. When as transfer proceeds the six low-order bits reach B'111110, they are recycled to B'000000 by the next increment operation, thus returning to the start address again. If the source address has been set to be incremented, it is the source address that recycles to the start address; if the destination address has been set to be incremented, it is the destination address that recycles to the start address. If both source and destination addresses have been set to be incremented, both addresses recycle to the start address. However, the start address on either side must have their five low-order bits initially set to B'00000 (if transfer size = 16 bits, the six low-order bits must be B'000000). During ring buffer mode, the transfer count register is ignored. Once DMA operation starts, the counter operates in free-run mode, and the transfer continues until the transfer enable bit is cleared to "0" (to disable transfer). 9-36 32182 Group User's Manual (Rev.1.0) DMAC 9 9.3 Functional Description of the DMAC Transfer count Transfer address Transfer count Transfer address 1 2 3 H'0080 1000 H'0080 1001 H'0080 1002 1 2 3 H'0080 1000 H'0080 1002 H'0080 1004 | | | 31 32 H'0080 101E H'0080 101F 31 32 H'0080 103C H'0080 103E | 1 2 H'0080 1000 H'0080 1001 1 2 H'0080 1000 H'0080 1002 | | | | Figure 9.3.4 Example of How Addresses Are Incremented in 32-channel Ring Buffer Mode 9.3.10 End of DMA and Interrupt In normal mode, DMA transfer is terminated by an underflow of the transfer count register. When transfer finishes, the transfer enable bit is cleared to "0" and transfers are thereby disabled. Also, an interrupt request is generated at completion of transfer. However, if interrupt requests on any channel have been masked by the DMA Interrupt Request Mask Register, no interrupt requests are generated on that channel. During ring buffer mode, the transfer count register operates in free-run mode, and transfer continues until the transfer enable bit is cleared to "0" (to disable transfer). In this case, therefore, no interrupt requests are generated at completion of DMA transfer. Nor are these DMA transfer-completed interrupt requests are generated even when transfer in ring buffer mode is terminated by clearing the transfer enable bit. 9.3.11 Each Register Status after Completion of DMA Transfer When DMA transfer is completed, the status of the source and destination address registers becomes as follows: (1) Address fixed * The values set in the address registers before DMA transfer started remain intact (fixed). (2) Address incremental * For 8-bit transfer, the values of the address registers are the last transfer address + 1. * For 16-bit transfer, the values of the address registers are the last transfer address + 2. The transfer count register at completion of DMA transfer is in an underflow state (H'FFFF). Therefore, before another DMA transfer can be performed, the transfer count register must be set newly again, except when trying to perform transfers 65,536 times (H'FFFF). 9-37 32182 Group User's Manual (Rev.1.0) DMAC 9 9.4 Precautions about the DMAC 9.4 Precautions about the DMAC * About writing to the DMAC related registers Because DMA transfer involves exchanging data via the internal bus, the DMAC related registers basically can only be accessed for write immediately after reset or when transfer is disabled (transfer enable bit = "0"). When transfer is enabled, do not write to the DMAC related registers, except the DMA transfer enable bit, the transfer request flag and the DMA Transfer Count Register that is protected in hardware. This is a precaution necessary to ensure stable DMA operation. The table below lists the registers that can or cannot be accessed for write. Table 9.4.1 DMAC Related Registers That Can or Cannot Be Accessed for Write Status Transfer enable bit Transfer request flag Other DMAC related registers Transfer enabled Can be accessed Can be accessed Cannot be accessed Transfer disabled Can be accessed Can be accessed Can be accessed Even for registers that can exceptionally be written to while transfer is enabled, the following conditions must be observed: (1) DMA Channel Control Register 0 transfer enable bit and transfer request flag For all other bits in this register, be sure to write the same data that those bits had before the write. Note, however, that only writing "0" is effective for the transfer request flag. (2) DMA Transfer Count Register When transfer is enabled, this register is protected in hardware, so that any data rewritten to it is ignored. (3) Rewriting the DMA source and DMA destination addresses on different channels by DMA transfer Although this operation means accessing the DMAC related registers while DMA is enabled, there is no problem. Note, however, that no data can be transferred by DMA to the DMAC related registers on the currently active channel itself. * Manipulating the DMAC related registers by DMA transfer When manipulating the DMAC related registers by means of DMA transfer (e.g., reloading the DMAC related registers with the initial values by DMA transfer), do not write to the DMAC related registers on the currently active channel through that channel. (If this precaution is neglected, device operation cannot be guaranteed.) It is only the DMAC related registers on other channels that can be rewritten by means of DMA transfer. (For example, the DMAn Source Address and DMAn Destination Address Registers on channel 1 can be rewritten by DMA transfer through channel 0.) * About the DMA Interrupt Request Status Register When clearing the DMA Interrupt Request Status Register, be sure to write "1" to all bits, except those to be cleared. Writing "1" to any bits in this register has no effect, so that they retain the data they had before the write. * About the stable operation of DMA transfer To ensure the stable operation of DMA transfer, never rewrite the DMAC related registers, except the channel control register's transfer enable bit, unless transfer is disabled. One exception is that even when transfer is enabled, the DMA Source Address and DMA Destination Address Registers can be rewritten by DMA transfer from one channel to another. 9-38 32182 Group User's Manual (Rev.1.0) CHAPTER 10 MULTIJUNCTION TIMERS 10.1 10.2 10.3 10.4 10.5 10.6 Outline of Multijunction Timers Common Units of Multijunction Timers TOP (Output-Related 16-Bit Timer) TIO (Input/Output-Related 16-Bit Timer) TMS (Input-Related 16-Bit Timer) TML (Input-Related 32-Bit Timer) MULTIJUNCTION TIMERS 10 10.1 Outline of Multijunction Timers 10.1 Outline of Multijunction Timers The multijunction timers (abbreviated MJT) have input event and output event buses. Therefore, in addition to being used as a single unit, the timers can be internally connected to each other. This capability allows for highly flexible timer configuration, making it possible to meet various application needs. It is because the timers are connected to the internal event buses at multiple points that they are called the "multijunction" timers. The 32182 has four types of MJT as listed in the table below, providing a total of 37-channel timers. Table 10.1.1 Outline of MJT Name Type No. of Channels Description TOP Output-related 11 One of three output modes can be selected by software. (Timer 16-bit timer OutPut) (down-counter) * Single-shot output mode * Delayed single-shot output mode * Continuous output mode TIO Input/output-related (Timer 16-bit timer by software. (down-counter) Input 10 One of three input modes or four output modes can be selected OutPut) * Measure clear input mode * Measure free-run input mode * Noise processing input mode * PWM output mode * Single-shot output mode * Delayed single-shot output mode * Continuous output mode TMS Input-related (Timer 16-bit timer Measure 8 16-bit input measure timer 8 32-bit input measure timer (up-counter) Small) TML Input-related (Timer 32-bit timer Measure (up-counter) Large) 10-2 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.1 Outline of Multijunction Timers Table 10.1.2 Interrupt Generation Functions of MJT Signal Name MJT Interrupt Request Source Source of Interrupt No. of ICU Input Sources IRQ0 TIO0-3 output TIO0-3 output interrupt 4 IRQ1 TOP6, TOP7 output TOP6, 7 output interrupt 2 IRQ2 TOP0-5 output TOP0-5 output interrupt 6 IRQ3 TIO8, TIO9 output TIO8, 9 output interrupt 2 IRQ4 TIO4-7 output TIO4-7 output interrupt 4 IRQ5 TOP10 output TOP10 output interrupt 1 IRQ6 TOP8, TOP9 output TOP8, 9 output interrupt 2 IRQ7 TMS0, TMS1 output TMS0, 1 output interrupt 2 IRQ9 TIN0 input TIN0-2 input interrupt 1 IRQ10 TIN16-TIN19 input TIN12-19 input interrupt 4 IRQ11 TIN20-TIN23 input TIN20-29 input interrupt 4 IRQ12 TIN3 input TIN3-6 input interrupt 1 Table 10.1.3 DMA Transfer Request Generation by MJT Corresponding DMAC Channel No. DMA Transfer Request Source DMA0 TIO8_udf Input event bus 2 Common transfer request source (see Table 10.1.4) DMA1 Output event bus 0 TIN3 input signal Common transfer request source (see Table 10.1.4) DMA2 Output event bus 1 TIN18 input signal Common transfer request source (see Table 10.1.4) DMA3 TIN0 input signal Common transfer request source (see Table 10.1.4) DMA4 TIN19 input signal Common transfer request source (see Table 10.1.4) DMA5 TIN20 input signal Common transfer request source (see Table 10.1.4) DMA6 Common transfer request source (see Table 10.1.4) DMA7 Common transfer request source (see Table 10.1.4) DMA8 Input event bus 0 Common transfer request source (see Table 10.1.4) DMA9 Common transfer request source (see Table 10.1.4) 10-3 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.1 Outline of Multijunction Timers Table 10.1.4 DMA Transfer Request Generation by MJT (Common) Corresponding DMAC Channel No. DMA Transfer Request Source DMAn Input event bus 1 Input event bus 3 Output event bus 2 Output event bus 3 TIN0 input signal TIO8_udf Table 10.1.5 A-D Conversion Start Request by MJT Signal Name AD0TRG A-D Conversion Start Request Source A-D Converter Input event bus 2, input event bus 3, Can be input to A-D0 conversion start trigger output event bus 3, TIN23 10-4 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.1 Outline of Multijunction Timers Clock bus Input event bus Output event bus 3210 3210 clk S TCLK0 (P124) clk TCLK0S IRQ9 TIN0 (P150) clk TIN0S clk S DMA3,DMA commom clk PRS0 BCLK/2 IRQ2 en TOP 0 udf en TOP 1 udf 0123 F/F0 TO0 (P110) F/F1 TO1 (P111) F/F2 TO2 (P112) F/F3 TO3 (P113) F/F4 TO4 (P114) F/F5 TO5 (P115) S F/F6 TO6 (P116) S F/F7 TO7 (P117) S F/F8 TO8 (P100) S F/F9 TO9 (P101) S F/F10 TO10 (P102) S F/F11 TO11 (P103) S F/F12 TO12 (P104) S F/F13 TO13 (P105) S F/F14 TO14 (P106) S F/F15 TO15 (P107) S F/F16 TO16 (P93) S F/F17 TO17 (P94) S F/F18 TO18 (P95) S F/F19 TO19 (P96) F/F20 TO20 (P97) IRQ2 IRQ2 en TOP 2 udf en TOP 3 udf IRQ2 IRQ2 en TOP 4 udf en TOP 5 udf PRS1 clk PRS2 clk S S clk IRQ2 IRQ1 TOP 6 en udf IRQ1 en TOP 7 udf en TOP 8 udf S S clk S clk clk IRQ12 TIN3 (P153) TIN3S S clk IRQ6 TOP 9 en udf IRQ5 en TOP 10 udf TIO 0 udf IRQ0 en/cap S DMA1 clk IRQ0 TIO 1 en/cap udf S clk IRQ6 IRQ0 TIO 2 en/cap udf S clk clk S TIO 3 en/cap udf IRQ0 IRQ4 TIO 4 en/cap udf S S TCLK1 (P125) IRQ4 TCLK1S clk S TIO 5 en/cap udf S TCLK2 (P126) IRQ4 TCLK2S S clk en/cap TIO 6 udf clk en/cap TIO 7 udf en/cap TIO 8 udf en/cap TIO 9 udf S IRQ4 S S clk S DMA0 DMA common IRQ3 S clk S IRQ3 S 3210 3210 PRS0-5 : Prescalers 0123 F/F : Output flip-flop S : Selector Notes: * IRQ0-18 denotes interrupt signals, of which the same number represents the same group of interrupts. * DMA0-9 and DMA common denote DMA request signals to the DMAC. * AD0TRG denotes trigger signal to the A-D0 converter. Figure 10.1.1 Block Diagram of MJT (1/3) 10-5 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.1 Outline of Multijunction Timers Clock bus Input event bus Output event bus 3210 3210 TCLK3 (P127) TCLK3S 0123 TMS 0 cap2 cap1 clk S cap3 cap0 ovf IRQ7 S S S S cap3 IRQ10 TIN16(P130) TIN16S TIN17(P131) TIN17S TIN18 (P132) TIN18S TMS 1 cap2 cap1 clk S cap0 ovf IRQ7 S IRQ10 S IRQ10 S DMA2 IRQ10 TIN19 (P133) S TIN19S DMA4 clk S BCLK/2 cap3 IRQ11 TIN20 (P134) TML 0 (32-bit) cap2 cap1 cap0 S TIN20S DMA5 IRQ11 TIN21 (P135) TIN21S TIN22 (P136) TIN22S TIN23 (P137) TIN23S S IRQ11 S IRQ11 S (To A-D0 converter) AD0TRG (To A-D1 converter)AD1TRG clk S BCLK/2 cap3 TML 1 (32-bit) cap2 cap1 cap0 S S S AD0TRG (to A-D0 converter) S AD0TRG (to A-D0 converter) AD0TRG (to A-D0 converter) 3210 3210 0123 Figure 10.1.2 Block Diagram of MJT (2/3) 10-6 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.1 Outline of Multijunction Timers Input event bus Output event bus 3 2 1 0 0 1 2 3 AD0 conversion completed TIO8_udf TIN0S AD0 conversion completed TIO8_udf S S DMA0 udf end DMA1 udf end DMA2 udf end DMA3 udf end DMA4 udf end Software start CAN0_S0/S15 TIN3S S Software start S CAN0_S1/S14 S TIN18S Software start S TIN0S S SIO0_TXD SIO1_RXD Software start S SIO0_RXD Software start S TIN19S SIO0_TXD S TIN20S DMA0-4 interrupt Software start S SIO1_RXD S SIO2_RXD S SIO1_TXD Software start S DMA5 udf end DMA6 udf end DMA7 udf end DMA8 udf end DMA9 udf end SIO3_TXD S S S SIO2_TXD Software start SIO3_RXD Software start SIO3_TXD Software start 3 2 1 0 S S S DMA5-9 interrupt 0 1 2 3 Figure 10.1.3 Block Diagram of MJT (3/3) 10-7 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers 10.2 Common Units of Multijunction Timers The common units of MJT include the following: * Prescaler Unit * Clock Bus and Input/Output Event Bus Control Unit * Input Processing Control Unit * Output Flip-flop Control Unit * Interrupt Control Unit 10-8 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers 10.2.1 MJT Common Unit Register Map The table below shows a common unit register map of MJT. MJT Common Unit Register Map Address +0 address +1 address b0 b7 b8 H'0080 0200 (Use inhibited area) H'0080 0202 Prescaler Register 0 (PRS0) Prescaler Register 2 (PRS2) H'0080 0204 | H'0080 0210 H'0080 0212 | H'0080 0218 H'0080 021A | H'0080 0220 H'0080 0222 H'0080 0224 H'0080 0226 H'0080 0228 H'0080 022A | H'0080 0230 H'0080 0232 H'0080 0234 H'0080 0236 H'0080 0238 H'0080 023A H'0080 023C H'0080 023E See pages b15 Clock Bus & Input Event Bus Control Register (CKIEBCR) Prescaler Register 1 (PRS1) Output Event Bus Control Register (OEBCR) (Use inhibited area) 10-14 10-10 10-10 10-15 TCLK Input Processing Control Register (TCLKCR) TIN0-4 Input Processing Control Register (TIN04CR) (Use inhibited area) 10-18 TIN12-19 Input Processing Control Register (TIN1219CR) TIN20-23, TIN30-33 Input Processing Control Register (TIN2023_3033CR) (Use inhibited area) 10-20 10-19 F/F6-15 Source Select Register (FF615S) (Use inhibited area) F/F16-19 Source Select Register (FF1619S) F/F0-15 Protect Register (FF015P) F/F0-15 Data Register (FF015D) (Use inhibited area) F/F16-20 Protect Register (FF1620P) (Use inhibited area) F/F16-20 Data Register (FF1620D) (Use inhibited area) TOP0-5 Interrupt Request Status Register TOP0-5 Interrupt Request Mask Register (TOP05IST) (TOP05IMA) TOP6,7 Interrupt Request Mask & Status Register TOP8,9 Interrupt Request Mask & Status Register (TOP67IMS) (TOP89IMS) TIO0-3 Interrupt Request Mask & Status Register TIO4-7 Interrupt Request Mask & Status Register (TIO03IMS) (TIO47IMS) TIO8,9 Interrupt Request Mask & Status Register TMS0,1 Interrupt Request Mask & Status Register (TIO89IMS) (TMS01IMS) TIN0-2 Interrupt Request Mask & Status Register TIN3-6 Interrupt Request Mask & Status Register (TIN02IMS) (TIN36IMS) (Use inhibited area) TIN12-19 Interrupt Request Status Register (TIN1219IST) TIN20-23 Interrupt Request Mask & Status Register (TIN2023IMS) 10-9 TIN12-19 Interrupt Request Mask Register (TIN1219IMA) (Use inhibited area) 10-20 10-22 10-23 10-24 10-25 10-24 10-25 10-30 10-32 10-33 10-34 10-35 10-36 10-37 10-38 10-39 10-40 10-42 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers 10.2.2 Prescaler Unit The Prescalers PRS0-2 are an 8-bit counter, which generates clocks supplied to each timer (TOP, TIO, TMS and TML) from the internal peripheral clock (BCLK) divided by 2 (10 MHz when f(BCLK) = 20 MHz). The values of prescaler registers are initialized to H'00 immediately after reset. When the set value of any prescaler register is rewritten, the prescaler starts operating with the new value at the same time it has underflowed. Values H'00 to H'FF can be set in the prescaler register. The prescaler's divide-by ratio is given by the equation below: 1 Prescaler divide-by ratio = prescaler set value + 1 Prescaler Register 0 (PRS0) Prescaler Register 1 (PRS1) Prescaler Register 2 (PRS2) b0 b8 1 9 2 10 0 0 0 3 11 4 12 5 13 6 14 b7 b15 0 0 0 PRS0-PRS5 0 0 b Bit Name 0-7 (8-15) PRS0-PRS2 Prescaler Function Set the prescaler divide-by value R W R W Prescaler Registers 0-2 start counting immediately after reset. If the prescaler register is accessed for read during operation, the value written into it, not the current count, is read out. 10-10 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers 10.2.3 Clock Bus and Input/Output Event Bus Control Unit (1) Clock bus The clock bus is provided for supplying clock to each timer, and is comprised of four lines of clock bus 0-3. Each timer can use these clock bus signals as clock input signals. The table below lists the signals that can be fed into the clock bus. Table 10.2.1 Acceptable Clock Bus Signals Clock Bus Acceptable Signal 3 TCLK0 input 2 Internal prescaler (PRS2) or TCLK3 input 1 Internal prescaler (PRS1) 0 Internal prescaler (PRS0) (2) Input event bus The input event bus is provided for supplying a count enable signal or measure capture signal to each timer, and is comprised of four lines of input event bus 0-3. Each timer can use these input event bus signals as enable (or capture) input. Furthermore, they can also be used as request signals to start A-D conversion or DMA transfer. The table below lists the signals that can be fed into the input event bus. Table 10.2.2 Connectable (Acceptable) Input Event Bus Signals Input Event Bus Connectable (Acceptable) Signal (Note 1) 3 TIN3 input, output event bus 2 or TIO7 underflow signal 2 TIN0 input 1 TIO6 underflow signal 0 TIO5 underflow signal Note 1: For the destination (output) to which the input event bus signals are connected, see Figure 10.1.1, "Block Diagram of MJT." (3) Output event bus The output event bus has the underflow signal from each timer connected to it, and is comprised of four lines of output event bus 0-3. Output event bus signals are connected to output flip-flops, and can also be connected to the A-D converter and DMAC. Furthermore, output event bus 2 can be connected to input event bus 3. The table below lists the signals that can be connected to the output event bus. Table 10.2.3 Connectable (Acceptable) Output Event Bus Signals Input Event Bus Connectable (Acceptable) Signal (Note 1) 3 TOP8, TIO3, TIO4 or TIO8 underflow signal 2 TOP9 or TIO2 underflow signal 1 TOP7 or TIO1 underflow signal 0 TOP6 or TIO0 underflow signal Note 1: For the destination (output) to which the output event bus signals are connected, see Figure 10.1.1, "Block Diagram of MJT." Note that the signals from each timer to the output event bus (and TIO5, 6 signals to the input event bus) are generated with the timing shown in Table 10.2.4, and not the timing at which signals are output from the timer to the output flip-flop. 10-11 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers Table 10.2.4 Timing at Which Signals are Generated to the Output Event Bus by Each Timer Timer Mode TOP Single-shot output mode When the counter underflows Delayed single-shot output mode When the counter underflows Continuous output mode When the counter underflows TIO(Note 1) Timing at which signals are generated to the output event bus Measure clear input mode When the counter underflows Measure free-run input mode When the counter underflows Noise processing input mode When the counter underflows PWM output mode When the counter underflows Single-shot output mode When the counter underflows Delayed single-shot output mode When the counter underflows Continuous output mode When the counter underflows TMS (16-bit measure input) No signals generated TML (32-bit measure input) No signals generated Note 1: TIO5-7 output an underflow signal to the input event bus. 10-12 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers Clock bus 3210 TCLK0 (P124) TIN0 (P150) TCLK0S 0123 clk clk TIN0S PRS0 BCLK/2 Output event bus Input event bus 3210 clk PRS1 en TOP 6 udf en TOP 7 udf en TOP 8 udf en TOP 9 udf TIO 0 udf TIO 1 udf TIO 2 udf TIO 3 udf TIO 4 udf PRS2 clk TIN3 (P153) TIN3S S TCLK3 (P127) TIO 5 udf TIO 6 udf TIO 7 udf TIO 8 udf TCLK3S 3210 3210 0123 PRS0-2 : Prescaler S : Selector Figure 10.2.1 Conceptual Diagram of the Clock Bus and Input/Output Event Bus 10-13 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers The Clock Bus and Input/Output Event Bus Control Unit has the following registers: * Clock Bus & Input Event Bus Control Register (CKIEBCR) * Output Event Bus Control Register (OEBCR) Clock Bus & Input Event Bus Control Register (CKIEBCR) b8 9 10 IEB3S 0 11 IEB2S 0 0 0 12 13 IEB1S IEB0S 0 0 14 b15 CKB2S 0 0 b Bit Name R W 8, 9 IEB3S Input event bus 3 input select bit Function 00: Select external input 3 (TIN3) 01: - ditto - 10: Select output event bus 2 11: Select TIO7 output R W 10, 11 IEB2S Input event bus 2 input select bit 00: Select external input 0 (TIN0) 01: Select external input 2 (TIN2) (Note 1) 10: Select external input 4 (TIN4) (Note 1) 11: - ditto - (Note 1) R W 12 IEB1S Input event bus 1 input select bit 0: Select external input 5 (TIN5) (Note 1) 1: Select TIO6 output R W 13 IEB0S Input event bus 0 input select bit 0: Select external input 6 (TIN6) (Note 1) 1: Select TIO5 output R W 14 No function assigned. Fix to "0". 0 0 15 CKB2S Clock bus 2 input select bit R W 0: Select prescaler 2 1: Select external clock 3 (TCLK3) Note 1: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. The CKIEBCR register is used to select the clock source (external input or prescaler) supplied to the clock bus and the count enable/capture signal (external input or output event bus) supplied to the input event bus. 10-14 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers Output Event Bus Control Register (OEBCR) b8 9 10 OEB3S 0 11 12 OEB2S 0 0 0 13 14 OEB1S 0 0 b15 OEB0S 0 0 b Bit Name 8, 9 OEB3S Output event bus 3 input select bit 10 No function assigned. Fix to "0". 11 OEB2S Output event bus 2 input select bit 12 No function assigned. Fix to "0". 13 OEB1S Output event bus 1 input select bit 14 No function assigned. Fix to "0". 15 Function 00: 01: 10: 11: Select Select Select Select TOP8 output TIO3 output TIO4 output TIO8 output 0: Select TOP9 output 1: Select TIO2 output 0: Select TOP7 output 1: Select TIO1 output OEB0S 0: Select TOP6 output Output event bus 0 input select bit 1: Select TIO0 output R W R W 0 0 R W 0 0 R W 0 0 R W The OEBCR register is used to select the timer (TOP or TIO) whose underflow signal is supplied to the output event bus. 10.2.4 Input Processing Control Unit The Input Processing Control Unit processes TCLK and TIN input signals to the MJT. In TCLK input processing, it selects the source of TCLK signal, and for external input, it selects the active edge (rising or falling or both) or level (high or low) of the signal, at which to generate the clock signal supplied to the clock bus. In TIN input processing, the unit selects the active edge (rising or falling or both) or level (high or low) of the signal, at which to generate the enable, measure or count source signal for each timer or the signal supplied to each event bus. Following input processing registers are included: * TLCK Input Processing Control Register (TCLKCR) * TIN0-4 Input Processing Control Register (TIN04CR) * TIN12-19 Input Processing Control Register (TIN1219CR) * TIN20-23, TIN30-33 Input Processing Control Register (TIN2023_3033CR) 10-15 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers (1) Functions of TCLK Input Processing Control Registers Item Function BCLK/2 BCLK/2 Count clock Rising edge TCLK Count clock Falling edge TCLK Count clock Both edges TCLK Count clock Low level TCLK BCLK/2 Count clock High level TCLK BCLK/2 Count clock 10-16 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers (2) Functions of TIN Input Processing Control Registers Item Function Rising edge TIN Internal edge signal Falling edge TIN Internal edge signal Both edges TIN Internal edge signal Low level TIN Prescaler output period or TCLK input period Internal edge signal High level TIN Prescaler output period or TCLK input period Internal edge signal 10-17 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TLCK Input Processing Control Register (TCLKCR) b0 1 2 3 4 5 TCLK3S 0 0 0 0 6 7 8 9 TCLK2S 0 0 0 10 11 12 13 0 0 0 0 14 b15 TCLK0S TCLK1S 0 0 0 0 0 b Bit Name 0, 1 No function assigned. Fix to "0". 2, 3 TCLK3S TCLK3 input processing select bit 4 No function assigned. Fix to "0". 5-7 TCLK2S TCLK2 input processing select bit 8 No function assigned. Fix to "0". 9-11 TCLK1S TCLK1 input processing select bit 12,13 No function assigned. Fix to "0". 14,15 TCLK0S TCLK0 input processing select bit Function R 0 0 00: BCLK/2 01: Rising edge 10: Falling edge 11: Both edges R W 0 0 000: Disable input 001: Rising edge 010: Falling edge 011: Both edges 100: Low level 101: Low level 110: High level 111: High level R W 0 0 000: Disable input 001: Rising edge 010: Falling edge 011: Both edges 100: Low level 101: Low level 110: High level 111: High level R W 0 0 R W 00: BCLK/2 01: Rising edge 10: Falling edge 11: Both edges110 W Note: * This register must always be accessed in halfwords. 10-18 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIN0-4 Input Processing Control Register (TIN04CR) b0 1 2 3 4 5 TIN4S 0 0 0 6 7 8 9 10 TIN3S 0 0 0 0 11 12 TIN2S 0 0 0 0 13 14 TIN1S 0 0 b15 TIN0S 0 0 0 b Bit Name R W 0 No function assigned. Fix to "0". Function 0 0 1-3 Fix to "0". 0 0 4 No function assigned. Fix to "0". 5-7 TIN3S TIN3 input processing select bit 8,9 10,11 0 0 R W No function assigned. Fix to "0". 0 0 Fix to "0". 0 0 12,13 Fix to "0". 14,15 TIN0S TIN0 input processing select bit 000: Disable input 001: Rising edge 010: Falling edge 011: Both edges 100: Low level 101: Low level 110: High level 111: High level 00: Disable input 01: Rising edge 10: Falling edge 11: Both edges 0 0 R W Note: * This register must always be accessed in halfwords. 10-19 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIN12-19 Input Processing Control Register (TIN1219CR) b0 1 2 TIN19S 0 3 4 TIN18S 0 0 5 6 TIN17S 0 0 7 8 TIN16S 0 0 9 10 TIN15S 0 0 11 12 TIN14S 0 0 13 14 TIN13S 0 0 b15 TIN12S 0 0 0 b Bit Name Function R W 0, 1 TIN19S (TIN19 input processing select bit) 00: Disable input R W 2, 3 TIN18S (TIN18 input processing select bit) 01: Rising edge 4, 5 TIN17S (TIN17 input processing select bit) 10: Falling edge 6, 7 TIN16S (TIN16 input processing select bit) 11: Both edges 8-15 Fix to "0". 0 0 Note: * This register must always be accessed in halfwords. TIN20-23, TIN30-33 Input Processing Control Register (TIN2023_3033CR) b0 1 2 TIN33S 0 3 4 TIN32S 0 0 5 6 TIN31S 0 0 7 8 TIN30S 0 0 9 10 TIN23S 0 0 11 12 TIN22S 0 0 13 14 TIN21S 0 0 b15 TIN20S 0 0 0 b Bit Name 0-7 Fix to "0". Function 8, 9 TIN23S (TIN23 input processing select bit) 00: Disable input 10, 11 TIN22S (TIN22 input processing select bit) 01: Rising edge 12, 13 TIN21S (TIN21 input processing select bit) 10: Falling edge 14, 15 TIN20S (TIN20 input processing select bit) 11: Both edges R W 0 0 R W Note: * This register must always be accessed in halfwords. 10-20 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers 10.2.5 Output Flip-flop Control Unit The Output Flip-flop Control Unit controls the flip-flops (F/F) provided for each timer. Following flip-flop control registers are included: * F/F6-15 Source Select Register (FF615S) * F/F16-19 Source Select Register (FF1619S) * F/F0-15 Protect Register (FF015P) * F/F16-20 Protect Register (FF1620P) * F/F0-15 Data Register (FF015D) * F/F16-20 Data Register (FF1620D) The timing at which signals are generated to the output flip-flop by each timer are shown in Table 10.2.5. (Note that this timing is different from one at which signals are output from the timer to the output event bus.) 10.2.5 Timing at Which Signals Are Generated to the Output Flip-Flop by Each Timer Timer Mode Timing at which signals are generated to the output flip-flop TOP Single-shot output mode When count is enabled or underflows Delayed single-shot output mode When counter underflows Continuous output mode When count is enabled or underflows TIO Measure clear input mode When counter underflows Measure free-run input mode When counter underflows Noise processing input mode When counter underflows PWM output mode When count is enabled or underflows Single-shot output mode When count is enabled or underflows Delayed single-shot output mode When counter underflows Continuous output mode When count is enabled or underflows TMS (16-bit measure input) No signals generated TML (32-bit measure input) No signals generated F/F source selection (FSn) Port operation mode register (PnMOD) F/F TOP/TIO Output event bus 0 Output event bus 1 Output event bus 2 Output event bus 3 Internal edge signal F/Fn output data (FDn) Data bus F/F TOn Output control (ON/OFF) WR F/F protect (FPn) Data bus F/F Figure 10.2.2 Configuration of the F/F Output Circuit Table 10-21 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers F/F6-15 Source Select Register (FF615S) b0 0 1 0 2 0 3 4 5 6 7 FS15 FS14 FS13 FS12 FS11 0 0 0 0 0 8 9 10 FS10 0 11 12 FS9 0 0 13 FS8 0 0 0 14 b15 FS7 FS6 0 0 b Bit Name Function R W 0-2 No function assigned. Fix to "0". 0 0 3 FS15 F/F15 source select bit 0: TIO4 output 1: Output event bus 0 R W 4 FS14 F/F14 source select bit 0: TIO3 output 1: Output event bus 0 R W 5 FS13 F/F13 source select bit 0: TIO2 output 1: Output event bus 3 R W 6 FS12 F/F12 source select bit 0: TIO1 output 1: Output event bus 2 R W 7 FS11 F/F11 source select bit 0: TIO0 output 1: Output event bus 1 R W 8, 9 FS10 00: TOP10 output R W F/F10 source select bit 01: TOP10 output 10: Output event bus 0 11: Output event bus 1 10, 11 FS9 F/F9 source select bit 00: 01: 10: 11: TOP9 output TOP9 output Output event bus 0 Output event bus 1 R W 12, 13 FS8 F/F8 source select bit 00: 01: 10: 11: TOP8 output Output event bus 0 Output event bus 1 Output event bus 2 R W 14 FS7 F/F7 source select bit 0: TOP7 output 1: Output event bus 0 R W FS6 0: TOP6 output R W F/F6 source select bit 1: Output event bus 1 15 Note: * This register must always be accessed in halfwords. 10-22 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers F/F16-19 Source Select Register (FF1619S) b8 9 10 FS19 0 11 12 FS18 0 0 13 14 FS17 0 0 b15 FS16 0 0 0 b Bit Name Function R W 8, 9 FS19 F/F19 source select bit 00: 01: 10: 11: TIO8 output TIO8 output Output event bus 0 Output event bus 1 R W 10, 11 FS18 F/F18 source select bit 00: 01: 10: 11: TIO7 output TIO7 output Output event bus 0 Output event bus 1 R W 12, 13 FS17 F/F17 source select bit 00: 01: 10: 11: TIO6 output TIO6 output Output event bus 0 Output event bus 1 R W 14, 15 FS16 F/F16 source select bit 00: 01: 10: 11: TIO5 output Output event bus 0 Output event bus 1 Output event bus 3 R W These registers select the signal source for each output F/F (flip-flop). This signal source can be chosen to be a signal from the internal output bus or an underflow output from each timer. 10-23 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers F/F0-15 Protect Register (FF015P) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 FP15 FP14 FP13 FP12 FP11 FP10 FP9 FP8 FP7 FP6 FP5 FP4 FP3 FP2 FP1 FP0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 FP15 (F/F15 protect bit) 0: Enable write to F/F output bit R W 1 FP14 (F/F14 protect bit) 1: Disable write to F/F output bit 2 FP13 (F/F13 protect bit) 3 FP12 (F/F12 protect bit) 4 FP11 (F/F11 protect bit) 5 FP10 (F/F10 protect bit) 6 FP9 (F/F9 protect bit) 7 FP8 (F/F8 protect bit) 8 FP7 (F/F7 protect bit) 9 FP6 (F/F6 protect bit) 10 FP5 (F/F5 protect bit) 11 FP4 (F/F4 protect bit) 12 FP3 (F/F3 protect bit) 13 FP2 (F/F2 protect bit) 14 FP1 (F/F1 protect bit) 15 FP0 (F/F0 protect bit) Note: * This register must always be accessed in halfwords. F/F16-20 Protect Register (FF1620P) b8 0 9 0 10 0 11 12 13 14 b15 FP20 FP19 FP18 FP17 FP16 0 0 0 0 0 b Bit Name 8-10 No function assigned. Fix to "0". Function 11 FP20 (F/F20 protect bit) 0: Enable write to F/F output bit 12 FP19 (F/F19 protect bit) 1: Disable write to F/F output bit 13 FP18 (F/F18 protect bit) 14 FP17 (F/F17 protect bit) 15 FP16 (F/F16 protect bit) R W 0 0 R W This register enables or disables write to each output F/F (flip-flop). If write to any output F/F is disabled, writing to the corresponding F/F data register has no effect. 10-24 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers F/F0-15 Data Register (FF015D) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 FD15 FD14 FD13 FD12 FD11 FD10 FD9 FD8 FD7 FD6 FD5 FD4 FD3 FD2 FD1 b15 FD0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 FD15 (F/F15 output data bit) 0: F/F output data = 0 R W 1 FD14 (F/F14 output data bit) 1: F/F output data = 1 2 FD13 (F/F13 output data bit) 3 FD12 (F/F12 output data bit) 4 FD11 (F/F11 output data bit) 5 FD10 (F/F10 output data bit) 6 FD9 (F/F9 output data bit) 7 FD8 (F/F8 output data bit) 8 FD7 (F/F7 output data bit) 9 FD6 (F/F6 output data bit) 10 FD5 (F/F5 output data bit) 11 FD4 (F/F4 output data bit) 12 FD3 (F/F3 output data bit) 13 FD2 (F/F2 output data bit) 14 FD1 (F/F1 output data bit) 15 FD0 (F/F0 output data bit) Note: * This register must always be accessed in halfwords. F/F16-20 Data Register (FF1620D) b8 0 9 0 10 0 11 12 13 14 b15 FD20 FD19 FD18 FD17 FD16 0 0 0 0 0 b Bit Name 8-10 No function assigned. Fix to "0". Function 11 FD20 (F/F20 output data bit) 0: F/F output data = 0 12 FD19 (F/F19 output data bit) 1: F/F output data = 1 13 FD18 (F/F18 output data bit) 14 FD17 (F/F17 output data bit) 15 FD16 (F/F16 output data bit) R W 0 0 R W This register is used to set the data for each output F/F (flip-flop). Although the F/F outputs normally change state depending on timer outputs, the F/F outputs can be set to 1 or cleared to 0 as necessary by writing to this register. The F/F data register can only be operated on when the F/F protect register described above is enabled for write. 10-25 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers 10.2.6 Interrupt Control Unit The Interrupt Control Unit controls the interrupt request signals output to the Interrupt Controller by each timer. Following timer interrupt control registers are provided for each timer: * TOP0-5 Interrupt Request Status Register (TOP05IST) * TOP0-5 Interrupt Request Mask Register (TOP05IMA) * TOP6,7 Interrupt Request Mask & Status Register (TOP67IMS) * TOP8,9 Interrupt Request Mask & Status Register (TOP89IMS) * TIO0-3 Interrupt Request Mask & Status Register (TIO03IMS) * TIO4-7 Interrupt Request Mask & Status Register (TIO47IMS) * TIO8,9 Interrupt Request Mask & Status Register (TIO89IMS) * TMS0,1 Interrupt Request Mask & Status Register (TMS01IMS) * TIN0-2 Interrupt Request Mask & Status Register (TIN02IMS) * TIN3-6 Interrupt Request Mask & Status Register (TIN36IMS) * TIN12-19 Interrupt Request Status Register (TIN1219IST) * TIN12-19 Interrupt Request Mask Register (TIN1219IMA) * TIN20-23 Interrupt Request Mask & Status Register (TIN2023IMS) For interrupts which have only one interrupt request source in the interrupt vector table, no interrupt control registers are included in the timer, and the interrupt request status flags are automatically managed within the Interrupt Controller. For details, see Chapter 5, "Interrupt Controller." * TOP10 TOP10 Output Interrupt Request (IRQ5) 10-26 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers For interrupts which have two or more interrupt sources in the interrupt vector table, interrupt control registers are included, with which to control interrupt requests and determine interrupt input. Therefore, the status flags in the Interrupt Controller only serve as a bit to determine interrupt requests from interrupt-enabled sources and cannot be accessed for write. (1) Interrupt request status bit This status bit is used to determine whether there is an interrupt request. When an interrupt request occurs, this bit is set in hardware (cannot be set in software). The status bit is cleared by writing "0". Writing "1" has no effect; the bit retains the status it had before the write. Because this status bit is unaffected by the interrupt request mask bit, it can be used to inspect the operating status of peripheral functions. In interrupt handling, make sure that within the grouped interrupt request status, only the status bit for the interrupt request that has been serviced is cleared. If the status bit for any interrupt request that has not been serviced is cleared, the pending interrupt request is cleared simultaneously with its status bit. (2) Interrupt request mask bit This bit is used to disable unnecessary interrupts within the grouped interrupt request. Set this bit to "0" to enable interrupt requests or "1" to disable interrupt requests. Group interrupt Timer or TIN input interrupt request Set Data bus Data = 0 clear Interrupt request status F/F To the Interrupt Controller F/F Interrupt request enabled Figure 10.2.3 Interrupt Request Status and Mask Registers 10-27 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers Example for clearing interrupt request status Interrupt request status Initial state b4 5 6 b7 0 0 0 0 Interrupt request Event occurs on bit 6 0 0 1 0 Event occurs on bit 4 1 0 1 0 1 0 0 0 Write to the interrupt request status b4 5 6 b7 1 1 0 1 Only bit 6 cleared Bit 4 data retained Program example * To clear the Interrupt Request Status Register 0 (ISTREG) interrupt request status 1, ISTAT1 (0x02 bit) ISTREG = 0xfd; /* Clear ISTAT1 (0x02 bit) only */ To clear an interrupt request status, always be sure to write "1" to all other interrupt request status bits. At this time, avoid using a logic operation like the one shown below. Because it requires three step-ISTREG read, logic operation and write, if another interrupt request occurs between the read and write, status may be inadvertently cleared. ISTREG &= 0xfd; /* Clear ISTAT1 (0x02 bit) only */ Interrupt request status Event occurs on bit 6 b4 5 6 b7 0 0 1 0 Read 0 Event occurs on bit 4 1 0 1 0 0 1 0 0 Clear bit 6 (ANDing with 1101) 0 0 0 0 0 0 0 Write Only bit 6 cleared Bit 4 also cleared Figure 10.2.4 Example for Clearing Interrupt Request Status 10-28 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers The table below shows the relationship between the interrupt request signals generated by multijunction timers and the interrupt sources input to the Interrupt Controller (ICU). Table 10.2.6 Interrupt Request Signals Generated by MJT Signal Name Generated by Interrupt Request Source (Note 1) No. of ICU Input Sources IRQ0 TIO0, TIO1, TIO2, TIO3 TIO0-3 output interrupt 4 IRQ1 TOP6, TOP7 TOP6, 7 output interrupt 2 IRQ2 TOP0, TOP1, TOP2, TOP3, TOP4, TOP5 TOP0-5 output interrupt 6 IRQ3 TIO8, TIO9 TIO8, 9 output interrupt 2 IRQ4 TIO4, TIO5, TIO6, TIO7 TIO4-7 output interrupt 4 IRQ6 TOP8, TOP9 TOP8, 9 output interrupt 2 IRQ7 TMS0, TMS1 TMS0, 1 output interrupt 2 IRQ9 TIN0 TIN0-2 input interrupt 1 IRQ10 TIN16, TIN17, TIN18, TIN19 TIN12-19 input interrupt 4 IRQ11 TIN20, TIN21, TIN22, TIN23 TIN20-29 input interrupt 4 IRQ12 TIN3 TIN3-6 input interrupt 1 Note 1: See Chapter 5, "Interrupt Controller (ICU)." Note: * TOP10 has only one interrupt source in each interrupt group, so that their status and mask registers are nonexistent in the MJT interrupt control registers. (They are controlled directly by the Interrupt Controller.) 10-29 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TOP0-5 Interrupt Request Status Register (TOP05IST) b0 1 2 3 4 5 6 b7 TOPIS5 TOPIS4 TOPIS3 TOPIS2 TOPIS1 TOPIS0 0 0 0 0 0 0 0 0 b Bit Name Function 0, 1 No function assigned. Fix to "0". 2 TOPIS5 (TOP5 interrupt request status bit) 0: Interrupt not requested 3 TOPIS4 (TOP4 interrupt request status bit) 1: Interrupt requested 4 TOPIS3 (TOP3 interrupt request status bit) 5 TOPIS2 (TOP2 interrupt request status bit) 6 TOPIS1 (TOP1 interrupt request status bit) 7 TOPIS0 (TOP0 interrupt request status bit) R W 0 0 R(Note 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. TOP0-5 Interrupt Request Mask Register (TOP05IMA) b8 9 10 11 12 13 14 b15 TOPIM5 TOPIM4 TOPIM3 TOPIM2 TOPIM1 TOPIM0 0 0 0 0 0 0 0 0 b Bit Name 8, 9 No function assigned. Fix to "0". Function 10 TOPIM5 (TOP5 interrupt request mask bit) 0: Enable interrupt request 11 TOPIM4 (TOP4 interrupt request mask bit) 1: Mask (disable) interrupt request 12 TOPIM3 (TOP3 interrupt request mask bit) 13 TOPIM2 (TOP2 interrupt request mask bit) 14 TOPIM1 (TOP1 interrupt request mask bit) 15 TOPIM0 (TOP0 interrupt request mask bit) 10-30 R W 0 0 R W 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TOP05IST TOP05IMA TOP5udf Data bus b2 TOPIS5 F/F b10 TOPIM5 F/F 6-source inputs (Level) TOP0-5 output interrupt request IRQ2 TOP4udf b3 TOPIS4 F/F b11 TOPIM4 F/F TOP3udf b4 TOPIS3 F/F b12 TOPIM3 F/F TOP2udf b5 TOPIS2 F/F b13 TOPIM2 F/F TOP1udf b6 TOPIS1 F/F b14 TOPIM1 F/F TOP0udf b7 TOPIS0 F/F b15 TOPIM0 F/F Figure 10.2.5 Block Diagram of TOP0-5 Output Interrupt Request 10-31 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TOP6,7 Interrupt Request Mask & Status Register (TOP67IMS) b0 1 2 3 4 5 TOPIS7 TOPIS6 0 0 0 0 6 b7 TOPIM7 TOPIM6 0 0 0 0 b Bit Name Function 0, 1 No function assigned. Fix to "0". 2 TOPIS7 (TOP7 interrupt request status bit) 0: Interrupt not requested 3 TOPIS6 (TOP6 interrupt request status bit) 1: Interrupt requested 4, 5 No function assigned. Fix to "0". R W 0 0 R(Note 1) 6 TOPIM7 (TOP7 interrupt request mask bit) 0: Enable interrupt request 7 TOPIM6 (TOP6 interrupt request mask bit) 1: Mask (disable) interrupt request 0 0 R W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. TOP67IMS TOP7udf Data bus b2 TOPIS7 F/F b6 TOPIM7 F/F 2-source inputs (Level) TOP6,7 output interrupt request IRQ1 TOP6udf b3 TOPIS6 F/F b7 TOPIM6 F/F Figure 10.2.6 Block Diagram of TOP6,7 Output Interrupt Request 10-32 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TOP8,9 Interrupt Request Mask & Status Register (TOP89IMS) b8 9 10 11 12 13 TOPIS9 TOPIS8 0 0 0 0 14 b15 TOPIM9 TOPIM8 0 0 0 0 b Bit Name Function 8,9 No function assigned. Fix to "0". 10 TOPIS9 (TOP9 interrupt request status bit) 0: Interrupt not requested 11 TOPIS8 (TOP8 interrupt request status bit) 1: Interrupt requested 12,13 No function assigned. Fix to "0". R W 0 0 R(Note 1) 14 TOPIM9 (TOP9 interrupt request mask bit) 0: Enable interrupt request 15 TOPIM8 (TOP8 interrupt request mask bit) 1: Mask (disable) interrupt request 0 0 R W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. Note: * TOP10 has only one interrupt source in the interrupt group, so that its status and mask registers are nonexistent in the MJT interrupt control registers. (They are controlled directly by the Interrupt Controller.) TOP89IMS TOP9udf Data bus 2-source inputs TOPIS9 b10 b14 F/F (Level) TOPIM9 F/F TOP8,9 output interrupt request IRQ6 TOP8udf b11 TOPIS8 F/F b15 TOPIM8 F/F Figure 10.2.7 Block Diagram of TOP8,9 Output Interrupt Request 10-33 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIO0-3 Interrupt Request Mask & Status Register (TIO03IMS) b0 1 2 3 4 5 6 b7 TIOIS3 TIOIS2 TIOIS1 TIOIS0 TIOIM3 TIOIM2 TIOIM1 TIOIM0 0 0 0 0 0 0 0 0 b Bit Name Function R 0 TIOIS3 (TIO3 interrupt request status bit) 0: Interrupt not requested R(Note 1) 1 TIOIS2 (TIO2 interrupt request status bit) 1: Interrupt requested 2 TIOIS1 (TIO1 interrupt request status bit) 3 TIOIS0 (TIO0 interrupt request status bit) 4 TIOIM3 (TIO3 interrupt request mask bit) 0: Enable interrupt request 5 TIOIM2 (TIO2 interrupt request mask bit) 1: Mask (disable) interrupt request 6 TIOIM1 (TIO1 interrupt request mask bit) 7 TIOIM0 (TIO0 interrupt request mask bit) R W W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. TIO03IMS TIO3udf Data bus b0 TIOIS3 F/F b4 TIOIM3 F/F 4-source inputs (Level) TIO0-3 output interrupt request IRQ0 TIO2udf b1 TIOIS2 F/F b5 TIOIM2 F/F TIO1udf b2 TIOIS1 F/F b6 TIOIM1 F/F TIO0udf b3 TIOIS0 F/F TIOIM0 b7 F/F Figure 10.2.8 Block Diagram of TIO0-3 Output Interrupt Request 10-34 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIO4-7 Interrupt Request Mask & Status Register (TIO47IMS) b8 9 10 11 12 13 14 b15 TIOIS7 TIOIS6 TIOIS5 TIOIS4 TIOIM7 TIOIM6 TIOIM5 TIOIM4 0 0 0 0 0 0 0 0 b Bit Name Function R 8 TIOIS7 (TIO7 interrupt request status bit) 0: Interrupt not requested R(Note 1) 9 TIOIS6 (TIO6 interrupt request status bit) 1: Interrupt requested 10 TIOIS5 (TIO5 interrupt request status bit) 11 TIOIS4 (TIO4 interrupt request status bit) 12 TIOIM7 (TIO7 interrupt request mask bit) 0: Enable interrupt request 13 TIOIM6 (TIO6 interrupt request mask bit) 1: Mask (disable) interrupt request 14 TIOIM5 (TIO5 interrupt request mask bit) 15 TIOIM4 (TIO4 interrupt request mask bit) R W W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. TIO47IMS TIO7udf Data bus b8 TIOIS7 F/F b12 TIOIM7 F/F 4-source inputs (Level) TIO4-7 output interrupt request IRQ4 TIO6udf b9 TIOIS6 F/F b13 TIOIM6 F/F TIO5udf b10 TIOIS5 F/F b14 TIOIM5 F/F TIO4udf b11 TIOIS4 F/F b15 TIOIM4 F/F Figure 10.2.9 Block Diagram of TIO4-7 Output Interrupt Request 10-35 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIO8,9 Interrupt Request Mask & Status Register (TIO89IMS) b0 1 2 3 4 5 TIOIS9 TIOIS8 0 0 0 6 b7 TIOIM9 TIOIM8 0 0 0 0 0 b Bit Name Function R W 0 0 R(Note 1) 0, 1 No function assigned. Fix to "0". 2 TIOIS9 (TIO9 interrupt request status bit) 0: Interrupt not requested 3 TIOIS8 (TIO8 interrupt request status bit) 1: Interrupt requested 4, 5 No function assigned. Fix to "0". 6 TIOIM9 (TIO9 interrupt request mask bit) 0: Enable interrupt request 7 TIOIM8 (TIO8 interrupt request mask bit) 1: Mask (disable) interrupt request 0 0 R W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. TIO89IMS TIO9udf Data bus 2-source inputs TIOIS9 b2 F/F TIOIM9 b6 (Level) TIO8, 9 output interrupt request IRQ3 F/F TIO8udf TIOIS8 b3 b7 F/F TIOIM8 F/F Figure 10.2.10 Block Diagram of TIO8,9 Output Interrupt Request 10-36 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TMS0,1 Interrupt Request Mask & Status Register (TMS01IMS) b8 9 10 11 12 13 TMSIS1 TMSIS0 0 0 0 0 14 b15 TMSIM1 TMSIM0 0 0 0 0 b Bit Name Function 8, 9 No function assigned. Fix to "0". 10 TMSIS1 (TMS1 interrupt request status bit) 0: Interrupt not requested 11 TMSIS0 (TMS0 interrupt request status bit) 1: Interrupt requested 12, 13 No function assigned. Fix to "0". R W 0 0 R(Note 1) 14 TMSIM1 (TMS1 interrupt request mask bit) 0: Enable interrupt request 15 TMSIM0 (TMS0 interrupt request mask bit) 1: Mask (disable) interrupt request 0 0 R W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. TMS01IMS TMS1ovf Data bus 2-source inputs TMSIS1 b10 F/F TMSIM1 b14 (Level) TMS0, 1 output interrupt request IRQ7 F/F TMS0ovf TMSIS0 b11 b15 F/F TMSIM0 F/F Figure 10.2.11 Block Diagram of TMS0,1 Output Interrupt Request 10-37 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIN0-2 Interrupt Request Mask & Status Register (TIN02IMS) b0 1 2 3 4 TINIS2 TINIS1 TINIS0 0 0 0 0 5 6 b7 TINIM2 TINIM1 TINIM0 0 0 0 0 b Bit Name Function 0 No function assigned. Fix to "0". 1 TINIS2 (TIN2 interrupt request status bit) (Note 2) 0: Interrupt not requested 2 TINIS1 (TIN1 interrupt request status bit) (Note 2) 1: Interrupt requested 3 TINIS0 (TIN0 interrupt request status bit) 4 No function assigned. Fix to "0". 5 TINIM2 (TIN2 interrupt request mask bit) (Note 2) 0: Enable interrupt request 6 TINIM1 (TIN1 interrupt request mask bit) (Note 2) 1: Mask (disable) interrupt request 7 TINIM0 (TIN0 interrupt request mask bit) R W 0 0 R(Note 1) 0 0 R W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. Note 2: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. TIN02IMS Data bus TIN2edge (Note 1) b1 b5 TIN1edge (Note 1) b2 b6 3-source inputs TINIS2 F/F (Level) TINIM2 F/F TIN0-2 input interrupt request IRQ9 TINIS1 F/F TINIM1 F/F TIN0edge b3 TINIS0 F/F b7 TINIM0 F/F Note 1: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Figure 10.2.12 Block Diagram of TIN0-2 Input Interrupt Request 10-38 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIN3-6 Interrupt Request Mask & Status Register (TIN36IMS) b8 9 10 11 12 13 14 b15 TINIS6 TINIS5 TINIS4 TINIS3 TINIM6 TINIM5 TINIM4 TINIM3 0 0 0 0 0 0 0 0 b Bit Name Function R 8 TINIS6 (TIN6 interrupt request status bit) (Note 2) 0: Interrupt not requested R(Note 1) 9 TINIS5 (TIN5 interrupt request status bit) (Note 2) 1: Interrupt requested 10 TINIS4 (TIN4 interrupt request status bit) (Note 2) 11 TINIS3 (TIN3 interrupt request status bit) 12 TINIM6 (TIN6 interrupt request mask bit) (Note 2) 0: Enable interrupt request 13 TINIM5 (TIN5 interrupt request mask bit) (Note 2) 1: Mask (disable) interrupt request R 14 TINIM4 (TIN4 interrupt request mask bit) (Note 2) 15 TINIM3 (TIN3 interrupt request mask bit) W W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. Note 2: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. TIN36IMS Data bus TIN6edge (Note 1) b8 b12 TIN5edge (Note 1) b9 b13 TIN4edge (Note 1) b10 b14 4-source inputs TINIS6 F/F TINIM6 F/F (Level) TIN3-6 input interrupt request IRQ12 TINIS5 F/F TINIM5 F/F TINIS4 F/F TINIM4 F/F TIN3edge b11 TINIS3 F/F TINIM3 b15 F/F Note 1: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Figure 10.2.13 Block Diagram of TIN3-6 Input Interrupt Request 10-39 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIN12-19 Interrupt Request Status Register (TIN1219IST) b0 1 2 3 4 5 6 b7 TINIS19 TINIS18 TINIS17 TINIS16 TINIS15 TINIS14 TINIS13 TINIS12 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 TINIS19 (TIN19 interrupt request status bit) 0: Interrupt not requested R(Note 1) 1 TINIS18 (TIN18 interrupt request status bit) 1: Interrupt requested 2 TINIS17 (TIN17 interrupt request status bit) 3 TINIS16 (TIN16 interrupt request status bit) 4 TINIS15 (TIN15 interrupt request status bit) (Note 2) 5 TINIS14 (TIN14 interrupt request status bit) (Note 2) 6 TINIS13 (TIN13 interrupt request status bit) (Note 2) 7 TINIS12 (TIN12 interrupt request status bit) (Note 2) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. Note 2: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. TIN12-19 Interrupt Request Mask Register (TIN1219IMA) b8 9 10 11 12 13 14 b15 TINIM19 TINIM18 TINIM17 TINIM16 TINIM15 TINIM14 TINIM13 TINIM12 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 TINIM19 (TIN19 interrupt request mask bit) 0: Enable interrupt request R W 9 TINIM18 (TIN18 interrupt request mask bit) 1: Mask (disable) interrupt request 10 TINIM17 (TIN17 interrupt request mask bit) 11 TINIM16 (TIN16 interrupt request mask bit) 12 TINIM15 (TIN15 interrupt request mask bit) (Note 1) 13 TINIM14 (TIN14 interrupt request mask bit) (Note 1) 14 TINIM13 (TIN13 interrupt request mask bit) (Note 1) 15 TINIM12 (TIN12 interrupt request mask bit) (Note 1) Note 1: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. 10-40 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIN1219IST TIN1219IMA TIN19edge Data bus 8-source inputs TINIS19 b0 b8 F/F TINIM19 F/F (Level) TIN12-19 input interrupt request IRQ10 TIN18edge TINIS18 b1 b9 F/F TINIM18 F/F TIN17edge b2 TINIS17 F/F b10 TINIM17 F/F TIN16edge b3 TINIS16 F/F TINIM16 b11 F/F TIN15edge (Note 1) TINIS15 b4 F/F TINIM15 b12 TIN14edge (Note 1) b5 b13 TIN13edge (Note 1) b6 b14 F/F TINIS14 F/F TINIM14 F/F TINIS13 F/F TINIM13 F/F TIN12edge (Note 1) TINIS12 b7 F/F b15 TINIM12 F/F Note 1: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Figure 10.2.14 Block Diagram of TIN12-19 Input Interrupt Request 10-41 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.2 Common Units of Multijunction Timers TIN20-23 Interrupt Request Mask & Status Register (TIN2023IMS) b0 1 2 3 4 5 6 b7 TINIS23 TINIS22 TINIS21 TINIS20 TINIM23 TINIM22 TINIM21 TINIM20 0 0 0 0 0 0 0 0 b Bit Name Function R 0 TINIS23 (TIN23 interrupt request status bit) 0: Interrupt not requested R(Note 1) 1 TINIS22 (TIN22 interrupt request status bit) 1: Interrupt requested 2 TINIS21 (TIN21 interrupt request status bit) 3 TINIS20 (TIN20 interrupt request status bit) 4 TINIM23 (TIN23 interrupt request mask bit) 0: Enable interrupt request 5 TINIM22 (TIN22 interrupt request mask bit) 1: Mask (disable) interrupt request 6 TINIM21 (TIN21 interrupt request mask bit) 7 TINIM20 (TIN20 interrupt request mask bit) R W W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. TIN2023IMS TIN23edge Data bus TINIS23 b0 b4 29-source inputs F/F TINIM23 F/F (Level) TIN20-29 input interrupt request IRQ11 TIN22edge TINIS22 b1 b5 F/F TINIM22 F/F TIN21edge b2 TINIS21 F/F b6 TINIM21 F/F TIN20edge b3 TINIS20 F/F TINIM20 b7 F/F Note 1: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Figure 10.2.15 Block Diagram of TIN20-29 Input Interrupt Request 10-42 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3 TOP (Output-Related 16-Bit Timer) 10.3.1 Outline of TOP TOP (Timer OutPut) is an output-related 16-bit timer, whose operation mode can be selected from the following by mode switching in software: * Single-shot output mode * Delayed single-shot output mode * Continuous output mode The table below shows specifications of TOP. The diagram in the next page shows a block diagram of TOP. Table 10.3.1 Specifications of TOP (Output-Related 16-Bit Timer) Item Specification Number of channels 11 channels Counter 16-bit down-counter Reload register 16-bit reload register Correction register 16-bit correction register Timer startup Started by writing to the enable bit in software or enabled by external input (rising or falling edge or both) Operation mode * Single-shot output mode * Delayed single-shot output mode * Continuous output mode Interrupt request generation Can be generated by a counter underflow 10-43 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) Clock bus Input event bus Output event bus 3210 3210 0123 TOP 0 Reload register clk Down-counter udf IRQ2 F/F0 TO 0 (P110) F/F1 TO 1 (P111) F/F2 TO 2 (P112) F/F3 TO 3 (P113) F/F4 TO 4 (P114) F/F5 TO 5 (P115) S F/F6 TO 6 (P116) S F/F7 TO 7 (P117) S F/F8 TO 8 (P100) S F/F9 TO 9 (P101) S F/F10 TO 10 (P102) Correction register S (16-bit) en IRQ2 TCLK0 (P124) clk TCLK0S TOP 1 udf IRQ2 IRQ9 TIN0 (P150) en clk en TOP 2 udf IRQ2 TIN0S clk S en TOP 3 udf IRQ2 DRQ7 clk en TOP 4 udf IRQ2 clk en TOP 5 udf IRQ1 clk S S clk en TOP 6 udf en TOP 7 udf IRQ1 S S S IRQ6 clk clk clk en TOP 8 udf IRQ6 en TOP 9 udf IRQ5 en TOP 10 udf 3210 3210 0123 F/F :Output flip-flop S : Selector Figure 10.3.1 Block Diagram of TOP (Output-Related 16-Bit Timer) 10-44 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.2 Outline of Each Mode of TOP Each mode of TOP is outlined below. For each TOP channel, only one of the following modes can be selected. (1) Single-shot output mode In single-shot output mode, the timer generates a pulse in width of (reload register set value + 1) only once and then stops. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the reload register, the counter is loaded with the content of the reload register and starts counting synchronously with the count clock. The counter counts down and stops when it underflows after reaching the minimum count. The F/F output waveform in single-shot output mode is inverted at startup and upon underflow, generating a single-shot pulse waveform in width of (reload register set value + 1) only once. An interrupt request can be generated when the counter underflows. (2) Delayed single-shot output mode In delayed single-shot output mode, the timer generates a pulse in width of (reload register set value + 1) after a finite time equal to (counter set value + 1) only once and then stops. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload register, it starts counting down from the counter's set value synchronously with the count clock. The first time the counter underflows, it is loaded with the reload register value and continues counting down. The counter stops when it underflows next time. The F/F output waveform in delayed single-shot output mode is inverted when the counter underflows first time and next, generating a single-shot pulse waveform in width of (reload register set value + 1) after a finite time equal to (first set value of counter + 1) only once. An interrupt request can be generated when the counter underflows first time and next. (3) Continuous output mode In continuous output mode, the timer counts down starting from the set value of the counter and when the counter underflows, it is loaded with the reload register value. Thereafter, this operation is repeated each time the counter underflows, thus generating consecutive pulses whose waveform is inverted in width of (reload register set value + 1). When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload register, it starts counting down from the counter's set value synchronously with the count clock and when the minimum count is reached, generates an underflow. This underflow causes the counter to be loaded with the content of the reload register and start counting over again. Thereafter, this operation is repeated each time an underflow occurs. To stop the counter, disable count by writing to the enable bit in software. The F/F output waveform in continuous output mode is inverted at startup and upon underflow, generating a waveform of consecutive pulses until the timer stops counting. An interrupt request can be generated each time the counter underflows. 10-45 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) * Because the timer operates synchronously with the count clock, there is a count clock-dependent delay from when the timer is enabled till when it actually starts operating. In operation mode where the F/F output is inverted when the timer is enabled, there is also a count clock-dependent delay before the F/F output is inverted. Write to the enable bit BCLK Count clock period Count clock Enable Count clock-dependent delay F/F operation (Note 1) Inverted Note 1: This applies to the case where F/F output is inverted when the timer is enabled. Figure 10.3.2 Count Clock Dependent Delay 10-46 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.3 TOP Related Register Map Shown below is a TOP related register map. TOP Related Register Map (1/2) Address +0 address b0 H'0080 0240 H'0080 0242 H'0080 0244 H'0080 0246 | H'0080 0250 H'0080 0252 H'0080 0254 H'0080 0256 | H'0080 0260 H'0080 0262 H'0080 0264 H'0080 0266 | H'0080 0270 H'0080 0272 H'0080 0274 H'0080 0276 | H'0080 0280 H'0080 0282 H'0080 0284 H'0080 0286 | H'0080 0290 H'0080 0292 H'0080 0294 H'0080 0296 H'0080 0298 +1 address b7 b8 TOP0 Counter (TOP0CT) TOP0 Reload Register (TOP0RL) (Use inhibited area) See pages b15 10-54 10-55 TOP0 Correction Register (TOP0CC) (Use inhibited area) 10-56 TOP1 Counter (TOP1CT) TOP1 Reload Register (TOP1RL) (Use inhibited area) 10-54 10-55 TOP1 Correction Register (TOP1CC) (Use inhibited area) 10-56 TOP2 Counter (TOP2CT) TOP2 Reload Register (TOP2RL) (Use inhibited area) 10-54 10-55 TOP2 Correction Register (TOP2CC) (Use inhibited area) 10-56 TOP3 Counter (TOP3CT) TOP3 Reload Register (TOP3RL) (Use inhibited area) 10-54 10-55 TOP3 Correction Register (TOP3CC) (Use inhibited area) 10-56 TOP4 Counter (TOP4CT) TOP4 Reload Register (TOP4RL) (Use inhibited area) 10-54 10-55 TOP4 Correction Register (TOP4CC) (Use inhibited area) 10-56 TOP5 Counter (TOP5CT) TOP5 Reload Register (TOP5RL) (Use inhibited area) 10-54 TOP5 Correction Register (TOP5CC) (Use inhibited area) 10-47 10-55 10-56 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) TOP Related Register Map (2/2) Address +0 address +1 address b0 b7 b8 TOP0-5 Control Register 0 (TOP05CR0) H'0080 029A H'0080 029C | H'0080 02A0 H'0080 02A2 H'0080 02A4 H'0080 02A6 H'0080 02A8 H'0080 02AA | H'0080 02B0 H'0080 02B2 H'0080 02B4 H'0080 02B6 | H'0080 02C0 H'0080 02C2 H'0080 02C4 H'0080 02C6 | H'0080 02D0 H'0080 02D2 H'0080 02D4 H'0080 02D6 | H'0080 02E0 H'0080 02E2 H'0080 02E4 H'0080 02E6 H'0080 02E8 H'0080 02EA | H'0080 02FA H'0080 02FC H'0080 02FE (Use inhibited area) See pages b15 10-50 TOP0-5 Control Register 1 (TOP05CR1) 10-50 (Use inhibited area) TOP6 Counter (TOP6CT) TOP6 Reload Register (TOP6RL) (Use inhibited area) 10-54 10-55 TOP6 Correction Register (TOP6CC) (Use inhibited area) 10-56 TOP6,7 Control Register (TOP67CR) (Use inhibited area) 10-52 TOP7 Counter (TOP7CT) TOP7 Reload Register (TOP7RL) (Use inhibited area) 10-54 10-55 TOP7 Correction Register (TOP7CC) (Use inhibited area) 10-56 TOP8 Counter (TOP8CT) TOP8 Reload Register (TOP8RL) (Use inhibited area) 10-54 10-55 TOP8 Correction Register (TOP8CC) (Use inhibited area) 10-56 TOP9 Counter (TOP9CT) TOP9 Reload Register (TOP9RL) (Use inhibited area) 10-54 10-55 TOP9 Correction Register (TOP9CC) (Use inhibited area) 10-56 TOP10 Counter (TOP10CT) TOP10 Reload Register (TOP10RL) (Use inhibited area) 10-54 10-55 TOP10 Correction Register (TOP10CC) (Use inhibited area) 10-56 TOP8-10 Control Register (TOP810CR) (Use inhibited area) 10-53 TOP External Enable Permit Register (TOPEEN) TOP Enable Protect Register (TOPPRO) TOP Count Enable Register (TOPCEN) 10-57 10-48 10-57 10-58 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.4 TOP Control Registers The TOP control registers are used to select operation modes of TOP0-10 (single-shot output, delayed singleshot output or continuous output mode), as well as select the count enable and count clock sources. Following four TOP control registers are provided for each timer group. * TOP0-5 Control Register 0 (TOP05CR0) * TOP0-5 Control Register 1 (TOP05CR1) * TOP6,7 Control Register (TOP67CR) * TOP8-10 Control Register (TOP810CR) 10-49 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) TOP0-5 Control Register 0 (TOP05CR0) b0 1 2 TOP3M 0 3 4 TOP2M 0 0 5 6 TOP1M 0 0 7 8 9 TOP0M 0 0 10 11 12 13 TOP05ENS 0 0 0 0 14 b15 TOP05CKS 0 0 0 0 0 b Bit Name Function 0, 1 TOP3M (TOP3 operation mode select bit) 00: Single-shot output mode 2, 3 TOP2M (TOP2 operation mode select bit) 01: Delayed single-shot output mode 4, 5 TOP1M (TOP1 operation mode select bit) 10: Continuous output mode 6, 7 TOP0M (TOP0 operation mode select bit) 11: - ditto - 8 No function assigned. Fix to "0". 9-11 TOP05ENS TOP0-5 enable source select bit 12, 13 No function assigned. Fix to "0". 14, 15 TOP05CKS TOP0-5 clock source select bit 000: 001: 010: 011: 100: 101: 110: 111: 00: 01: 10: 11: External TIN0 input - ditto - - ditto - - ditto - Input event bus 0 Input event bus 1 Input event bus 2 Input event bus 3 Clock Clock Clock Clock bus bus bus bus 0 1 2 3 R W R W 0 0 R W 0 0 R W Notes: * This register must always be accessed in halfwords. * Operation mode can only be set or changed while the counter is inactive. TOP0-5 Control Register 1 (TOP05CR1) b8 9 10 11 12 13 14 TOP5M 0 0 0 0 0 b15 TOP4M 0 0 0 b Bit Name Function R 8-11 No function assigned. Fix to "0". 12, 13 TOP5M (TOP5 operation mode select bit) 00: Single-shot output mode 14, 15 TOP4M (TOP4 operation mode select bit) 01: Delayed single-shot output mode 10: Continuous output mode 11: - ditto - W 0 0 R W Note: * Operation mode can only be set or changed while the counter is inactive. 10-50 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) Clock bus 3210 Input event bus 3210 S clk clk clk clk clk clk TIN0 (P150) TIN0S en TOP 0 en TOP 1 en TOP 2 en TOP 3 en TOP 4 en TOP 5 S S : Selector Note: * This diagram only illustrates TOP control registers and is partly omitted. Figure 10.3.3 Outline Diagram of TOP0-5 Clock and Enable Inputs 10-51 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) TOP6,7 Control Register (TOP67CR) b0 1 2 TOP7 ENS 0 0 3 4 5 6 7 8 9 TOP7M 0 10 11 12 13 TOP67ENS 0 0 0 0 0 0 0 0 14 b15 TOP67CKS 0 0 0 0 0 b Bit Name Function 0 No function assigned. Fix to "0". 0 0 1 TOP7ENS TOP7 enable source select bit 0: Result selected by TOP67ENS bit 1: TOP6 output R W 2, 3 TOP7M TOP7 operation mode select bit 00: 01: 10: 11: R W 4, 5 No function assigned. Fix to "0". 0 0 6, 7 TOP6M TOP6 operation mode select bit R W 8 No function assigned. Fix to "0". 0 0 9-11 TOP67ENS TOP6, TOP7 enable source select bit R W 00: 01: 10: 11: 12, 13 No function assigned. Fix to "0". 14, 15 TOP67CKS TOP6, TOP7 clock source select bit R Single-shot output mode Delayed single-shot output mode Continuous output mode - ditto - Single-shot output mode Delayed single-shot output mode Continuous output mode - ditto - 000: External TIN1 input 001: - ditto - 010: - ditto - 011: - ditto - 100: Input event bus 0 101: Input event bus 1 110: Input event bus 2 111: Input event bus 3 00: Clock 01: Clock 10: Clock 11: Clock bus bus bus bus (Note 1) (Note 1) (Note 1) (Note 1) 0 1 2 3 W 0 0 R W Note 1:Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Notes: * This register must always be accessed in halfwords. * Operation mode can only be set or changed while the counter is inactive. Clock bus Input event bus 3210 3210 clk S clk S en TOP 6 udf en TOP 7 udf S S : Selector Note: * This diagram only illustrates TOP control registers and is partly omitted. Figure 10.3.4 Outline Diagram of TOP6, TOP7 Clock and Enable Inputs 10-52 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) TOP8-10 Control Register (TOP810CR) b0 1 2 3 4 TOP10M 0 0 0 5 6 7 8 9 10 11 0 TOP810 ENS 0 TOP9M 0 0 0 0 0 0 0 12 13 14 b15 TOP810CKS 0 0 0 0 b Bit Name Function R 0, 1 No function assigned. Fix to "0". 2, 3 TOP10M (TOP10 operation mode select bit) 00: Single-shot output mode 4, 5 TOP9M (TOP9 operation mode select bit) 01: Delayed single-shot output mode 6, 7 TOP8M (TOP8 operation mode select bit) 10: Continuous output mode W 0 0 R W 11: - ditto - 8-10 No function assigned. Fix to "0". 11 TOP810ENS TOP8-10 enable source select bit 12, 13 No function assigned. Fix to "0". 14, 15 TOP810CKS TOP8-10 clock source select bit 0: External TIN2 input (Note 1) 1: Input event bus 3 00: 01: 10: 11: Clock Clock Clock Clock bus bus bus bus 0 1 2 3 0 0 R W 0 0 R W Note 1: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Notes: * This register must always be accessed in halfwords. * Operation mode can only be set or changed while the counter is inactive. Clock bus 3210 Input event bus 3210 S clk clk clk en TOP 8 en TOP 9 en TOP 10 S S : Selector Note: * This diagram only illustrates TOP control registers and is partly omitted. Figure 10.3.5 Outline Diagram of TOP8-10 Clock and Enable Inputs 10-53 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.5 TOP Counters (TOP0CT-TOP10CT) TOP0 Counter (TOP0CT) TOP1 Counter (TOP1CT) TOP2 Counter (TOP2CT) TOP3 Counter (TOP3CT) TOP4 Counter (TOP4CT) TOP5 Counter (TOP5CT) TOP6 Counter (TOP6CT) TOP7 Counter (TOP7CT) TOP8 Counter (TOP8CT) TOP9 Counter (TOP9CT) TOP10 Counter (TOP10CT) b0 1 2 3 4 5 6 ? ? ? ? ? ? ? 7 8 9 10 11 12 13 14 ? ? ? ? ? ? b15 TOP0CT-TOP10CT ? ? ? b Bit Name Function R W 0-15 TOP0CT-TOP10CT 16-bit counter value R W Note: * This register must always be accessed in halfwords. The TOP counters are a 16-bit down-counter. After the timer is enabled (by writing to the enable bit in software or by external input), the counter starts counting synchronously with the count clock. 10-54 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.6 TOP Reload Registers (TOP0RL-TOP10RL) TOP0 Reload Register (TOP0RL) TOP1 Reload Register (TOP1RL) TOP2 Reload Register (TOP2RL) TOP3 Reload Register (TOP3RL) TOP4 Reload Register (TOP4RL) TOP5 Reload Register (TOP5RL) TOP6 Reload Register (TOP6RL) TOP7 Reload Register (TOP7RL) TOP8 Reload Register (TOP8RL) TOP9 Reload Register (TOP9RL) TOP10 Reload Register (TOP10RL) b0 1 2 3 4 5 6 ? ? ? ? ? ? ? 7 8 9 10 11 12 13 14 b15 ? ? ? ? ? ? ? TOP0RL-TOP10RL ? ? b Bit Name Function R W 0-15 TOP0RL-TOP10RL 16-bit reload register value R W Note: * This register must always be accessed in halfwords. The TOP reload registers are used to load data into the TOP counter registers (TOP0CT-TOP10CT). The content of the reload register is loaded into the counter in the following cases: * When the counter is enabled in single-shot output mode * When the counter underflowed in delayed single-shot or continuous output mode Simply because data is written to the reload register does not mean that the data is loaded into the counter. The counter is loaded with data in only the above cases. Note that reloading of data after an underflow is performed synchronously with a clock pulse at which the counter underflowed. 10-55 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.7 TOP Correction Registers (TOP0CC-TOP10CC) TOP0 Correction Register (TOP0CC) TOP1 Correction Register (TOP1CC) TOP2 Correction Register (TOP2CC) TOP3 Correction Register (TOP3CC) TOP4 Correction Register (TOP4CC) TOP5 Correction Register (TOP5CC) TOP6 Correction Register (TOP6CC) TOP7 Correction Register (TOP7CC) TOP8 Correction Register (TOP8CC) TOP9 Correction Register (TOP9CC) TOP10 Correction Register (TOP10CC) b0 1 2 3 4 5 6 ? ? ? ? ? ? ? 7 8 9 10 11 12 13 14 ? ? ? ? ? ? b15 TOP0CC-TOP10CC ? ? ? (Acceptable range of values: +32,767 to -32,768) b Bit Name 0-15 TOP0CC-TOP10CC Function 16-bit correction register value R W R W Note: * This register must always be accessed in halfwords. The TOP correction registers are used to correct the TOP counter value by adding or subtracting in the middle of operation. To increase or reduce the counter value, write to this correction register a value by which the counter value is to be increased or reduced from its initial set value. To add, write the value to be added to the correction register directly as is. To subtract, write the 2's complement of the value to be subtracted to the correction register. The counter is corrected synchronously with a clock pulse next to one at which the correction value was written to the TOP correction register. If the counter is corrected this way, note that because one down count in that clock period is canceled, the counter value actually is corrected by (correction register value + 1). For example, if the initial counter value is 10 and the value 3 is written to the correction register when the counter has counted down to 5, then the counter counts a total of 15 before it underflows. 10-56 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.8 TOP Enable Control Registers TOP External Enable Permit Register (TOPEEN) b0 1 0 2 0 3 0 4 5 6 7 8 9 0 TOP10 EEN 0 TOP9 EEN 0 TOP8 EEN 0 TOP7 EEN 0 TOP6 EEN 0 10 11 12 TOP5 EEN 0 TOP4 EEN 0 TOP3 EEN 0 13 14 TOP2 EEN 0 TOP1 EEN 0 b15 TOP0 EEN 0 b Bit Name Function 0-4 No function assigned. Fix to "0". 5 TOP10EEN (TOP10 external enable permit bit) 0: Disable external enable 6 TOP9EEN (TOP9 external enable permit bit) 1: Enable external enable 7 TOP8EEN (TOP8 external enable permit bit) 8 TOP7EEN (TOP7 external enable permit bit) 9 TOP6EEN (TOP6 external enable permit bit) 10 TOP5EEN (TOP5 external enable permit bit) 11 TOP4EEN (TOP4 external enable permit bit) 12 TOP3EEN (TOP3 external enable permit bit) 13 TOP2EEN (TOP2 external enable permit bit) 14 TOP1EEN (TOP1 external enable permit bit) 15 TOP0EEN (TOP0 external enable permit bit) R W 0 0 R W Note: * This register must always be accessed in halfwords. The TOP External Enable Permit Register controls enable operation on TOP counters from external devices by enabling or disabling it. TOP Enable Protect Register (TOPPRO) b0 1 0 2 0 3 0 4 5 6 7 8 9 10 11 12 13 14 b15 0 TOP10 PRO 0 TOP9 PRO 0 TOP8 PRO 0 TOP7 PRO 0 TOP6 PRO 0 TOP5 PRO 0 TOP4 PRO 0 TOP3 PRO 0 TOP2 PRO 0 TOP1 PRO 0 TOP0 PRO 0 b Bit Name 0-4 No function assigned. Fix to "0". Function 5 TOP10PRO (TOP10 enable protect bit) 0: Enable for rewriting 6 TOP9PRO (TOP9 enable protect bit) 1: Protect against rewriting 7 TOP8PRO (TOP8 enable protect bit) 8 TOP7PRO (TOP7 enable protect bit) 9 TOP6PRO (TOP6 enable protect bit) 10 TOP5PRO (TOP5 enable protect bit) 11 TOP4PRO (TOP4 enable protect bit) 12 TOP3PRO (TOP3 enable protect bit) 13 TOP2PRO (TOP2 enable protect bit) 14 TOP1PRO (TOP1 enable protect bit) 15 TOP0PRO (TOP0 enable protect bit) R W 0 0 R W Note: * This register must always be accessed in halfwords. The TOP Enable Protect Register controls rewriting of the TOP count enable bit by enabling for or protecting it against rewriting. 10-57 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) TOP Count Enable Register (TOPCEN) b0 1 0 2 0 3 0 4 5 6 7 8 9 10 11 12 13 14 b15 0 TOP10 CEN 0 TOP9 CEN 0 TOP8 CEN 0 TOP7 CEN 0 TOP6 CEN 0 TOP5 CEN 0 TOP4 CEN 0 TOP3 CEN 0 TOP2 CEN 0 TOP1 CEN 0 TOP0 CEN 0 b Bit Name Function 0-4 No function assigned. Fix to "0". 5 TOP10CEN (TOP10 count enable bit) 0: Stop counting 6 TOP9CEN (TOP9 count enable bit) 1: Enable counting 7 TOP8CEN (TOP8 count enable bit) 8 TOP7CEN (TOP7 count enable bit) 9 TOP6CEN (TOP6 count enable bit) 10 TOP5CEN (TOP5 count enable bit) 11 TOP4CEN (TOP4 count enable bit) 12 TOP3CEN (TOP3 count enable bit) 13 TOP2CEN (TOP2 count enable bit) 14 TOP1CEN (TOP1 count enable bit) 15 TOP0CEN (TOP0 count enable bit) R W 0 0 R W Note: * This register must always be accessed in halfwords. The TOP Count Enable Register controls operation of TOP counters. To enable any TOP counter in software, enable its corresponding enable protect bit for write and set the count enable bit by writing "1". To stop any TOP counter, enable its corresponding enable protect bit for write and reset the count enable bit by writing "0". In all but continuous output mode, when the counter stops due to occurrence of an underflow, the count enable bit is automatically reset to "0". Therefore, the TOP0-10 Count Enable Register when accessed for read serves as a status register indicating whether the counter is operating or idle. TOPm external enable (TOPmEEN) F/F TINn Input processing selection TINnS EN-ON Event bus TOPm count enable (TOPmCEN) TOP enable control F/F Dn TOPm enable protect (TOPmPRO) WR F/F WR Figure 10.3.6 Configuration of the TOP Enable Circuit 10-58 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.9 Operation in TOP Single-shot Output Mode (with Correction Function) (1) Outline of TOP single-shot output mode In single-shot output mode, the timer generates a pulse in width of (reload register set value + 1) only once and then stops. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the reload register, the counter is loaded with the content of the reload register and starts counting synchronously with the count clock. The counter counts down and stops when it underflows after reaching the minimum count. The F/F output waveform in single-shot output mode is inverted (F/F output levels change from low to high or vice versa) at startup and upon underflow, generating a single-shot pulse waveform in width of (reload register set value + 1) only once. An interrupt request can be generated when the counter underflows. The count value is (reload register set value + 1). For example, if the initial reload register value is 7, then the count value is 8. Count value = 8 1 2 3 4 5 6 8 7 Count clock Enable (Note 1) (7) 6 Counter Reload register H'FFFF 5 4 3 2 1 0 7 F/F output Interrupt request * A count clock dependent delay is included before F/F output changes state after the timer is enabled. Underflow Note 1: What actually is seen in the cycle immediately after reload is the previous counter value, and not 7. Note: * This diagram does not show detailed timing information. Figure 10.3.7 Example of Counting in TOP Single-shot Output Mode 10-59 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) In the example below, the reload register is initially set to H'A000. (The initial counter value can be undefined, and does not have to be specific.) When the timer starts, the reload register value is loaded into the counter, letting it start counting. Thereafter, it continues counting down until it underflows after reaching the minimum count. Enabled (by writing to the enable bit or by external input) Disabled (by underflow) Count clock Enable bit H'FFFF H'FFFF Indeterminate value H'A000 Starts counting down from the reload register set value H'(A000-1) Counter H'0000 Reload register Correction register H'A000 (Unused) F/F output Data inverted by enable Data inverted by underflow TOP interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.3.8 Typical Operation in TOP Single-shot Output Mode 10-60 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) (2) Correction function of TOP single-shot output mode To change the counter value while in progress, write to the TOP correction register a value by which the counter value is to be increased or reduced from its initial set value. To add, write the value to be added to the correction register directly as is. To subtract, write the 2's complement of the value to be subtracted to the correction register. The counter is corrected synchronously with a count clock pulse next to one at which the correction value was written to the TOP correction register. If the counter is corrected this way, note that because one down count in that clock period is canceled, the counter value actually is corrected by (correction register value + 1). For example, if the initial counter value is 7 and the value 3 is written to the correction register when the counter has counted down to 3, then the counter counts a total of 12 before it underflows. Count value = (7 + 1) + (3 + 1) = 12 1 2 3 4 5 6 7 8 9 10 11 12 Count clock Count clock dependent delay Enable (Note 1) (7) Counter Reload register H'FFFF 6 5 6 4 3 +3 5 4 3 2 1 0 7 Correction register 3 Interrupt request Underflow Note 1: What actually is seen in the cycle immediately after reload is the previous counter value, and not 7. Note: * This diagram does not show detailed timing information. Figure 10.3.9 Example of Counting in TOP Single-shot Output Mode When Count is Corrected When writing to the correction register, be careful not to cause the counter to overflow. Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. 10-61 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) In the example below, the reload register is initially set to H'8000. When the timer starts, the reload register value is loaded into the counter, letting it start counting down. In the diagram below, the value H'4000 is written to the correction register when the counter has counted down to H'5000. As a result of this correction, the count has been increased to H'9000, so that the counter counts a total of (H'8000 + 1 + H'4000 + 1) before it stops. Enabled (by writing to the enable bit or by external input) Disabled (by underflow) Count clock Enable bit Write to the correction register H'FFFF H'FFFF Undefined value Counter H'8000 H'5000+H'4000 H'(8000-1) H'5000 H'0000 Reload register Correction register H'8000 H'4000 Undefined F/F output Data inverted by enable Data inverted by underflow TOP interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.3.10 Typical Operation in TOP Single-shot Output Mode When Count is Corrected 10-62 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) (3) Precautions on using TOP single-shot output mode The following describes precautions to be observed when using TOP single-shot output mode. * If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops. * If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. * When writing to the correction register, be careful not to cause the counter to overflow. Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. Therefore, if the counter underflows in the subsequent down-count after an overflow, a false interrupt request is generated for an underflow that includes the overflowed count. 10-63 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) In the example below, the reload register is initially set to H'FFF8. When the timer starts, the reload register value is loaded into the counter, letting it start counting down. In the diagram below, the value H'0014 is written to the correction register when the counter has counted down to H'FFF0. As a result of this correction, the count overflows to H'0004 and the counter fails to count correctly. Also, an interrupt request is generated for an erroneous overflowed count. Enabled Disabled (by writing to the enable bit (by underflow) or by external input) Count clock Enable bit Write to the correction register Overflow occurs H'(FFF0+0014) H'FFFF H'FFFF H'FFF8 H'(FFF8-1) Undefined value H'FFF0 Counter H'0004 Actual count after overflow H'0000 Reload register Correction register H'FFF8 H'0014 Undefined F/F output Data inverted by enable Data inverted by underflow TOP interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.3.11 Example of an Operation in TOP Single-shot Output Mode Where Count Overflows Due to Correction 10-64 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.10 Operation in TOP Delayed Single-shot Output Mode (with Correction Function) (1) Outline of TOP delayed single-shot output mode In delayed single-shot output mode, the timer generates a pulse in width of (reload register set value + 1) after a finite time equal to (counter set value + 1) only once and then stops. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload register, it starts counting down from the counter's set value synchronously with the count clock. The first time the counter underflows, it is loaded with the reload register value and continues counting down. The counter stops when it underflows next time. The F/F output waveform in delayed single-shot output mode is inverted (F/F output level changes from low to high or vice versa) when the counter underflows first time and next, generating a single-shot pulse waveform in width of (reload register set value + 1) after a finite time equal to (first set value of counter + 1) only once. An interrupt request can be generated when the counter underflows first time and next. The (counter set value + 1) and (reload register set value + 1) are effective as count values. For example, if the initial counter value is 4 and the initial reload register value is 5, then the timer operates as shown below. Count value = (4 + 1) + (5 + 1) = 11 1 2 3 4 6 5 8 7 9 10 11 Count clock Count clock dependent delay Enable Counter 4 (Note 1) (5) 3 2 1 Reload register 0 H'FFFF 4 3 2 1 0 5 F/F output Interrupt request Underflow Underflow Note 1: What actually is seen in the cycle immediately after reload is the previous counter value, and not 5. Note: * This diagram does not show detailed timing information. Figure 10.3.12 Example of Counting in TOP Delayed Single-shot Output Mode 10-65 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) In the example below, the counter and the reload register are initially set to H'A000 and H'F000, respectively. When the timer is enabled, the counter starts counting down and when it underflows after reaching the minimum count, the counter is loaded with the content of the reload register and continues counting down. The counter stops when it underflows second time. Enabled (by writing to the enable bit or by external input) Underflow (second time) Underflow (first time) Count clock Enable bit H'FFFF H'FFFF H'F000 H'A000 H'(F000-1) Count down from the counter's set value Counter Count down from the reload register's set value H'0000 H'F000 Reload register Correction register (Unused) F/F output Data inverted by underflow Data inverted by underflow TOP interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.3.13 Typical Operation in TOP Delayed Single-shot Output Mode 10-66 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) (2) Correction function of TOP delayed single-shot output mode To change the counter value while in progress, write to the TOP correction register a value by which the counter value is to be increased or reduced from its initial set value. To add, write the value to be added to the correction register directly as is. To subtract, write the 2's complement of the value to be subtracted to the correction register. The counter is corrected synchronously with a count clock pulse next to one at which the correction value was written to the TOP correction register. If the counter is corrected this way, note that because one down count in that clock period is canceled, the counter value actually is corrected by (correction register value + 1). For example, if the reload register value is 7 and the value 3 is written to the correction register when the counter has counted down to 3 after being reloaded, then the counter counts a total of 12 after being reloaded before it underflows. Count value after being reloaded = (7 + 1) + (3 + 1) = 12 1 2 3 4 5 6 7 8 9 10 11 12 Count clock Enable = "H" (Note 1) (7) 6 Counter H'FFFF 5 6 4 3 0 5 4 3 2 1 0 +3 Reload register 7 Correction register 3 Interrupt request Underflow Note 1: What actually is seen in the cycle immediately after reload is the H'FFFF (underflow value), and not 7. Note: * This diagram does not show detailed timing information. Figure 10.3.14 Example of Counting in TOP Delayed Single-shot Output Mode When Count is Corrected When writing to the correction register, be careful not to cause the counter to overflow. Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. 10-67 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) In the example below, the counter and the reload register are initially set to H'A000 and H'F000, respectively. When the timer is enabled, the counter starts counting down and when it underflows first time after reaching the minimum count, the counter is loaded with the content of the reload register and continues counting down. In the diagram below, the value H'0008 is written to the correction register when the counter has counted down to H'9000. As a result of this correction, the counter has its count value increased to H'9008 and counts (H'F000 + 1 + H'0008 + 1) after the first underflow before it stops. Enabled (by writing to the enable bit or by external input) Underflow (first time) Underflow (second time) Count clock Enable bit Write to the correction register H'FFFF H'(F000+0008+1) H'F000 H'9000+H'0008 Counter H'A000 H'9000 H'0000 Reload register Correction register H'F000 H'0008 Undefined F/F output Data inverted by underflow Data inverted by underflow TOP interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.3.15 Typical Operation in TOP Delayed Single-shot Output Mode when Count is Corrected 10-68 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) (3) Precautions on using TOP delayed single-shot output mode The following describes precautions to be observed when using TOP delayed single-shot output mode. * If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops. * If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. Therefore, if the counter underflows in the subsequent down-count after an overflow, a false interrupt request is generated for an underflow that includes the overflowed count. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. Reload due to underflow Count clock Enable bit "H" Count down from the reload register value Reload cycle Counter value Reload register H'0001 H'0000 H'FFFF H'AAA9 H'AAA8 H'(AAAA-1) H'(AAAA-2) H'AAAA What is seen during reload cycle is always H'FFFF, and not the reload register value (in this case, H'AAAA). Figure 10.3.16 Counter Value Immediately after Underflow 10-69 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) 10.3.11 Operation in TOP Continuous Output Mode (without Correction Function) (1) Outline of TOP continuous output mode In continuous output mode, the timer counts down starting from the set value of the counter and when the counter underflows, it is loaded with the reload register value. Thereafter, this operation is repeated each time the counter underflows, thus generating consecutive pulses whose waveform is inverted in width of (reload register set value + 1). When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload register, it starts counting down from the counter's set value synchronously with the count clock and when the minimum count is reached, generates an underflow. This underflow causes the counter to be loaded with the content of the reload register and start counting over again. Thereafter, this operation is repeated each time an underflow occurs. To stop the counter, disable count by writing to the enable bit in software. The F/F output waveform in continuous output mode is inverted (F/F output level changes from low to high or vice versa) at startup and upon underflow, generating a waveform of consecutive pulses until the timer stops counting. An interrupt request can be generated each time the counter underflows. The (counter set value + 1) and (reload register set value + 1) are effective as count values. For example, if the initial counter value is 4 and the initial reload register value is 5, then the timer operates as shown below. Count value = 5 1 2 3 Count value = 6 4 5 1 2 3 4 5 Count value = 6 6 1 2 3 4 5 6 Count clock Count clock dependent delay Enable Counter (Note 1) (4) 3 (Note 2) (5) 4 2 Reload register 1 3 0 (Note 2) (5) 4 2 1 0 (Note 2) (5) 3 2 1 0 5 F/F output Interrupt request Underflow Underflow Underflow Note 1: What actually is seen in the cycle immediately after enable is the previous counter value, and not 4. Note 2: What actually is seen in the cycle immediately after reload is H'FFFF (underflow value), and not 5. Note: * This diagram does not show detailed timing information. Figure 10.3.17 Example of Counting in TOP Continuous Output Mode 10-70 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) In the example below, the counter and the reload register are initially set to H'A000 and H'E000, respectively. When the timer is enabled, the counter starts counting down and when it underflows after reaching the minimum count, the counter is loaded with the content of the reload register and continues counting down. Enabled (by writing to the enable bit or by external input) Underflow (first time) Underflow (second time) Count clock Enable bit H'FFFF H'FFFF H'(E000-1) H'E000 H'A000 Count down from the counter's set value Counter H'FFFF H'(E000-1) Count down from the reload register's set value Count down from the reload register's set value H'0000 H'E000 Reload register Correction register (Unused) F/F output Data inverted by enable Data inverted by underflow Data inverted by underflow TOP interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.3.18 Typical Operation in TOP Continuous Output Mode 10-71 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.3 TOP (Output-Related 16-Bit Timer) (2) Precautions on using TOP continuous output mode The following describes precautions to be observed when using TOP continuous output mode. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. 10-72 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.1 Outline of TIO TIO (Timer Input/Output) is an input/output-related 16-bit timer, whose operation mode can be selected from the following by mode switching in software, one at a time: * Measure clear input mode * Measure free-run input mode * Noise processing input mode * PWM output mode * Single-shot output mode * Delayed single-shot output mode * Continuous output mode The table below shows specifications of TIO. The diagram in the next page shows a block diagram of TIO. Table 10.4.1 Specifications of TIO (Input/Output-Related 16-Bit Timer) Item Specification Number of channels 10 channels Counter 16-bit down-counter Reload register 16-bit reload register Measure register 16-bit capture register Timer startup Started by writing to the enable bit in software or enabled by external input (rising or falling or both edges or high or low level) Operation mode * Measure clear input mode * Measure free-run input mode * Noise processing input mode * PWM output mode * Single-shot output mode * Delayed single-shot output mode * Continuous output mode Interrupt request generation Can be generated by a counter underflow 10-73 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) Clock bus Input event bus Output event bus 3210 3210 0123 TIO 0 Reload 0/measure register IRQ0 clk S Down-counter udf S F/F11 TO 11 (P103) S F/F12 TO 12 (P104) S F/F13 TO 13 (P105) S F/F14 TO 14 (P106) S F/F15 TO 15 (P107) S F/F16 TO 16 (P93) S F/F17 TO 17 (P94) S F/F18 TO 18 (P95) F/F19 TO 19 (P96) F/F20 TO 20 (P97) Reload 1 register (Note 1) IRQ12 (16-bit) en/cap TIN3S TIN3 (P153) S IRQ0 clk en/cap TIO 1 udf IRQ0 S clk en/cap TIO 2 udf IRQ0 S clk en/cap TIO 3 udf en/cap TIO 4 udf IRQ4 S clk S PRS0 BCLK/2 PRS1 S PRS2 IRQ4 TCLK1 (P125) TCLK1S S clk en/cap TIO 5 udf en/cap TIO 6 udf en/cap TIO 7 udf S IRQ4 TCLK2 (P126) TCLK2S S clk S IRQ4 S clk IRQ3 S DMA0 clk S en/cap TIO 8 udf S S IRQ3 clk S en/cap TIO 9 udf S 3210 0123 3210 PRS0-2 : Prescaler F/F : Flip-flop S : Selector Note 1: The reload 1 register is used in only PWM output mode. Figure 10.4.1 Block Diagram of TIO (Input/Output-Related 16-Bit Timer) 10-74 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.2 Outline of Each Mode of TIO Each mode of TIO is outlined below. For each TIO channel, only one of the following modes can be selected. (1) Measure clear/free-run input modes In measure clear/free-run input modes, the timer is used to measure a duration of time from when the counter starts counting till when an external capture signal is entered. After the timer is enabled (by writing to the enable bit in software), the counter starts counting down synchronously with the count clock. When a capture signal is entered from an external device, the counter value at that point in time is written into a register called the "measure register." In measure clear input mode, the counter value is initialized to H'FFFF upon capture, from which the counter starts counting down again. In measure free-run input mode, the counter continues counting down even after capture and upon underflow, recycles to H'FFFF, from which it starts counting down again. To stop the counter, disable count by writing to the enable bit in software. An interrupt request can be generated by a counter underflow or execution of a measure operation. (2) Noise processing input mode In noise processing input mode, the timer is used to detect that the input signal remained in the same state for over a predetermined time. In noise processing input mode, a high or low level on external input activates the counter and if the input signal remains in the same state for over a predetermined time before the counter underflows, the counter generates an interrupt request before stopping. If the valid-level signal being applied turns to an invalid level before the counter underflows, the counter temporarily stops counting and when a valid-level signal is entered again, the counter is reloaded with the initial count and restarts counting. The timer stops at the same time the counter underflows or count is disabled by writing to the enable bit. An interrupt request can be generated by a counter underflow. (3) PWM output mode (without correction function) In PWM output mode, the timer uses two reload registers to generate a waveform with a given duty cycle. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the initial values in the reload 0 and reload 1 registers, the counter is loaded with the reload 0 register value and starts counting down synchronously with the count clock. The first time the counter underflows, it is loaded with the reload 1 register value and continues counting. Thereafter, the counter is loaded with the reload 0 and reload 1 register values alternately each time an underflow occurs. The F/F output waveform in PWM output mode is inverted when the counter starts counting and each time it underflows. The timer stops at the same time count is disabled by writing to the enable bit (and not in synchronism with PWM output period). An interrupt request can be generated at an even underflow after the counter being enabled. 10-75 32182 Group User's Manual (Rev.1.0) 10 MULTIJUNCTION TIMERS 10.4 TIO (Input/Output-Related 16-Bit Timer) (4) Single-shot output mode (without correction function) In single-shot output mode, the timer generates a pulse in width of (reload 0 register set value + 1) only once and then stops. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the reload 0 register, the counter is loaded with the reload 0 register value and starts counting synchronously with the count clock. The counter counts down and when the minimum count is reached, stops upon underflow. The F/F output waveform in single-shot output mode is inverted at startup and upon underflow, generating a single-shot pulse waveform in width of (reload 0 register set value + 1) only once. An interrupt request can be generated when the counter underflows. (5) Delayed single-shot output mode (without correction function) In delayed single-shot output mode, the timer generates a pulse in width of (reload 0 register set value + 1) after a finite time equal to (counter set value + 1) only once and then stops. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload 0 register, it starts counting down from the counter's set value synchronously with the count clock. The first time the counter underflows, it is loaded with the reload 0 register value and continues counting down. The counter stops when it underflows next time. The F/F output waveform in delayed single-shot output mode is inverted when the counter underflows first time and next, generating a single-shot pulse waveform in width of (reload 0 register set value + 1) after a finite time equal to (first set value of counter + 1) only once. An interrupt request can be generated when the counter underflows first time and next. (6) Continuous output mode (without correction function) In continuous output mode, the timer counts down starting from the set value of the counter and when the counter underflows, it is loaded with the reload 0 register value. Thereafter, this operation is repeated each time the counter underflows, thus generating consecutive pulses in width of (reload 0 register set value + 1). When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload 0 register, it starts counting down from the counter's set value synchronously with the count clock and when the minimum count is reached, generates an underflow. This underflow causes the counter to be loaded with the content of the reload 0 register and start counting over again. Thereafter, this operation is repeated each time an underflow occurs. To stop the counter, disable count by writing to the enable bit in software. The F/F output waveform in continuous output mode is inverted at startup and upon underflow, generating a waveform of consecutive pulses until the timer stops counting. An interrupt request can be generated each time the counter underflows. 10-76 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) * Because the timer operates synchronously with the count clock, there is a count clock-dependent delay from when the timer is enabled till when it actually starts operating. In operation mode where the F/F output is inverted when the timer is enabled, there is also a count clock-dependent delay before the F/F output is inverted. Write to the enable bit BCLK Count clock period Count clock Enable Count clock-dependent delay F/F operation (Note 1) Inverted Note 1: This applies to the case where F/F output is inverted when the timer is enabled. Figure 10.4.2 Count Clock Dependent Delay 10-77 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.3 TIO Related Register Map Shown below is a TIO related register map. TIO Related Register Map (1/2) Address +0 address b0 H'0080 0300 H'0080 0302 H'0080 0304 | H'0080 0310 H'0080 0312 H'0080 0314 H'0080 0316 H'0080 0318 H'0080 031A H'0080 0322 H'0080 0324 H'0080 0326 | H'0080 0330 H'0080 0332 H'0080 0334 H'0080 0336 | H'0080 0340 H'0080 0342 H'0080 0344 H'0080 0346 H'0080 0348 | 10-90 10-89 10-88 TIO1 Reload 1 Register (TIO1RL1) TIO1 Reload 0/Measure Register (TIO1RL0) (Use inhibited area) 10-90 10-89 TIO0-3 Control Register 0 (TIO03CR0) 10-81 TIO0-3 Control Register 1 (TIO03CR1) 10-82 (Use inhibited area) H'0080 0320 H'0080 034A 10-88 TIO1 Counter (TIO1CT) (Use inhibited area) (Use inhibited area) | See pages b15 TIO0 Reload 1 Register (TIO0RL1) TIO0 Reload 0/Measure Register (TIO0RL0) (Use inhibited area) H'0080 0306 H'0080 031C +1 address b7 b8 TIO0 Counter (TIO0CT) (Use inhibited area) TIO2 Counter (TIO2CT) (Use inhibited area) 10-88 TIO2 Reload 1 Register (TIO2RL1) TIO2 Reload 0/Measure Register (TIO2RL0) (Use inhibited area) 10-90 10-89 TIO3 Counter (TIO3CT) (Use inhibited area) 10-88 TIO3 Reload 1 Register (TIO3RL1) TIO3 Reload 0/Measure Register (TIO3RL0) (Use inhibited area) 10-90 10-89 TIO4 Counter (TIO4CT) (Use inhibited area) 10-88 TIO4 Reload 1 Register (TIO4RL1) TIO4 Reload 0/Measure Register (TIO4RL0) (Use inhibited area) 10-90 TIO4 Control Register (TIO4CR) 10-89 TIO5 Control Register (TIO5CR) 10-83 10-85 (Use inhibited area) 10-78 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) TIO Related Register Map (2/2) Address +0 address b0 H'0080 0350 H'0080 0352 H'0080 0354 | H'0080 0360 H'0080 0362 H'0080 0364 H'0080 0366 H'0080 0368 H'0080 0372 H'0080 0374 H'0080 0376 | H'0080 0380 H'0080 0382 H'0080 0384 H'0080 0386 H'0080 0388 | H'0080 0390 H'0080 0392 H'0080 0394 H'0080 0396 | H'0080 03BC H'0080 03BE 10-90 10-89 10-88 TIO6 Reload 1 Register (TIO6RL1) TIO6 Reload 0/Measure Register (TIO6RL0) (Use inhibited area) 10-90 10-89 TIO7 Control Register (TIO7CR) 10-86 10-87 (Use inhibited area) H'0080 0370 H'0080 038A 10-88 TIO6 Counter (TIO6CT) (Use inhibited area) TIO6 Control Register (TIO6CR) | See pages b15 TIO5 Reload 1 Register (TIO5RL1) TIO5 Reload 0/Measure Register (TIO5RL0) (Use inhibited area) H'0080 0356 H'0080 036A +1 address b7 b8 TIO5 Counter (TIO5CT) (Use inhibited area) TIO7 Counter (TIO7CT) (Use inhibited area) 10-88 TIO7 Reload 1 Register (TIO7RL1) TIO7 Reload 0/Measure Register (TIO7RL0) (Use inhibited area) 10-90 10-89 TIO8 Counter (TIO8CT) (Use inhibited area) 10-88 TIO8 Reload 1 Register (TIO8RL1) TIO8 Reload 0/Measure Register (TIO8RL0) (Use inhibited area) 10-90 TIO8 Control Register (TIO8CR) 10-89 TIO9 Control Register (TIO9CR) 10-87 10-88 (Use inhibited area) TIO9 Counter (TIO9CT) (Use inhibited area) 10-88 TIO9 Reload 1 Register (TIO9RL1) TIO9 Reload 0/Measure Register (TIO9RL0) (Use inhibited area) 10-90 TIO Enable Protect Register (TIOPRO) TIO Count Enable Register (TIOCEN) 10-79 10-89 10-91 10-92 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.4 TIO Control Registers The TIO control registers are used to select operation modes of TIO0-9 (measure input, noise processing input, PWM output, single-shot output, delayed single-shot output or continuous output mode), as well as select the count enable and count clock sources. Following TIO control registers are provided for each timer group. * TIO0-3 Control Register 0 (TIO03CR0) * TIO0-3 Control Register 1 (TIO03CR1) * TIO4 Control Register (TIO4CR) * TIO5 Control Register (TIO5CR) * TIO6 Control Register (TIO6CR) * TIO7 Control Register (TIO7CR) * TIO8 Control Register (TIO8CR) * TIO9 Control Register (TIO9CR) 10-80 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) TIO0-3 Control Register 0 (TIO03CR0) b0 1 TIO3EEN 0 2 3 TIO3M 0 0 4 5 TIO2ENS 0 0 6 7 TIO2M 0 8 9 TIO1ENS 0 0 0 10 11 TIO1M 0 0 12 13 TIO0ENS 0 0 14 b15 TIO0M 0 0 0 b Bit Name 0 TIO3EEN (Note 1) TIO3 external input enable bit 1-3 Function R W 0: Disable external input 1: Enable external input R W TIO3M TIO3 operation mode select bit 000: 001: 010: 011: 100: 101: 110: 111: R W 4 TIO2ENS TIO2 enable/measure input source select bit 0: No selection 1: External input TIN5 (Note 2) R W 5-7 TIO2M TIO2 operation mode select bit 000: 001: 010: 011: 100: 101: 110: 111: R W 8 TIO1ENS TIO1 enable/measure input source select bit 0: No selection 1: External input TIN4 (Note 2) R W 9-11 TIO1M TIO1 operation mode select bit 000: 001: 010: 011: 100: 101: 110: 111: R W 12 TIO0ENS TIO0 enable/measure input source select bit 0: No selection 1: External input TIN3 R W 13-15 TIO0M TIO0 operation mode select bit 000: 001: 010: 011: 100: 101: 110: 111: R W Single-shot output mode Delayed single-shot output mode Continuous output mode PWM output mode Measure clear input mode Measure free-run input mode Noise processing input mode - ditto - Single-shot output mode Delayed single-shot output mode Continuous output mode PWM output mode Measure clear input mode Measure free-run input mode Noise processing input mode - ditto - Single-shot output mode Delayed single-shot output mode Continuous output mode PWM output mode Measure clear input mode Measure free-run input mode Noise processing input mode - ditto - Single-shot output mode Delayed single-shot output mode Continuous output mode PWM output mode Measure clear input mode Measure free-run input mode Noise processing input mode - ditto - Note 1: During measure free-run/clear input mode, even if this bit is set to "0" (external input disabled), when a capture signal is entered from an external device, the counter value at that point in time is written into the measure register. In measure clear input mode, however, if this bit = "0" (external input disabled), the counter value is not initialized (H'FFFF) upon capture and, therefore, this bit should be set to "1" (external input enabled). Note 2: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Notes: * This register must always be accessed in halfwords. * Operation mode can only be set or changed while the counter is inactive. * To select TIO3 enable/measure input sources, use the TIO4 Control Register TIO34ENS (TIO3, TIO4 enable/measure input source select) bits. 10-81 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) Clock bus Input event bus 3210 3210 S clk TIN3 (P153) TIN3S en/cap TIO 0 en/cap TIO 1 en/cap TIO 2 en/cap TIO 3 en/cap TIO 4 S clk S clk S clk clk S S 3210 3210 S : Selector Note: * This diagram only illustrates TIO control registers and is partly omitted. Figure 10.4.3 Outline Diagram of TIO0-4 Clock and Enable Inputs TIO0-3 Control Register 1 (TIO03CR1) b8 9 10 11 12 13 14 b15 TIO03CKS 0 0 0 0 0 0 0 0 b Bit Name 8-13 No function assigned. Fix to "0". 14, 15 TIO03CKS TIO0-3 clock source select bit Function 00: 01: 10: 11: 10-82 Clock Clock Clock Clock bus bus bus bus 0 1 2 3 R W 0 0 R W 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) TIO4 Control Register (TIO4CR) b0 1 TIO4CKS 0 0 2 TIO4EEN 0 3 4 5 TIO34ENS 0 0 6 b7 TIO4M 0 0 0 b Bit Name Function R W 0, 1 TIO4CKS TIO4 clock source select bit 00: Clock 01: Clock 10: Clock 11: Clock R W 2 TIO4EEN (Note 1) TIO4 external input enable bit 0: Disable external input 1: Enable external input R W 3, 4 TIO34ENS TIO3,4 enable/measure input source select bit 00: External input TIN6 (Note 2) 01: - ditto - (Note 2) 10: Input event bus 2 11: Input event bus 3 R W 5-7 TIO4M TIO4 operation mode select bit 000: 001: 010: 011: 100: 101: 110: 111: R W bus bus bus bus 0 1 2 3 Single-shot output mode Delayed single-shot output mode Continuous output mode PWM output mode Measure clear input mode Measure free-run input mode Noise processing input mode - ditto - Note 1: During measure free-run/clear input mode, even if this bit is set to "0" (external input disabled), when a capture signal is entered from an external device, the counter value at that point in time is written into the measure register. In measure clear input mode, however, if this bit = "0" (external input disabled), the counter value is not initialized (H'FFFF) upon capture and, therefore, this bit should be set to "1" (external input enabled). Note 2: Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Note: * Operation mode can only be set or changed while the counter is inactive. 10-83 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) Clock bus Input event bus 3210 3210 TCLK1 (P125) TCLK1S clk S en/cap TIO 5 en/cap TIO 6 en/cap TIO 7 en/cap TIO 8 en/cap TIO 9 S TCLK2 (P126) TCLK2S S clk S clk S S clk S S S clk S 3210 3210 S : Selector Note: * This diagram only illustrates TIO control registers and is partly omitted. Figure 10.4.4 Outline Diagram of TIO5-9 Clock and Enable Inputs 10-84 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) TIO5 Control Register (TIO5CR) b8 9 10 TIO5CKS 0 0 11 12 13 TIO5ENS 0 0 0 14 b15 TIO5M 0 0 0 b Bit Name 8-10 TIO5CKS TIO5 clock source select bit 11, 12 TIO5ENS TIO5 enable/measure input source select bit 13-15 TIO5M TIO5 operation mode select bit Function R W 000: External input TCLK1 001: - ditto - 010: - ditto - 011: - ditto - 100: Clock bus 0 101: Clock bus 1 110: Clock bus 2 111: Clock bus 3 R W 00: 01: 10: 11: R W No selection - ditto - External input TIN7 (Note 1) Input event bus 3 000: Single-shot output mode R W 001: Delayed single-shot output mode 010: Continuous output mode 011: PWM output mode 100: Measure clear input mode 101: Measure free-run input mode 110: Noise processing input mode 111: - ditto - Note 1 : Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Note: * Operation mode can only be set or changed while the counter is inactive. 10-85 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) TIO6 Control Register (TIO6CR) b0 1 2 TIO6CKS 0 0 3 4 5 TIO6ENS 0 0 0 6 b7 TIO6M 0 0 0 b Bit Name 0-2 TIO6CKS TIO6 clock source select bit 3, 4 5-7 Function R W 000: External input TCLK2 001: - ditto - 010: - ditto - 011: - ditto - 100: Clock bus 0 101: Clock bus 1 110: Clock bus 2 111: Clock bus 3 R W TIO6ENS TIO6 enable/measure input source select bit 00: No selection 01: External input TIN8 (Note 1) 10: Input event bus 2 11: Input event bus 3 R W TIO6M 000: Single-shot output mode R W TIO6 operation mode select bit 001: Delayed single-shot output mode 010: Continuous output mode 011: PWM output mode 100: Measure clear input mode 101: Measure free-run input mode 110: Noise processing input mode 111: - ditto - Note 1 : Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Note: * Operation mode can only be set or changed while the counter is inactive. 10-86 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) TIO7 Control Register (TIO7CR) b8 0 9 10 11 12 TIO7CKS TIO7ENS 0 0 0 13 0 14 b15 TIO7M 0 0 0 b Bit Name Function R 8 No function assigned. Fix to "0". 9, 10 TIO7CKS TIO7 clock source select bit 00: Clock 01: Clock 10: Clock 11: Clock 11, 12 TIO7ENS TIO7 enable/measure input source select bit 00: No selection 01: External input TIN9 (Note 1) 10: Input event bus 0 11: Input event bus 3 13-15 TIO7M TIO7 operation mode select bit bus bus bus bus 0 1 2 3 W 0 0 R W R W 000: Single-shot output mode R W 001: Delayed single-shot output mode 010: Continuous output mode 011: PWM output mode 100: Measure clear input mode 101: Measure free-run input mode 110: Noise processing input mode 111: - ditto - Note 1 : Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Note: * Operation mode can only be set or changed while the counter is inactive. TIO8 Control Register (TIO8CR) b0 1 2 TIO8CKS 0 0 3 4 5 TIO8ENS 0 0 6 b7 TIO8M 0 0 0 0 b Bit Name Function 0, 1 TIO8CKS TIO8 clock source select bit 00: 01: 10: 11: Clock Clock Clock Clock 2-4 TIO8ENS TIO8 enable/measure input source select bit 000: 001: 010: 011: 100: 101: 110: 111: No selection - ditto - - ditto - - ditto - External input TIN10 (Note 1) Input event bus 1 Input event bus 2 Input event bus 3 5-7 TIO8M TIO8 operation mode select bit bus bus bus bus 0 1 2 3 R W R W R W 000: Single-shot output mode R W 001: Delayed single-shot output mode 010: Continuous output mode 011: PWM output mode 100: Measure clear input mode 101: Measure free-run input mode 110: Noise processing input mode 111: - ditto - Note 1 : Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Note: * Operation mode can only be set or changed while the counter is inactive. 10-87 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) TIO9 Control Register (TIO9CR) b8 9 0 10 11 12 TIO9CKS TIO9ENS 0 0 0 13 14 b15 TIO9M 0 0 0 0 b Bit Name Function 8 No function assigned. Fix to "0". 9, 10 TIO9CKS TIO9 clock source select bit 00: 01: 10: 11: 11, 12 TIO9ENS TIO9 enable/measure input source select bit 00: No selection 01: External input TIN11 (Note 1) 10: Input event bus 1 11: Input event bus 3 13-15 TIO9M TIO9 operation mode select bit Clock Clock Clock Clock bus bus bus bus 0 1 2 3 R W 0 0 R W R W 000: Single-shot output mode R W 001: Delayed single-shot output mode 010: Continuous output mode 011: PWM output mode 100: Measure clear input mode 101: Measure free-run input mode 110: Noise processing input mode 111: - ditto - Note 1 : Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. Note: * Operation mode can only be set or changed while the counter is inactive. 10.4.5 TIO Counters (TIO0CT-TIO9CT) TIO0 TIO1 TIO2 TIO3 TIO4 TIO5 TIO6 TIO7 TIO8 TIO9 Counter Counter Counter Counter Counter Counter Counter Counter Counter Counter b0 (TIO0CT) (TIO1CT) (TIO2CT) (TIO3CT) (TIO4CT) (TIO5CT) (TIO6CT) (TIO7CT) (TIO8CT) (TIO9CT) 1 2 0310> 0320> 0330> 0340> 0350> 0360> 0370> 0380> 0390> b15 TIO0CT-TIO9CT ? ? ? ? ? ? ? ? ? ? b Bit Name 0-15 TIO0CT-TIO9CT Function R 16-bit reload counter value W R(Note 1) Note 1: Protected against write during PWM output mode. Note: * This register must always be accessed in halfwords. The TIO counter is a 16-bit down-counter. After the timer is enabled (by writing to the enable bit in software or by external input), the counter starts counting synchronously with the count clock. These counters are protected against write during PWM output mode. 10-88 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.6 TIO Reload 0/ Measure Registers (TIO0RL0-TIO9RL0) TIO0 TIO1 TIO2 TIO3 TIO4 TIO5 TIO6 TIO7 TIO8 TIO9 Reload Reload Reload Reload Reload Reload Reload Reload Reload Reload b0 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ Measure Measure Measure Measure Measure Measure Measure Measure Measure Measure 1 2 Register Register Register Register Register Register Register Register Register Register 3 4 (TIO0RL0) (TIO1RL0) (TIO2RL0) (TIO3RL0) (TIO4RL0) (TIO5RL0) (TIO6RL0) (TIO7RL0) (TIO8RL0) (TIO9RL0) 5 0316> 0326> 0336> 0346> 0356> 0366> 0376> 0386> 0396> b15 TIO0RL0-TIO9RL0 ? ? ? ? ? ? ? ? ? ? b Bit Name 0-15 TIO0RL0-TIO9RL0 Function R 16-bit reload register value W R(Note 1) Note 1: This register is protected against write during measure input mode. Note: * This register must always be accessed in halfwords. The TIO Reload 0/ Measure Registers serve dual purposes as a register for reloading data into the TIO Count Registers (TIO0CT-TIO9CT) and as a measure register during measure input mode. These registers are protected against write during measure input mode. The content of the reload 0 register is loaded into the counter in the following cases: * When after the counter started counting in noise processing input mode, the input signal is inverted and a valid-level signal is entered again before the counter underflows * When the counter is enabled in single-shot output mode * When the counter underflowed in delayed single-shot output or continuous output mode * When the counter is enabled in PWM output mode and when the counter value set by the reload 1 register underflowed Simply because data is written to the reload 0 register does not mean that the data is loaded into the counter. If this register is used as a measure register, the counter value is latched into that measure register by event input. 10-89 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.7 TIO Reload 1 Registers (TIO0RL1-TIO9RL1) TIO0 TIO1 TIO2 TIO3 TIO4 TIO5 TIO6 TIO7 TIO8 TIO9 b0 Reload Reload Reload Reload Reload Reload Reload Reload Reload Reload 1 1 1 1 1 1 1 1 1 1 1 Register Register Register Register Register Register Register Register Register Register 2 3 (TIO0RL1) (TIO1RL1) (TIO2RL1) (TIO3RL1) (TIO4RL1) (TIO5RL1) (TIO6RL1) (TIO7RL1) (TIO8RL1) (TIO9RL1) 4 0314> 0324> 0334> 0344> 0354> 0364> 0374> 0384> 0394> b15 TIO0RL1-TIO9RL1 ? ? ? ? ? ? ? ? ? ? b Bit Name 0-15 TIO0RL1-TIO9RL1 Note: * This register must always be accessed in halfwords. Function 16-bit reload register value R W R W The TIO Reload 1 Registers are used to reload data into the TIO Count Registers (TIO0CT-TIO9CT). The content of the reload 1 register is loaded into the counter in the following cases: * When the count value set by the reload 0 register underflowed in PWM output mode Simply because data is written to the reload 1 register does not mean that the data is loaded into the counter. 10-90 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.8 TIO Enable Control Registers TIO Enable Protect Register (TIOPRO) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 TIO9PRO TIO8PRO TIO7PRO TIO6PRO TIO5PRO TIO4PRO TIO3PRO TIO2PRO TIO1PRO TIO0PRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b Bit Name Function 0-5 No function assigned. Fix to "0". 6 TIO9PRO (TIO9 enable protect bit) 0: Enable rewrite 7 TIO8PRO (TIO8 enable protect bit) 1: Disable rewrite 8 TIO7PRO (TIO7 enable protect bit) 9 TIO6PRO (TIO6 enable protect bit) 10 TIO5PRO (TIO5 enable protect bit) 11 TIO4PRO (TIO4 enable protect bit) 12 TIO3PRO (TIO3 enable protect bit) 13 TIO2PRO (TIO2 enable protect bit) 14 TIO1PRO (TIO1 enable protect bit) 15 TIO0PRO (TIO0 enable protect bit) R W 0 0 R W Note: * This register must always be accessed in halfwords. The TIO Enable Protect Register controls rewriting of the TIO count enable bit described in the next page by enabling or disabling it. 10-91 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) TIO Count Enable Register (TIOCEN) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 TIO9CEN TIO8CEN TIO7CEN TIO6CEN TIO5CEN TIO4CEN TIO3CEN TIO2CEN TIO1CEN TIO0CEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b Bit Name Function 0-5 No function assigned. Fix to "0". 6 TIO9CEN (TIO9 count enable bit) 0: Stop count 7 TIO8CEN (TIO8 count enable bit) 1: Enable count 8 TIO7CEN (TIO7 count enable bit) 9 TIO6CEN (TIO6 count enable bit) 10 TIO5CEN (TIO5 count enable bit) 11 TIO4CEN (TIO4 count enable bit) 12 TIO3CEN (TIO3 count enable bit) 13 TIO2CEN (TIO2 count enable bit) 14 TIO1CEN (TIO1 count enable bit) 15 TIO0CEN (TIO0 count enable bit) R W 0 0 R W Note: * This register must always be accessed in halfwords The TIO Count Enable Register controls operation of the TIO counters. To enable any TIO counter in software, enable its corresponding enable protect bit for write and set the count enable bit by writing "1". To stop any TIO counter, enable its corresponding enable protect bit for write and reset the count enable bit by writing "0". In all but continuous output mode, when the counter stops due to occurrence of an underflow, the count enable bit is automatically reset to "0". Therefore, the TIO Count Enable Register when accessed for read serves as a status register indicating whether the counter is operating or idle. TIOm external enable (TIOmEEN or TIOmENS) F/F Input processing selection TINn EN-ON TINnS Event bus TIOm count enable (TIOmCEN) TIO enable control F/F Dn TIOm enable protect (TIOmPRO) WR F/F WR Figure 10.4.5 Configuration of the TIO Enable Circuit 10-92 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.9 Operation in TIO Measure Free-Run/ Clear Input Modes (1) Outline of TIO measure free-run/ clear input modes In measure free-run/ clear input modes, the timer is used to measure a duration of time from when the counter starts counting till when an external capture signal is entered. An interrupt request can be generated by a counter underflow or execution of a measure operation. After the timer is enabled (by writing to the enable bit in software), the counter starts counting down synchronously with the count clock. When a capture signal is entered from an external device, the counter value at that point in time is written into a register called the "measure register." In measure clear input mode, the counter value is initialized to H'FFFF upon capture, from which the counter starts counting down again. When the counter underflows, it starts counting down from H'FFFF. In measure free-run input mode, the counter continues counting down even after capture and upon underflow, recycles to H'FFFF, from which it starts counting down again. To stop the counter, disable count by writing to the enable bit in software. Enabled (by writing to the enable bit) Measure event (capture) occurs Measure event (capture) Count clock Enable bit H'FFFF Undefined value H'9000 Counter H'7000 H'0000 Measure register Undefined H'7000 H'9000 TIN interrupt request TIN interrupt request due to external event input TIN interrupt request due to external event input TIO interrupt request TIO interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.4.6 Typical Operation in Measure Free-Run Input Mode 10-93 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) Enabled (by writing to the enable bit) Measure event (capture) occurs Count clock Enable bit H'FFFF Undefined value Counter H'7000 H'0000 Measure register Undefined H'0008 TIN interrupt request TIN interrupt request due to external event input TIO interrupt request TIO interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.4.7 Typical Operation in Measure Clear Input Mode (2) Precautions on using TIO measure free-run/ clear input modes The following describes precautions to be observed when using TIO measure free-run/ clear input modes. * If measure event input and write to the counter occur in the same clock period, the write value is set in the counter while at the same time latched into the measure register. 10-94 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.10 Operation in TIO Noise Processing Input Mode In noise processing input mode, the timer is used to detect that the input signal remained in the same state for over a predetermined time. In noise processing input mode, a high or low level on external input activates the counter and if the input signal remains in the same state for over a predetermined time before the counter underflows, the counter generates an interrupt request before stopping. If the valid-level signal being applied turns to an invalid level before the counter underflows, the counter temporarily stops counting and when a valid-level signal is entered again, the counter is reloaded with the initial count and restarts counting. The effective count width is (reload 0 register set value + 1). The timer stops at the same time the counter underflows or count is disabled by writing to the enable bit. An interrupt request can be generated by a counter underflow. Enabled (by writing to the enable bit) Count clock Disabled by underflow Enable bit External input (noise processing) Invalid Invalid H'FFFF Effective signal width H'A000 Counter H'0000 Reload 0 register H'A000 TIO interrupt request TIO interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.4.8 Typical Operation in Noise Processing Input Mode 10-95 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.11 Operation in TIO PWM Output Mode (1) Outline of TIO PWM output mode In PWM output mode, the timer uses two reload registers to generate a waveform with a given duty cycle. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the initial values in the reload 0 and reload 1 registers, the counter is loaded with the reload 0 register value and starts counting down synchronously with the count clock. The first time the counter underflows, it is loaded with the reload 1 register value and continues counting. Thereafter, the counter is loaded with the reload 0 and reload 1 register values alternately each time an underflow occurs. The (reload 0 register set value + 1) and (reload 1 register set value + 1) respectively are effective as count values. The timer stops at the same time count is disabled by writing to the enable bit (and not in synchronism with PWM output period). The F/F output waveform in PWM output mode is inverted (F/F output level changes from low to high or vice versa) when the counter starts counting and each time it underflows. An interrupt request can be generated at an even underflow after the counter being enabled. Note that TIO's PWM output mode does not have the count correction function. Enabled (by writing to the enable bit or by external input) Underflow (first time) Underflow (second time) Count clock Enable bit Count down from the reload 0 register set value Count down from the reload 1 register set value Count down from the reload 0 register set value H'FFFF Undefined value H'C000 H'(C000-1) H'(A000-1) H'A000 Counter H'(A000-1) H'A000 H'0000 Reload 0 register H'A000 Reload 1 register H'C000 F/F output Data inverted by enable Data inverted by underflow Data inverted by underflow TIO interrupt request due to underflow PWM output period Note: * This diagram does not show detailed timing information. Figure 10.4.9 Typical Operation in PWM Output Mode 10-96 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) (2) Reload register updates in TIO PWM output mode In PWM output mode, when the timer remains idle, the reload 0 and reload 1 registers are updated at the same time data are written to the respective registers. But when the timer is operating, the reload 1 register is updated by updating the reload 0 register. However, if the reload 0 and reload 1 registers are accessed for read, the read values are always the data that have been written to the respective registers. Internal bus Reload 1 TIOnRL1 Reload 1 WR Reload 0 WR Reload 0 Buffer TIOnRL0 PWM mode control Prescaler output 16-bit counter F/F TO Figure 10.4.10 PWM Circuit Diagram To rewrite the reload 0 and reload 1 registers while the timer is operating, rewrite the reload 1 register first and then the reload 0 register. That way, the reload 0 and reload 1 registers both are updated synchronously with PWM period, from which the timer starts operating. This operation can normally be performed collectively by accessing 32-bit addresses beginning with the reload 1 register address wordwise. (Data are automatically written to the reload 1 and then the reload 0 registers in succession.) If the reload 0 and reload 1 registers are updated in the reverse order beginning with reload 0, only the reload 0 register is updated. Note also that if the reload 0 and reload 1 registers are accessed for read, the read values are always the data that have been written to the respective registers, and not the reload values being actually used. When altering PWM period by rewriting the reload registers, if the PWM period terminates before the CPU finishes writing to reload 0, the PWM period is not altered in the current session and the data written to the register is reflected in the next period. (3) Precautions on using TIO PWM output mode The following describes precautions to be observed when using TIO PWM output mode. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. 10-97 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) (a) When reload register updates take effect in the current period (reflected in the next period) Write to reload 1 Reload 0 register H'1000 Reload 1 register H'2000 Write to reload 0 (Reload 1 data latched) H'8000 H'9000 New PWM output period Old PWM output period F/F output Operation by new reload value written Enlarged view New PWM output period Count clock Counter H'0001 H'0000 H'FFFF H'7FFF H'7FFE Interrupt due to underflow Reload 0 register H'1000 H'8000 Reload 1 register H'2000 H'9000 Reload 1 buffer H'2000 H'9000 F/F output Timing at which reload 0 and reload 1 registers are updated PWM period latched (b) When reload register updates take effect in the next period (reflected one period later) Write to reload 1 Reload 0 register H'1000 Reload 1 register H'2000 Write to reload 0 (Reload 1 data latched) H'8000 H'9000 Old PWM output period Old PWM output period F/F output Operation by old reload value Enlarged view Old PWM output period Count clock Counter H'0001 H'0000 H'FFFF H'0FFF H'0FFE Interrupt due to underflow Reload 0 register Reload 1 register Reload 1 buffer H'1000 H'2000 H'8000 H'9000 H'2000 H'9000 F/F output PWM period latched Timing at which reload 0 and reload 1 registers are updated Note: * This diagram does not show detailed timing information. Figure 10.4.11 Reload 0 and Reload 1 Register Updates in PWM Output Mode 10-98 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.12 Operation in TIO Single-shot Output Mode (without Correction Function) (1) Outline of TIO single-shot output mode In single-shot output mode, the timer generates a pulse in width of (reload 0 register set value + 1) only once and then stops. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the reload 0 register, the counter is loaded with the content of the reload 0 register and starts counting synchronously with the count clock. The counter counts down and when the minimum count is reached, stops upon underflow. The F/F output waveform in single-shot output mode is inverted (F/F output level changes from low to high or vice versa) at startup and upon underflow, generating a single-shot pulse waveform in width of (reload 0 register set value + 1) only once. An interrupt request can be generated when the counter underflows. The count value is (reload 0 register set value + 1). (For counting operation, see also Section 10.3.9, "Operation of TOP Single-shot Output Mode.") (2) Precautions on using TIO single-shot output mode The following describes precautions to be observed when using TIO single-shot output mode. * If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops. * If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. 10-99 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) Enabled (by writing to the enable bit or by external input) Disabled (by underflow) Count clock Enable bit H'FFFF Undefined value H'A000 Count down from the reload 0 register set value H'(A000-1) Counter H'0000 Reload 0 register H'A000 Reload 1 register (Unused) F/F output Data inverted by enable Data inverted by underflow TIO interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.4.12 Typical Operation in TIO Single-shot Output Mode (without Correction Function) 10-100 32182 Group User's Manual (Rev.1.0) 10 MULTIJUNCTION TIMERS 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.13 Operation in TIO Delayed Single-shot Output Mode (without Correction Function) (1) Outline of TIO delayed single-shot output mode In delayed single-shot output mode, the timer generates a pulse in width of (reload 0 register set value + 1) after a finite time equal to (counter set value + 1) only once and then stops. When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload 0 register, it starts counting down from the counter's set value synchronously with the count clock. The first time the counter underflows, it is loaded with the reload 0 register value and continues counting down. The counter stops when it underflows next time. The F/F output waveform in delayed single-shot output mode is inverted (F/F output level changes from low to high or vice versa) when the counter underflows first time and next, generating a single-shot pulse waveform in width of (reload 0 register set value + 1) after a finite time equal to (first set value of counter + 1) only once. An interrupt request can be generated when the counter underflows first time and next. The (counter set value + 1) and (reload 0 register set value + 1) are effective as count values. (For counting operation, see also Section 10.3.10, "Operation of TOP Delayed Single-shot Output Mode.") (2) Precautions on using TIO delayed single-shot output mode The following describes precautions to be observed when using TIO delayed single-shot output mode. * If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops. * If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. 10-101 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) Enabled (by writing to the enable bit or by external input) Underflow (first time) Underflow (second time) Count clock Enable bit H'FFFF H'F000 H'A000 H'EFFF Count down from the counter set value Counter Count down from the reload 0 register set value H'0000 H'F000 Reload 0 register Reload 1 register (Unused) F/F output Data inverted by underflow Data inverted by underflow TIO interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.4.13 Typical Operation in TIO Delayed Single-shot Output Mode (without Correction Function) 10-102 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) 10.4.14 Operation in TIO Continuous Output Mode (without Correction Function) (1) Outline of TIO continuous output mode In continuous output mode, the timer counts down starting from the set value of the counter and when the counter underflows, it is loaded with the reload 0 register value. Thereafter, this operation is repeated each time the counter underflows, thus generating consecutive pulses whose waveform is inverted in width of (reload 0 register set value + 1). When the timer is enabled (by writing to the enable bit in software or by external input) after setting the counter and reload 0 register, it starts counting down from the counter's set value synchronously with the count clock and when the minimum count is reached, generates an underflow. This underflow causes the counter to be loaded with the content of the reload 0 register and start counting over again. Thereafter, this operation is repeated each time an underflow occurs. To stop the counter, disable count by writing to the enable bit in software. The F/F output waveform in continuous output mode is inverted (F/F output level changes from low to high or vice versa) at startup and upon underflow, generating a waveform of consecutive pulses until the timer stops counting. An interrupt request can be generated each time the counter underflows. The (counter set value + 1) and (reload 0 register set value + 1) are effective as count values. (For counting operation, see also Section 10.3.11, "Operation of TOP Continuous Output Mode.") (2) Precautions on using TIO continuous output mode The following describes precautions to be observed when using TIO continuous output mode. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. 10-103 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.4 TIO (Input/Output-Related 16-Bit Timer) Enabled (by writing to the enable bit or by external input) Underflow (second time) Underflow (first time) Count clock Enable bit H'FFFF H'E000 H'A000 Counter Count down from the counter set value H'DFFF H'DFFF Count down from the reload 0 register set value Count down from the reload 0 register set value H'0000 Reload 0 register H'E000 Reload 1 register (Unused) F/F output Data inverted by enable Data inverted by underflow Data inverted by underflow TIO interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 10.4.14 Typical Operation in TIO Continuous Output Mode (without Correction Function) 10-104 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.5 TMS (Input-Related 16-Bit Timer) 10.5 TMS (Input-Related 16-Bit Timer) 10.5.1 Outline of TMS TMS (Timer Measure Small) is an input-related 16-bit timer capable of measuring input pulses in two circuit blocks comprising a total of eight channels. The table below shows specifications of TMS. The diagram in the next page shows a block diagram of TMS. Table 10.5.1 Specifications of TMS (Input-Related 16-Bit Timer) Item Specification Number of channels 8 channels (2 circuit blocks consisting of 4 channels each, 8 channels in total) Counter 16-bit up-counter x 2 Measure register 16-bit measure register x 8 Timer startup Started by writing to the enable bit in software Interrupt request generation Can be generated by a counter overflow 10.5.2 Outline of TMS Operation In TMS, when the timer is enabled (by writing to the enable bit in software), the counter starts operating. The counter is a 16-bit up-counter, where the counter value is latched into each measure register when a measure signal is entered from an external device. The counter stops counting at the same time count is disabled by writing to the enable bit in software. TIN and TMS interrupt requests can be generated by external measure signal input and counter overflow, respectively. 10-105 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.5 TMS (Input-Related 16-Bit Timer) Clock bus 3210 Input event bus Output event bus 3210 0123 TMS 0 ovf TCLK3 (P127) TCLK3S clk S Counter Measure register 3 (16-bit) Measure register 2 IRQ7 Measure register 1 Measure register 0 cap3 cap2 cap1 cap0 S S S S TMS 1 ovf clk S Counter Measure register 3 (16-bit) Measure register 2 IRQ7 Measure register 1 Measure register 0 cap3 IRQ10 TIN16 (P130) TIN16S TIN17 (P131) TIN17S cap2 cap1 cap0 S IRQ10 S DMA5 IRQ10 TIN18 (P132) S TIN18S DMA6 IRQ10 TIN19 (P133) S TIN19S 3210 3210 0123 S : Selector Figure 10.5.1 Block Diagram of TMS (Input-Related 16-Bit Timer) 10-106 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.5 TMS (Input-Related 16-Bit Timer) * Because the timer operates synchronously with the count clock, there is a count clock-dependent delay from when the timer is enabled till when it actually starts operating. Write to the enable bit BCLK Count clock period Count clock Enable Count clock-dependent delay Figure 10.5.2 Count Clock-Dependent Delay 10.5.3 TMS Related Register Map Shown below is a TMS related register map. TMS Related Register Map Address +0 address b0 H'0080 03C0 H'0080 03C2 H'0080 03C4 H'0080 03C6 H'0080 03C8 H'0080 03CA | H'0080 03D0 H'0080 03D2 H'0080 03D4 H'0080 03D6 H'0080 03D8 +1 address b7 b8 TMS0 Counter (TMS0CT) TMS0 Measure 3 Register (TMS0MR3) TMS0 Measure 2 Register (TMS0MR2) TMS0 Measure 1 Register (TMS0MR1) TMS0 Measure 0 Register (TMS0MR0) TMS0 Control Register (TMS0CR) See pages b15 10-109 10-109 10-109 10-109 10-109 TMS1 Control Register (TMS1CR) 10-108 (Use inhibited area) TMS1 Counter (TMS1CT) TMS1 Measure 3 Register (TMS1MR3) TMS1 Measure 2 Register (TMS1MR2) TMS1 Measure 1 Register (TMS1MR1) TMS1 Measure 0 Register (TMS1MR0) 10-107 10-109 10-109 10-109 10-109 10-109 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.5 TMS (Input-Related 16-Bit Timer) 10.5.4 TMS Control Registers The TMS control registers are used to select TMS0/1 input events and count clock sources, as well as control count enable. Following two TMS control registers are included: * TMS0 Control Register (TMS0CR) * TMS1 Control Register (TMS1CR) TMS0 Control Register (TMS0CR) b0 1 2 3 TMS0SS0 TMS0SS1 TMS0SS2 TMS0SS3 0 0 0 0 4 5 6 TMS0CKS 0 0 b7 TMS0CEN 0 0 b Bit Name Function R W 0 TMS0SS0 TMS0 measure 0 source select bit 0: External input TIN15 (Note 1) 1: Input event bus 0 R W 1 TMS0SS1 TMS0 measure 1 source select bit 0: External input TIN14 (Note 1) 1: Input event bus 1 R W 2 TMS0SS2 TMS0 measure 2 source select bit 0: External input TIN13 (Note 1) 1: Input event bus 2 R W 3 TMS0SS3 TMS0 measure 3 source select bit 0: External input TIN12 (Note 1) 1: Input event bus 3 R W 4, 5 TMS0CKS TMS0 clock source select bit 00: External input TCLK3 01: Clock bus 0 10: Clock bus 1 11: Clock bus 3 R W 6 No function assigned. Fix to "0". 0 0 7 TMS0CEN TMS0 count enable bit R W 0: Stop count 1: Start count Note 1 : Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. TMS1 Control Register (TMS1CR) b8 9 10 11 12 TMS1SS0 TMS1SS1 TMS1SS2 TMS1SS3 0 0 0 0 13 14 TMS1CKS 0 0 b15 TMS1CEN 0 0 b Bit Name Function R W 8 TMS1SS0 TMS1 measure 0 source select bit 0: External input TIN19 1: Input event bus 0 R W 9 TMS1SS1 TMS1 measure 1 source select bit 0: External input TIN18 1: Input event bus 1 R W 10 TMS1SS2 TMS1 measure 2 source select bit 0: External input TIN17 1: Input event bus 2 R W 11 TMS1SS3 TMS1 measure 3 source select bit 0: External input TIN16 1: Input event bus 3 R W 12 No function assigned. Fix to "0". 0 0 13 TMS1CKS TMS1 clock source select bit R W 14 No function assigned. Fix to "0". 0 0 15 TMS1CEN TMS1 count enable bit R W 0: Clock bus 0 1: Clock bus 3 0: Stop count 1: Start count 10-108 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.5 TMS (Input-Related 16-Bit Timer) 10.5.5 TMS Counters (TMS0CT, TMS1CT) TMS0 Counter (TMS0CT) TMS1 Counter (TMS1CT) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ? ? ? ? ? ? b15 TMS0CT,TMS1CT ? ? ? ? ? ? ? ? ? ? b Bit Name Function R W 0-15 TMS0CT, TMS1CT 16-bit counter value R W Note: * This register must always be accessed in halfwords. The TMS counter is a 16-bit up-counter, which starts counting when the timer is enabled (by writing to the enable bit in software). The counters can be read during operation. 10.5.6 TMS Measure Registers (TMS0MR3-0, TMS1MR3-0) TMS0 TMS0 TMS0 TMS0 TMS1 TMS1 TMS1 TMS1 Measure 3 Register (TMS0MR3) Measure 2 Register (TMS0MR2) Measure 1 Register (TMS0MR1) Measure 0 Register (TMS0MR0) Measure 3 Register (TMS1MR3) Measure 2 Register (TMS1MR2) Measure 1 Register (TMS1MR1) Measure 0 Register (TMS1MR0) 03C4> 03C6> 03C8> 03D2> 03D4> 03D6> 03D8> b15 TMS0MR3-0,TMS1MR3-0 ? ? ? ? b Bit Name Function R W 0-15 TMS0MR3-TMS0MR0 TMS1MR3-TMS1MR0 16-bit measured value R - Notes: * This register is a read-only register. * This register can be accessed in either byte or halfword. The TMS measure registers are used to latch counter contents upon event input. The TMS measure registers are a read-only register. 10-109 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.5 TMS (Input-Related 16-Bit Timer) 10.5.7 Operation of TMS Measure Input (1) Outline of TMS measure input In TMS measure input, when the timer is enabled (by writing to the enable bit in software), it starts counting up synchronously with the count clock. Then when event input to TMS is detected while the timer is operating, the counter value is latched into measure registers 0-3. The timer stops counting at the same time count is disabled by writing to the enable bit. A TIN interrupt request can be generated by measure signal input from an external device. A TMS interrupt request can be generated when the counter overflows. Enabled (by writing to the enable bit) Measure event 0 occurs Measure event 1 Overflow occurs occurs Measure event 0 occurs Measure event 1 occurs Count clock Enable bit H'FFFF H'D000 H'C000 Counter H'8000 H'6000 Undefined value H'0000 Measure 0 register Undefined H'6000 H'8000 TIN19 interrupt request Measure 1 register Undefined H'D000 H'C000 TIN18 interrupt request TMS interrupt request due to overflow Note: * This diagram does not show detailed timing information. Figure 10.5.3 Typical Operation of TMS Measure Input (2) Precautions on using TMS measure input The following describes precautions to be observed when using TMS measure input. * If measure event input and write to the counter occur in the same clock period, the write value is set in the counter while at the same time latched into the measure register. 10-110 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.6 TML (Input-Related 32-Bit Timer) 10.6 TML (Input-Related 32-Bit Timer) 10.6.1 Outline of TML TML (Timer Measure Large) is an input-related 32-bit timer capable of measuring input pulses in two circuit blocks comprising a total of eight channels. The table below shows specifications of TML. The diagram in the next page shows a block diagram of TML. Table 10.6.1 Specifications of TML (Input-Related 32-Bit Timer) Item Specification Number of channels 8 channels (2 circuit blocks consisting of 4 channels each, 8 channels in total) Input clock BCLK/2 (10.0 MHz when f(BCLK) = 20 MHz) or clock bus 1 input Counter 32-bit up-counter x 2 Measure register 32-bit measure register x 8 Timer startup Start counting immediately after reset Clock bus Output event bus Input event bus 3210 3210 0123 TML0 S BCLK/2 clk Counter (32-bit) Measure register 3 Measure register 2 Measure register 1 Measure register 0 cap3 IRQ11 TIN20 (P134) TIN20S TIN21 (P135) TIN21S cap2 cap1 cap0 S IRQ11 S IRQ11 TIN22 (P136) S TIN22S IRQ11 TIN23 (P137) S TIN23S TML1 S clk Counter (32-bit) Measure register 3 Measure register 2 Measure register 1 Measure register 0 cap3 cap2 cap1 cap0 S S S S 3210 3210 0123 S : Selector Figure 10.6.1 Block Diagram of TML (Input-Related 32-Bit Timer) 10-111 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.6 TML (Input-Related 32-Bit Timer) 10.6.2 Outline of TML Operation In TML, the timer starts counting upon deassertion of the reset input signal. The counter included in the timer is a 32-bit up-counter, where when a measure event signal is entered from an external device, the counter value at that point in time is stored in each 32-bit measure register. When the reset input signal is deasserted, the counter starts operating with a BCLK/2 clock, and cannot be stopped once it has started. The counter is idle only when the microcomputer remains reset. A TIN interrupt request can be generated by external measure signal input. However, no TML counter overflow interrupts are available. 10.6.3 TML Related Register Map Shown below is a TML related register map. TML Related Register Map Address +0 address b0 +1 address b7 b8 TML0 Counter (TML0CT) H'0080 03E0 H'0080 03E2 (Use inhibited area) TML0 Measure 3 Register (TML0MR3) H'0080 03F2 TML0 Measure 2 Register (TML0MR2) H'0080 03F6 TML0 Measure 1 Register (TML0MR1) H'0080 03FA TML0 Measure 0 Register (TML0MR0) H'0080 03FE (Upper) 10-114 (Upper) 10-114 (Upper) 10-114 (Lower) | (Use inhibited area) H'0080 0FE0 TML1 Counter (TML1CT) H'0080 0FE2 (Upper) 10-114 (Lower) | (Use inhibited area) (Use inhibited area) TML1 Control Register (TML1CR) 10-113 (Upper) 10-114 (Use inhibited area) TML1 Measure 3 Register (TML1MR3) H'0080 0FF2 (Lower) TML1 Measure 2 Register (TML1MR2) H'0080 0FF6 (Upper) 10-114 (Lower) TML1 Measure 1 Register (TML1MR1) H'0080 0FFA H'0080 0FFC 10-114 (Lower) H'0080 03FC H'0080 0FF8 (Upper) (Lower) H'0080 03F8 H'0080 0FF4 10-113 (Lower) H'0080 03F4 H'0080 0FF0 TML0 Control Register (TML0CR) (Use inhibited area) H'0080 03F0 | 10-114 (Use inhibited area) | H'0080 0FEA (Upper) (Lower) | H'0080 03EA See pages b15 (Upper) 10-114 (Lower) TML1 Measure 0 Register (TML1MR0) H'0080 0FFE (Upper) 10-114 (Lower) 10-112 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.6 TML (Input-Related 32-Bit Timer) 10.6.4 TML Control Registers TML0 Control Register (TML0CR) b8 9 10 11 12 13 14 TML0SS0 TML0SS1 TML0SS2 TML0SS3 0 0 0 0 b15 TML0CKS 0 0 0 0 b Bit Name Function R W 8 TML0SS0 TML0 measure 0 source select bit 0: External input TIN23 1: Input event bus 0 R W 9 TML0SS1 TML0 measure 1 source select bit 0: External input TIN22 1: Input event bus 1 R W 10 TML0SS2 TML0 measure 2 source select bit 0: External input TIN21 1: Input event bus 2 R W 11 TML0SS3 TML0 measure 3 source select bit 0: External input TIN20 1: Input event bus 3 R W 12-14 No function assigned. Fix to "0". 0 0 15 TML0CKS (Note 1) 0: BCLK/2 R W TML0 clock source select bit 1: Clock bus 1 Note 1: The counter can only be written normally when BCLK/2 is used as the clock source for the counter. If the selected clock source is not BCLK/2, do not write to the counter because it cannot be written normally. TML1 Control Register (TML1CR) b8 9 10 11 12 13 14 TML1SS0 TML1SS1 TML1SS2 TML1SS3 0 0 0 0 b15 TML1CKS 0 0 0 0 b Bit Name Function R W 8 TML1SS0 TML1 measure 0 source select bit 0: External input TIN33 (Note 2) 1: Input event bus 0 R W 9 TML1SS1 TML1 measure 1 source select bit 0: External input TIN32 (Note 2) 1: Input event bus 1 R W 10 TML1SS2 TML1 measure 2 source select bit 0: External input TIN31 (Note 2) 1: Input event bus 2 R W 11 TML1SS3 TML1 measure 3 source select bit 0: External input TIN30 (Note 2) 1: Input event bus 3 R W 12-14 No function assigned. Fix to "0". 0 0 15 TML1CKS (Note 1) TML1 clock source select bit R W 0: BCLK/2 1: Clock bus 1 Note 1: The counter can only be written normally when BCLK/2 is used as the clock source for the counter. If the selected clock source is not BCLK/2, do not write to the counter because it cannot be written normally. Note 2 : Although the 32180 has pins for these functions, the 32182 does not have corresponding pins and the selected function therefore has no effect. The TML control register is used to select TML input event and count clock. 10-113 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.6 TML (Input-Related 32-Bit Timer) 10.6.5 TML Counters TML0 Counter (TML0CT) TML1 Counter (TML1CT) b0 1 2 3 4 5 6 7 8 ? ? ? ? ? ? ? ? ? b16 17 18 19 20 21 22 23 24 ? ? ? ? ? ? ? 9 10 11 12 13 14 ? ? ? ? ? ? 25 26 27 28 29 30 ? ? ? ? ? ? b15 TML0CT, TML1CT(16 high-order bits) ? b31 (16 low-order bits) ? ? ? b Bit Name Function R W 0-31 TML0CT, TML1CT 32-bit counter value R(Note 1) Note 1: If the clock source selected for the counter is not BCLK/2, do not write to this register. Note: * This register must always be accessed wordwise (in 32 bits) beginning with the word boundary. The TML counter is a 32-bit up-counter, which starts counting upon deassertion of the reset input signal. The counters can be read during operation. 10.6.6 TML Measure Registers TML0 TML0 TML0 TML0 TML1 TML1 TML1 TML1 Measure Measure Measure Measure Measure Measure Measure Measure b0 1 3 2 1 0 3 2 1 0 Register Register Register Register Register Register Register Register 2 3 (TML0MR3) (TML0MR2) (TML0MR1) (TML0MR0) (TML1MR3) (TML1MR2) (TML1MR1) (TML1MR0) 4 5 6 7 8 9 10 11 12 13 14 b15 TML0MR3-TML0MR0, TML1MR3-TML1MR0 (16 high-order bits) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? b16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ? ? ? ? ? ? ? ? ? ? ? ? ? (16 low-order bits) ? ? ? b Bit Name Function R W 0-31 TML0MR3-TML0MR0, TML1MR3-TML1MR0 32-bit measure register value R - Notes: * These registers are a read-only register. * These registers must always be accessed wordwise (in 32 bits) beginning with the word boundary. The TML measure register is a 32-bit register, which is used to latch the counter content upon event input. The TML measure registers can only be read, and cannot be written to. 10-114 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.6 TML (Input-Related 32-Bit Timer) 10.6.7 Operation of TML Measure Input (1) Outline of TML measure input In TML measure input, when the reset input signal is deasserted, the counter starts counting up synchronously with the count clock. Upon event input to measure registers 0-3, the counter value is latched into each measure register. A TIN interrupt request can be generated by measure signal input from an external device. However, no TML counter overflow interrupts are available. Measure Enabled (by deassertion event 0 occurs of reset) Measure event 1 Overflow occurs occurs Measure event 0 occurs Measure event 1 occurs Count clock Reset H'FFFF FFFF H'D000 0000 H'C000 0000 Counter (32-bit) H'8000 0000 H'6000 0000 Undefined value H'0000 0000 Measure 0 register Undefined H'6000 0000 H'8000 0000 TIN23 interrupt request Measure 1 register Undefined H'D000 0000 H'C000 0000 TIN22 interrupt request Note: * This diagram does not show detailed timing information. Figure 10.6.2 Typical Operation of TML Measure Input 10-115 32182 Group User's Manual (Rev.1.0) MULTIJUNCTION TIMERS 10 10.6 TML (Input-Related 32-Bit Timer) (2) Precautions on using TML measure input The following describes precautions to be observed when using TML measure input. * If measure event input and write to the counter occur in the same clock period, the write value is set in the counter, whereas the up-count value (before being rewritten) is latched into the measure register. * If clock bus 1 is selected and any clock other than BCLK/2 is used for the timer, the counter cannot be written normally. Therefore, when using any clock other than BCLK/2, do not write to the counter. * If clock bus 1 is selected and any clock other than BCLK/2 is used for the timer, the value captured into the measure register is one count larger the counter value. During the count clock to BCLK/2 period interval, however, the captured value is exactly the counter value. The diagram below shows the relationship between counter operation and the valid data that can be captured. * When BCLK/2 is selected BCLK/2 Counter A B C D E F Captured A B C D E F * When clock bus 1 is selected BCLK/2 Count clock Counter Captured A B B C C D Figure 10.6.3 Mistimed Counter Value and the Captured Value 10-116 32182 Group User's Manual (Rev.1.0) CHAPTER 11 A-D CONVERTER 11.1 11.2 11.3 11.4 11.5 Outline of A-D Converter A-D Converter Related Registers Functional Description of A-D Converter Inflow Current Bypass Circuit Precautions on Using A-D Converter A-D Converter 11 11.1 Outline of A-D Converter 11.1 Outline of A-D Converter The 32182 contains 10-bit A-D Converter of the successive approximation type (A-D0 Converter). In addition to performing conversion individually on each channel, the A-D Converter can perform conversion successively on all of N channels (N = 1-12) as a single group. The conversion result can be read out in either 10 or 8 bits. There are following conversion and operation modes for the A-D conversion: (1) Conversion Modes * A-D conversion mode : Ordinary mode in which analog input voltages are converted into digital quantities. * Comparator mode (Note 1) : A mode in which analog input voltage is compared with a preset comparison voltage to find only the relative magnitude of two quantities. (Useful in only single operation mode) (2) Operation Modes * Single mode * Scan mode : Analog input voltage on one channel is A-D converted once or comparated (Note 1) with a given quantity. : Analog input voltages on two or more selected channels (in N channel units, N = 1-12) are sequentially A-D converted. Single-shot scan mode : Scan operation is performed for one cycle. Continuous scan mode : Scan operation is repeatedly until stopped. (3) Special Operation Modes * Forcible single mode execution during scan mode : Conversion is forcibly executed in single mode (comparator mode) during scan operation. * Scan mode start after single mode execution : Scan operation is started subsequently after executing conversion in single mode. * Conversion restart : A-D conversion being executed in single or scan mode is restarted. (4) Sample-and-Hold Function The analog input voltage is sampled when starting A-D conversion, and A-D conversion is performed on the sampled voltage. This function can be enabled or disabled as necessary. (5) A-D Disconnection Detection Assist Function To suppress influences of the analog input voltage leakage from any preceding channel during scan mode operation, a function is incorporated that helps to fix the electric charge on the chopper amp capacitor to the given state (AVCC or AVSS) before starting A-D conversion. This function provides a sure and reliable means of detecting a disconnection in the wiring patterns connecting to the analog input pins. (6) Inflow Current Bypass Circuit If an overvoltage or negative voltage is applied to any analog input channel which is currently inactive, a current flows into or out of the analog input channel currently being A-D converted via the internal circuit, causing the conversion accuracy to degrade. To solve this problem, the A-D Converter incorporates a circuit that bypasses such inflow current. This circuit is always enabled. (7) Conversion Speed The A-D conversion and comparate speed can be selected from a total of four speeds available: slow mode (normal or double speed) and fast mode (normal or double speed). The normal speed and double speed in slow mode are compatible with the 32170 group of Renesas microcomputers. 11-2 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.1 Outline of A-D Converter (8) Interrupt and DMA Transfer Request Generation Function An A-D conversion interrupt or DMA transfer request can be generated each time A-D conversion or comparate operation in single mode is completed, as well as when a single-shot scan operation or one cycle of continuous scan operation is completed. Note 1: To discriminate between the comparison performed internally by the successive approximationtype A-D Converter and that performed in comparator mode using the same A-D Converter as a comparator, the comparison in comparator mode is referred to in this manual as "comparate." Table 11.1.1 outlines the A-D Converter and Figure 11.1.1 shows block diagram of A-D Converter. Table 11.1.1 Outline of the A-D Converter Item Description Analog input 12 channels A-D0 Converter: 12-channel analog input-only pins A-D conversion method Successive approximation method Resolution 10 bits (Conversion result can be read out in either 8 or 10 bits) Absolute accuracy (Note 1) During slow mode: 2 SLB at normal speed, 2 SLB at double speed Conditions: Ta = 25C, AVCC0 = 5.12 V, VREF0 = 5.12 V During fast mode: 3 SLB at normal speed, 3 SLB at double speed Note: * The accuracy when sample-and-hold is enabled is T.B.D. Conversion mode A-D conversion mode and comparator mode Operation mode Single mode, single-shot scan mode and continuous scan mode Conversion start trigger Software start Hardware start Started by setting the A-D conversion start bit to "1" A-D0 Converter MJT (input event bus 2), MJT (input event bus 3), MJT (output event bus 3) and MJT (TIN23S) Conversion speed During single mode BCLK: (* When sample-and-hold disabled Slow mode Internal peripheral clock * When normal sample-and-hold enabled) Fast mode Normal speed 299BCLK 14.95s (Note 2) Double speed 173BCLK 8.65s Normal speed 131BCLK 6.55s Double speed During single mode Slow mode (When fast sample-and-hold enabled) Fast mode During comparator mode Slow mode Fast mode 89BCLK 4.45s Normal speed 191BCLK 9.55s Double speed 101BCLK 5.05s Normal speed 95BCLK 4.75s Double speed 53BCLK 2.65s Normal speed 47BCLK 2.35s Double speed 29BCLK 1.45s Normal speed 23BCLK 1.15s Double speed 17BCLK 0.85s Sample-and-hold function Sample-and-hold function can be enabled or disabled as necessary. A-D disconnection assist function Influences of the analog input voltage leakage from any preceding channel during scandetection mode operation are suppressed. Interrupt request Generated when A-D conversion or comparate operation is completed generation function Generated when a single-shot scan operation or one cycle of continuous scan operation is completed DMA transfer request Generated when A-D conversion or comparate operation is completed generation function Generated when a single-shot scan operation or one cycle of continuous scan operation is completed Note 1: The conversion accuracy stipulated here refers to that of the microcomputer alone, with influences of the power supply wiring and noise on the board not taken into account. Note 2: This indicates the conversion time when f(BCLK) = 20 MHz (1 BCLK = 50 ns). 11-3 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.1 Outline of A-D Converter Internal data bus 8-bit readout 10-bit readout Shifter AD0DT0 10-bit A-D0 Data Register 0 AD0SIM0, 1 A-D0 Single Mode Register AD0DT1 10-bit A-D0 Data Register 1 AD0SCM0, 1 A-D0 Scan Mode Register AD0DT2 10-bit A-D0 Data Register 2 AD0DT3 10-bit A-D0 Data Register 3 AD0DT4 10-bit A-D0 Data Register 4 AD0DT5 10-bit A-D0 Data Register 5 AD0DT6 10-bit A-D0 Data Register 6 AD0DT7 10-bit A-D0 Data Register 7 AD0DT8 10-bit A-D0 Data Register 8 AD0DT9 10-bit A-D0 Data Register 9 AD0DT10 10-bit A-D0 Data Register 10 AD0DT11 10-bit A-D0 Data Register 11 AD0CMP A-D Comparate Data Register AD0CTRG1 Input event bus 3 Input event bus 2 Output event bus 3 TIN23S S S AD0STRG1 A-D Control Circuit AVCC0 AVSS0 10-bit A-D Successive Approximation Register (AD0SAR) Comparator VREF0 AD0IN0 AD0IN1 AD0IN2 AD0IN3 AD0IN4 AD0IN5 AD0IN6 AD0IN7 AD0IN8 AD0IN9 AD0IN10 AD0IN11 10-bit D-A Converter * Mode selection * Channel selection * Conversion time Interrupt request selection * Flag control DMA transfer request * Interrupt control DMA0 DMA common Sample-and-Hold Control Circuit Selector Successive Approximation-type A-D Converter Unit Figure 11.1.1 Block Diagram of the A-D0 Converter 11-4 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.1 Outline of A-D Converter 11.1.1 Conversion Modes The A-D Converter has two conversion modes: "A-D Conversion mode" and "Comparator mode." (1) A-D Conversion Mode In A-D conversion mode, the analog input voltage on a specified channel is A-D converted. In single mode, A-D conversion is performed on a channel selected by the A-D Single Mode Register 1 analog input pin select bit. In scan mode, A-D conversion is performed on channels selected by A-D Scan Mode Register 1 according to settings of A-D Scan Mode Register 0. The conversion result is stored in each channel's corresponding 10-bit A-D Data Register. There is also an 8bit A-D Data Register for each channel, from which 8-bit A-D conversion results can be read out. An A-D conversion interrupt or DMA transfer request can be generated when A-D conversion in single mode is completed, as well as when one cycle of scan loop in scan mode is completed. (2) Comparator Mode In comparator mode, the analog input voltage on a specified channel is "comparated" (compared) with the successive approximation register value, and the result (relative magnitude of two values) is returned to a flag. The channel to be comparated is selected using the A-D Single Mode Register 1 analog input pin select bit. The result of comparate operation is flagged ("0" or "1") by setting the A-D Comparate Data Register bit that corresponds to the selected channel. An A-D conversion interrupt or DMA transfer request can be generated when comparate operation is completed. 11.1.2 Operation Modes There are two operation modes for the A-D Converter: "Single mode" and "Scan mode." When comparator mode is selected as A-D conversion mode, only single mode can be used. (1) Single Mode In single mode, the analog input voltage on one selected channel is A-D converted or comparated once. An A-D conversion interrupt or DMA transfer request can be generated when A-D conversion or comparate operation is completed. A-D conversion interrupt or DMA transfer request Conversion starts (Note 1) ANiINn Completed i=1 n=0-11 ADiDTn 10-bit A-Di Data Register Note 1: A-D0 conversion start: Software trigger Started by setting the A-D0 conversion start bit to "1" Hardware trigger Started by input event bus 3, input event bus 2, output event bus 3 or TIN23S signal input Figure 11.1.2 Operation in Single Mode (A-D Conversion) 11-5 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.1 Outline of A-D Converter A-D Successive Approximation Register ADiSAR A-D conversion interrupt or DMA transfer request Conversion starts ADiINn i=1 n=0-11 Completed (Note 1) ADiCMP Comparate result ADiCMP=0 (ANn > ADiSAR) A-Di Comparate Data Register ADiCMP=1 (ANn < ADiSAR) Note 1: Comparate operation is started by writing a comparison value to the Successive Approximation Register (ADiSAR) Figure 11.1.3 Operation in Single Mode (Comparate) (2) Scan Mode In scan mode, the analog input voltages from channel 0 (ADiIN0, i = 0) to the channel (channels 0-11) selected by the A-D Scan Mode Register 1 scan loop select bit are sequentially A-D converted. There are two types of scan mode: "Single-shot scan mode" in which A-D conversion is completed after performing one cycle of scan operation, and "Continuous scan mode" in which scan operation is continued until halted by setting the A-D scan mode register 0's A-D conversion stop bit to "1". These types of scan mode are selected using A-D Scan Mode Register 0. The channels to be scanned are selected using A-D Scan Mode Register 1. The selected channels are scanned sequentially beginning with channel 0. An A-D conversion interrupt or DMA transfer request can be generated when one cycle of scan operation is completed. i= 1 n=0-11 During continuous scan mode Conversion starts (Note 1) ADiIN0 10-bit A-Di Data Register ADiIN1 ADiDT0 ADiINn-1 ADiDT1 Completed here when operating in single-shot scan mode ADiINn ADiDTn-1 ADiDTn A-D conversion interrupt or DMA transfer request Note 1: A-D0 conversion start: Software trigger Started by setting the A-D0 conversion start bit to "1" Hardware trigger Started by input event bus 3, input event bus 2, output event bus 3 or TIN23S signal input Figure 11.1.4 Operation of A-D Conversion in Scan Mode 11-6 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.1 Outline of A-D Converter Table 11.1.2 Registers in Which Scan Mode A-D Conversion Results Are Stored Scan Mode Register 1 Selected channels Selected channels A-D conversion result channel selection for single-shot scan for continuous scan storage register B'0000:0 ADiIN0 ADiIN0 10-bit A-Di Data Register 0 (ADiIN0) Completed ADiIN0 10-bit A-Di Data Register 0 ... ... (Repeated until forcibly terminated) B'0001:1 ADiIN0 ADiIN0 10-bit A-Di Data Register 0 (ADiIN1) ADiIN1 ADiIN1 10-bit A-Di Data Register 1 Completed ADiIN0 10-bit A-Di Data Register 0 ... ... (Repeated until forcibly terminated) B'0010:2 ADiIN0 ADiIN0 10-bit A-Di Data Register 0 (ADiIN2) ADiIN1 ADiIN1 10-bit A-Di Data Register 1 ADiIN2 ADiIN2 10-bit A-Di Data Register 2 Completed ADiIN0 10-bit A-Di Data Register 0 ... ... (Repeated until forcibly terminated) B'0011:3 ADiIN0 ADiIN0 10-bit A-Di Data Register 0 (ADiIN3) ADiIN1 ADiIN1 10-bit A-Di Data Register 1 ADiIN2 ADiIN2 10-bit A-Di Data Register 2 ADiIN3 ADiIN3 10-bit A-Di Data Register 3 Completed ADiIN0 10-bit A-Di Data Register 0 ... ... (Repeated until forcibly terminated) B'XXXX:n ADiIN0 ADiIN0 10-bit A-Di Data Register 0 (ADiINn) ADiIN1 ADiIN1 10-bit A-Di Data Register 1 ADiIN2 ADiIN2 10-bit A-Di Data Register 2 n11 ADiINn ADiINn 10-bit A-Di Data Register n Completed ADiIN0 10-bit A-Di Data Register 0 ... ... (Repeated until forcibly terminated) (i=0) 11-7 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.1 Outline of A-D Converter 11.1.3 Special Operation Modes (1) Forcible single mode execution during scan mode In this special operation mode, single mode conversion (A-D conversion or comparate) is forcibly executed on a specified channel during scan mode operation. For A-D conversion mode, the conversion result is stored in the 10-bit A-D Data Register corresponding to the specified channel, whereas for comparate mode, the conversion result is stored in the 10-bit A-D Comparate Data Register. When the A-D conversion or comparate operation on a specified channel finishes, scan mode A-D conversion is restarted from where it was canceled during scan operation. To start single mode conversion during scan mode operation in software, choose a software trigger using the A-D Single Mode Register 0 A-D conversion start trigger select bit. Then, for A-D conversion, set the said register's A-D conversion start bit to "1". For comparate mode, write a comparison value to the A-D Successive Approximation Register (AD0SAR) during scan mode operation. To start single mode conversion during scan mode operation in hardware, choose a hardware trigger using the A-D Single Mode Register 0 A-D conversion start trigger select bit. Then enter the hardware trigger selected with the said register. An A-D conversion interrupt or DMA transfer request can be generated when conversion on a specified channel or one cycle of scan operation is completed. i=0 n=0-11 Forcible single mode execution starts (Note 1) ADiIN2 Scan mode conversion starts ADiIN0 10-bit A-Di Data Register ADiIN1 ADiDT0 ADiIN5 ADiDT1 ADiIN2 ADiDT5 ADiINn ADiDT2 Completed ADiDTn A-D conversion interrupt or DMA transfer request Note 1: The canceled convert operation on channel 2 is reexecuted from the beginning. Figure 11.1.5 Forcible Single Mode Execution during Scan Mode 11-8 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.1 Outline of A-D Converter (2) Scan mode start after single mode execution In this special operation mode, scan operation is started subsequently after executing single mode conversion (A-D conversion or comparate). To start this mode in software, choose a software trigger using the A-D Scan Mode Register 0 A-D conversion start trigger select bit. Then set the said register's A-D conversion start bit to "1" during single mode conversion operation. To start this mode in hardware, choose a hardware trigger using the A-D Scan Mode Register 0 A-D conversion start trigger select bit. Then enter the hardware trigger selected with the said register during single mode conversion operation. If a hardware trigger is selected using the A-D conversion start trigger select bit in both A-D Single Mode Register 0 and A-D Scan Mode Register 0 and the selected hardware triggers are entered, the A-D Converter first performs single mode conversion and then scan mode conversion in succession. An A-D conversion interrupt or DMA transfer request can be generated when single mode conversion on a specified channel or one cycle of scan operation is completed. i=0 n=0-11 Instructed to start scan mode conversion Single mode conversion starts ADiIN5 10-bit A-Di Data Register ADiIN0 ADiDT5 ADiIN1 ADiDT0 ADiINn-1 ADiDT1 ADiINn ADiDTn-1 Completed ADiDTn A-D conversion interrupt or DMA transfer request Figure 11.1.6 Scan Mode Start after Single Mode Execution 11-9 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.1 Outline of A-D Converter (3) Conversion restart In this special operation mode, operation being executed in single or scan mode is stopped in the middle and reexecuted from the beginning. When in single mode, set the A-D Single Mode Register 0 A-D conversion start bit to "1" again or enter a hardware trigger during A-D conversion or comparate operation, and the operation being executed is restarted over again. When in scan mode, set the A-D Scan Mode Register 0 A-D conversion start bit to "1" again or enter a hardware trigger signal during scan operation, and the channel being converted is canceled and A-D conversion is performed from channel 0 over again. i=0 Single mode ADiIN5 restarts ADiIN5 Single mode ADiIN5 conversion starts Completed ADiIN5 10-bit A-Di Data Register ADiDT5 A-D conversion interrupt or DMA transfer request Figure 11.1.7 Conversion Restart during Single Mode Operation i=0 n=0-11 Scan mode restarts ADiIN2 Scan mode conversion starts ADiIN0 10-bit A-Di Data Register ADiIN1 ADiDT0 ADiIN0 ADiDT1 ADiIN1 ADiDT0 ADiINn-1 ADiDT1 Completed ADiINn ADiDTn-1 ADiDTn A-D conversion interrupt or DMA transfer request Figure 11.1.8 Conversion Restart during Scan Operation 11-10 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.1 Outline of A-D Converter 11.1.4 A-D Converter Interrupt and DMA Transfer Requests The A-D Converter can generate an A-D conversion interrupt or DMA transfer request each time A-D conversion, comparate operation, single-shot scan or one cycle of continuous scan mode is completed. The A-D Single Mode Register 0 and A-D Scan Mode Register 0 are used to select between A-D conversion interrupt and DMA transfer requests. A-Di Scan Mode Register 0 interrupt/DMA transfer request select bit Scan mode (when one cycle of scan is completed) A-Di conversion interrupt request (To the Interrupt Controller) DMA transfer request (To the DMAC) Single mode (when A-D conversion or comparate operation is completed) i=0 A-Di Single Mode Register 0 interrupt/DMA transfer request select bit Figure 11.1.9 Selecting between Interrupt and DMA Transfer Requests 11.1.5 Sample-and-Hold Function The analog input voltage that was sampled immediately after A-D conversion started is held on, and A-D conversion is performed on that seized voltage. The A-D conversion time in "normal" sample-and-hold mode is the same as in conventional A-D conversion mode of the 32170, etc. The A-D conversion time in "fast" sample-and-hold mode is significantly short, allowing to obtain conversion results more quickly than ever. 11-11 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2 A-D Converter Related Registers Shown below is an A-D converter related register map. A-D Converter Related Register Map (1/2) Address +0 address +1 address b0 H'0080 0080 b7 b8 A-D0 Single Mode Register 0 (AD0SIM0) H'0080 0082 H'0080 0084 H'0080 0086 H'0080 0088 H'0080 008A H'0080 008C H'0080 008E A-D0 Single Mode Register 1 (AD0SIM1) See pages 11-14 11-16 (Use inhibited area) A-D0 Scan Mode Register 0 A-D0 Scan Mode Register 1 (AD0SCM0) (AD0SCM1) A-D0 Disconnection Detection Assist Function Control Register A-D0 Conversion Speed Control Register (AD0DDACR) (AD0CVSCR) A-D0 Successive Approximation Register (AD0SAR) A-D0 Disconnection Detection Assist Method Select Register (AD0DDASEL) A-D0 Comparate Data Register (AD0CMP) (Use inhibited area) H'0080 0090 10-bit A-D0 Data Register 0 (AD0DT0) 10-bit A-D0 Data Register 1 (AD0DT1) 10-bit A-D0 Data Register 2 (AD0DT2) 10-bit A-D0 Data Register 3 (AD0DT3) 10-bit A-D0 Data Register 4 (AD0DT4) 10-bit A-D0 Data Register 5 (AD0DT5) 10-bit A-D0 Data Register 6 (AD0DT6) 10-bit A-D0 Data Register 7 (AD0DT7) 10-bit A-D0 Data Register 8 (AD0DT8) 10-bit A-D0 Data Register 9 (AD0DT9) 10-bit A-D0 Data Register 10 (AD0DT10) 10-bit A-D0 Data Register 11 (AD0DT11) (Use inhibited area) H'0080 0092 H'0080 0094 H'0080 0096 H'0080 0098 H'0080 009A H'0080 009C H'0080 009E H'0080 00A0 H'0080 00A2 H'0080 00A4 H'0080 00A6 | H'0080 00D0 (Use inhibited area) H'0080 00D2 (Use inhibited area) H'0080 00D4 (Use inhibited area) H'0080 00D6 b15 H'0080 00D8 (Use inhibited area) H'0080 00DA (Use inhibited area) H'0080 00DC (Use inhibited area) H'0080 00DE (Use inhibited area) H'0080 00E0 (Use inhibited area) H'0080 00E2 (Use inhibited area) 11-12 11-24 11-28 11-29 11-29 11-29 11-29 11-29 11-29 11-29 11-29 11-29 11-29 11-29 11-29 8-bit A-D0 Data Register (AD08DT0) 8-bit A-D0 Data Register (AD08DT1) 8-bit A-D0 Data Register (AD08DT2) 8-bit A-D0 Data Register (AD08DT3) 8-bit A-D0 Data Register (AD08DT4) 8-bit A-D0 Data Register (AD08DT5) 8-bit A-D0 Data Register (AD08DT6) 8-bit A-D0 Data Register (AD08DT7) 8-bit A-D0 Data Register (AD08DT8) 8-bit A-D0 Data Register (AD08DT9) (Use inhibited area) 11-18 11-20 11-23 11-22 11-27 0 11-30 1 11-30 2 11-30 3 11-30 4 11-30 5 11-30 6 11-30 7 11-30 8 11-30 9 11-30 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers A-D Converter Related Register Map (2/2) Address +0 address b0 +1 address b7 b8 H'0080 00E4 (Use inhibited area) H'0080 00E6 (Use inhibited area) b15 8-bit A-D0 Data Register 10 (AD08DT10) 8-bit A-D0 Data Register 11 (AD08DT11) 11-13 See pages 11-30 11-30 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.1 A-D Single Mode Register 0 A-D0 Single Mode Register 0 (AD0SIM0) b0 1 ADSTRG1 0 0 2 3 4 5 6 b7 ADSTRG0 ADSSEL ADSREQ ADSCMP ADSSTP ADSSTT 0 0 0 1 0 0 b Bit Name Function R W 0 ADSTRG1 (Note 1) A-D hardware trigger select 1 bit Bits 0 and 2 are used to select an A-D hardware trigger. b0 b2 0 0 : Input event bus 2 0 1 : Input event bus 3 1 0 : Output event bus 3 R W 1 No function assigned. Fix to "0". 0 0 2 ADSTRG0 (Note 1) A-D hardware trigger select 0 bit Bits 0 and 2 are used to select an A-D hardware trigger. (See the column for bit 0.) R W 3 ADSSEL A-D conversion start trigger select bit 0: Software trigger 1: Hardware trigger (Note 2) R W 4 ADSREQ Interrupt/DMA transfer request select bit 0: A-D conversion interrupt request 1: DMA transfer request R W 5 ADSCMP A-D conversion/comparate completed bit 0: A-D conversion/comparate in progress 1: A-D conversion/comparate completed R - 6 ADSSTP A-D conversion stop bit 0: No operation 1: Stop A-D conversion 0 W 7 ADSSTT A-D conversion start bit 0: No operation 1:Start A-D conversion 0 W 1 1 : TIN23S signal Note 1: Two bits--A-D hardware trigger select 1 (bit 0) and A-D hardware trigger select 0 (bit 2)--are used to select an A-D hardware trigger. Note 2: During comparator mode, hardware triggers, if any selected, are ignored and operation is started by a software trigger. A-D Single Mode Register 0 is used to control operation of the A-D Converter during single mode (including "Forcible single mode execution during scan mode"). (1) ADSTRG (A-D Hardware Trigger Select) bits (Bits 0 and 2) These bits select a hardware trigger when A-D conversion by the A-D Converter is to be started in hardware. Select one from the following hardware trigger sources: A-D0 Converter: Input event bus 2 Input event bus 3 Output event bus 3 TIN23 edge select output The contents of these bits are ignored if a software trigger is selected by ADSSEL (A-D conversion start trigger select bit). 11-14 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers (2) ADSSEL (A-D Conversion Start Trigger Select) bit (Bit 3) This bit selects whether to use a software or hardware trigger to start A-D conversion during single mode. If a software trigger is selected, A-D conversion is started by setting the ADSSTT (A-D conversion start) bit to "1". If a hardware trigger is selected, A-D conversion is started by the trigger source selected with the ADSTRG (hardware trigger select) bits. (3) ADSREQ (A-D Interrupt/DMA Transfer Request Select) bit (Bit 4) This bit selects whether to request an A-D conversion interrupt or a DMA transfer when single mode operation (A-D conversion or comparate) is completed. If neither an interrupt nor a DMA transfer are used, choose to request an A-D conversion interrupt and use the A-D Conversion Interrupt Control Register of the Interrupt Controller (ICU) to mask the interrupt request, or choose to request a DMA transfer and use the DMA Channel Control Register to disable DMA transfers to be performed upon completion of A-D conversion. (4) ADSCMP (A-D Conversion/Comparate Completed) bit (Bit 5) This is a read-only bit, whose value after reset is "1". This bit is "0" when the A-D Converter is performing single mode operation (A-D conversion or comparate) and is set to "1" when the operation finishes. This bit is also set to "1" when A-D conversion or comparate operation is forcibly terminated by setting the ADSSTP (A-D conversion stop) bit to "1" during A-D conversion or comparate operation. (5) ADSSTP (A-D Conversion Stop) bit (Bit 6) Setting this bit to "1" while the A-D Converter is performing single mode operation (A-D conversion or comparate) causes the operation being performed to stop. Manipulation of this bit is ignored while single mode operation is idle or scan mode operation is under way. Operation stops immediately after writing to this bit. If the A-D Successive Approximation Register is read after being stopped, the content read from the register is the value in the middle of conversion (not transferred to the A-D Data Register). If the A-D conversion start bit and A-D conversion stop bit are set to "1" at the same time, the A-D conversion stop bit has priority. If this bit is set to "1" when performing single mode operation in special mode "Forcible single mode execution during scan mode," only single mode conversion stops and scan mode operation restarts. (6) ADSSTT (A-D Conversion Start) bit (Bit 7) If this bit is set to "1" when a software trigger has been selected with the ADSSEL (A-D conversion start trigger select) bit, the A-D Converter starts A-D conversion. If the A-D conversion start bit and A-D conversion stop bit are set to "1" at the same time, the A-D conversion stop bit has priority. If this bit is set to "1" again while performing single mode conversion, special operation mode "Conversion restart" is turned on, so that single mode conversion restarts. If this bit is set to "1" again while performing A-D conversion in scan mode, special operation mode "Forcible single mode execution during scan mode" is turned on, so that the channel being converted in scan mode is canceled and single mode conversion is performed. When the single mode conversion finishes, scan mode A-D conversion restarts beginning with the canceled channel. 11-15 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.2 A-D Single Mode Register 1 A-D0 Single Mode Register 1 (AD0SIM1) b8 9 ADSMSL ADSSPD 0 0 10 11 12 13 0 14 b15 0 0 ANSEL ADSSHSL ADSSHSPD 0 0 0 b Bit Name Function R W 8 ADSMSL A-D conversion mode select bit 0: A-D conversion mode 1: Comparator mode R W 9 ADSSPD (Note 1) A-D conversion speed select bit 0: Normal speed 1: Double speed R W 10 ADSSHSL A-D conversion method select bit 0: Disable sample-and-hold 1: Enable sample-and-hold R W 11 ADSSHSPD (Note 2) A-D sample-and-hold conversion speed select bit 0: Normal sample-and-hold 1: Fast sample-and-hold R W 12-15 ANSEL A-D analog input pin select bit 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 R W : : : : : : : : : : : : : : : : Select ADiIN0 Select ADiIN1 Select ADiIN2 Select ADiIN3 Select ADiIN4 Select ADiIN5 Select ADiIN6 Select ADiIN7 Select ADiIN8 Select ADiIN9 Select ADiIN10 Select ADiIN11 Setting inhibited Setting inhibited Setting inhibited Setting inhibited (i = 0) Note 1: The A-D conversion speed is determined by a combination of ADSSPD, ADSSHSL and ADSSHSPD bits and the A-D Conversion Speed Control Register ADCVSD bit. Note 2: Setting of this bit is effective when the sample-and-hold function is enabled by ADSSHSL bit. A-D Single Mode Register 1 is used to select operation mode, conversion speed and analog input pins when the A-D Converter is operating in single mode. 11-16 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers (1) ADSMSL (A-D Conversion Mode Select) bit (Bit 8) This bit selects A-D conversion mode when the A-D Converter is operating in single mode. Setting this bit to "0" selects A-D conversion mode, and setting this bit to "1" selects comparator mode. (2) ADSSPD (A-D Conversion Speed Select) bit (Bit 9) This bit selects the A-D conversion speed when the A-D Converter is operating in single mode. Setting this bit to "0" selects normal speed, and setting this bit to "1" selects double speed. (3) ADSSHSL (A-D Conversion Method Select) bit (Bit 10) This bit enables or disables the sample-and-hold function when the A-D Converter is operating in single mode. Setting this bit to "0" disables the sample-and-hold function, and setting this bit to "1" enables the sample-and-hold function. Setting of this bit has no effect if comparator mode is selected with the ADSMSL (A-D conversion mode select) bit. (4) ADSSHSPD (A-D Sample-and-Hold Speed Select) bit (Bit 11) When the A-D Converter's sample-and-hold function is enabled, this bit selects a conversion speed. When this bit is "0", the conversion speed is the same as normal A-D conversion speed. When this bit is "1", conversion is performed at a speed faster than normal A-D conversion speed. Setting of this bit has no effect if the sample-and-hold function is disabled by setting the ADSSHSL (A-D conversion method select) bit to "0". For details about the conversion time, see Section 11.3.4, "Calculating the A-D Conversion Time." (5) ANSEL (A-D Analog Input Pin Select) bits (Bits 12-15) These bits select the analog input pins when the A-D Converter is operating in single mode. A-D conversion or comparate operation is performed on the channels selected with these bits. If these bits are accessed for read, the value written to them is read out. 11-17 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.3 A-D Scan Mode Register 0 A-D0 Scan Mode Register 0 (AD0SCM0) b0 1 2 3 4 5 6 b7 ADCTRG1 ADCMSL ADCTRG0 ADSHIDE ADCREQ ADCCMP ADCSTP ADCSTT 0 0 0 0 0 1 0 0 b Bit Name Function R W 0 ADCTRG1 (Note 1) A-D hardware trigger select 1 bit Bits 0 and 2 are used to select an A-D hardware trigger. b0 b2 0 0 : Input event bus 2 0 1 : Input event bus 3 1 0 : Output event bus 3 1 1 : TIN23S signal R W 1 ADCMSL A-D scan mode select bit 0: Single-shot mode 1: Continuous mode R W 2 ADCTRG0 (Note 1) A-D hardware trigger select 0 bit Bits 0 and 2 are used to select an A-D hardware trigger. (See the column for bit 0.) R W 3 ADCSEL A-D conversion start trigger select bit 0: Software trigger 1: Hardware trigger R W 4 ADCREQ Interrupt/DMA transfer request select bit 0: A-D conversion interrupt request 1: DMA transfer request R W 5 ADCCMP A-D conversion completed bit 0: A-D conversion in progress 1: A-D conversion completed R - 6 ADCSTP A-D conversion stop bit 0: No operation 1: Stop A-D conversion 0 W 7 ADCSTT A-D conversion start bit 0: No operation 1: Start A-D conversion 0 W Note 1: Two bits--A-D hardware trigger select 1 (bit 0) and A-D hardware trigger select 0 (bit 2)--are used to select an A-D hardware trigger. A-D Scan Mode Register 0 is used to control operation of the A-D Converter during scan mode. (1) ADCTRG (A-D Hardware Trigger Select) bits (Bits 0 and 2) These bits select a hardware trigger when A-D conversion by the A-D Converter is to be started in hardware. Select one from the following hardware trigger sources: A-D0 Converter: Input event bus 2 Input event bus 3 Output event bus 3 TIN23 edge select output The contents of these bits are ignored if a software trigger is selected by ADCSEL (A-D conversion start trigger select bit). 11-18 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers (2) ADCMSL (A-D Scan Mode Select) bit (Bit 1) This bit selects scan mode of the A-D Converter between single-shot scan and continuous scan. Setting this bit to "0" selects single-shot scan mode, where the channels selected with the ANSCAN (A-D scan loop select) bits are sequentially A-D converted and when A-D conversion on all selected channels is completed, the conversion operation stops. Setting this bit to "1" selects continuous scan mode, where after operation in single-shot scan mode finishes, A-D conversion is reexecuted beginning with the first channel and continued until stopped by setting the ADCSTP (A-D conversion stop) bit to "1". (3) ADCSEL (A-D Conversion Start Trigger Select) bit (Bit 3) This bit selects whether to use a software or hardware trigger to start A-D conversion during scan mode. If a software trigger is selected, A-D conversion is started by setting the ADCSTT (A-D conversion start) bit to "1". If a hardware trigger is selected, A-D conversion is started by the trigger source selected with the ADCTRG (hardware trigger select) bits. (4) ADCREQ (A-D Interrupt/DMA Transfer Request Select) bit (Bit 4) This bit selects whether to request an A-D conversion interrupt or a DMA transfer when one cycle of scan mode operation is completed. If neither an interrupt nor a DMA transfer are used, choose to request an A-D conversion interrupt and use the A-D Conversion Interrupt Control Register of the Interrupt Controller (ICU) to mask the interrupt request, or choose to request a DMA transfer and use the DMA Channel Control Register to disable DMA transfers to be performed upon completion of A-D conversion. (5) ADCCMP (A-D Conversion Completed) bit (Bit 5) This is a read-only bit, whose value after reset is "1". This bit is "0" when the A-D Converter is performing scan mode A-D conversion and is set to "1" when single-shot scan mode finishes or continuous scan mode is stopped by setting the ADCSTP (A-D conversion stop) bit to "1". (6) ADCSTP (A-D Conversion Stop) bit (Bit 6) Setting this bit to "1" while the A-D Converter is performing scan mode A-D conversion causes the operation being performed to stop. This bit is effective only for scan mode operation, and does not affect single mode operation even when single and scan modes both are active during special operation mode. Operation stops immediately after writing to this bit, and the A-D conversion being performed on any channel is aborted in the middle, without transferring the result to the A-D data register. If the A-D conversion start bit and A-D conversion stop bit are set to "1" at the same time, the A-D conversion stop bit has priority. (7) ADCSTT (A-D Conversion Start) bit (Bit 7) This bit is used to start scan mode operation of the A-D Converter in software. Only when a software trigger has been selected with the ADCSEL (A-D conversion start trigger select) bit, setting this bit to "1" causes AD conversion to start. If the A-D conversion start bit and A-D conversion stop bit are set to "1" at the same time, the A-D conversion stop bit has priority. If this bit is set to "1" again while performing scan mode conversion, special operation mode "Conversion restart" is turned on, so that scan mode operation is restarted using the contents set by A-D Scan Mode Registers 0 and 1. If this bit is set to "1" again while performing A-D conversion in single mode, special operation mode "Scan mode start after single mode execution" is turned on, so that scan mode operation starts subsequently after single mode has finished. 11-19 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.4 A-D Scan Mode Register 1 A-D0 Scan Mode Register 1 (AD0SCM1) b8 9 10 11 12 13 0 0 ADCSPD ADCSHSL ADCSHSPD 0 0 0 0 14 b15 ADSCAN 0 0 b Bit Name Function R W 8 No function assigned. Fix to "0". 0 0 9 ADCSPD (Note 1) A-D conversion speed select bit 0: Normal speed 1: Double speed R W 10 ADCSHSL A-D conversion method select bit 0: Disable sample-and-hold 1: Enable sample-and-hold R W 11 ADCSHSPD (Note 2) A-D sample-and-hold conversion speed select bit 0: Normal sample-and-hold 1: Fast sample-and-hold R W 12-15 ANSCAN A-D scan loop select bit `B0000-1011 (channels 0-11) 0000: Converting ADiIN0 0001: Converting ADiIN1 0010: Converting ADiIN2 0011: Converting ADiIN3 0100: Converting ADiIN4 0101: Converting ADiIN5 0110: Converting ADiIN6 0111: Converting ADiIN7 1000: Converting ADiIN8 1001: Converting ADiIN9 1010: Converting ADiIN10 1011: Converting ADiIN11 1100: (Note 3) 1101: (Note 3) 1110: (Note 3) 1111: (Note 3) R W (i = 0) Note 1: The A-D conversion speed is determined by a combination of ADCSPD, ADCSHSL and ADCSHSPD bits and the A-D Conversion Speed Control Register ADCVSD bit. Note 2: Setting of this bit is effective when the sample-and-hold function is enabled by ADCSHSL bit. Note 3: Because the 32182 has pins for only AD0IN0-AD0IN11, in no case will this bit pattern be read out, providing that the number of scan channels is correctly set. A-D Scan Mode Register 1 is used to select operation mode, conversion speed and scan loop when the A-D Converter is operating in scan mode. The channels selected with the scan loop select bit are scanned sequentially beginning with channel 0 (n-channel scan). 11-20 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers (1) ADCSPD (A-D Conversion Speed Select) bit (Bit 9) This bit selects an A-D conversion speed when the A-D Converter is operating in scan mode. Setting this bit to "0" selects normal speed, and setting this bit to "1" selects double speed. (2) ADCSHSL (A-D Conversion Method Select) bit (Bit 10) This bit enables or disables the sample-and-hold function when the A-D Converter is operating in scan mode. Setting this bit to "0" disables the sample-and-hold function, and setting this bit to "1" enables the sampleand-hold function. (3) ADCSHSPD (A-D Sample-and-Hold Speed Select) bit (Bit 11) When the A-D Converter's sample-and-hold function is enabled, this bit selects a conversion speed. When this bit is "0", the conversion speed is the same as normal A-D conversion speed. When this bit is "1", conversion is performed at a speed faster than normal A-D conversion speed. Setting of this bit has no effect if the sample-and-hold function is disabled by setting the ADCSHSL (A-D conversion method select) bit to "0". For details about the conversion time, see Section 11.3.4, "Calculating the A-D Conversion Time." (4) ANSCAN (A-D Scan Loop Select) bits (Bits 12-15) The ANSCAN (A-D scan loop select) bits set the channels to be scanned during scan mode of the A-D Converter. The ANSCAN (A-D scan loop select) bits when accessed for read during scan operation serve as a status register indicating the channel being scanned. The value read from these bits during single mode is always B'0000. If A-D conversion is stopped by setting A-D Scan Mode Register 0 ADCSTP (A-D conversion stop) bit to "1" while executing scan mode, the value read from these bits indicates the channel whose A-D conversion has been canceled. Also, if read during single mode conversion of special operation mode "Forcible single mode execution during scan mode," the value of these bits indicates the channel whose A-D conversion has been canceled in the middle of scan. 11-21 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.5 A-D Conversion Speed Control Register A-D0 Conversion Speed Control Register (AD0CVSCR) b8 9 10 11 12 13 14 0 0 0 0 0 0 0 b15 ADCVSD 0 b Bit Name 8-14 No function assigned. Fix to "0". 15 ADCVSD (Note 1) A-D conversion speed control bit Function R W 0 0 0: Slow mode 1: Fast mode R W Note 1: The A-D conversion speed is determined by a combination of ADCVSD bit and A-D Single Mode Register 1's relevant bit during single mode, or a combination of ADCVSD bit and A-D Scan Mode Register 1's relevant bit during scan mode. The A-D Conversion Speed Control Register controls the A-D conversion speed during single and scan modes of the A-D Converter. The A-D conversion speed is determined in combination with A-D Single Mode Register 1's conversion speed select bit (Double/Normal). 11-22 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.6 A-D Disconnection Detection Assist Function Control Register A-D0 Disconnection Detection Assist Function Control Register (AD0DDACR) b0 1 2 3 4 5 6 0 0 0 0 0 0 0 b7 ADDDAEN 0 b Bit Name Function 0-6 No function assigned. Fix to "0". 7 ADDDAEN (Note 1) A-D disconnection detection assist function enable bit R W 0 0 0: Disable A-D disconnection detection assist function R 1: Enable A-D disconnection detection assist function W Note 1: For the A-D disconnection detection assist function to be enabled, the conversion start state (discharge or precharge) must be set using the A-D disconnection detection assist method select register after setting the ADDDAEN bit to "1". The A-D Disconnection Detection Assist Function Control Register is used to enable or disable the content of the A-D Disconnection Detection Assist Method Select Register. Note: * If any analog input wiring is disconnected, the conversion result varies depending on the circuits fitted external to the chip. This function must be fully evaluated in the actual application system before it can be used. 11-23 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.7 A-D Disconnection Detection Assist Method Select Register A-D0 Disconnection Detection Assist Method Select Register (AD0DDASEL) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ADDDA SEL0 ADDDA SEL1 ADDDA SEL2 ADDDA SEL3 ADDDA SEL4 ADDDA SEL5 ADDDA SEL6 ADDDA SEL7 ADDDA SEL8 ADDDA SEL9 ADDDA SEL10 ADDDA SEL11 ADDDA SEL12 ADDDA SEL13 ADDDA SEL14 ADDDA SEL15 b15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? b Bit Name Function R W 0 ADDDASEL0 Channel 0 disconnection detection assist method select bit 0: Discharge before conversion 1: Precharge before conversion R W 1 ADDDASEL1 Channel 1 disconnection detection assist method select bit 2 ADDDASEL2 Channel 2 disconnection detection assist method select bit 3 ADDDASEL3 Channel 3 disconnection detection assist method select bit 4 ADDDASEL4 Channel 4 disconnection detection assist method select bit 5 ADDDASEL5 Channel 5 disconnection detection assist method select bit 6 ADDDASEL6 Channel 6 disconnection detection assist method select bit 7 ADDDASEL7 Channel 7 disconnection detection assist method select bit 8 ADDDASEL8 Channel 8 disconnection detection assist method select bit 9 ADDDASEL9 Channel 9 disconnection detection assist method select bit 10 ADDDASEL10 Channel 10 disconnection detection assist method select bit 11 ADDDASEL11 Channel 11 disconnection detection assist method select bit 12 ADDDASEL12 Channel 12 disconnection detection assist method select bit 13 ADDDASEL13 Channel 13 disconnection detection assist method select bit 14 ADDDASEL14 Channel 14 disconnection detection assist method select bit 15 ADDDASEL15 Channel 15 disconnection detection assist method select bit Notes: * This register must always be accessed in halfwords. * For these bits to be enabled, the ADDDAEN bit (A-D Disconnection Detection Assist Function Control Register bit 7) must be set to "1" before setting these bits. In order to prevent the A-D conversion result from being affected by the analog input voltage leakage from any preceding channel, the A-D Disconnection Detection Assist Method Select Register is used to control the conversion start state by selecting whether to discharge or precharge the chopper amp capacitor before starting regular conversion operation. 11-24 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers Figure 11.2.1 shows an example of A-D disconnection detection assist method in which the conversion start state is set to the AVCC side (i.e., precharge before conversion is selected). Figure 11.2.2 shows an example of A-D disconnection detection assist method in which the conversion start state is set to the AVSS side (i.e., discharge before conversion is selected). On Precharge control signal Off Discharge control signal Precharge Typical external circuit (Note 1) ADDDAEN R Analog input ADiINn Chopper amp capacitor Broken wire C Note 1: In case of broken wire, the conversion result varies with external circuits. Therefore, careful evaluation is required before this function can be used. Figure 11.2.1 Example of A-D Disconnection Detection on AVCC Side (Precharge Before Conversion Selected) ADDDAEN Off Precharge control signal On Discharge control signal Typical external circuit (Note 1) Analog input ADiINn Broken wire Discharge Chopper amp capacitor R C Note 1: In case of broken wire, the conversion result varies with external circuits. Therefore, careful evaluation is required before this function can be used. Figure 11.2.2 Example of A-D Disconnection Detection on AVSS Side (Discharge Before Conversion Selected) 11-25 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers Disconnection detection voltage (without sample-and-hold) 2000 1800 Voltage on disconnected port [mV] Scan mode: Disconnection detection enabled 1600 Scan mode: Disconnection detection disabled 1400 1200 1000 800 600 400 200 0 0 20 40 60 80 100 120 A-D conversion cycle [kHz] Figure 11.2.3 A-D Disconnection Detection Assist Data (when Discharge Before Conversion Selected) Disconnection detection voltage (without sample-and-hold) 5100 Voltage on disconnected port [mV] 4900 Scan mode: Disconnection detection enabled 4700 Scan mode: Disconnection detection disabled 4500 4300 4100 3900 3700 3500 3300 3100 2900 0 20 40 60 80 100 120 A-D conversion cycle [kHz] Figure 11.2.4 A-D Disconnection Detection Assist Data (when Precharge Before Conversion Selected) 11-26 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.8 A-D Successive Approximation Register A-D0 Successive Approximation Register(AD0SAR) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ? ? ? b15 ADSAR 0 0 0 0 0 ? ? ? ? ? ? ? b Bit Name 0-5 No function assigned. Fix to "0". Function 6-15 ADSAR A-D successive approximation value/comparison value * A-D successive approximation value (A-D conversion mode) * Comparison value (comparator mode) R W 0 0 R W Note: * This register must always be accessed in halfwords. The A-D Successive Approximation Register (ADSAR) is used to read the conversion result of the A-D Converter when operating in A-D conversion mode or write a comparison value when operating in comparator mode. In A-D conversion mode, the successive approximation method is used to perform A-D conversion. With this method, the reference voltage VREF and analog input voltages are sequentially compared bitwise beginning with the high-order bit, and the comparison result is set in the A-D Successive Approximation Register (ADSAR) bits 6-15. When the A-D conversion has finished, the value of this register is transferred to the 10-bit A-D Data Register (ADDTn) corresponding to each converted channel. When this register is accessed for read in the middle of A-D conversion, the value read from the register indicates the intermediate result of conversion. In comparator mode, this register is used to write a comparison value (the voltage with which to "comparate"). Simultaneously with a write to this register, the A-D Converter starts comparing the voltage on the analog input pin selected with A-D Single Mode Register 1 and the value written in this register. After comparate operation, the result is stored in the A-D Comparate Data Register (ADCMP). Use the calculation formula shown below to find the comparison value to be written to the A-D Successive Approximation Register (ADSAR) during comparator mode. Comparison value = H'3FF x Comparate comparison voltage [V] VREF0 input voltage [V] 11-27 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.9 A-D Comparate Data Register A-D0 Comparate Data Register (AD0CMP) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 AD CMP0 AD CMP1 AD CMP2 AD CMP3 AD CMP4 AD CMP5 AD CMP6 AD CMP7 AD CMP8 AD CMP9 AD CMP10 AD CMP11 AD CMP12 AD CMP13 AD CMP14 AD CMP15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? b Bit Name Function R W 0-11 ADCMP0-ADCMP11 (Note 1) A-D comparate result flag 0: Analog input voltage > comparison voltage 1: Analog input voltage < comparison voltage R - 12-15 (Note 2) R - Note 1: During comparator mode, the bits in this register correspond one for one to channels 0-11. Note 2: Because the 32182 does not have the corresponding analog pins, the values read out from these bits are undefined. Note: * This register must always be accessed in halfwords. When comparator mode is selected using the A-D Single Mode Register 1 ADSMSL (A-D conversion mode select) bit, the selected analog input voltage is compared with the value written to the A-D Successive Approximation Register and the result is stored in the corresponding bit of this comparate data register. The bit or flag in this register is "0" when analog input voltage > comparison voltage, or "1" when analog input voltage < comparison voltage. 11-28 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.10 10-bit A-D Data Registers 10-bit 10-bit 10-bit 10-bit 10-bit 10-bit 10-bit 10-bit 10-bit 10-bit 10-bit 10-bit A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 b0 Data Data Data Data Data Data Data Data Data Data Data Data Register Register Register Register Register Register Register Register Register Register Register Register 1 2 0(AD0DT0) 1(AD0DT1) 2(AD0DT2) 3(AD0DT3) 4(AD0DT4) 5(AD0DT5) 6(AD0DT6) 7(AD0DT7) 8(AD0DT8) 9(AD0DT9) 10(AD0DT10) 11(AD0DT11) 3 4 5 6 7 8 9 10 11 12 13 14 ? ? ? b15 AD0DT0-AD0DT11 0 0 0 0 0 ? ? ? ? ? ? ? b Bit Name 0-5 No function assigned. 6-15 AD0DT0-AD0DT11 10-bit A-D data Function 10-bit A-D conversion result R W 0 - R - Note: * This register must always be accessed in halfwords. During single mode, the 10-bit A-D Data Registers are used to store the result of A-D conversion performed on each corresponding channel. During single-shot or continuous scan mode, the content of the A-D Successive Approximation Register is transferred to the 10-bit A-D Data Register for the corresponding channel when A-D conversion on each channel has finished. Each 10-bit A-D Data Register retains the last conversion result until they receive the next conversion result transferred, allowing the content to be read out at any time. 11-29 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.2 A-D Converter Related Registers 11.2.11 8-bit A-D Data Registers 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 A-D0 b8 9 Data Data Data Data Data Data Data Data Data Data Data Data Register Register Register Register Register Register Register Register Register Register Register Register 10 0(AD08DT0) 1(AD08DT1) 2(AD08DT2) 3(AD08DT3) 4(AD08DT4) 5(AD08DT5) 6(AD08DT6) 7(AD08DT7) 8(AD08DT8) 9(AD08DT9) 10(AD08DT10) 11(AD08DT11) 11 12 13 14 b15 ? ? ? AD08DT0-AD08DT15 ? ? ? ? ? b Bit Name Function R W 8-15 AD08DT0-AD08DT11 8-bit A-D data 8-bit A-D conversion result R - During single mode, the 8-bit A-D Data Registers are used to store the result of A-D conversion performed on each corresponding channel. During single-shot or continuous scan mode, the content of the A-D Successive Approximation Register is transferred to the 8-bit A-D Data Register for the corresponding channel when A-D conversion on each channel has finished. Each 8-bit A-D Data Register retains the last conversion result until they receive the next conversion result transferred, allowing the content to be read out at any time. 11-30 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.3 Functional Description of A-D Converter 11.3 Functional Description of A-D Converter 11.3.1 How to Find Analog Input Voltages The A-D Converter performs A-D conversion using a 10-bit successive approximation method. The equation shown below is used to calculate the actual analog input voltage from the digital value obtained by executing AD conversion. Analog input voltage [v] = A-D conversion result x VREF input voltage [V] 1,024 The A-D Converter is a 10-bit converter, providing a resolution of 1,024 discrete voltage levels. Because the reference voltage for the A-D Converter is the voltage applied to the VREF pin, make sure that an exact and stable constant-voltage power supply is connected to VREF. Also make sure the analog circuit power supply and ground (AVCC, AVSS) are separated from those of the digital circuit, with sufficient noise prevention measures incorporated. For details about the conversion accuracy, see Section 11.3.5, "Accuracy of A-D Conversion." 10-bit A-Di Data Register ADiDT0-11 A-Di Comparate Data Register AVCCi AVSSi i=0 ADiCMP 10-bit A-Di Successive Approximation Register (ADiSAR) A-D Control Circuit Vref VREFi 10-bit D-A Converter VIN ADiIN0 ADiIN1 ADiIN2 ADiIN3 ADiIN4 ADiIN5 ADiIN6 ADiIN7 ADiIN8 ADiIN9 ADiIN10 ADiIN11 Comparator Sample-and-Hold Control Circuit Selector Successive Approximation-type A-D Converter Unit Figure 11.3.1 Outline Block Diagram of the Successive Approximation-type A-D Converter Unit 11-31 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.3 Functional Description of A-D Converter 11.3.2 A-D Conversion by Successive Approximation Method The A-D Converter use an A-D conversion start trigger (software or hardware) as they start A-D conversion. Once A-D conversion begins, the following operation is automatically performed. 1. During single mode, A-D Single Mode Register 0's A-D conversion/comparate completion bit is cleared to "0". During scan mode, A-D Scan Mode Register 0's A-D conversion completion bit is cleared to "0". 2. The content of the A-D Successive Approximation Register is cleared to H'0000. 3. The A-D Successive Approximation Register's most significant bit (bit 6) is set to "1". 4. The comparison voltage, Vref (Note 1), is fed from the D-A Converter into the comparator. 5. The comparison voltage, Vref, and the analog input voltage, VIN, are compared, and the comparison result will be stored in bit 6. If Vref < VIN, then bit 6 = "1" If Vref > VIN, then bit 6 = "0" 6. Operations in 3 through 5 above are executed for all other bits from bit 7 to bit 15. 7. The value stored in the A-D Successive Approximation Register by the time comparison for bit 15 has finished is held in it as the A-D conversion result. A-D Successive Approximation Register (ADiSAR) b6 7 8 9 10 11 12 13 14 b15 1st comparison 1 0 0 0 0 0 0 0 0 0 2nd comparison n9 1 0 0 0 0 0 0 0 0 0 0 0 0 i=0 If Vref > VIN, then nX = 0 If Vref < VIN, then nX = 1 Result of 1st comparison 3rd comparison n9 n8 1 0 0 0 Result of 2nd comparison 10th comparison n9 n8 n7 n6 n5 n4 n3 n2 n1 1 Conversion completed n9 n8 n7 n6 n5 n4 n3 n2 n1 n0 Figure 11.3.2 Changes of the A-D Successive Approximation Register during A-D Convert Operation Note 1: The comparison voltage, Vref (the voltage fed from the D-A Converter into the comparator), is determined according to changes of the A-D Successive Approximation Register content. Shown below are the equations used to calculate the comparison voltage, Vref. * If the A-D Successive Approximation Register content = 0 Vref [V] = 0 * If the A-D Successive Approximation Register content = 1 to 1,023 Vref [V] = (reference voltage VREF / 1,024) x (A-D Successive Approximation Register content - 0.5) 11-32 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.3 Functional Description of A-D Converter The conversion result is stored in the 10-bit A-D Data Register (AD0DTn) corresponding to each converted channel. There is also an 8-bit A-D Data Register (AD08DTn) for each channel, from which the 8 high-order bits of the 10-bit conversion result can be read out. The following shows the procedure for A-D conversion by a successive approximation method in each operation mode. (1) Single mode The convert operation stops when comparison for the A-D Successive Approximation Register bit 15 is completed. The content (A-D conversion result) of the A-D Successive Approximation Register is transferred to the 10-bit A-D Data Registers 0-11 for the converted channel. (2) Single-shot scan mode When comparison for the A-D Successive Approximation Register bit 15 on a specified channel is completed, the content of the A-D Successive Approximation Register is transferred to the corresponding 10-bit A-D Data Registers 0-11, and the convert operations in steps 2 to 7 above are reexecuted for the next channel to be converted. In single-shot scan mode, the convert operation stops when A-D conversion in one specified scan loop is completed. (3) Continuous scan mode When comparison for the A-D Successive Approximation Register bit 15 on a specified channel is completed, the content of the A-D Successive Approximation Register is transferred to the corresponding 10-bit A-D Data Registers 0-11, and the convert operations in steps 2 to 7 above are reexecuted for the next channel to be converted. In continuous scan mode, the convert operation is executed continuously until scan operation is forcibly terminated by setting the A-D conversion stop bit (Scan Mode Register 0 bit 6) to "1". 11.3.3 Comparator Operation When comparator mode (single mode only) is selected, the A-D Converter functions as a comparator which compares analog input voltages with the comparison voltage that is set by software. When a comparison value is written to the successive approximation register, the A-D Converter starts "comparating" the analog input voltage selected by the Single Mode Register 1 analog input select bit with the value written into the successive approximation register. Once comparate begins, the following operation is automatically executed. 1. The A-D Single Mode Register 0 or A-D Scan Mode Register 0 A-D conversion/comparate completion bit is cleared to "0". 2. The comparison voltage, Vref (Note 1), is fed from the D-A Converter into the comparator. 3. The comparison voltage, Vref, and the analog input voltage, VIN, are compared, and the comparison result will be stored in the comparate result flag for the corresponding channel. If Vref < VIN, then the comparate result flag = 0 If Vref > VIN, then the comparate result flag = 1 4. The comparate operation is stopped after storing the comparison result. The comparison result is stored in the A-D Comparate Data Register (AD0CMP)'s corresponding bit. Note 1: The comparison voltage, Vref (the voltage fed from the D-A Converter into the comparator), is determined according to changes of the A-D Successive Approximation Register content. Shown below are the equations used to calculate the comparison voltage, Vref. * If the A-D Successive Approximation Register content = 0 Vref [V] = 0 * If the A-D Successive Approximation Register content = 1 to 1,023 Vref [V] = (reference voltage VREF / 1,024) x (A-D Successive Approximation Register content - 0.5) 11-33 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.3 Functional Description of A-D Converter 11.3.4 Calculating the A-D Conversion Time The A-D conversion time is expressed by the sum of dummy cycle time and actual execution cycle time. The following shows each time factor necessary to calculate the conversion time. 1. Start dummy time A time from when the CPU executed the A-D conversion start instruction to when the A-D Converter starts A-D conversion 2. A-D conversion execution cycle time If sample-and-hold is enabled, the sampling time is included in this execution cycle time. 3. Comparate execution cycle time 4. End dummy time A time from when the A-D Converter has finished A-D conversion to when the CPU can stably read out the conversion result from the A-D data register. 5. Scan to scan dummy time A time during single-shot or continuous scan mode from when the A-D Converter has finished A-D conversion on a channel to when it starts A-D conversion on the next channel. The equation to calculate the A-D conversion time is as follows: A-D conversion time = Start dummy time + Execution cycle time (+ Scan to scan dummy time + Execution cycle time + Scan to scan dummy time + Execution cycle time + Scan to scan dummy time .... + Execution cycle time) + End dummy time Note: * Enclosed in ( ) are the conversion time required for the second and subsequent channels to be converted in scan mode. (1) Calculating the conversion time during A-D conversion mode The following schematically shows the method for calculating the conversion time during A-D conversion mode. Transferred to the A-D data register A-D conversion Convert operation start trigger starts Start dummy Execution cycle Completed End dummy (Channel 0) Start dummy (Channel 1) Scan to scan dummy Execution cycle Execution cycle (Last channel) Scan to scan dummy Execution cycle End dummy Figure 11.3.3 Conceptual Diagram of A-D Conversion Time 11-34 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.3 Functional Description of A-D Converter Table 11.3.1 Conversion Clock Periods in A-D Conversion Mode Unit: BCLK Conversion speed Start dummy (Note 1) Execution cycle End dummy Scan to scan dummy (Note 2) Slow mode Normal speed 4 294 1 4 Double speed 4 168 1 4 Normal speed 4 126 1 4 Double speed 4 84 1 4 Fast mode Note 1: The same applies to both software and hardware triggers. Note 2: Only during scan operation, execution time per channel is added. (2) Calculating the conversion time when sample-and-hold is enabled The following schematically shows the method for calculating the conversion time when the sample-and-hold function is enabled. A-D conversion start trigger Convert operation starts Completed Execution cycle Start dummy Sampling time End dummy Figure 11.3.4 Conceptual Diagram of A-D Conversion Time when Sample-and-Hold is Enabled Table 11.3.2 Conversion Clock Periods during Normal Sample-and-Hold Mode Unit: BCLK Conversion speed Start dummy (Note 1) Execution cycle End dummy Scan to scan dummy (Note 2) Slow mode Normal speed 4 294 1 4 Double speed 4 168 1 4 Normal speed 4 126 1 4 Double speed 4 84 1 4 Fast mode Note 1: The same applies to both software and hardware triggers. Note 2: Only during scan operation, execution time per channel is added. Table 11.3.3 Conversion Clock Periods during Fast Sample-and-Hold Mode Unit: BCLK Conversion speed Start dummy (Note 1) Execution cycle End dummy Scan to scan dummy (Note 2) Slow mode Normal speed 4 186 1 4 Double speed 4 96 1 4 Normal speed 4 90 1 4 Double speed 4 48 1 4 Fast mode Note 1: The same applies to both software and hardware triggers. Note 2: Only during scan operation, execution time per channel is added. 11-35 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.3 Functional Description of A-D Converter (3) Calculating the conversion time during comparator mode The following schematically shows the method for calculating the conversion time during comparator mode. A-D conversion Convert operation starts start trigger Start dummy Transferred to the comparate data register Execution cycle Completed End dummy Figure 11.3.5 Conceptual Diagram of A-D Conversion Time during Comparator Mode Table 11.3.4 Conversion Clock Periods during Comparator Mode Conversion speed Slow mode Fast mode Start dummy Unit: BCLK Execution cycle End dummy Normal speed 4 42 1 Double speed 4 24 1 Normal speed 4 18 1 Double speed 4 12 1 (4) A-D conversion time A total A-D conversion time in various modes are shown in the table below. Table 11.3.5 A-D Conversion Time (Total Time) Conversion start method Conversion speed Unit: BCLK Conversion mode (Note 1) Conversion time When fast sampleand-hold enabled Software and Normal speed Single mode hardware triggers n-channel single-shot scan/ (Note 2) 299 191 (298 x n)+1 (190 x n)+1 47 47 173 101 (172 x n)+1 (100 x n)+1 29 29 131 95 (130 x n)+1 (94 x n)+1 23 23 89 53 (88 x n)+1 (52 x n)+1 17 17 continuous scan mode Slow Mode Comparator mode Double speed Single mode n-channel single-shot scan/ continuous scan mode Comparator mode Normal speed Single mode n-channel single-shot scan/ continuous scan mode Fast Mode Comparator mode Double speed Single mode n-channel single-shot scan/ continuous scan mode Comparator mode Note 1: For single mode and comparator mode, this indicates an A-D conversion or comparate time per channel. For singleshot and continuous scan modes, this indicates an A-D conversion time per scan loop. Note 2: This indicates a time from when a register write cycle has finished to when an A-D conversion completion interrupt request is generated, or a time from when an event bus or other MJT event has occurred to when an A-D conversion completion interrupt request is generated. 11-36 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.3 Functional Description of A-D Converter 11.3.5 Accuracy of A-D Conversion The accuracy of the A-D Converter is indicated by an absolute accuracy. The absolute accuracy refers to a difference expressed by LSB between the output code obtained by A-D converting the analog input voltages and the output code expected for an A-D converter with ideal characteristics. The analog input voltages used during accuracy measurement are the midpoint values of the voltage width in which an A-D converter with ideal characteristics produces the same output code. If VREF = 5.12 V, for example, the width of 1 LSB for a 10-bit A-D converter is 5 mV, so that 0 mV, 5 mV, 10 mV, 15 mV, 20 mV, 25 mV and so on are selected as midpoints of the analog input voltage. If an A-D converter is said to have the absolute accuracy of 2 LSB, it means that if the input voltage is 25 mV, for example, the output code expected for an A-D converter with ideal characteristics is H'005, and the actual AD conversion result is in the range of H'003 to H'007. Note that the absolute accuracy includes zero and fullscale errors. A-D conversion result (hexadecimal) When actually using the A-D Converter, the analog input voltages are in the range of AVSS to VREF. Note, however, that low VREF voltages result in a poor resolution. Note also that output codes for the analog input voltages from VREF to AVCC are always H'3FF. H'3FF H'3FE Ideal A-D conversion characteristics H'003 H'002 A-D conversion characteristics with infinite resolution H'001 H'000 0 VREF x1 1024 VREF x2 1024 VREF x3 1024 VREF x 1022 1024 VREF x 1023 1024 VREF x 1024 1024 Analog input voltage [V] Figure 11.3.6 Ideal A-D Conversion Characteristics Relative to the 10-bit A-D Converter's Analog Input Voltages 11-37 32182 Group User's Manual (Rev.1.0) A-D Converter 11 Output code (hexadecimal) 11.3 Functional Description of A-D Converter H'00B Ideal A-D conversion characteristics H'00A H'009 H'008 +2 LSB H'007 H'006 A-D conversion characteristics with infinite resolution H'005 H'004 H'003 -2 LSB H'002 H'001 H'000 0 5 10 15 20 25 30 35 40 45 50 55 Analog input voltage [mV] Figure 11.3.7 Absolute Accuracy of A-D Converter 11-38 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.4 Inflow Current Bypass Circuit 11.4 Inflow Current Bypass Circuit If when the A-D Converter is A-D converting a selected analog input an overvoltage exceeding the converter's absolute maximum rating is applied to any unselected analog input, the selector for the unselected analog input is inadvertently turned on by that overvoltage. This causes current to leak to the selected analog input, and the accuracy of the A-D conversion result is thereby deteriorated. The Inflow Current Bypass Circuit fixes the internal signals of unselected analog inputs to the GND level, so that when an overvoltage is applied, this circuit lets the current flow into the GND and prevents it from leaking to the selected analog input. That way, the accuracy of the A-D conversion result is prevented from being deteriorated by extreme voltages. This circuit is always active while the A-D Converter is operating, and does not need to be controlled in software. OFF OFF Fixed to GND level Unselected channel ON To the internal logic of the A-D Converter ON ON External input latched into Selected channel OFF Assist circuit Figure 11.4.1 Configuration of the Inflow Current Bypass Circuit VCCE + 0.7 V or more Leakage current generated Unselected channel OFF Leakage current generated OFF ON Unaffected by leakage Sensor input Selected channel ON To the internal logic of the A-D Converter ON OFF Assist circuit Figure 11.4.2 Example of an Inflow Current Bypass Circuit where VCCE + 0.7 V or More is Applied 11-39 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.4 Inflow Current Bypass Circuit Leakage current generated Unselected channel OFF OFF Leakage current generated ON Unaffected by leakage GND - 0.7V or less Sensor input ON Selected channel To the internal logic of the A-D Converter ON OFF Assist circuit Figure 11.4.3 Example of an Inflow Current Bypass Circuit where GND - 0.7 V or Less is Applied Table 11.4.1 Accuracy Errors (Actual Performance Values) when Current is Injected into AD0IN0 Accuracy error on overcurrent injected ports (Unit: LSB) Analog input pin AD0IN0 Injection 10mA current (Note 1) 9mA AD0IN1 AD0IN2 AD0IN3 AD0IN4 AD0IN5 AD0IN6 AD0IN7 AD0IN8 AD0IN9 AD0IN10 AD0IN11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8mA 0 0 0 0 0 0 0 0 0 0 0 7mA 0 0 0 0 0 0 0 0 0 0 0 6mA 0 0 0 0 0 0 0 0 0 0 0 5mA 0 0 0 0 0 0 0 0 0 0 0 4mA 0 0 0 0 0 0 0 0 0 0 0 3mA 0 0 0 0 0 0 0 0 0 0 0 2mA 0 0 0 0 0 0 0 0 0 0 0 1mA 0 0 0 0 0 0 0 0 0 0 0 0mA 0 0 0 0 0 0 0 0 0 0 0 -1mA 0 0 0 0 0 0 0 0 0 0 0 -2mA -1 0 0 0 0 0 0 0 0 0 0 -3mA -1 0 0 0 0 0 0 0 0 0 0 -4mA -1 0 0 0 0 0 0 0 0 0 0 -5mA -2 -1 0 0 0 0 0 0 0 0 0 -6mA -3 -1 0 0 0 0 0 0 0 0 0 -7mA -3 -1 0 0 0 0 0 0 0 0 0 -8mA -3 -1 0 0 0 0 0 0 0 0 0 -9mA -4 -1 0 0 0 0 0 0 0 0 0 -10mA -5 -1 0 0 0 0 0 0 0 0 0 Note 1: The conversion accuracy is not affected unless the injection current is greater than 1 mA. 11-40 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.5 Precautions on Using A-D Converter 11.5 Precautions on Using A-D Converter * Forcible termination during scan operation If A-D conversion is forcibly terminated by setting the A-D conversion stop bit (AD0CSTP) to "1" during scan mode operation and the A-D data register for the channel that was in the middle of conversion is accessed for read, the read value shows the last conversion result that had been transferred to the data register before the conversion was forcibly terminated. * Modification of the A-D converter related registers If the content of any register--A-D Conversion Interrupt Control Register, Single or Scan Mode Registers or A-D Successive Approximation Register, except the A-D conversion stop bit--is modified in the middle of A-D conversion, the conversion result cannot be guaranteed. Therefore, do not modify the contents of these registers while AD conversion is in progress, or be sure to restart A-D conversion if register contents have been modified. * Handling of analog input signals When using the A-D Converter with its sample-and-hold function disabled, make sure the analog input level is fixed during A-D conversion. * A-D conversion completed bit read timing To read the A-D conversion completed bit (Single Mode Register 0 bit 5 or Scan Mode Register 0 bit 5) immediately after A-D conversion has started, be sure to adjust the timing 2 BCLK periods by, for example, inserting a NOP instruction before read. * Regarding the analog input pins Figure 11.5.1 shows the internal equivalent circuit of the A-D Converter's analog input part. To obtain accurate A-D conversion results, make sure the internal capacitor C2 of the A-D conversion circuit is charged up within a predetermined time (sampling time). To meet this sampling time requirement, it is recommended that a stabilizing capacitor C1 be connected external to the chip. The method for determining the necessary value of this external stabilizing capacitor with respect to the output impedance of an analog output device is described below. Also, an explanation is made of the case where the output impedance of an analog output device is low and the external stabilizing capacitor C1 is unnecessary. * Rated value of the absolute accuracy The rated value of the absolute accuracy is the actual performance value of the microcomputer alone, with influences of the power supply wiring and noise on the board not taken into account. When designing the application system, use caution for the board layout by, for example, separating the analog circuit power supply and ground (AVCC, AVSS and VREF) from those of the digital circuit and incorporating measures to prevent the analog input pins from being affected by noise, etc. from other digital signals. Inside the microcomputer 10-bit A-D Successive Approximation Register (ADiSAR) VREF 10-bit D-A Converter V2 Analog output device ADIN n R1 E i i1 i2 C2 Cin R2 Comparator Selector C1 C1 : parasitic capacitance of the board R2 : parasitic resistance of the + stabilizing capacitance selector (1-2 K) R1 : resistance of analog output device C2 : comparator capacitance (approx. 2.9 pF) Cin : input pin capacitance (approx. 10 pF) VREF : analog reference voltage V2 : voltage across C2 E : voltage of analog output device Figure 11.5.1 Internal Equivalent Circuit of the Analog Input Part 11-41 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.5 Precautions on Using A-D Converter (a) Example for calculating the external stabilizing capacitor C1 (addition of this capacitor is recommended) Assuming the R1 in Figure 11.5.1 is infinitely large and that the current necessary to charge the internal capacitor C2 is supplied from C1, if the potential fluctuation, Vp, caused by capacitance division of C1 and C2 is to be within 0.1 LSB, then what amount of capacitance C1 should have. For a 10-bit A-D Converter where VREF is 5.12 V, 1 LSB determination voltage = 5.12 V / 1,024 = 5 mV. The potential fluctuation of 0.1 LSB means a 0.5 mV fluctuation. The relationship between the capacitance division of C1 and C2 and the potential fluctuation, Vp, is obtained by the equation below: C2 Eq. A-1 Vp = x (E - V2) C1 + C2 Vp is also obtained by the equation below: x-1 1 VREF Vp = Vp1 x < i 2 10 x 2x i=0 Eq. A-2 where Vp1 = potential fluctuation in the first A-D conversion performed and x = 10 for a 10-bit resolution A-D converter When Eq. A-1 and Eq. A-2 are solved, the following results: E - V2 - 1 } C1 = C2 { Vp1 x-1 C1 > C2 {10 x 2x x 21 i - 1 } i=0 Eq. A-3 Eq. A-4 Thus, for a 10-bit resolution A-D Converter where C2 = 2.9 pF, C1 is 0.06 F or more. Use this value for reference when setting up C1. (b) Maximum value of the output impedance R1 when C1 is not added If the external capacitor C1 in Figure 11.5.1 is not used, examination must be made to see if the analog input device can fully charge C2 within a predetermined time. First, the equation to find i2 when C1 in Figure 11.5.1 does not exist is shown below. i2 = C2(E - V2) CinxR1+C2(R1+R2) When sample-and-hold is disabled xexp { -t } ------------------------ Eq. B-1 CinxR1+C2(R1+R2) Conversion time for the first bit Second bit ADINi Sampling time Comparison Sampling time time Repeated (10 times) for 10 bits * When sample-and-hold is enabled, the analog input is sampled for only the first bit. Figure 11.5.2 A-D Conversion Timing Diagram Figure 11.5.2 shows an A-D conversion timing diagram. C2 must be charged up within the sampling time shown in this diagram. When the sample-and-hold function is disabled, the sampling time for the second and subsequent bits is about half that of the first bit. The sampling times at the respective conversion speeds are listed in the table 11.5.1. Note that when the sample-and-hold function is enabled, the analog input is sampled for only the first bit. 11-42 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.5 Precautions on Using A-D Converter Table 11.5.1 Sampling Time (in Which C2 Needs to Be Charged) Conversion start method Conversion speed Single mode Slow mode (when sample-and -hold disabled) Single mode Fast mode Slow mode Comparator mode 13.5BCLK Double speed 15.5BCLK 7.5BCLK Normal speed 11.5BCLK 5.5BCLK Double speed 7.5BCLK 3.5BCLK Normal speed 27.5BCLK - Double speed 15.5BCLK - Normal speed 11.5BCLK - Double speed 7.5BCLK - Normal speed 27.5BCLK - Double speed 15.5BCLK - Normal speed 11.5BCLK - Double speed 7.5BCLK - Fast mode Slow mode Fast mode Sampling time for the second and subsequent bits 27.5BCLK (when sample-and -hold enabled) Sampling time for the first bit Normal speed Therefore, the time in which C2 needs to be charged is found from Eq. B-1, as follows: Sampling time (in which C2 needs to be charged) > Cin x R1 + C2(R1 + R2) --- Eq. B2 Thus, the maximum value of R1 can be obtained as a criterion from the equation below. Note, however, that for single mode (when sample-and-hold is disabled), the sampling time for the second and subsequent bits (C2 charging time) must be applied. R1 < C2 charging time - C2 x R2 Cin + C2 11-43 32182 Group User's Manual (Rev.1.0) A-D Converter 11 11.5 Precautions on Using A-D Converter This page is blank for reasons of layout. 11-44 32182 Group User's Manual (Rev.1.0) CHAPTER 12 SERIAL I/O 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 Outline of Serial I/O Serial I/O Related Registers Transmit Operation in CSIO Mode Receive Operation in CSIO Mode Precautions on Using CSIO Mode Transmit Operation in UART Mode Receive Operation in UART Mode Fixed Period Clock Output Function Precautions on Using UART Mode Serial I/O 12 12.1 Outline of Serial I/O 12.1 Outline of Serial I/O The 32182 contains a total of four serial I/O channels, SIO0-SIO3. Channels SIO0 and SIO1 can be selected between CSIO mode (clock-synchronous serial I/O) and UART mode (clock-asynchronous serial I/O). Channels SIO2 and SIO3 are UART mode only. * CSIO mode (clock-synchronous serial I/O) Communication is performed synchronously with a transfer clock, using the same clock on both transmit and receive sides. The transfer data is 8 bits long (fixed). * UART mode (clock-asynchronous serial I/O) Communication is performed at any transfer rate in any transfer data format. The transfer data length can be selected from 7, 8 and 9 bits. Channels SIO0-SIO3 each have a transmit DMA transfer and a receive DMA transfer request. These serial I/Os, when combined with the internal DMA Controller (DMAC), allow serial communication to be performed at high speed, as well as reduce the data communication load of the CPU. Serial I/O is outlined below. Table 12.1.1 Outline of Serial I/O Item Description Number of channels CSIO mode/UART mode : 2 channels (SIO0, SIO1) UART only Clock : 2 channels (SIO2, SIO3) During CSIO mode : Internal clock or external clock as selected (Note 1) During UART mode : Internal clock only Transfer mode Transmit half-duplex, receive half-duplex, transmit/receive full-duplex BRG count source f(BCLK), f(BCLK)/8, f(BCLK)/32, f(BLCK)/256 (Note 2) (when internal clock selected) f(BCLK): Peripheral clock operating frequency Data format CSIO mode : Data length = 8 bits (fixed) Order of transfer = LSB first (fixed) UART mode : Start bit = 1 bit Character length = 7, 8 or 9 bits Parity bit = Added (odd, even) or not added Stop bit = 1 or 2 bits Order of transfer = LSB first (fixed) Baud rate CSIO mode : 152 bits/sec to 2 Mbits/sec (when f(BCLK) = 20 MHz) UART mode : 19 bits/sec to 156 Kbits/sec (when f(BCLK) = 20 MHz) Error detection CSIO mode : Overrun error only UART mode : Overrun, parity and framing errors (Occurrence of any of these errors is indicated by an error sum bit) Fixed period clock output function When using SIO0 and SIO1 as UART, this function outputs a divided-by-2 BRG clock from the SCLK pin. Note 1: The maximum input frequency of an external clock during CSIO mode is f(BCLK)/16. Note 2: If f(BCLK) is selected as the count source, the BRG set value is subject to limitations. 12-2 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.1 Outline of Serial I/O Table 12.1.2 Interrupt Generation Functions of Serial I/O Serial I/O Interrupt Request Source ICU Interrupt Sources SIO0 transmit buffer empty or transmission finished SIO0 transmit interrupt SIO0 reception finished or receive error SIO0 receive interrupt SIO1 transmit buffer empty or transmission finished SIO1 transmit interrupt SIO1 reception finished or receive error SIO1 receive interrupt SIO2 transmit buffer empty or transmission finished SIO2,3 transmit/receive interrupt (group interrupt) SIO2 reception finished or receive error SIO2,3 transmit/receive interrupt (group interrupt) SIO3 transmit buffer empty or transmission finished SIO2,3 transmit/receive interrupt (group interrupt) SIO3 reception finished or receive error SIO2,3 transmit/receive interrupt (group interrupt) Note: * The transmission-finished interrupt is effective when the internal clock is selected in UART or CSIO mode. Table 12.1.3 DMA Transfer Request Generation Functions of Serial I/O Serial I/O DMA Transfer Request DMAC Input Channels SIO0 transmit buffer empty DMA3, DMA4 SIO0 reception finished DMA4 SIO1 transmit buffer empty DMA6 SIO1 reception finished DMA3, DMA6 SIO2 transmit buffer empty DMA7 SIO2 reception finished DMA5 SIO3 transmit buffer empty DMA7, DMA9 SIO3 reception finished DMA8 12-3 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.1 Outline of Serial I/O SIO0 SIO0 Transmit Buffer Register Transmit interrupt request TXD0 SIO0 Transmit Shift Register RXD0 SIO0 Receive Shift Register To the Interrupt Controller (ICU) Receive interrupt request Transmit/ Receive Control Circuit Transmit DMA transfer request To DMA3, DMA4 Receive DMA transfer request To DMA4 SIO0 Receive Buffer Register UART mode CSIO mode When external clock selected When internal clock selected BCLK 1/16 1 (set value + 1) Clock Divider Baud Rate Generator (BRG) CSIO mode When internal clock selected When UART mode selected SIO1 TXD1 RXD1 SIO1 Transmit Shift Register SIO1 Receive Shift Register SCLKI0/SCLKO0 1/2 Transmit/ Receive Control Circuit Internal data bus BCLK, BCLK/8, BCLK/32, BCLK/256 Transmit interrupt request Receive interrupt request Transmit DMA transfer request Receive DMA transfer request To the Interrupt Controller (ICU) To DMA6 To DMA3, DMA6 SCLKI1/SCLKO1 SIO2 TXD2 RXD2 SIO2 Transmit Shift Register SIO2 Receive Shift Register Transmit interrupt request Transmit/ Receive Control Circuit Receive interrupt request Transmit DMA transfer request Receive DMA transfer request To DMA7 To DMA5 SIO3 TXD3 SIO3 Transmit Shift Register RXD3 SIO3 Receive Shift Register Transmit/ Receive Control Circuit Transmit interrupt request Receive interrupt request Transmit DMA transfer request Receive DMA transfer request To the Interrupt Controller (ICU) To DMA7, DMA9 To DMA8 Notes: * When BCLK is selected, the BRG set value is subject to limitations. * SIO2 and SIO3 do not have the SCLKI/SCLKO function. Figure 12.1.1 Block Diagram of SIO0-SIO3 12-4 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers 12.2 Serial I/O Related Registers Shown below is a serial I/O related register map. Serial I/O Related Register Map Address +0 address b0 H'0080 0100 H'0080 0102 | H'0080 0110 H'0080 0112 H'0080 0114 H'0080 0116 | H'0080 0120 H'0080 0122 H'0080 0124 H'0080 0126 | H'0080 0130 H'0080 0132 H'0080 0134 H'0080 0136 | H'0080 0140 H'0080 0142 H'0080 0144 H'0080 0146 +1 address b7 b8 b15 SIO23 Interrupt Request Status Register SIO03 Interrupt Request Enable Register (SI23STAT) (SI03EN) SIO03 Interrupt Source Select Register (Use inhibited area) (SI03SEL) (Use inhibited area) See pages 12-9 12-10 12-11 SIO0 Transmit Control Register SIO0 Transmit/Receive Mode Register (S0TCNT) (S0MOD) SIO0 Transmit Buffer Register (S0TXB) SIO0 Receive Buffer Register (S0RXB) SIO0 Receive Control Register SIO0 Baud Rate Register (S0RCNT) (S0BAUR) (Use inhibited area) 12-13 12-14 12-17 SIO1 Transmit Control Register SIO1 Transmit/Receive Mode Register (S1TCNT) (S1MOD) SIO1 Transmit Buffer Register (S1TXB) SIO1 Receive Buffer Register (S1RXB) SIO1 Receive Control Register SIO1 Baud Rate Register (S1RCNT) (S1BAUR) (Use inhibited area) 12-13 12-14 12-17 SIO2Transmit Control Register SIO2 Transmit/Receive Mode Register (S2TCNT) (S2MOD) SIO2 Transmit Buffer Register (S2TXB) SIO2 Receive Buffer Register (S2RXB) SIO2 Receive Control Register SIO2 Baud Rate Register (S2RCNT) (S2BAUR) (Use inhibited area) 12-13 12-14 12-17 SIO3 Transmit Control Register SIO3 Transmit/Receive Mode Register (S3TCNT) (S3MOD) SIO3 Transmit Buffer Register (S3TXB) SIO3 Receive Buffer Register (S3RXB) SIO3 Receive Control Register SIO3 Baud Rate Register (S3RCNT) (S3BAUR) 12-13 12-14 12-17 12-5 12-18 12-19 12-22 12-18 12-19 12-22 12-18 12-19 12-22 12-18 12-19 12-22 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers 12.2.1 SIO Interrupt Related Registers The SIO interrupt related registers are used to control the interrupt request signals output from SIO to the Interrupt Controller (ICU), as well as select the source of each interrupt request. (1) Interrupt request status bit This status bit is used to determine whether an interrupt is requested. When an interrupt request occurs, this bit is set in hardware (cannot be set in software). The status bit is cleared by writing "0". Writing "1" has no effect; the bit retains the status it had before the write. Because this bit is unaffected by the interrupt request enable bit, it can also be used to inspect the operating status of peripheral functions. In interrupt handling, make sure that within the grouped interrupt request status, only the status bit for the interrupt request that has been serviced is cleared. If the status bit for any interrupt request that has not been serviced is cleared, the pending interrupt request is cleared simultaneously with its status bit. (2) Interrupt request enable bit This bit is used to disable unnecessary interrupt requests within the grouped interrupt request. Set this bit to "1" to enable interrupt requests or "0" to disable interrupt requests. * Group interrupt Interrupt request from each peripheral function Set Data bus Data=0 clear Interrupt request status F/F F/F To the Interrupt Controller Interrupt request enable Figure 12.2.1 Interrupt Request Status and Enable Registers 12-6 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers Example for clearing interrupt request status Interrupt request status Initial state b4 5 6 b7 0 0 0 0 Interrupt request Bit 6 event occurs 0 0 1 0 Bit 4 event occurs 1 0 1 0 1 0 0 0 Write to the interrupt request status b4 5 6 b7 1 1 0 1 Only bit 6 cleared Bit 4 data retained Program example * To clear the Interrupt Request Status Register 0 (ISTREG) interrupt request status 1: ISTAT1 (0x02 bit) ISTREG = 0xfd; /* Clear ISTAT1 (0x02 bit) only */ To clear an interrupt request status, always be sure to write 1 to all other interrupt request status bits. At this time, avoid using a logic operation like the one shown below. Because it requires three step-ISTREG read, logic operation and write, if another interrupt request occurs between the read and write, status may be inadvertently cleared. ISTREG &= 0xfd; /* Clear ISTAT1 (0x02 bit) only */ Interrupt request status Bit 6 event occurs b4 5 6 b7 0 0 1 0 Read 0 Bit 4 event occurs 1 0 1 0 0 1 0 0 Clear bit 6 (ANDing with 1101) 0 0 0 0 0 0 0 Write Only bit 6 cleared Bit 4 also cleared Figure 12.2.2 Example for Clearing Interrupt Request Status 12-7 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers (3) Selecting the source of an interrupt request The interrupt request signals sent from each SIO to the Interrupt Controller (ICU) are classified into transmit interrupts and receive interrupts. Transmit interrupt requests can be generated when the transmit buffer is empty or transmission is finished, and the receive interrupt requests can be generated when reception is finished or an receive error is detected, as selected by the Interrupt Source Select Register (SI03SEL). Notes: * No interrupt request signals are generated unless interrupts are generated by the SIO Interrupt Request Enable Register after enabling the TEN (Transmit Enable) bit or REN (Receive Enable) bit for the corresponding SIO. * SIO2 and SIO3 together comprise one interrupt group. * The transmission-finished interrupt is effective when the internal clock is selected in UART or CSIO mode. (4) Notes on using transmit interrupts While the SIO Interrupt Request Enable Register is set to enable interrupts, a transmit interrupt request is generated upon enabling the corresponding TEN (Transmit Enable) bit. (5) About DMA transfer requests from SIO Each SIO can generate a transmit DMA transfer and a reception-finished DMA transfer request. These DMA transfer requests can be generated by enabling each SIO's corresponding TEN (Transmit Enable) bit or REN (Receive Enable) bit. When using DMA transfers to communicate with external devices, be sure to set the DMA Controller (DMAC) before enabling the TEN or REN bit. No reception-finished DMA transfer requests are generated if a receive error occurs. * Transmit DMA transfer request Generated when the transmit buffer is empty and the TEN bit is enabled. TEN (Transmit Enable bit) TBE (Transmit Buffer Empty bit) Transmit DMA transfer request Figure 12.2.3 Transmit DMA Transfer Request * Reception-finished DMA transfer request A DMA transfer request is generated when the receive buffer is filled. RFIN (Reception Finished bit) Receive DMA transfer request Note: * No reception-finished DMA transfer requests are generated if a receive error occurs. Figure 12.2.4 Reception-finished DMA Transfer Request 12-8 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers SIO23 Interrupt Request Status Register (SI23STAT) b0 0 1 0 2 0 3 0 4 5 6 b7 IRQT2 IRQR2 IRQT3 IRQR3 0 0 0 0 b Bit Name 0-3 No function assigned. Fix to "0". Function R W 0 0 4 IRQT2 SIO2 transmit interrupt request status bit 0: Interrupt not requested 1: Interrupt requested R (Note 1) 5 IRQR2 SIO2 receive interrupt request status bit 0: Interrupt not requested 1: Interrupt requested R (Note 1) 6 IRQT3 SIO3 transmit interrupt request status bit 0: Interrupt not requested 1: Interrupt requested R (Note 1) 7 IRQR3 SIO3 receive interrupt request status bit 0: Interrupt not requested 1: Interrupt requested R (Note 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. The register indicates the transmit/receive interrupt requests from each SIO. [Setting the interrupt request status bit] This bit can only be set in hardware, and cannot be set in software. [Clearing the interrupt request status bit] This bit is cleared by writing "0" in software. Note: * If the status bit is set in hardware at the same time it is cleared in software, the former has priority and the status bit is set. When writing to the SIO Interrupt Request Status Register, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write. 12-9 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers SIO03 Interrupt Request Enable Register (SI03EN) b8 9 10 11 12 13 14 b15 T0EN R0EN T1EN R1EN T2EN R2EN T3EN R3EN 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 T0EN SIO0 transmit interrupt request enable bit 0: Mask (disable) interrupt request 1: Enable interrupt request R W 9 R0EN SIO0 receive interrupt request enable bit 0: Mask (disable) interrupt request 1: Enable interrupt request R W 10 T1EN SIO1 transmit interrupt request enable bit 0: Mask (disable) interrupt request 1: Enable interrupt request R W 11 R1EN SIO1 receive interrupt request enable bit 0: Mask (disable) interrupt request 1: Enable interrupt request R W 12 T2EN SIO2 transmit interrupt request enable bit 0: Mask (disable) interrupt request 1: Enable interrupt request R W 13 R2EN SIO2 receive interrupt request enable bit 0: Mask (disable) interrupt request 1: Enable interrupt request R W 14 T3EN SIO3 transmit interrupt request enable bit 0: Mask (disable) interrupt request 1: Enable interrupt request R W 15 R3EN SIO3 receive interrupt request enable bit 0: Mask (disable) interrupt request 1: Enable interrupt request R W These registers enable or disable the interrupt requests generated by each SIO. Interrupt requests from any SIO are enabled by setting its corresponding interrupt request enable bit to "1". 12-10 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers SIO03 Interrupt Request Source Select Register (SI03SEL) b0 1 2 3 4 5 6 b7 IST0 IST1 IST2 IST3 ISR0 ISR1 ISR2 ISR3 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 IST0 SIO0 transmit interrupt request source select bit 0: Transmit buffer empty interrupt 1: Transmission finished interrupt R W 1 IST1 SIO1 transmit interrupt request source select bit 0: Transmit buffer empty interrupt 1: Transmission finished interrupt R W 2 IST2 SIO2 transmit interrupt request source select bit 0: Transmit buffer empty interrupt 1: Transmission finished interrupt R W 3 IST3 SIO3 transmit interrupt request source select bit 0: Transmit buffer empty interrupt 1: Transmission finished interrupt R W 4 ISR0 SIO0 receive interrupt request source select bit 0: Reception finished interrupt 1: Receive error interrupt R W 5 ISR1 SIO1 receive interrupt request source select bit 0: Reception finished interrupt 1: Receive error interrupt R W 6 ISR2 SIO2 receive interrupt request source select bit 0: Reception finished interrupt 1: Receive error interrupt R W 7 ISR3 SIO3 receive interrupt request source select bit 0: Reception finished interrupt 1: Receive error interrupt R W These registers select the source of interrupt requests generated by each SIO when transmit or receive operation is completed. (1) SIOn transmit interrupt request source select bit [When set to "0"] The transmit buffer empty interrupt is selected. A transmit buffer empty interrupt request is generated when data is transferred from the transmit buffer register to the transmit shift register. Also, a transmit buffer empty interrupt request is generated when the TEN (Transmit Enable) bit is set to "1" (interrupt enabled). [When set to "1"] The transmission finished (transmit shift buffer empty) interrupt is selected. A transmission finished interrupt request is generated when all of the data in the transmit shift register has been transferred. Note: * Do not select the transmission finished interrupt when an external clock is selected in CSIO mode. (2) SIOn receive interrupt request source select bit [When set to "0"] The reception finished (receive buffer full) interrupt is selected. A reception finished interrupt request is also generated when a receive error (except overrun error) occurs. [When set to "1"] The receive error interrupt is selected. Following types of errors constitute a receive error: * CSIO mode: Overrun error * UART mode: Overrun, parity and framing errors 12-11 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers Data bus SIO2 transmit buffer empty SIO2 transmission finished IST2 b2 F/F b4 IRQT2 F/F b12 T2EN F/F b5 IRQR2 F/F b13 R2EN F/F b6 IRQT3 F/F b14 T3EN F/F b7 IRQR3 F/F b15 R3EN F/F SIO2 reception finished 4-source inputs (Level) SIO2, 3 transmit/receive interrupt requests SIO2 receive error ISR2 b6 F/F SIO3 transmit buffer empty SIO3 transmission finished IST3 b3 F/F SIO3 reception finished SIO3 receive error ISR3 b7 F/F Figure 12.2.5 Block Diagram of SIO2,3 Transmit Interrupt Requests 12-12 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers 12.2.2 SIO Transmit Control Registers SIO0 SIO1 SIO2 SIO3 b0 Transmit Transmit Transmit Transmit 1 Control Control Control Control 2 Register Register Register Register 3 (S0TCNT) (S1TCNT) (S2TCNT) (S3TCNT) 4 CDIV 0 0 0 1 0 0120> 0130> 0140> b Bit Name 0, 1 No function assigned. Fix to "0". 2, 3 CDIV BRG count source select bit Function R 0 0 b2 0 0 1 1 R W 0 0 b3 0: Select 1: Select 0: Select 1: Select W f(BCLK) f(BCLK) divided by 8 f(BCLK) divided by 32 f(BCLK) divided by 256 4 No function assigned. Fix to "0". 5 TSTAT Transmit status bit 0:Transmission stopped and no data in transmit buffer register 1:Transmitting now or data present in transmit buffer register R - 6 TBE Transmit buffer empty bit 0:Data present in transmit buffer register 1: No data in transmit buffer register R - 7 TEN Transmit enable bit 0: Disable transmission 1: Enable transmission R W (1) CDIV (baud rate generator count source select) bits (Bits 2-3) These bits select the count source for the Baud Rate Generator (BRG). Note: * If f(BCLK) is selected as the count source for the BRG, care must be taken when setting the BRG so that the baud rate will not exceed the maximum transfer speed. For details, see the section in which the BRG register is explained. (2) TSTAT (Transmit Status) bit (Bit 5) [Set condition] This bit is set to "1" by a write to the transmit buffer register while transmission is enabled. [Clear condition] This bit is cleared to "0" when transmission is idle (no data in the transmit shift register) and no data exists in the transmit buffer register. This bit is also cleared by clearing the transmit enable bit. (3) TBE (Transmit Buffer Empty) bit (Bit 6) [Set condition] This bit is set to "1" when data is transferred from the transmit buffer register to the transmit shift register and the transmit buffer register is thereby emptied. This bit is also set by clearing the transmit enable bit to "0". [Clear condition] This bit is cleared to "0" by writing data to the lower byte of the transmit buffer register while transmission is enabled (TEN = "1"). (4) TEN (Transmit Enable) bit (Bit 7) Transmission is enabled by setting this bit to "1" and disabled by clearing this bit to "0". If this bit is cleared to "0" while transmitting data, the transmit operation stops. 12-13 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers 12.2.3 SIO Transmit/Receive Mode Registers SIO0 SIO1 SIO2 SIO3 b8 Transmit/Receive Transmit/Receive Transmit/Receive Transmit/Receive 9 10 SMOD 0 0 0 Mode Mode Mode Mode Register Register Register Register (S0MOD) (S1MOD) (S2MOD) (S3MOD) 0121> 0131> 0141> b Bit Name Function R W 8-10 SMOD Serial I/O mode select bit (Note 1) b8 b9 b10 0 0 0 : 7-bit UART 0 0 1 : 8-bit UART 0 1 X : 9-bit UART 1 X X : 8-bit clock-synchronous serial I/O R W 11 CKS Internal/external clock select bit 0: Internal clock 1: External clock R W (Note 2) 12 STB Stop bit length select bit, UART mode only 0: One stop bit 1: Two stop bits R W (Note 3) 13 PSEL Odd/even parity select bit, UART mode only 0: Odd parity 1: Even parity R W (Note 3) 14 PEN Parity enable bit, UART mode only 0: Disable parity 1: Enable parity R W (Note 3) 15 SEN Sleep select bit, UART mode only 0: Disable sleep function 1: Enable sleep function R W (Note 3) Note 1: For SIO2 and 3, bit 8 is fixed to "0" in hardware. This bit cannot be set to "1" in software (to select clock-synchronous serial I/O). Note 2: Has no effect when UART mode selected. Note 3: Bits 12-15 have no effect during clock-synchronous mode. The SIO Mode Registers consist of bits to set the serial I/O operation mode, data format and the functions used during communication. The SIO Transmit/Receive Mode Registers must always be set before the serial I/O starts operating. To change register settings before the serial I/O starts sending or receiving data, first confirm that transmit and receive operations have finished and then disable transmit/receive operations (by clearing the SIO Transmit Control Register transmit enable bit and SIO Receive Control Register receive enable bit to "0") before making changes. (1) SMOD (Serial I/O Mode Select) bits (Bits 8-10) These bits select the operation mode of serial I/O. (2) CKS (Internal/External Clock Select) bit (Bit 11) This bit is effective when CSIO mode is selected. Setting this bit has no effect when UART mode is selected, in which case the serial I/O is clocked by the internal clock. (3) STB (Stop Bit Length Select) bit (Bit 12) This bit is effective during UART mode. Use this bit to select the stop bit length that indicates the end of data to transmit. Setting this bit to "0" selects one stop bit, and setting this bit to "1" selects two stop bits. During clock-synchronous mode, the content of this bit has no effect. 12-14 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers (4) PSEL (Odd/Even Parity Select) bit (Bit 13) This bit is effective during UART mode. When parity is enabled (bit 14 = "1"), use this bit to select the parity attribute (whether odd or even). Setting this bit to "0" selects an odd parity, and setting this bit to "1" selects an even parity. When parity is disabled (bit 14 = "0") and during clock-synchronous mode, the content of this bit has no effect. (5) PEN (Parity Enable) bit (Bit 14) This bit is effective during UART mode. When this bit is set to "1", a parity bit is added immediately after the data bits of the transmit data, and the received data is checked for parity. The parity bit added to the transmit data is automatically determined to be "0" or "1" so that the attribute (odd/ even) derived by adding the number of 1's in data bits and the content of the parity bit agrees with one that was selected with the odd/even parity select bit (bit 13). Figure 12.2.6 shows an example of a data format when parity is enabled. (6) SEN (Sleep Select) bit (Bit 15) This bit is effective during UART mode. If the sleep function is enabled by setting this bit to "1", data is latched into the UART Receive Buffer Register only when the most significant bit (MSB) of the received data is "1". 12-15 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers ST : Start bit b : Data bits PAR : Parity bit SP : Stop bit : One frame equivalent Direction of transfer * Clock-synchronous mode b7 b6 b5 b4 b3 b2 b1 b0 (Note 1) (Note 2) * 7-bit UART mode ST b6 b5 b4 b3 b2 b1 b0 PAR * 8-bit UART mode ST b7 b6 b5 b4 b3 b2 b1 b0 PAR * 9-bit UART mode ST b8 b7 b6 b5 b4 b3 b2 b1 b0 SP (Note 1) (Note 2) SP (Note 1) (Note 2) PAR SP Note 1: Whether or not to add a parity bit is selectable. Note 2: The stop bit can be chosen to be one bit or two bits long. * When transmitting * When receiving If the attribute (odd/even) represented by the number of 1's in data bits agrees with the selected parity attribute, a parity bit "0" is added. If the attribute (odd/even) represented by the number of 1's in data bits does not agree with the selected parity attribute, a parity bit "1" is added. LSB ST b7 The received data is checked to see if the number of 1's included in its data and parity bits agrees with the parity attribute (known as parity check). b5 b4 b3 b2 b1 b0 MSB LSB MSB b6 ST PAR SP Attribute derived from b7 + b6 + ... + b0 b7 b6 b5 b4 b3 b2 b1 b0 PAR SP If the result of b7 + b6 + ... + b0 + PAR does not agree with the selected parity attribute, a parity error is assumed If it agrees with the selected parity attribute, PAR = "0" is added. If it does not agree with the selected parity attribute, PAR = "1" is added. Notes : * Shown above is an example of a data format in 8-bit UART mode. * The data bit numbers (bn) above indicate bit numbers in a data list, and not the register bit numbers (bn). Figure 12.2.6 Data Format When Parity is Enabled 12-16 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers 12.2.4 SIO Transmit Buffer Registers SIO0 SIO1 SIO2 SIO3 Transmit Transmit Transmit Transmit b0 Buffer Buffer Buffer Buffer 1 2 Register Register Register Register 3 (S0TXB) (S1TXB) (S2TXB) (S3TXB) 4 0122> 0132> 0142> b15 TDATA ? ? ? ? ? ? ? ? ? ? ? ? b Bit Name 0-6 No function assigned. Fix to "0". 7-15 TDATA Transmit data Function Transmit data is set in these bits. R W ? 0 ? W The SIO Transmit Buffer Registers are used to set transmit data. These registers are a write-only register, and the contents of these registers cannot be read out. Data must be LSB-aligned when set in these registers. Therefore, write transmit data to bits 9-15 for the 7-bit data format (UART mode only), bits 8-15 for the 8-bit data format, or bits 7-15 for the 9-bit data format (UART mode only). Before setting transmit data in these registers, enable the Transmit Control Register TEN (Transmit Enable) bit by setting it to "1". Writing data to these registers while the TEN bit is disabled (cleared to "0") has no effect. When data is written to the SIO Transmit Buffer Register while transmission is enabled, the data is transferred from that register to the SIO Transmit Shift Register, upon which the serial I/O starts sending data. Note: For the 7-bit and 8-bit data formats, the register can be accessed bytewise. 12-17 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers 12.2.5 SIO Receive Buffer Registers SIO0 SIO1 SIO2 SIO3 Receive Receive Receive Receive b0 Buffer Buffer Buffer Buffer 1 Register Register Register Register 2 3 (S0RXB) (S1RXB) (S2RXB) (S3RXB) 4 0124> 0134> 0144> 12 13 14 b15 ? ? ? ? RDATA ? ? ? ? ? ? ? ? ? ? ? b Bit Name 0-6 No function assigned. 8-15 RDATA Received data Function Received data is stored in these bits. R W 0 - R - The SIO Receive Buffer Registers are used to store the received data. When the serial I/O has finished receiving data, the content of the SIO Receive Shift Register is transferred to the SIO Receive Buffer Register. These registers are a read-only register. For the 7-bit data format (UART mode only), data is set in bits 9-15, with bits 8 and 7 always set to "0". For the 8-bit data format, data is set in bits 8-15, with bit 7 always set to "0". When reading the content of the SIO Receive Buffer Register after reception is completed, if the serial I/O finishes receiving the next data before the previous data is not read out, an overrun error occurs and the subsequent received data are not transferred to the Receive Buffer Register. To restart normal receive operation, clear the Receive Control Register REN (Receive Enable) bit to "0". Note: For the 7-bit and 8-bit data formats, the register can be accessed bytewise. 12-18 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers 12.2.6 SIO Receive Control Registers SIO0 SIO1 SIO2 SIO3 b0 0 Receive Receive Receive Receive Control Control Control Control Register Register Register Register (S0RCNT) (S1RCNT) (S2RCNT) (S3RCNT) 0126> 0136> 0146> b Bit Name Function R W 0 No function assigned. Fix to "0". 1 0 0 RSTAT Receive status bit 0: Reception stopped 1: Reception in progress R - 2 RFIN Reception finished bit 0: No data in receive buffer register 1: Data present in receive buffer register R - 3 REN Receive enable bit 0: Disable reception 1: Enable reception R W 4 OVR Overrun error bit 0: No overrun error 1: Overrun error occurred R - 5 PTY Parity error bit, UART mode only 0: No parity error 1: Parity error occurred R - 6 FLM Framing error bit, UART mode only 0: No framing error 1: Framing error occurred R - 7 ERS Error sum bit 0: No error 1: Error occurred R - 12-19 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers (1) RSTAT (Receive Status) bit (Bit 1) [Set condition] This bit is set to "1" by a start of receive operation. When this bit = "1", the serial I/O is receiving data. [Clear condition] This bit is cleared to "0" upon completion of receive operation or by clearing the REN (Receive Enable) bit. (2) RFIN (Reception Finished) bit (Bit 2) [Set condition] This bit is set to "1" when all data bits have been received in the Receive Shift Register and whose content is transferred to the Receive Buffer Register. [Clear condition] This bit is cleared to "0" by reading out the lower byte of the Receive Buffer Register or by clearing the REN (Receive Enable) bit. However, if an overrun error occurs, this bit cannot be cleared by reading out the lower byte of the Receive Buffer Register. In this case, clear REN (Receive Enable) bit to "0". (3) REN (Receive Enable) bit (Bit 3) Reception is enabled by setting this bit to "1", and is disabled by clearing this bit to "0", in which case the receiver unit is initialized. Accordingly, the receive status and reception finished flags, as well as the overrun error, framing error, parity error and error sum flags all are cleared. The receive operation stops if the Receive Enable bit is cleared to "0" while receiving data. (4) OVR (Overrun Error) bit (Bit 4) [Set condition] This bit is set to "1" when all bits of the next received data have been set in the Receive Shift Register while the Receive Buffer Register still contains the previous received data. In this case, the received data is not stored in the Receive Buffer Register. Although receive operation continues even when the overrun error flag = "1", the received data is not stored in the Receive Buffer Register. This error bit must be cleared before normal reception can be restarted. [Clear condition] This bit is cleared to "0" by only clearing the REN (Receive Enable) bit. (5) PTY (Parity Error) bit (Bit 5) This bit is effective in only UART mode. It is fixed to "0" during CSIO mode. [Set condition] The PTY (Parity Error) bit is set to "1" when the SIO Transmit/Receive Mode Register PEN (Parity Enable/Disable) bit is enabled and the parity (even or odd) of the received data does not agree with one that was set by the said register's PSEL (Parity Select) bit. [Clear condition] The PTY bit is cleared to "0" by reading out the lower byte of the SIO Receive Buffer Register or by clearing the SIO Receive Control Register REN (Receive Enable) bit. However, if an overrun error occurs, this bit cannot be cleared by reading out the lower byte of the Receive Buffer Register. In this case, clear the REN (Receive Enable) bit. 12-20 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers (6) FLM (Framing Error) bit (Bit 6) This bit is effective in only UART mode. It is fixed to "0" during CSIO mode. [Set condition] The FLM (Framing Error) bit is set to "1" when the number of received bits does not agree with one that was set by the SIO Transmit/Receive Mode Register. [Clear condition] The FLM bit is cleared to "0" by reading out the lower byte of the SIO Receive Buffer Register or by clearing the SIO Receive Control Register REN (Receive Enable) bit. However, if an overrun error occurs, this bit cannot be cleared by reading out the lower byte of the Receive Buffer Register. In this case, clear the REN (Receive Enable) bit to "0". (7) ERS (Error Sum) bit (Bit 7) [Set condition] This flag is set to "1" when any of overrun, framing or parity errors is detected at completion of reception. [Clear condition] If the detected error was an overrun error, this flag is cleared by clearing the REN (Receive Enable) bit to "0". Otherwise, this flag is cleared by reading out the lower byte of the SIO Receive Buffer Register or by clearing the SIO Receive Control Register REN (Receive Enable) bit. 12-21 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.2 Serial I/O Related Registers 12.2.7 SIO Baud Rate Registers SIO0 SIO1 SIO2 SIO3 Baud Baud Baud Baud b8 9 Rate Rate Rate Rate Register Register Register Register 10 (S0BAUR) (S1BAUR) (S2BAUR) (S3BAUR) 11 0127> 0137> 0147> BRG ? ? ? ? b Bit Name Function R W 8-15 BRG Baud rate divide value The baud rate count source selected by SIO Mode Register is divided by (n + 1) where n = BRG set value. R W (1) BRG (baud rate divide value) (Bits 8-15) The SIO Baud Rate Registers are used to set a baud rate divide value, so that the baud rate count source selected by SIO Mode Register is divided by (n + 1) where n = BRG set value. Because the BRG value initially is undefined, be sure to set the divide value before the serial I/O starts operating. The value written to the BRG during transmit/receive operation takes effect in the next cycle after the BRG counter has finished counting. When using the internal clock (to output the SCLKO signal) in CSIO mode, the serial I/O divides the internal BCLK using a clock divider and then divides the resulting clock by (n + 1) where n = BRG set value and further by 2, thereby generating a transmit/receive shift clock. When using an external clock in CSIO mode, the serial I/O does not use the BRG. (Transmit/receive operations are synchronized to the externally supplied clock.) During UART mode, the serial I/O divides the internal BCLK using a clock divider and then divides the resulting clock by (n + 1) where n = BRG set value and further by 16, thereby generating a transmit/receive shift clock. When using SIO0 or SIO1 in UART mode, set the relevant port (P84 or P87) to function as an SCLKO pin, so that a BRG output clock divided by 2 can be output from that SCLKO pin. When using the internal clock (internally clocked CSIO mode or UART mode), if f(BCLK) is selected as the BRG count source, make sure the transfer rate does not exceed 2 Mbits/second during CSIO mode, and that BRG is equal to or greater than 7 during UART mode. 12-22 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.3 Transmit Operation in CSIO Mode 12.3 Transmit Operation in CSIO Mode 12.3.1 Setting the CSIO Baud Rate The baud rate (data transfer rate) in CSIO mode is determined by a transmit/receive shift clock. The clock source from which a transmit/receive shift clock derives is selected from the internal clock f(BCLK) or external clock. The CKS (Internal/External Clock Select) bit (SIO Transmit/Receive Mode Register bit 11) is used to select the clock source. The equation used to calculate the transmit/receive baud rate differs depending on whether an internal or external clock is selected. (1) When internal clock is selected in CSIO mode When the internal clock is selected, f(BCLK) is divided by a clock divider before being supplied to the Baud Rate Generator (BRG). The clock divider's divide-by value is selected from 1, 8, 32 or 256 by using the CDIV (baud rate generator count source select) bits (Transmit Control Register bits 2-3). The Baud Rate Generator divides the clock divider output by (baud rate register set value + 1) and further by 2, thus generating a transmit/receive shift clock. When the internal clock is selected in CSIO mode, the baud rate is calculated using the equation below. f(BCLK) Baud rate = Clock divider's divide-by value x (baud rate register set value + 1) x 2 [bps] Baud rate register set value = H'00 to H'FF (Note 1) Clock divider's divide-by value = 1, 8, 32 or 256 Note 1: If divide-by-1 (i.e., f(BCLK) itself) is selected as the baud rate generator count source, use caution when setting the baud rate register so that the transfer rate will not exceed 2 Mbps. (2) When external clock is selected in CSIO mode In this case, the Baud Rate Generator is not used, and the input clock from the SCLKI pin serves directly as a transmit/receive shift clock for CSIO. The maximum frequency of the SCLKI pin input clock is f(BCLK)/16. Baud rate = SCLKI pin input clock [bps] 12-23 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.3 Transmit Operation in CSIO Mode 12.3.2 Initializing CSIO Transmission To transmit data in CSIO mode, initialize the serial I/O following the procedure described below. (1) Setting SIO Transmit/Receive Mode Register * Set the register to CSIO mode. * Select the internal or an external clock. (2) Setting SIO Transmit Control Register * Select the clock divider's divide-by ratio (when internal clock selected). (3) Setting SIO Baud Rate Register When the internal clock is selected, set a baud rate generator value. (See Section 12.3.1, "Setting the CSIO Baud Rate.") (4) Setting the SIO interrupt related registers * Select the source of transmit interrupt request (transmit buffer empty or transmission finished) (SIO Interrupt Request Source Select Register). * Enable or disable transmit interrupt requests (SIO Interrupt Request Enable Register). Note: * Transmission finished interrupt requests are effective only when the internal clock is selected. (5) Setting the Interrupt Controller (SIO Transmit Interrupt Control Register) To use transmit interrupts, set their priority levels. (6) Setting the DMAC To issue DMA transfer requests to the internal DMAC when the transmit buffer is empty, set up the DMAC. (See Chapter 9, "DMAC.") (7) Selecting pin functions Because the serial I/O related pins serve dual purposes, set the pin functions for use as SIO pins or input/ output ports. (See Chapter 8, "Input/Output Ports and Pin Functions.") 12-24 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.3 Transmit Operation in CSIO Mode Initialize CSIO transmission * Set the register to CSIO mode * Select the internal or external clock Set SIO Transmit/Receive Mode Register Set SIO Transmit Control Register * Select the clock divider divide-by ratio (Note 1) Serial I/O related registers * Divide-by ratio = H'00 to H'FF (Note 2) Set SIO Baud Rate Register * Select the source of transmit interrupt request (Note 3) * Enable or disable transmit interrupt requests Set SIO interrupt related registers Set Interrupt Controller (When using interrupts) Set DMAC (When using the DMAC) Set Input/Output Port Operation Mode Register End of CSIO transmit initialization Note 1: Necessary when the internal clock is selected. Note 2: If the internal clock and a divide-by ratio = 1 are selected, caution must be used when setting the baud rate register so that the transfer rate will not exceed 2 Mbps. Note 3: Transmission finished interrupts are effective only when the internal clock is selected. Figure 12.3.1 Procedure for Initializing CSIO Transmission 12-25 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.3 Transmit Operation in CSIO Mode 12.3.3 Starting CSIO Transmission The serial I/O starts a transmit operation when all of the following conditions are met after being initialized. (1) Transmit conditions when CSIO mode internal clock is selected * The SIO Transmit Control Register transmit enable bit is set to "1". * Transmit data (8 bits) is written to the lower byte of the SIO Transmit Buffer Register (transmit buffer empty bit = "0") (2) Transmit conditions when CSIO mode external clock is selected * The SIO Transmit Control Register transmit enable bit is set to "1". * Transmit data is written to the lower byte of the SIO Transmit Buffer Register (transmit buffer empty bit = "0") * A falling edge of transmit clock on the SCLKI pin is detected. Note 1: While the transmit enable bit is cleared to "0", writes to the transmit buffer register are ignored. Always set the transmit enable bit to "1" before writing to the transmit buffer register. Note 2: When the internal clock is selected, a write to the lower byte of the transmit buffer register in above triggers transmission to start. Note 3: The transmit status bit is set to "1" at the time data is set in the lower byte of the SIO Transmit Buffer Register. When transmission starts, the serial I/O sends data following the procedure described below. * Transfer the content of the SIO Transmit Buffer Register to the SIO Transmit Shift Register. * Set the transmit buffer empty bit to "1" (Note 1). * Start sending data synchronously with the shift clock beginning with the LSB. Note 1: A transmit interrupt request can be generated for reasons that the transmit buffer is empty or transmission has finished. Also, a DMA transfer request can be generated when the transmit buffer is empty. No DMA transfer requests can be generated for reasons that transmission has finished. 12.3.4 Successive CSIO Transmission Once data has been transferred from the transmit buffer register to the transmit shift register, the next data can be written to the transmit buffer register even when the serial I/O has not finished sending the previous data. If the next data is written to the transmit buffer register before transmission has finished, the previous and the next data are transmitted successively. Check the SIO Transmit Control Register's Status Register's transmit buffer empty flag to see if data has been transferred from the transmit buffer register to the transmit shift register. 12-26 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.3 Transmit Operation in CSIO Mode 12.3.5 Processing at End of CSIO Transmission When data transmission finishes, the following operation is automatically performed in hardware. (1) When not transmitting successively * The transmit status bit is cleared to "0". (2) When transmitting successively * When transmission of the last data in a consecutive data train finishes, the transmit status bit is cleared to "0". 12.3.6 Transmit Interrupts (1) Transmit buffer empty interrupt If the transmit buffer empty interrupt was selected using the SIO Interrupt Request Source Select Register, a transmit buffer empty interrupt request is generated when data has been transferred from the transmit buffer register to the transmit shift register. A transmit buffer empty interrupt request is also generated when the TEN (Transmit Enable) bit is set to "1" (disabled enabled) while the transmit buffer empty interrupt has been enabled. (2) Transmission finished interrupt If the transmission finished interrupt was selected using the SIO Interrupt Request Source Select Register, a transmission finished interrupt request is generated by a falling edge of the internal transfer clock pulse at which the last bit of data in the transmit shift register has been transmitted or when the transmit enable bit is cleared. The SIO Interrupt Request Enable Register and the Interrupt Controller (ICU) must be set before these transmit interrupts can be used. 12.3.7 Transmit DMA Transfer Request When data has been transferred from the transmit buffer register to the transmit shift register, a transmit DMA transfer request for the corresponding SIO channel is output to the DMAC. A transmit DMA transfer request is also output when the TEN (Transmit Enable) bit is set to "1" (disabled enabled). The DMAC must be set before DMA transfers can be used during data transmission. 12-27 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.3 Transmit Operation in CSIO Mode The following processing is automatically performed in hardware. CSIO transmit operation starts Transmit conditions met? N Y (Note 1) * Transfer the content of the transmit Transmit interrupt request * Set the transmit buffer empty bit to "1" Transmit DMA transfer request buffer to the transmit shift register Transmit data Y (Successive transmission) Transmit conditions met? N Clear the transmit status bit to "0" End of CSIO transmit operation Note 1: This applies when the transmit interrupt request was enabled using the SIO Interrupt Request Enable Register after selecting the transmit buffer empty interrupt with the SIO Interrupt Request Source Select Register. Figure 12.3.2 Transmit Operation during CSIO Mode (Hardware Processing) 12-28 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.3 Transmit Operation in CSIO Mode 12.3.8 Example of CSIO Transmit Operation The following shows a typical transmit operation in CSIO mode. SCLKO SCLKI TXD RXD External clock selected Internal clock selected (Internal transfer clock) Transmit clock (SCLKO) Set Transmit enable bit Write to the transmit buffer register Cleared Transmit buffer empty bit Set by a write to the transmit buffer Content of the transmit buffer register is transferred to the transmit shift register Cleared by completion of transmission Transmit status bit b7 TXD SIO transmit interrupt request (Note 1) (When transmit buffer empty interrupt is selected) Transmit interrupt request (Note 2) (Note 5) b6 b5 b4 b3 b2 b1 b0 Transmit interrupt request (Note 2) (Note 6) Transmit interrupt request (Note 3) (Note 7) Interrupt request accepted (Note 4) (When transmission finished interrupt is selected)(Note 8) Interrupt request accepted : Processing by software : Interrupt request generated Note 1: Changes of the Interrupt Controller's SIO Transmit Interrupt Control Register interrupt request bit Note 2: When transmit buffer empty interrupt is enabled (DMA transfer can also be requested at the same time) Note 3: When transmission finished interrupt is enable Note 4: The Interrupt Controller's IVECT register is read or the SIO Transmit Interrupt Control Register interrupt request bit cleared Note 5: A transmit interrupt request is generated when transmission is enabled. Note 6: Be aware that even after transmit data is written to the transmit buffer, a transmit interrupt request is generated when the data is transferred from the transmit buffer to the transmit shift register and the transmit buffer is thereby emptied. Note 7: A transmission finished interrupt request is generated by a falling edge of the internal transfer clock pulse at which transmission of the transmit shift register data has finished or when the transmit enable bit is cleared. Note 8: It is inhibited to select the transmission finished interrupt when an external clock is selected. Figure 12.3.3 Example of CSIO Transmission (Transmitted Only Once) 12-29 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.3 Transmit Operation in CSIO Mode SCLKO SCLKI TXD RXD Internal clock selected External clock selected (Internal transfer clock) Transmit clock (SCLKO) Set Transmit enable bit Write to the transmit buffer register Write to the transmit buffer register (First data) Transmit buffer empty bit Cleared (Next data) Transmit status bit Next data First data b7 TXD SIO transmit interrupt request (Note 1) (When transmit buffer empty interrupt is selected) b6 b5 b0 b7 b6 b5 b0 Next data is written at a transmit buffer empty interrupt (Note 2)(Note 6) (Note 2) (Note 2) (Note 5) Transmit interrupt request (Note 3)(Note 7) Interrupt request accepted (Note 4) (Note 3) (When transmission finished interrupt is selected) (Note 8) Interrupt request accepted (Note 4) : Processing by software : Interrupt request generated Note 1: Changes of the Interrupt Controller's SIO Transmit Interrupt Control Register interrupt request bit Note 2: When transmit buffer empty interrupt is enabled (DMA transfer can also be requested at the same time) Note 3: When transmission finished interrupt is enable Note 4: The Interrupt Controller's IVECT register is read or the SIO Transmit Interrupt Control Register interrupt request bit cleared Note 5: A transmit interrupt request is generated when transmission is enabled. Note 6: Be aware that even after transmit data is written to the transmit buffer, a transmit interrupt request is generated when the data is transferred from the transmit buffer to the transmit shift register and the transmit buffer is thereby emptied. Note 7: A transmission finished interrupt request is generated by a falling edge of the internal transfer clock pulse at which transmission of the transmit shift register data has finished or when the transmit enable bit is cleared. Note 8: It is inhibited to select the transmission finished interrupt when an external clock is selected. Figure 12.3.4 Example of CSIO Transmission (Transmitted Successively) 12-30 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.4 Receive Operation in CSIO Mode 12.4 Receive Operation in CSIO Mode 12.4.1 Initialization for CSIO Reception To receive data in CSIO mode, initialize the serial I/O following the procedure described below. Note, however, that because the receive shift clock is derived by an operation of the transmit circuit, transmit operation must always be executed even when the serial I/O is used for only receiving data. (1) Setting SIO Transmit/Receive Mode Register * Set the register to CSIO mode. * Select the internal or an external clock. (2) Setting SIO Transmit Control Register * Select the clock divider's divide-by ratio (when internal clock selected). (3) Setting SIO Baud Rate Register When the internal clock is selected, set a baud rate generator value. (See Section 12.3.1, "Setting the CSIO Baud Rate.") (4) Setting SIO interrupt related registers * Select the source of receive interrupt request (reception finished or error) (SIO Interrupt Request Source Select Register). * Enable or disable receive interrupts (SIO Interrupt Request Enable Register). (5) Setting SIO Receive Control Register * Set the receive enable bit. (6) Setting Interrupt Controller (SIO Transmit Interrupt Control Register) To use receive interrupts, set their priority levels. (7) Setting DMAC Set up the DMAC when the DMA transfer is requested to the internal DMAC on completion of the transmission. (See Chapter 9, "DMAC.") 12-31 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.4 Receive Operation in CSIO Mode (8) Selecting pin functions Because the serial I/O related pins serve dual purposes, set the pin functions for use as SIO pins or input/ output ports. (See Chapter 8, "Input/Output Ports and Pin Functions.") Initialize CSIO reception Set SIO Transmit/Receive Mode Register Set SIO Transmit Control Register * Set the register to CSIO mode * Select the internal or external clock * Select the clock divider divide-by ratio (Note 1) Serial I/O related registers Set SIO Baud Rate Register * Divide-by ratio = H'00 to H'FF (Note 2) Set SIO interrupt related registers * Select the source of receive interrupt request * Enable or disable receive interrupt requests Set SIO Receive Control Register * Set the receive enable bit Set Interrupt Controller (When using interrupts) Set DMAC (When using the DMAC) Set Input/Output Port Operation Mode Register End of CSIO receive initialization Note 1: Necessary when the internal clock is selected. Note 2: If the internal clock and a divide-by ratio = 1 are selected, caution must be used when setting the baud rate register so that the transfer rate will not exceed 2 Mbps. Figure 12.4.1 Procedure for Initializing CSIO Reception 12-32 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.4 Receive Operation in CSIO Mode 12.4.2 Starting CSIO Reception The serial I/O starts receive operation when all of the following conditions are met after being initialized. (1) Receive conditions when CSIO mode internal clock is selected * The SIO Receive Control Register receive enable bit is set to "1". * Transmit conditions are met. (See Section 12.3.3, "Starting CSIO Transmission.") (2) Receive conditions when CSIO mode external clock is selected * The SIO Receive Control Register receive enable bit is set to "1". * Transmit conditions are met. (See Section 12.3.3, "Starting CSIO Transmission.") Note: * The receive status bit is set to "1" at the time dummy data is set in the lower byte of the SIO Transmit Buffer Register. When the above conditions are met, the serial I/O starts receiving 8-bit serial data (LSB first) synchronously with the receive shift clock. 12.4.3 Processing at End of CSIO Reception When data reception finishes, the following operation is automatically performed in hardware. (1) When reception is completed normally The reception finished (receive buffer full) bit is set to "1". Notes: * An interrupt request is generated if the reception finished (receive buffer full) interrupt has been enabled. * A DMA transfer request is generated. (2) When an error occurred during reception If an error (only overrun error in CSIO mode) occurred during reception, the overrun error bit and receive error sum bit are set to "1". Notes: * If the reception finished interrupt has been selected (by SIO Receive Interrupt Request Source Select Register), neither a reception finished interrupt request nor a DMA transfer request is generated. * If the receive error interrupt has been selected (by SIO Receive Interrupt Request Source Select Register), a receive error interrupt request is generated when interrupt requests are enabled. No DMA transfer requests are generated. 12-33 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.4 Receive Operation in CSIO Mode 12.4.4 About Successive Reception If the following conditions are met when data reception has finished, data may be received successively. * The receive enable bit is set to "1". * Transmit conditions are met. * No overrun error has occurred. CSIO receive operation starts Receive conditions met? N Y Receive data Y Overrun error ? N Set the SIO Receive Control Register overrun error and receive error sum bits to "1" Set the SIO Receive Control Register reception finished bit to "1" Store the received data in the receive buffer register End of CSIO receive operation Figure 12.4.2 Receive Operation during CSIO Mode (Hardware Processing) 12-34 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.4 Receive Operation in CSIO Mode 12.4.5 Flags Showing the Status of CSIO Receive Operation There are following flags that indicate the status of receive operation during CSIO mode: * SIO Receive Control Register receive status bit * SIO Receive Control Register reception finished bit * SIO Receive Control Register receive error sum bit * SIO Receive Control Register overrun error bit When reading the content of the SIO Receive Buffer Register after reception is completed, if the serial I/O finishes receiving the next data before the previous data is not read out, an overrun error occurs and the subsequent received data are not transferred to the receive buffer register. Before receive operation can be restarted, the receive enable bit must temporarily be cleared to "0" to initialize the receiver control unit. The above reception finished bit, if no receive errors occurred (Note 1), may be cleared by reading out the lower byte of the SIO Receive Buffer Register or clearing the REN (Receive Enable) bit. However, if any receive error occurred, the reception finished bit can only be cleared by clearing the REN (Receive Enable) bit, and cannot be cleared by reading out the lower byte of the SIO Receive Buffer Register. Note 1: Overrun errors are the only error that can be detected during reception in CSIO mode. 12-35 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.4 Receive Operation in CSIO Mode 12.4.6 Example of CSIO Receive Operation The following shows a typical receive operation in CSIO mode. SCLKO SCLKI TXD RXD Internal clock selected External clock selected Receive clock (SCLKO) Clock stops Set Receive enable bit Cleared b7 RXD b6 b5 b4 b3 b2 b1 b0 Set by a write to the transmit buffer Receive status bit Automatically cleared for each receive operation performed Reception finished bit Read from the receive buffer SIO receive interrupt request (Note 1) (When reception finished interrupt is selected) Reception finished interrupt request (Note 2) Interrupt request accepted (Note 3) (When receive error interrupt is selected) No interrupt request : Processing by software : Interrupt request generated Note 1: Changes of the Interrupt Controller's SIO Receive Interrupt Control Register interrupt request bit Note 2: When reception finished interrupt is enabled (DMA transfer can also be requested at the same time) Note 3: The Interrupt Controller's IVECT register is read or the SIO Receive Interrupt Control Register interrupt request bit cleared Figure 12.4.3 Example of CSIO Reception (When Received Normally) 12-36 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.4 Receive Operation in CSIO Mode SCLKO SCLKI RXD TXD Internal clock selected External clock selected Receive clock (SCLKI) Set Cleared Receive enable bit RXD First data reception completed b7 b0 b6 b7 Next data reception completed b6 b0 Receive buffer not read out during this interval Reception finished bit Set Overrun error bit Overrun error bit cleared (Note 4) SIO receive interrupt request (Note 1) (When reception finished interrupt is selected) Reception finished interrupt request (Note 2) Interrupt request accepted (Note 5) Receive error interrupt request (Note 3) (When receive error interrupt is selected) Interrupt request accepted (Note 5) : Processing by software : Interrupt request generated Note 1: Changes of the Interrupt Controller's SIO Receive Interrupt Control Register interrupt request bit Note 2: When reception finished interrupt is enabled Note 3: When receive error interrupt is enabled Note 4: The receive enable bit is cleared Note 5: The Interrupt Controller's IVECT register is read or the SIO Receive Interrupt Control Register interrupt request bit cleared Figure 12.4.4 Example of CSIO Reception (When Overrun Error Occurred) 12-37 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.5 Precautions on Using CSIO Mod 12.5 Precautions on Using CSIO Mode * Settings of SIO Transmit/Receive Mode Register and SIO Baud Rate Register The SIO Transmit/Receive Mode Register and SIO Baud Rate Register and the Transmit Control Register's BRG count source select bit must always be set before the serial I/O starts operating. If these settings need to be changed after a transmit or receive operation has started, first check to see that transmit and receive operations have finished and then clear the transmit and receive enable bits before making changes. * Settings of BRG (Baud Rate Register) If f(BCLK) is selected with the BRG clock source select bit, use caution when setting the BRG register so that the transfer rate will not exceed 2 Mbps. * About successive transmission To transmit data successively, make sure the next transmit data is set in the SIO Transmit Buffer Register before the current data transmission finishes. * About reception Because the receive shift clock in CSIO mode is derived by an operation of the transmit circuit, transmit operation must always be executed (by sending dummy data) even when the serial I/O is used for only receiving data. In this case, be aware that if the port function is set for the TXD pin (by setting the operation mode register to "1"), dummy data may actually be output from the pin. * About successive reception To receive data successively, make sure that data (dummy data) is set in the SIO Transmit Buffer Register before a transmit operation on the transmitter side starts. * Transmission/reception using DMA To transmit/receive data in DMA request mode, enable the DMAC to accept transfer requests (by setting the DMA Mode Register) before serial communication starts. * About reception finished bit If a receive error (overrun error) occurs, the reception finished bit can only be cleared by clearing the receive enable bit, and cannot be cleared by reading out the receive buffer register. * About overrun error If all bits of the next received data have been set in the SIO Receive Shift Register before reading out the SIO Receive Buffer Register (i.e., an overrun error occurred), the received data is not stored in the receive buffer register, with the previous received data retained in it. Although a receive operation continues thereafter, the subsequent received data is not stored in the receive buffer register (receive status bit = "1"). Before normal receive operation can be restarted, the receive enable bit must be temporarily cleared to "0". And this is the only way that the overrun error flag can be cleared. * About DMA transfer request generation during SIO transmission If the transmit buffer register becomes empty (transmit buffer empty flag = "1") while the transmit enable bit remains set to "1" (transmission enabled), an SIO transmit buffer empty DMA transfer request is generated. * About DMA transfer request generation during SIO reception If the reception finished bit is set to "1" (receive buffer register full), a reception finished DMA transfer request is generated. Be aware, however, that if an overrun error occurred during reception, this DMA transfer request is not generated. 12-38 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.6 Transmit Operation in UART Mode 12.6 Transmit Operation in UART Mode 12.6.1 Setting the UART Baud Rate The baud rate (data transfer rate) in UART mode is determined by a transmit/receive shift clock. During UART mode, the source for this transmit/receive shift clock is always the internal clock no matter how the internal/ external clock select bit (SIO Transmit/Receive Mode Register bit 11) is set. (1) Calculating the UART mode baud rate After being divided by a clock divider, f(BCLK) is supplied to the Baud Rate Generator (BRG), after which it is further divided by 16 to produce a transmit/receive shift clock. The clock divider's divide-by value is selected from 1, 8, 32 or 256 by using the SIO Transmit Control Register CDIV (baud rate generator count source select) bits (bits 2-3).(Note 1) The Baud Rate Generator divides the clock divider output by (baud rate register set value + 1) and further by 16, thus generating a transmit/receive shift clock. When the internal clock is selected in UART mode, the baud rate is calculated using the equation below. Baud rate = [bps] f(BCLK) Clock divider's divide-by value x (baud rate register set value + 1) x 16 Baud rate register set value = H'00 to H'FF (Note 1) Clock divider's divide-by value = 1, 8, 32 or 256 Note 1: If divide-by-1 (i.e., f(BCLK) itself) is selected as the baud rate generator count source, make sure the value set in the baud rate register is equal to or greater than 7. 12.6.2 UART Transmit/Receive Data Formats The transmit/receive data format during UART mode is determined by setting the SIO Transmit/Receive Mode Register. Shown below is the transmit/receive data format that can be used in UART mode. Next data Transmit data Data bits (8 bits) LSB ST b7 MSB b6 b5 b4 b3 b2 b1 b0 Start bit PAR Parity bit SP SP ST Stop bit Figure 12.6.1 Example of a Transfer Data Format during UART Mode 12-39 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.6 Transmit Operation in UART Mode Table 12.6.1 Transfer Data in UART Mode Bit Name Content ST (start bit) Indicates the beginning of data transmission. This is a low-level signal of a one bit period, which is added immediately preceding the transmit data. Bits 0-8 (character bits) Transmit/receive data transferred via serial I/O. In UART mode, 7, 8 or 9 bits of data can be transmitted/received. PAR (parity bit) Added to the transmit/receive character. When parity is enabled, parity is automatically set in such a way that the number of 1's in the character including the parity bit itself is always even or odd as selected by the even/odd parity select bit. SP (stop bit) Indicates the end of data transmission, which is added immediately following the character (or if parity is enabled, immediately following the parity bit). The stop bit can be chosen to be one bit or two bits long. LSB MSB ST b7 b6 b5 b4 b3 b2 b1 SP ST b7 b6 b5 b4 b3 b2 b1 SP SP ST b7 b6 b5 b4 b3 b2 b1 PAR SP ST b7 b6 b5 b4 b3 b2 b1 PAR SP SP 7-bit character LSB MSB ST b7 b6 b5 b4 b3 b2 b1 b0 SP ST b7 b6 b5 b4 b3 b2 b1 b0 SP SP ST b7 b6 b5 b4 b3 b2 b1 b0 PAR SP ST b7 b6 b5 b4 b3 b2 b1 b0 PAR SP SP 8-bit character LSB MSB ST b8 b7 b6 b5 b4 b3 b2 b1 b0 SP ST b8 b7 b6 b5 b4 b3 b2 b1 b0 SP SP ST b8 b7 b6 b5 b4 b3 b2 b1 b0 PAR SP ST b8 b7 b6 b5 b4 b3 b2 b1 b0 PAR SP SP 9-bit character SIO Transmit Buffer Register SIO Receive Buffer Register b0 b7 b8 b15 ST: Start bit Bits 0-7: Character (data) bits PAR: Parity bit SP: Stop bit 7-bit character 8-bit character 9-bit character Notes: * The high-order bits of the selected character length in the SIO Receive Buffer Register are fixed to "0". * The data bit numbers (bn) above indicate bit numbers in a data list, and not the register bit numbers (bn). Figure 12.6.2 Selectable Data Formats during UART Mode 12-40 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.6 Transmit Operation in UART Mode 12.6.3 Initializing UART Transmission To transmit data in UART mode, initialize the serial I/O following the procedure described below. (1) Setting SIO Transmit/Receive Mode Register * Set the register to UART mode. * Set parity (when enabled, select odd/even). * Set the stop bit length. * Set the character length (Note 1). Note 1: During UART mode, settings of the internal/external clock select bit have no effect (only the internal clock is useful). (2) Setting SIO Transmit Control Register * Select the clock divider's divide-by ratio. (3) Setting SIO Baud Rate Register Set a baud rate generator value. (See Section 12.6.1, "Setting the UART Baud Rate.") (4) Setting SIO interrupt related registers * Select the source of transmit interrupt request (transmit buffer empty or transmission finished) (SIO Interrupt Request Source Select Register). * Enable or disable SIO transmit interrupt requests (SIO Interrupt Request Enable Register). (5) Setting Interrupt Controller (SIO Transmit Interrupt Control Register) To use transmit interrupts, set their priority levels. (6) Setting DMAC To issue DMA transfer requests to the internal DMAC when the transmit buffer is empty, set up the DMAC. (See Chapter 9, "DMAC.") (7) Selecting pin functions Because the serial I/O related pins serve dual purposes, set the pin functions for use as SIO pins or input/ output ports. (See Chapter 8, "Input/Output Ports and Pin Functions.") 12-41 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.6 Transmit Operation in UART Mode Initialize UART transmission Set SIO Transmit/Receive Mode Register Serial I/O related registers * Set the register to UART mode * Set parity (when enabled, select odd/even) * Set the stop bit length * Set the character length Set SIO Transmit Control Register * Select the clock divider divide-by ratio Set SIO Baud Rate Register * Divide-by ratio = H'00 to H'FF (Note 1) Set SIO interrupt related registers * Select the source of transmit interrupt request * Enable or disable transmit interrupt requests Set Interrupt Controller (When using interrupts) Set DMAC related registers (When using the DMAC) Set Input/Output Port Operation Mode Register End of UART transmit initialization Note 1: If f(BCLK) is selected for BRG count source (CDVI), it is necessary that the value set in the baud rate register be equal to or greater than 7. Figure 12.6.3 Procedure for Initializing UART Transmission 12-42 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.6 Transmit Operation in UART Mode 12.6.4 Starting UART Transmission The serial I/O starts a transmit operation when all of the following conditions are met after being initialized. * SIO Transmit Control Register TEN (Transmit Enable) bit is set to "1" (Note 1). * Transmit data is written to the SIO Transmit Buffer Register (transmit buffer empty bit = "0"). Note 1: While the transmit enable bit is cleared to "0", writes to the transmit buffer are ignored. Always be sure to set the transmit enable bit to "1" before writing to the transmit buffer register. When transmission starts, the serial I/O sends data following the procedure described below. * Transfer the content of the SIO Transmit Buffer Register to the SIO Transmit Shift Register. * Set the transmit buffer empty bit to "1" (Note 2). * Start sending data synchronously with the shift clock beginning with the LSB. Note 2: A transmit interrupt request can be generated for reasons that the transmit buffer is empty or transmission has finished. Also, a DMA transfer request can be generated when the transmit buffer is empty. No DMA transfer requests can be generated for reasons that transmission has finished. 12.6.5 Successive UART Transmission Once data has been transferred from the transmit buffer register to the transmit shift register, the next data can be written to the transmit buffer register even when the serial I/O has not finished sending the previous data. If the next data is written to the transmit buffer before transmission has finished, the previous and the next data are transmitted successively. Check the SIO Transmit Control Register's transmit buffer empty flag to see if data has been transferred from the transmit buffer register to the transmit shift register. 12.6.6 Processing at End of UART Transmission When data transmission finishes, the following operation is automatically performed in hardware. (1) When not transmitting successively * The transmit status bit is cleared to "0". (2) When transmitting successively * When transmission of the last data in a consecutive data train finishes, the transmit status bit is cleared to "0". 12.6.7 Transmit Interrupts (1) Transmit buffer empty interrupt If the transmit buffer empty interrupt was selected using the SIO Interrupt Request Source Select Register, a transmit buffer empty interrupt request is generated when data has been transferred from the transmit buffer register to the transmit shift register. A transmit buffer empty interrupt request is also generated when the TEN (Transmit Enable) bit is set to "1" (reenabled after being disabled) while the transmit buffer empty interrupt has been enabled. 12-43 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.6 Transmit Operation in UART Mode (2) Transmission finished interrupt If the transmission finished interrupt was selected using the SIO Interrupt Request Source Select Register, a transmission finished interrupt request is generated when data in the transmit shift register has all been transmitted. The SIO Interrupt Request Enable Register and the Interrupt Controller (ICU) must be set before these transmit interrupts can be used. 12.6.8 Transmit DMA Transfer Request When data has been transferred from the transmit buffer register to the transmit shift register, a transmit DMA transfer request for the corresponding SIO channel is output to the DMAC. A transmit DMA transfer request is also output when the TEN (Transmit Enable) bit is set to "1" (disabled enabled). The DMAC must be set before DMA transfers can be used during data transmission. The following processing is automatically performed in hardware. UART transmit operation starts Transmit conditions met ? N Y Transmit interrupt request (Note 1) the content of the transmit buffer * Transfer to the transmit shift register * Set the transmit buffer empty bit to "1" Transmit DMA transfer request Transmit data Y (Successive transmission) Transmit conditions met ? N Clear the transmit status bit to "0" End of UART transmit operation Note 1: This applies when the transmit interrupt was enabled using the SIO Interrupt Request Enable Register after selecting the transmit buffer empty interrupt with the SIO Interrupt Request Source Select Register. Figure 12.6.4 Transmit Operation during UART Mode (Hardware Processing) 12-44 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.6 Transmit Operation in UART Mode 12.6.9 Example of UART Transmit Operation The following shows a typical transmit operation in UART mode. TXD RXD Set Transmit enable bit Write to the transmit buffer register Cleared Set Transmit buffer empty bit Transferred from the transmit buffer to the transmit shift register (transmission starts) Cleared Transmit status bit TXD Transmit interrupt request SIO transmit interrupt request (Note 1) (When transmit buffer empty interrupt is selected) (Note 2) (Note 5) ST b7 b0 b6 PAR SP SP Transmit interrupt request (Note 2)(Note 6) Transmit interrupt request (Note 3)(Note 7) Interrupt request accepted (Note 4) (When transmission finished interrupt is selected) Interrupt request accepted (Note 4) : Processing by software : Interrupt request generated Note 1: Changes of the Interrupt Controller's SIO Transmit Interrupt Control Register interrupt request bit Note 2: When transmit buffer empty interrupt is enabled (DMA transfer can also be requested at the same time) Note 3: When transmission finished interrupt is enable Note 4: The Interrupt Controller's IVECT register is read or the SIO Transmit Interrupt Control Register interrupt request bit cleared Note 5: A transmit interrupt request is generated when transmission is enabled. Note 6: Be aware that even after transmit data is written to the transmit buffer, a transmit interrupt request is generated when the data is transferred from the transmit buffer to the transmit shift register and the transmit buffer is thereby emptied. Note 7: A transmission finished interrupt request is generated when data in the transmit shift register has all been transmitted. Figure 12.6.5 Example of UART Transmission (Transmitted Only Once) 12-45 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.6 Transmit Operation in UART Mode TXD RXD Set Transmit enable bit Transmit buffer empty bit Cleared Write to the transmit buffer register Write to the transmit buffer register (First data) (Next data) Cleared when transfer of the last data is completed Transferred from the transmit buffer to the transmit shift register (transmission starts) Transmit status bit First data ST TXD SIO transmit interrupt request (Note 1) (When transmit buffer empty interrupt is selected) (Note 5) (Note 2) b7 b0 Next data SP ST b0 b7 SP Next data is written upon transmit interrupt (Note 2) Interrupt request accepted (Note 4) (Note 2)(Note 6) (Note 3) (Note 3)(Note 7) (When transmission finished interrupt is selected) Interrupt request accepted (Note 4) : Processing by software : Interrupt request generated Note 1: Changes of the Interrupt Controller's SIO Transmit Interrupt Control Register interrupt request bit Note 2: When transmit buffer empty interrupt is enabled (DMA transfer can also be requested at the same time) Note 3: When transmission finished interrupt is enable Note 4: The Interrupt Controller's IVECT register is read or the SIO Transmit Interrupt Control Register interrupt request bit cleared Note 5: A transmit interrupt request is generated when transmission is enabled. Note 6: Be aware that even after transmit data is written to the transmit buffer, a transmit interrupt request is generated when the data is transferred from the transmit buffer to the transmit shift register and the transmit buffer is thereby emptied. Note 7: A transmission finished interrupt request is generated when data in the transmit shift register has all been transmitted. Figure 12.6.6 Example of UART Transmission (Transmitted Successively) 12-46 32180 Group User's Manual (Rev.1.0) SERIAL I/O 12 12.7 Receive Operation in UART Mode 12.7 Receive Operation in UART Mode 12.7.1 Initialization for UART Reception To receive data in UART mode, initialize the serial I/O following the procedure described below. (1) Setting SIO Transmit/Receive Mode Register * Set the register to UART mode. * Set parity (when enabled, select odd/even). * Set the stop bit length. * Set the character length. Note: * During UART mode, settings of the internal/external clock select bit have no effect (only the internal clock is useful). (2) Setting SIO Transmit Control Register * Set the clock divider's divide-by ratio. (3) Setting SIO Baud Rate Register Set a baud rate generator value. (See Section 12.6.1, "Setting the UART Baud Rate.") (4) Setting SIO interrupt related registers * Select the source of receive interrupt request (reception finished or receive error) (Interrupt Request Source Select Register). * Enable or disable receive interrupts (Interrupt Request Enable Register). (5) Setting Interrupt Controller To use receive interrupt, set their priority levels. (6) Setting DMAC To issue DMA transfer requests to the internal DMAC when reception has finished, set up the DMAC. (See Chapter 9, "DMAC.") (7) Selecting pin functions Because the serial I/O related pins serve dual purposes, set the pin functions for use as SIO pins or input/ output ports. (See Chapter 8, "Input/Output Ports and Pin Functions.") 12-47 32180 Group User's Manual (Rev.1.0) SERIAL I/O 12 12.7 Receive Operation in UART Mode Initialize UART reception Set SIO Transmit/Receive Mode Register Serial I/O related registers * Set the register to UART mode * Set parity (when enabled, select odd/even) * Set the stop bit length * Set the character length Set SIO Transmit Control Register * Select the clock divider divide-by ratio Set SIO Baud Rate Register * Divide-by ratio = H'00 to H'FF (Note 1) Set SIO interrupt related registers * Select the source of receive interrupt reques * Enable or disable receive interrupt requests Set Interrupt Controller's SIO Receive Interrupt Control Register (When using interrupts) Set DMAC related registers (When using the DMAC) Set Input/Output Port Operation Mode Register End of UART receive initialization Note 1: If clock divider divide-by ratio = 1 is selected, it is necessary that the value set in the baud rate register be equal to or greater than 7. Figure 12.7.1 Procedure for Initializing UART Reception 12-48 32180 Group User's Manual (Rev.1.0) SERIAL I/O 12 12.7 Receive Operation in UART Mode 12.7.2 Starting UART Reception The serial I/O starts receive operation when all of the following conditions are met after being initialized. * SIO Receive Control Register receive enable bit is set to "1" * Start bit (falling edge signal) is applied to the RXD pin When the above conditions are met, the serial I/O enters UART receive operation. However, the start bit is checked again at the first rise of the internal receive shift clock and if it is detected high for reasons of noise, etc., the serial I/O stops receive operation and waits for the start bit again. 12.7.3 Processing at End of UART Reception When data reception finishes, the following operation is automatically performed in hardware. (1) When reception is completed normally The reception finished (receive buffer full) bit is set to "1". Notes: * An interrupt request is generated if the reception finished (receive buffer full) interrupt has been enabled. * A DMA transfer request is generated. (2) When a receive error occurred If an error occurred, the corresponding error bit (OE, FE or PE) and the receive error sum bit are set to "1". Notes: * If the reception finished interrupt has been selected (by SIO Receive Interrupt Request Source Select Register), a reception finished interrupt request is generated when interrupt requests are enabled. However, this does not apply when the detected error is an overrun error, in which case no reception finished interrupt requests are generated. * If the receive error interrupt has been selected (by SIO Receive Interrupt Request Source Select Register), a receive error interrupt request is generated when interrupt requests are enabled. * No DMA transfer requests are generated. 12-49 32180 Group User's Manual (Rev.1.0) SERIAL I/O 12 12.7 Receive Operation in UART Mode The following processing is automatically performed in hardware. UART receive operation starts Receive conditions met ? N Y Start bit detected normally ? N Y Set the receive status bit to "1" Receive data Y Overrun error ? N Transfer data from the SIO Receive Shift Register to the SIO Receive Buffer Register Set the SIO Receive Control Register overrun error bit and error sum bit to "1" Parity error or framing error ? Y N Set the SIO Receive Control Register's corresponding error bit and receive error sum bit to "1" Set the SIO Receive Control Register reception finished bit to "1" End of UART reception Figure 12.7.2 Receive Operation during UART Mode (Hardware Processing) 12-50 32180 Group User's Manual (Rev.1.0) SERIAL I/O 12 12.7 Receive Operation in UART Mode 12.7.4 Example of UART Receive Operation The following shows a typical receive operation in UART mode. TXD RXD Internal clock selected Set Receive enable bit (SIO Receive Control Register) Cleared RXD ST b7 b6 b0 PAR SP SP Receive status bit Automatically cleared for each receive operation performed Reception finished bit Read from the receive buffer SIO receive interrupt request (Note 1) Reception finished interrupt request (Note 2) (When reception finished interrupt is selected) Interrupt request accepted (Note 3) (When receive error interrupt is selected) No interrupt request : Processing by software : Interrupt request generated Note 1: Changes of the Interrupt Controller's SIO Receive Interrupt Control Register interrupt request bit Note 2: When reception finished interrupt is enabled (DMA transfer can also be requested at the same time) Note 3: The Interrupt Controller's IVECT register is read or the SIO Receive Interrupt Control Register interrupt request bit cleared Figure 12.7.3 Example of UART Reception (When Received Normally) 12-51 32180 Group User's Manual (Rev.1.0) SERIAL I/O 12 12.7 Receive Operation in UART Mode TXD RXD Set Receive enable bit (SIO Receive Control Register) RXD First data reception completed ST b7 SP ST Next data reception completed SP b7 Receive buffer not read during this interval Reception finished bit Set (Note 5) Overrun error bit SIO receive interrupt request (Note 1) (When reception finished interrupt is selected) Overrun error bit cleared (Note 4) Reception finished interrupt request (Note 2) Interrupt request accepted (Note 5) (When receive error interrupt is selected) Receive error interrupt request (Note 3) Interrupt request accepted (Note 5) : Processing by software : Interrupt request generated Note 1: Changes of the Interrupt Controller's SIO Receive Interrupt Control Register interrupt request bit Note 2: When reception finished interrupt is enabled Note 3: When receive error interrupt is enabled Note 4: This is done by clearing the receive enable bit to "0". Note 5: The Interrupt Controller's IVECT register is read or the SIO Receive Interrupt Control Register interrupt request bit cleared Figure 12.7.4 Example of UART Reception (When Overrun Error Occurred) 12-52 32180 Group User's Manual (Rev.1.0) SERIAL I/O 12 12.7 Receive Operation in UART Mode 12.7.5 Start Bit Detection during UART Reception The start bit is sampled synchronously with the internal BRG output. If the received signal remains low for 8 BRG output cycles after the falling edge of the start bit, the CPU recognizes that part of the received signal as the start bit and starts latching the received data another 8 cycles after that, beginning with the LSB (first bit). If some sampled part of the received signal is high before being determined to be the start bit, the CPU starts detecting the falling edge of the received signal again. Because the start bit is sampled synchronously with the internal BRG output, there is a delay equivalent to one BRG output cycle at maximum. The subsequent received data is latched into the internal circuit with that delayed timing. 16 cycles Internal BRG output 8 cycles 8 cycles LSB data RXD Note: * This diagram does not show detailed timing information. Figure 12.7.5 Start Bit Detection Internal BRG output 8 cycles RXD Note: * This diagram does not show detailed timing information. Figure 12.7.6 Example of an Invalid Start Bit (Not Received) Internal BRG output Delay equivalent to one BRG output cycle at maximum RXD Internal RXD Figure 12.7.7 Delay in Receive Timing 12-53 32180 Group User's Manual (Rev.1.0) Serial I/O 12 12.8 Fixed Period Clock Output Function 12.8 Fixed Period Clock Output Function When using SIO0 or SIO1 in UART mode, the relevant port (P84 or P87) can be switched for use as an SCLKO0 or SCLKO1 pin, respectively. That way, a BRG output clock divided by 2 can be output from the SCLKO pin. Note: * This clock is output not just during data transfer. 1. Configuration when using BRG/2 clock TXD RXD SCLKO UART transmission/reception ST Data SP ST Data SP Clock output to peripheral circuits 2. Operation timing Internal BRG output BRG period SCLKO output 50% 50% Figure 12.8.1 Example of Fixed Period Clock Output 12-54 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.9 Precautions on Using UART Mode 12.9 Precautions on Using UART Mode * Settings of SIO Transmit/Receive Mode Register and SIO Baud Rate Register The SIO Transmit/Receive Mode Register and SIO Baud Rate Register and the Transmit Control Register's BRG count source select bit must always be set before the serial I/O starts operating. If these settings need to be changed after a transmit or receive operation has started, first check to see that transmit and receive operations have finished and then clear the transmit and receive enable bits before making changes. * Settings of BRG (Baud Rate Register) If f(BCLK) is selected with the BRG clock source select bit, make sure the value set in the BRG register is equal to or greater than 7. Writes to the SIO Baud Rate Register take effect in the next cycle after the BRG counter has finished counting. However, if the register is accessed for write while transmission and reception are disabled, the written value takes effect at the same time it is written. * Transmission/reception using DMA To transmit/receive data in DMA request mode, enable the DMAC to accept transfer requests (by setting the DMA Mode Register) before serial communication starts. * About overrun error If all bits of the next received data have been set in the SIO Receive Shift Register before reading out the SIO Receive Buffer Register (i.e., an overrun error occurred), the received data is not stored in the receive buffer register, with the previous received data retained in it. Once an overrun error occurs, although a receive operation continues, the subsequent received data is not stored in the receive buffer register. Before normal receive operation can be restarted, the receive enable bit must be temporarily cleared. And this is the only way that the overrun error flag can be cleared. * Flags showing the status of UART receive operation There are following flags that indicate the status of receive operation during UART mode: * SIO Receive Control Register receive status bit * SIO Receive Control Register reception finished bit * SIO Receive Control Register receive error sum bit * SIO Receive Control Register overrun error bit * SIO Receive Control Register parity error bit * SIO Receive Control Register framing error bit The manner in which the reception finished bit and various error flags are cleared differs depending on whether an overrun error occurred, as described below. [When an overrun error did not occur] Cleared by reading out the lower byte of the receive buffer register or by clearing the receive enable bit. [When an overrun error occurred] Cleared by only clearing the receive enable bit. 12-55 32182 Group User's Manual (Rev.1.0) Serial I/O 12 12.9 Precautions on Using UART Mode This page is blank for reasons of layout. 12-56 32182 Group User's Manual (Rev.1.0) CHAPTER 13 CAN MODULE 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Outline of the CAN Module CAN Module Related Registers CAN Protocol Initializing the CAN Module Transmitting Data Frames Receiving Data Frames Transmitting Remote Frames Receiving Remote Frames Precautions about CAN Module CAN MODULE 13 13.1 Outline of the CAN Module 13.1 Outline of the CAN Module The 32182 contains two-channel Full CAN modules compliant with CAN (Controller Area Network) Specification V2.0 B Active. These CAN modules each have 16 message slots and three mask registers, effective use of which helps to reduce the data processing load of the CPU. The CAN modules are outlined below. Table 13.1.1 Outline of the CAN Module Item Description Protocol CAN Specification V2.0 B Active Number of message slots Total 16 slots (14 global slots, two local slots) Polarity 0: Dominant 1: Recessive Acceptance filter Global mask: 1 (Function to receive only a range Local mask: 2 of IDs specified by receive ID filter) Baud rate 1 time quantum (Tq) = (BRP + 1) / (CPU clock/2) (BRP: Baud Rate Prescaler set value) Baud rate = 1 Tq period x number of Tq's for one bit ..... Max 1 Mbps (Note 1) BRP: 1-255 (0: inhibited) Number of Tq's for one bit = Synchronization Segment + Propagation Segment + Phase Segment 1 + Phase Segment 2 Propagation Segment: 1-8Tq Phase Segment 1: 1-8Tq Phase Segment 2: 1-8Tq (IPT = "1") Remote frame automatic The slot that received a remote frame responds by automatically sending a data frame. response function Timestamp function This function is implemented using a 16-bit counter. The count period is derived from the CAN bus bit period by dividing it by 1, 2, 3 or 4. BasicCAN mode BasicCAN function is materialized using two local slots. Transmit abort function Transmit requests can be canceled. Loopback function The CAN module receives the data transmitted by itself. Return bus off function Error active mode is forcibly entered into after clearing the error counter. Single shot function Transmission is not retried even when it failed due to arbitration-lost or a transmit error. DMA transfer function DMA transfer request is generated when transmission failed or transmit/receive operation finished (CAN0 only). Self-diagnostic function Communication module is diagnosed by communicating internally in the CAN module. Note 1: The maximum allowable error of oscillation depends on the system configuration (e.g., bus length, clock error, CAN bus transceiver, sampling position and bit configuration). Table 13.1.2 DMA Transfer Requests Generated by CAN DMA Transfer Request by CAN DMAC Input Channel CAN0: Slot 0 transmission failed or slot 15 transmit/receive operation finished DMA0 CAN1: Slot 1 transmission failed or slot 14 transmit/receive operation finished DMA2 13-2 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.1 Outline of the CAN Module Table 13.1.3 Interrupt Requests Generated by CAN Modules CAN Module Interrupt Request Source ICU Input Interrupt Source CAN0 transmission completed CAN0 transmit/receive & error interrupt CAN1 transmission completed CAN1 transmit/receive & error interrupt CAN0 reception completed CAN0 transmit/receive & error interrupt CAN1 reception completed CAN1 transmit/receive & error interrupt CAN0 bus error CAN0 transmit/receive & error interrupt CAN1 bus error CAN1 transmit/receive & error interrupt CAN0 error passive CAN0 transmit/receive & error interrupt CAN1 error passive CAN1 transmit/receive & error interrupt CAN0 bus off CAN0 transmit/receive & error interrupt CAN1 bus off CAN1 transmit/receive & error interrupt CAN0 single shot CAN0 transmit/receive & error interrupt CAN1 single shot CAN1 transmit/receive & error interrupt Internal data bus CAN0 CPUCLK Baud Rate Prescaler CTX0 Selfdiagnosis Control Acceptance Filter CRX0 CAN Protocol Controller Interrupt DAM Request Message Slot x 16 Transmit/receive completed, error or single shot DMA0, 2 CAN1 CPUCLK Baud Rate Prescaler CTX1 Selfdiagnosis Control CRX1 Acceptance Filter CAN Protocol Controller Interrupt Message Slot x 16 Transmit/receive completed, error or single shot Figure 13.1.1 Block Diagram of the CAN Modules 13-3 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2 CAN Module Related Registers Shown below is a CAN module related register map. CAN Module Related Register Map (1/11) Address +0 address b0 H'0080 1000 H'0080 1002 H'0080 1004 H'0080 1006 H'0080 1008 H'0080 100A H'0080 100C H'0080 100E H'0080 1010 H'0080 1012 H'0080 1014 H'0080 1016 H'0080 1018 | H'0080 1028 H'0080 102A H'0080 102C H'0080 102E H'0080 1030 H'0080 1032 H'0080 1034 H'0080 1036 H'0080 1038 H'0080 103A H'0080 103C H'0080 103E H'0080 1040 H'0080 1042 H'0080 1044 H'0080 1046 H'0080 1048 | +1 address b7 b8 CAN0 Control Register (CAN0CNT) CAN0 Status Register (CAN0STAT) CAN0 Frame Format Select Register (CAN0FFS) CAN0 Configuration Register (CAN0CONF) CAN0 Timestamp Count Register (CAN0TSTMP) CAN0 Receive Error Count Register CAN0 Transmit Error Count Register (CAN0REC) (CAN0TEC) CAN0 Slot Interrupt Request Status Register (CAN0SLIST) (Use inhibited area) See pages b15 13-15 13-18 13-21 13-22 13-24 13-25 13-29 CAN0 Slot Interrupt Request Enable Register (CAN0SLIEN) (Use inhibited area) 13-30 CAN0 Error Interrupt Request Status Register CAN0 Error Interrupt Request Enable Register (CAN0ERIST) (CAN0ERIEN) CAN0 Baud Rate Prescaler CAN0 Cause of Error Register (CAN0BRP) (CAN0EF) CAN0 Mode Register CAN0 DMA Transfer Request Select Register (CAN0MOD) (CAN0DMARQ) (Use inhibited area) 13-31 13-32 13-26 13-45 13-46 13-47 CAN0 Global Mask Register Standard ID0 CAN0 Global Mask Register Standard ID1 (C0GMSKS0) (C0GMSKS1) CAN0 Global Mask Register Extended ID0 CAN0 Global Mask Register Extended ID1 (C0GMSKE0) (C0GMSKE1) CAN0 Global Mask Register Extended ID2 (Use inhibited area) (C0GMSKE2) (Use inhibited area) 13-48 13-49 13-50 CAN0 Local Mask Register A Standard ID0 CAN0 Local Mask Register A Standard ID1 (C0LMSKAS0) (C0LMSKAS1) CAN0 Local Mask Register A Extended ID0 CAN0 Local Mask Register A Extended ID1 (C0LMSKAE0) (C0LMSKAE1) CAN0 Local Mask Register A Extended ID2 (Use inhibited area) (C0LMSKAE2) (Use inhibited area) 13-48 CAN0 Local Mask Register B Standard ID0 CAN0 Local Mask Register B Standard ID1 (C0LMSKBS0) (C0LMSKBS1) CAN0 Local Mask Register B Extended ID0 CAN0 Local Mask Register B Extended ID1 (C0LMSKBE0) (C0LMSKBE1) CAN0 Local Mask Register B Extended ID2 (Use inhibited area) (C0LMSKBE2) (Use inhibited area) 13-48 CAN0 Single-Shot Mode Control Register (CAN0SSMODE) (Use inhibited area) 13-52 CAN0 Single-Shot Interrupt Request Status Register (CAN0SSIST) (Use inhibited area) 13-33 CAN0 Single-Shot Interrupt Request Enable Register (CAN0SSIEN) 13-34 13-49 13-50 13-49 13-50 (Use inhibited area) 13-4 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (2/11) Address +0 address b0 H'0080 1050 H'0080 1052 H'0080 1054 H'0080 1056 H'0080 1058 H'0080 105A H'0080 105C H'0080 105E | H'0080 1100 H'0080 1102 H'0080 1104 H'0080 1106 H'0080 1108 H'0080 110A H'0080 110C H'0080 110E H'0080 1110 H'0080 1112 H'0080 1114 H'0080 1116 H'0080 1118 H'0080 111A H'0080 111C H'0080 111E H'0080 1120 H'0080 1122 H'0080 1124 H'0080 1126 H'0080 1128 H'0080 112A H'0080 112C H'0080 112E +1 address b7 b8 CAN0 Message Slot 0 Control Register CAN0 Message Slot 1 Control Register (C0MSL0CNT) (C0MSL1CNT) CAN0 Message Slot 2 Control Register CAN0 Message Slot 3 Control Register (C0MSL2CNT) (C0MSL3CNT) CAN0 Message Slot 4 Control Register CAN0 Message Slot 5 Control Register (C0MSL4CNT) (C0MSL5CNT) CAN0 Message Slot 6 Control Register CAN0 Message Slot 7 Control Register (C0MSL6CNT) (C0MSL7CNT) CAN0 Message Slot 8 Control Register CAN0 Message Slot 9 Control Register (C0MSL8CNT) (C0MSL9CNT) CAN0 Message Slot 10 Control Register CAN0 Message Slot 11 Control Register (C0MSL10CNT) (C0MSL11CNT) CAN0 Message Slot 12 Control Register CAN0 Message Slot 13 Control Register (C0MSL12CNT) (C0MSL13CNT) CAN0 Message Slot 14 Control Register CAN0 Message Slot 15 Control Register (C0MSL14CNT) (C0MSL15CNT) (Use inhibited area) CAN0 Message Slot 0 Standard ID0 CAN0 Message Slot 0 Standard ID1 (C0MSL0SID0) (C0MSL0SID1) CAN0 Message Slot 0 Extended ID0 CAN0 Message Slot 0 Extended ID1 (C0MSL0EID0) (C0MSL0EID1) CAN0 Message Slot 0 Extended ID2 CAN0 Message Slot 0 Data Length Register (C0MSL0EID2) (C0MSL0DLC) CAN0 Message Slot 0 Data 0 CAN0 Message Slot 0 Data 1 (C0MSL0DT0) (C0MSL0DT1) CAN0 Message Slot 0 Data 2 CAN0 Message Slot 0 Data 3 (C0MSL0DT2) (C0MSL0DT3) CAN0 Message Slot 0 Data 4 CAN0 Message Slot 0 Data 5 (C0MSL0DT4) (C0MSL0DT5) CAN0 Message Slot 0 Data 6 CAN0 Message Slot 0 Data 7 (C0MSL0DT6) (C0MSL0DT7) CAN0 Message Slot 0 Timestamp (C0MSL0TSP) CAN0 Message Slot 1 Standard ID0 CAN0 Message Slot 1 Standard ID1 (C0MSL1SID0) (C0MSL1SID1) CAN0 Message Slot 1 Extended ID0 CAN0 Message Slot 1 Extended ID1 (C0MSL1EID0) (C0MSL1EID1) CAN0 Message Slot 1 Extended ID2 CAN0 Message Slot 1 Data Length Register (C0MSL1EID2) (C0MSL1DLC) CAN0 Message Slot 1 Data 0 CAN0 Message Slot 1 Data 1 (C0MSL1DT0) (C0MSL1DT1) CAN0 Message Slot 1 Data 2 CAN0 Message Slot 1 Data 3 (C0MSL1DT2) (C0MSL1DT3) CAN0 Message Slot 1 Data 4 CAN0 Message Slot 1 Data 5 (C0MSL1DT4) (C0MSL1DT5) CAN0 Message Slot 1 Data 6 CAN0 Message Slot 1 Data 7 (C0MSL1DT6) (C0MSL1DT7) CAN0 Message Slot 1 Timestamp (C0MSL1TSP) CAN0 Message Slot 2 Standard ID0 CAN0 Message Slot 2 Standard ID1 (C0MSL2SID0) (C0MSL2SID1) CAN0 Message Slot 2 Extended ID0 CAN0 Message Slot 2 Extended ID1 (C0MSL2EID0) (C0MSL2EID1) CAN0 Message Slot 2 Extended ID2 CAN0 Message Slot 2 Data Length Register (C0MSL2EID2) (C0MSL2DLC) CAN0 Message Slot 2 Data 0 CAN0 Message Slot 2 Data 1 (C0MSL2DT0) (C0MSL2DT1) CAN0 Message Slot 2 Data 2 CAN0 Message Slot 2 Data 3 (C0MSL2DT2) (C0MSL2DT3) CAN0 Message Slot 2 Data 4 CAN0 Message Slot 2 Data 5 (C0MSL2DT4) (C0MSL2DT5) CAN0 Message Slot 2 Data 6 CAN0 Message Slot 2 Data 7 (C0MSL2DT6) (C0MSL2DT7) CAN0 Message Slot 2 Timestamp (C0MSL2TSP) 13-5 See pages b15 13-53 13-53 13-53 13-53 13-53 13-53 13-53 13-53 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (3/11) Address +0 address b0 H'0080 1130 H'0080 1132 H'0080 1134 H'0080 1136 H'0080 1138 H'0080 113A H'0080 113C H'0080 113E H'0080 1140 H'0080 1142 H'0080 1144 H'0080 1146 H'0080 1148 H'0080 114A H'0080 114C H'0080 114E H'0080 1150 H'0080 1152 H'0080 1154 H'0080 1156 H'0080 1158 H'0080 115A H'0080 115C H'0080 115E H'0080 1160 H'0080 1162 H'0080 1164 H'0080 1166 H'0080 1168 H'0080 116A H'0080 116C H'0080 116E +1 address b7 b8 CAN0 Message Slot 3 Standard ID0 CAN0 Message Slot 3 Standard ID1 (C0MSL3SID0) (C0MSL3SID1) CAN0 Message Slot 3 Extended ID0 CAN0 Message Slot 3 Extended ID1 (C0MSL3EID0) (C0MSL3EID1) CAN0 Message Slot 3 Extended ID2 CAN0 Message Slot 3 Data Length Register (C0MSL3EID2) (C0MSL3DLC) CAN0 Message Slot 3 Data 0 CAN0 Message Slot 3 Data 1 (C0MSL3DT0) (C0MSL3DT1) CAN0 Message Slot 3 Data 2 CAN0 Message Slot 3 Data 3 (C0MSL3DT2) (C0MSL3DT3) CAN0 Message Slot 3 Data 4 CAN0 Message Slot 3 Data 5 (C0MSL3DT4) (C0MSL3DT5) CAN0 Message Slot 3 Data 6 CAN0 Message Slot 3 Data 7 (C0MSL3DT6) (C0MSL3DT7) CAN0 Message Slot 3 Timestamp (C0MSL3TSP) CAN0 Message Slot 4 Standard ID0 CAN0 Message Slot 4 Standard ID1 (C0MSL4SID0) (C0MSL4SID1) CAN0 Message Slot 4 Extended ID0 CAN0 Message Slot 4 Extended ID1 (C0MSL4EID0) (C0MSL4EID1) CAN0 Message Slot 4 Extended ID2 CAN0 Message Slot 4 Data Length Register (C0MSL4EID2) (C0MSL4DLC) CAN0 Message Slot 4 Data 0 CAN0 Message Slot 4 Data 1 (C0MSL4DT0) (C0MSL4DT1) CAN0 Message Slot 4 Data 2 CAN0 Message Slot 4 Data 3 (C0MSL4DT2) (C0MSL4DT3) CAN0 Message Slot 4 Data 4 CAN0 Message Slot 4 Data 5 (C0MSL4DT4) (C0MSL4DT5) CAN0 Message Slot 4 Data 6 CAN0 Message Slot 4 Data 7 (C0MSL4DT6) (C0MSL4DT7) CAN0 Message Slot 4 Timestamp (C0MSL4TSP) CAN0 Message Slot 5 Standard ID0 CAN0 Message Slot 5 Standard ID1 (C0MSL5SID0) (C0MSL5SID1) CAN0 Message Slot 5 Extended ID0 CAN0 Message Slot 5 Extended ID1 (C0MSL5EID0) (C0MSL5EID1) CAN0 Message Slot 5 Extended ID2 CAN0 Message Slot 5 Data Length Register (C0MSL5EID2) (C0MSL5DLC) CAN0 Message Slot 5 Data 0 CAN0 Message Slot 5 Data 1 (C0MSL5DT0) (C0MSL5DT1) CAN0 Message Slot 5 Data 2 CAN0 Message Slot 5 Data 3 (C0MSL5DT2) (C0MSL5DT3) CAN0 Message Slot 5 Data 4 CAN0 Message Slot 5 Data 5 (C0MSL5DT4) (C0MSL5DT5) CAN0 Message Slot 5 Data 6 CAN0 Message Slot 5 Data 7 (C0MSL5DT6) (C0MSL5DT7) CAN0 Message Slot 5 Timestamp (C0MSL5TSP) CAN0 Message Slot 6 Standard ID0 CAN0 Message Slot 6 Standard ID1 (C0MSL6SID0) (C0MSL6SID1) CAN0 Message Slot 6 Extended ID0 CAN0 Message Slot 6 Extended ID1 (C0MSL6EID0) (C0MSL6EID1) CAN0 Message Slot 6 Extended ID2 CAN0 Message Slot 6 Data Length Register (C0MSL6EID2) (C0MSL6DLC) CAN0 Message Slot 6 Data 0 CAN0 Message Slot 6 Data 1 (C0MSL6DT0) (C0MSL6DT1) CAN0 Message Slot 6 Data 2 CAN0 Message Slot 6 Data 3 (C0MSL6DT2) (C0MSL6DT3) CAN0 Message Slot 6 Data 4 CAN0 Message Slot 6 Data 5 (C0MSL6DT4) (C0MSL6DT5) CAN0 Message Slot 6 Data 6 CAN0 Message Slot 6 Data 7 (C0MSL6DT6) (C0MSL6DT7) CAN0 Message Slot 6 Timestamp (C0MSL6TSP) 13-6 See pages b15 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (4/11) Address +0 address b0 H'0080 1170 H'0080 1172 H'0080 1174 H'0080 1176 H'0080 1178 H'0080 117A H'0080 117C H'0080 117E H'0080 1180 H'0080 1182 H'0080 1184 H'0080 1186 H'0080 1188 H'0080 118A H'0080 118C H'0080 118E H'0080 1190 H'0080 1192 H'0080 1194 H'0080 1196 H'0080 1198 H'0080 119A H'0080 119C H'0080 119E H'0080 11A0 H'0080 11A2 H'0080 11A4 H'0080 11A6 H'0080 11A8 H'0080 11AA H'0080 11AC H'0080 11AE +1 address b7 b8 CAN0 Message Slot 7 Standard ID0 CAN0 Message Slot 7 Standard ID1 (C0MSL7SID0) (C0MSL7SID1) CAN0 Message Slot 7 Extended ID0 CAN0 Message Slot 7 Extended ID1 (C0MSL7EID0) (C0MSL7EID1) CAN0 Message Slot 7 Extended ID2 CAN0 Message Slot 7 Data Length Register (C0MSL7EID2) (C0MSL7DLC) CAN0 Message Slot 7 Data 0 CAN0 Message Slot 7 Data 1 (C0MSL7DT0) (C0MSL7DT1) CAN0 Message Slot 7 Data 2 CAN0 Message Slot 7 Data 3 (C0MSL7DT2) (C0MSL7DT3) CAN0 Message Slot 7 Data 4 CAN0 Message Slot 7 Data 5 (C0MSL7DT4) (C0MSL7DT5) CAN0 Message Slot 7 Data 6 CAN0 Message Slot 7 Data 7 (C0MSL7DT6) (C0MSL7DT7) CAN0 Message Slot 7 Timestamp (C0MSL7TSP) CAN0 Message Slot 8 Standard ID0 CAN0 Message Slot 8 Standard ID1 (C0MSL8SID0) (C0MSL8SID1) CAN0 Message Slot 8 Extended ID0 CAN0 Message Slot 8 Extended ID1 (C0MSL8EID0) (C0MSL8EID1) CAN0 Message Slot 8 Extended ID2 CAN0 Message Slot 8 Data Length Register (C0MSL8EID2) (C0MSL8DLC) CAN0 Message Slot 8 Data 0 CAN0 Message Slot 8 Data 1 (C0MSL8DT0) (C0MSL8DT1) CAN0 Message Slot 8 Data 2 CAN0 Message Slot 8 Data 3 (C0MSL8DT2) (C0MSL8DT3) CAN0 Message Slot 8 Data 4 CAN0 Message Slot 8 Data 5 (C0MSL8DT4) (C0MSL8DT5) CAN0 Message Slot 8 Data 6 CAN0 Message Slot 8 Data 7 (C0MSL8DT6) (C0MSL8DT7) CAN0 Message Slot 8 Timestamp (C0MSL8TSP) CAN0 Message Slot 9 Standard ID0 CAN0 Message Slot 9 Standard ID1 (C0MSL9SID0) (C0MSL9SID1) CAN0 Message Slot 9 Extended ID0 CAN0 Message Slot 9 Extended ID1 (C0MSL9EID0) (C0MSL9EID1) CAN0 Message Slot 9 Extended ID2 CAN0 Message Slot 9 Data Length Register (C0MSL9EID2) (C0MSL9DLC) CAN0 Message Slot 9 Data 0 CAN0 Message Slot 9 Data 1 (C0MSL9DT0) (C0MSL9DT1) CAN0 Message Slot 9 Data 2 CAN0 Message Slot 9 Data 3 (C0MSL9DT2) (C0MSL9DT3) CAN0 Message Slot 9 Data 4 CAN0 Message Slot 9 Data 5 (C0MSL9DT4) (C0MSL9DT5) CAN0 Message Slot 9 Data 6 CAN0 Message Slot 9 Data 7 (C0MSL9DT6) (C0MSL9DT7) CAN0 Message Slot 9 Timestamp (C0MSL9TSP) CAN0 Message Slot 10 Standard ID0 CAN0 Message Slot 10 Standard ID1 (C0MSL10SID0) (C0MSL10SID1) CAN0 Message Slot 10 Extended ID0 CAN0 Message Slot 10 Extended ID1 (C0MSL10EID0) (C0MSL10EID1) CAN0 Message Slot 10 Extended ID2 CAN0 Message Slot 10 Data Length Register (C0MSL10EID2) (C0MSL10DLC) CAN0 Message Slot 10 Data 0 CAN0 Message Slot 10 Data 1 (C0MSL10DT0) (C0MSL10DT1) CAN0 Message Slot 10 Data 2 CAN0 Message Slot 10 Data 3 (C0MSL10DT2) (C0MSL10DT3) CAN0 Message Slot 10 Data 4 CAN0 Message Slot 10 Data 5 (C0MSL10DT4) (C0MSL10DT5) CAN0 Message Slot 10 Data 6 CAN0 Message Slot 10 Data 7 (C0MSL10DT6) (C0MSL10DT7) CAN0 Message Slot 10 Timestamp (C0MSL10TSP) 13-7 See pages b15 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (5/11) Address +0 address b0 H'0080 11B0 H'0080 11B2 H'0080 11B4 H'0080 11B6 H'0080 11B8 H'0080 11BA H'0080 11BC H'0080 11BE H'0080 11C0 H'0080 11C2 H'0080 11C4 H'0080 11C6 H'0080 11C8 H'0080 11CA H'0080 11CC H'0080 11CE H'0080 11D0 H'0080 11D2 H'0080 11D4 H'0080 11D6 H'0080 11D8 H'0080 11DA H'0080 11DC H'0080 11DE H'0080 11E0 H'0080 11E2 H'0080 11E4 H'0080 11E6 H'0080 11E8 H'0080 11EA H'0080 11EC H'0080 11EE +1 address b7 b8 CAN0 Message Slot 11 Standard ID0 CAN0 Message Slot 11 Standard ID1 (C0MSL11SID0) (C0MSL11SID1) CAN0 Message Slot 11 Extended ID0 CAN0 Message Slot 11 Extended ID1 (C0MSL11EID0) (C0MSL11EID1) CAN0 Message Slot 11 Extended ID2 CAN0 Message Slot 11 Data Length Register (C0MSL11EID2) (C0MSL11DLC) CAN0 Message Slot 11 Data 0 CAN0 Message Slot 11 Data 1 (C0MSL11DT0) (C0MSL11DT1) CAN0 Message Slot 11 Data 2 CAN0 Message Slot 11 Data 3 (C0MSL11DT2) (C0MSL11DT3) CAN0 Message Slot 11 Data 4 CAN0 Message Slot 11 Data 5 (C0MSL11DT4) (C0MSL11DT5) CAN0 Message Slot 11 Data 6 CAN0 Message Slot 11 Data 7 (C0MSL11DT6) (C0MSL11DT7) CAN0 Message Slot 11 Timestamp (C0MSL11TSP) CAN0 Message Slot 12 Standard ID0 CAN0 Message Slot 12 Standard ID1 (C0MSL12SID0) (C0MSL12SID1) CAN0 Message Slot 12 Extended ID0 CAN0 Message Slot 12 Extended ID1 (C0MSL12EID0) (C0MSL12EID1) CAN0 Message Slot 12 Extended ID2 CAN0 Message Slot 12 Data Length Register (C0MSL12EID2) (C0MSL12DLC) CAN0 Message Slot 12 Data 0 CAN0 Message Slot 12 Data 1 (C0MSL12DT0) (C0MSL12DT1) CAN0 Message Slot 12 Data 2 CAN0 Message Slot 12 Data 3 (C0MSL12DT2) (C0MSL12DT3) CAN0 Message Slot 12 Data 4 CAN0 Message Slot 12 Data 5 (C0MSL12DT4) (C0MSL12DT5) CAN0 Message Slot 12 Data 6 CAN0 Message Slot 12 Data 7 (C0MSL12DT6) (C0MSL12DT7) CAN0 Message Slot 12 Timestamp (C0MSL12TSP) CAN0 Message Slot 13 Standard ID0 CAN0 Message Slot 13 Standard ID1 (C0MSL13SID0) (C0MSL13SID1) CAN0 Message Slot 13 Extended ID0 CAN0 Message Slot 13 Extended ID1 (C0MSL13EID0) (C0MSL13EID1) CAN0 Message Slot 13 Extended ID2 CAN0 Message Slot 13 Data Length Register (C0MSL13EID2) (C0MSL13DLC) CAN0 Message Slot 13 Data 0 CAN0 Message Slot 13 Data 1 (C0MSL13DT0) (C0MSL13DT1) CAN0 Message Slot 13 Data 2 CAN0 Message Slot 13 Data 3 (C0MSL13DT2) (C0MSL13DT3) CAN0 Message Slot 13 Data 4 CAN0 Message Slot 13 Data 5 (C0MSL13DT4) (C0MSL13DT5) CAN0 Message Slot 13 Data 6 CAN0 Message Slot 13 Data 7 (C0MSL13DT6) (C0MSL13DT7) CAN0 Message Slot 13 Timestamp (C0MSL13TSP) CAN0 Message Slot 14 Standard ID0 CAN0 Message Slot 14 Standard ID1 (C0MSL14SID0) (C0MSL14SID1) CAN0 Message Slot 14 Extended ID0 CAN0 Message Slot 14 Extended ID1 (C0MSL14EID0) (C0MSL14EID1) CAN0 Message Slot 14 Extended ID2 CAN0 Message Slot 14 Data Length Register (C0MSL14EID2) (C0MSL14DLC) CAN0 Message Slot 14 Data 0 CAN0 Message Slot 14 Data 1 (C0MSL14DT0) (C0MSL14DT1) CAN0 Message Slot 14 Data 2 CAN0 Message Slot 14 Data 3 (C0MSL14DT2) (C0MSL14DT3) CAN0 Message Slot 14 Data 4 CAN0 Message Slot 14 Data 5 (C0MSL14DT4) (C0MSL14DT5) CAN0 Message Slot 14 Data 6 CAN0 Message Slot 14 Data 7 (C0MSL14DT6) (C0MSL14DT7) CAN0 Message Slot 14 Timestamp (C0MSL14TSP) 13-8 See pages b15 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (6/11) Address +0 address b0 H'0080 11F0 H'0080 11F2 H'0080 11F4 H'0080 11F6 H'0080 11F8 H'0080 11FA H'0080 11FC H'0080 11FE | H'0080 1400 H'0080 1402 H'0080 1404 H'0080 1406 H'0080 1408 H'0080 140A H'0080 140C H'0080 140E H'0080 1410 H'0080 1412 H'0080 1414 H'0080 1416 H'0080 1418 | H'0080 1428 H'0080 142A H'0080 142C H'0080 142E H'0080 1430 H'0080 1432 H'0080 1434 H'0080 1436 H'0080 1438 H'0080 143A H'0080 143C H'0080 143E +1 address b7 b8 See pages b15 CAN0 Message Slot 15 Standard ID0 CAN0 Message Slot 15 Standard ID1 (C0MSL15SID0) (C0MSL15SID1) CAN0 Message Slot 15 Extended ID0 CAN0 Message Slot 15 Extended ID1 (C0MSL15EID0) (C0MSL15EID1) CAN0 Message Slot 15 Extended ID2 CAN0 Message Slot 15 Data Length Register (C0MSL15EID2) (C0MSL15DLC) CAN0 Message Slot 15 Data 0 CAN0 Message Slot 15 Data 1 (C0MSL15DT0) (C0MSL15DT1) CAN0 Message Slot 15 Data 2 CAN0 Message Slot 15 Data 3 (C0MSL15DT2) (C0MSL15DT3) CAN0 Message Slot 15 Data 4 CAN0 Message Slot 15 Data 5 (C0MSL15DT4) (C0MSL15DT5) CAN0 Message Slot 15 Data 6 CAN0 Message Slot 15 Data 7 (C0MSL15DT6) (C0MSL15DT7) CAN0 Message Slot 15 Timestamp (C0MSL15TSP) (Use inhibited area) CAN1 Control Register (CAN1CNT) CAN1 Status Register (CAN1STAT) CAN1 Frame Format Select Register (CAN1FFS) CAN1 Configuration Register (CAN1CONF) CAN1 Timestamp Count Register (CAN1TSTMP) CAN1 Receive Error Count Register CAN1 Transmit Error Count Register (CAN1REC) (CAN1TEC) CAN1 Slot Interrupt Request Status Register (CAN1SLIST) (Use inhibited area) 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-15 13-18 13-21 13-22 13-24 13-25 13-29 CAN1 Slot Interrupt Request Enable Register (CAN1SLIEN) (Use inhibited area) 13-30 CAN1 Error Interrupt Request Status Register CAN1 Error Interrupt Request Enable Register (CAN1ERIST) (CAN1ERIEN) CAN1 Baud Rate Prescaler CAN1 Cause of Error Register (CAN1BRP) (CAN1EF) CAN1 Mode Register (Use inhibited area) (CAN1MOD) (Use inhibited area) 13-31 13-32 13-26 13-45 13-46 CAN1 Global Mask Register Standard ID0 CAN1 Global Mask Register Standard ID1 (C1GMSKS0) (C1GMSKS1) CAN1 Global Mask Register Extended ID0 CAN1 Global Mask Register Extended ID1 (C1GMSKE0) (C1GMSKE1) CAN1 Global Mask Register Extended ID2 (Use inhibited area) (C1GMSKE2) (Use inhibited area) 13-48 13-49 13-50 CAN1 Local Mask Register A Standard ID0 CAN1 Local Mask Register A Standard ID1 (C1LMSKAS0) (C1LMSKAS1) CAN1 Local Mask Register A Extended ID0 CAN1 Local Mask Register A Extended ID1 (C1LMSKAE0) (C1LMSKAE1) CAN1 Local Mask Register A Extended ID2 (Use inhibited area) (C1LMSKAE2) (Use inhibited area) 13-48 CAN1 Local Mask Register B Standard ID0 CAN1 Local Mask Register B Standard ID1 (C1LMSKBS0) (C1LMSKBS1) CAN1 Local Mask Register B Extended ID0 CAN1 Local Mask Register B Extended ID1 (C1LMSKBE0) (C1LMSKBE1) CAN1 Local Mask Register B Extended ID2 (Use inhibited area) (C1LMSKBE2) (Use inhibited area) 13-48 13-9 13-49 13-50 13-49 13-50 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (7/11) Address +0 address b0 H'0080 1440 H'0080 1442 H'0080 1444 H'0080 1446 H'0080 1448 | H'0080 1450 H'0080 1452 H'0080 1454 H'0080 1456 H'0080 1458 H'0080 145A H'0080 145C H'0080 145E | H'0080 1500 H'0080 1502 H'0080 1504 H'0080 1506 H'0080 1508 H'0080 150A H'0080 150C H'0080 150E H'0080 1510 H'0080 1512 H'0080 1514 H'0080 1516 H'0080 1518 H'0080 151A H'0080 151C H'0080 151E +1 address b7 b8 CAN1 Single-Shot Mode Control Register (CAN1SSMODE) (Use inhibited area) See pages b15 13-52 CAN1 Single-Shot Interrupt Request Status Register (CAN1SSIST) (Use inhibited area) 13-33 CAN1 Single-Shot Interrupt Request Enable Register (CAN1SSIEN) (Use inhibited area) 13-34 CAN1 Message Slot 0 Control Register CAN1 Message Slot 1 Control Register (C1MSL0CNT) (C1MSL1CNT) CAN1 Message Slot 2 Control Register CAN1 Message Slot 3 Control Register (C1MSL2CNT) (C1MSL3CNT) CAN1 Message Slot 4 Control Register CAN1 Message Slot 5 Control Register (C1MSL4CNT) (C1MSL5CNT) CAN1 Message Slot 6 Control Register CAN1 Message Slot 7 Control Register (C1MSL6CNT) (C1MSL7CNT) CAN1 Message Slot 8 Control Register CAN1 Message Slot 9 Control Register (C1MSL8CNT) (C1MSL9CNT) CAN1 Message Slot 10 Control Register CAN1 Message Slot 11 Control Register (C1MSL10CNT) (C1MSL11CNT) CAN1 Message Slot 12 Control Register CAN1 Message Slot 13 Control Register (C1MSL12CNT) (C1MSL13CNT) CAN1 Message Slot 14 Control Register CAN1 Message Slot 15 Control Register (C1MSL14CNT) (C1MSL15CNT) (Use inhibited area) 13-53 CAN1 Message Slot 0 Standard ID0 CAN1 Message Slot 0 Standard ID1 (C1MSL0SID0) (C1MSL0SID1) CAN1 Message Slot 0 Extended ID0 CAN1 Message Slot 0 Extended ID1 (C1MSL0EID0) (C1MSL0EID1) CAN1 Message Slot 0 Extended ID2 CAN1 Message Slot 0 Data Length Register (C1MSL0EID2) (C1MSL0DLC) CAN1 Message Slot 0 Data 0 CAN1 Message Slot 0 Data 1 (C1MSL0DT0) (C1MSL0DT1) CAN1 Message Slot 0 Data 2 CAN1 Message Slot 0 Data 3 (C1MSL0DT2) (C1MSL0DT3) CAN1 Message Slot 0 Data 4 CAN1 Message Slot 0 Data 5 (C1MSL0DT4) (C1MSL0DT5) CAN1 Message Slot 0 Data 6 CAN1 Message Slot 0 Data 7 (C1MSL0DT6) (C1MSL0DT7) CAN1 Message Slot 0 Timestamp (C1MSL0TSP) CAN1 Message Slot 1 Standard ID0 CAN1 Message Slot 1 Standard ID1 (C1MSL1SID0) (C1MSL1SID1) CAN1 Message Slot 1 Extended ID0 CAN1 Message Slot 1 Extended ID1 (C1MSL1EID0) (C1MSL1EID1) CAN1 Message Slot 1 Extended ID2 CAN1 Message Slot 1 Data Length Register (C1MSL1EID2) (C1MSL1DLC) CAN1 Message Slot 1 Data 0 CAN1 Message Slot 1 Data 1 (C1MSL1DT0) (C1MSL1DT1) CAN1 Message Slot 1 Data 2 CAN1 Message Slot 1 Data 3 (C1MSL1DT2) (C1MSL1DT3) CAN1 Message Slot 1 Data 4 CAN1 Message Slot 1 Data 5 (C1MSL1DT4) (C1MSL1DT5) CAN1 Message Slot 1 Data 6 CAN1 Message Slot 1 Data 7 (C1MSL1DT6) (C1MSL1DT7) CAN1 Message Slot 1 Timestamp (C1MSL1TSP) 13-10 13-53 13-53 13-53 13-53 13-53 13-53 13-53 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (8/11) Address +0 address b0 H'0080 1520 H'0080 1522 H'0080 1524 H'0080 1526 H'0080 1528 H'0080 152A H'0080 152C H'0080 152E H'0080 1530 H'0080 1532 H'0080 1534 H'0080 1536 H'0080 1538 H'0080 153A H'0080 153C H'0080 153E H'0080 1540 H'0080 1542 H'0080 1544 H'0080 1546 H'0080 1548 H'0080 154A H'0080 154C H'0080 154E H'0080 1550 H'0080 1552 H'0080 1554 H'0080 1556 H'0080 1558 H'0080 155A H'0080 155C H'0080 155E +1 address b7 b8 CAN1 Message Slot 2 Standard ID0 CAN1 Message Slot 2 Standard ID1 (C1MSL2SID0) (C1MSL2SID1) CAN1 Message Slot 2 Extended ID0 CAN1 Message Slot 2 Extended ID1 (C1MSL2EID0) (C1MSL2EID1) CAN1 Message Slot 2 Extended ID2 CAN1 Message Slot 2 Data Length Register (C1MSL2EID2) (C1MSL2DLC) CAN1 Message Slot 2 Data 0 CAN1 Message Slot 2 Data 1 (C1MSL2DT0) (C1MSL2DT1) CAN1 Message Slot 2 Data 2 CAN1 Message Slot 2 Data 3 (C1MSL2DT2) (C1MSL2DT3) CAN1 Message Slot 2 Data 4 CAN1 Message Slot 2 Data 5 (C1MSL2DT4) (C1MSL2DT5) CAN1 Message Slot 2 Data 6 CAN1 Message Slot 2 Data 7 (C1MSL2DT6) (C1MSL2DT7) CAN1 Message Slot 2 Timestamp (C1MSL2TSP) CAN1 Message Slot 3 Standard ID0 CAN1 Message Slot 3 Standard ID1 (C1MSL3SID0) (C1MSL3SID1) CAN1 Message Slot 3 Extended ID0 CAN1 Message Slot 3 Extended ID1 (C1MSL3EID0) (C1MSL3EID1) CAN1 Message Slot 3 Extended ID2 CAN1 Message Slot 3 Data Length Register (C1MSL3EID2) (C1MSL3DLC) CAN1 Message Slot 3 Data 0 CAN1 Message Slot 3 Data 1 (C1MSL3DT0) (C1MSL3DT1) CAN1 Message Slot 3 Data 2 CAN1 Message Slot 3 Data 3 (C1MSL3DT2) (C1MSL3DT3) CAN1 Message Slot 3 Data 4 CAN1 Message Slot 3 Data 5 (C1MSL3DT4) (C1MSL3DT5) CAN1 Message Slot 3 Data 6 CAN1 Message Slot 3 Data 7 (C1MSL3DT6) (C1MSL3DT7) CAN1 Message Slot 3 Timestamp (C1MSL3TSP) CAN1 Message Slot 4 Standard ID0 CAN1 Message Slot 4 Standard ID1 (C1MSL4SID0) (C1MSL4SID1) CAN1 Message Slot 4 Extended ID0 CAN1 Message Slot 4 Extended ID1 (C1MSL4EID0) (C1MSL4EID1) CAN1 Message Slot 4 Extended ID2 CAN1 Message Slot 4 Data Length Register (C1MSL4EID2) (C1MSL4DLC) CAN1 Message Slot 4 Data 0 CAN1 Message Slot 4 Data 1 (C1MSL4DT0) (C1MSL4DT1) CAN1 Message Slot 4 Data 2 CAN1 Message Slot 4 Data 3 (C1MSL4DT2) (C1MSL4DT3) CAN1 Message Slot 4 Data 4 CAN1 Message Slot 4 Data 5 (C1MSL4DT4) (C1MSL4DT5) CAN1 Message Slot 4 Data 6 CAN1 Message Slot 4 Data 7 (C1MSL4DT6) (C1MSL4DT7) CAN1 Message Slot 4 Timestamp (C1MSL4TSP) CAN1 Message Slot 5 Standard ID0 CAN1 Message Slot 5 Standard ID1 (C1MSL5SID0) (C1MSL5SID1) CAN1 Message Slot 5 Extended ID0 CAN1 Message Slot 5 Extended ID1 (C1MSL5EID0) (C1MSL5EID1) CAN1 Message Slot 5 Extended ID2 CAN1 Message Slot 5 Data Length Register (C1MSL5EID2) (C1MSL5DLC) CAN1 Message Slot 5 Data 0 CAN1 Message Slot 5 Data 1 (C1MSL5DT0) (C1MSL5DT1) CAN1 Message Slot 5 Data 2 CAN1 Message Slot 5 Data 3 (C1MSL5DT2) (C1MSL5DT3) CAN1 Message Slot 5 Data 4 CAN1 Message Slot 5 Data 5 (C1MSL5DT4) (C1MSL5DT5) CAN1 Message Slot 5 Data 6 CAN1 Message Slot 5 Data 7 (C1MSL5DT6) (C1MSL5DT7) CAN1 Message Slot 5 Timestamp (C1MSL5TSP) 13-11 See pages b15 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (9/11) Address +0 address b0 H'0080 1560 H'0080 1562 H'0080 1564 H'0080 1566 H'0080 1568 H'0080 156A H'0080 156C H'0080 156E H'0080 1570 H'0080 1572 H'0080 1574 H'0080 1576 H'0080 1578 H'0080 157A H'0080 157C H'0080 157E H'0080 1580 H'0080 1582 H'0080 1584 H'0080 1586 H'0080 1588 H'0080 158A H'0080 158C H'0080 158E H'0080 1590 H'0080 1592 H'0080 1594 H'0080 1596 H'0080 1598 H'0080 159A H'0080 159C H'0080 159E +1 address b7 b8 CAN1 Message Slot 6 Standard ID0 CAN1 Message Slot 6 Standard ID1 (C1MSL6SID0) (C1MSL6SID1) CAN1 Message Slot 6 Extended ID0 CAN1 Message Slot 6 Extended ID1 (C1MSL6EID0) (C1MSL6EID1) CAN1 Message Slot 6 Extended ID2 CAN1 Message Slot 6 Data Length Register (C1MSL6EID2) (C1MSL6DLC) CAN1 Message Slot 6 Data 0 CAN1 Message Slot 6 Data 1 (C1MSL6DT0) (C1MSL6DT1) CAN1 Message Slot 6 Data 2 CAN1 Message Slot 6 Data 3 (C1MSL6DT2) (C1MSL6DT3) CAN1 Message Slot 6 Data 4 CAN1 Message Slot 6 Data 5 (C1MSL6DT4) (C1MSL6DT5) CAN1 Message Slot 6 Data 6 CAN1 Message Slot 6 Data 7 (C1MSL6DT6) (C1MSL6DT7) CAN1 Message Slot 6 Timestamp (C1MSL6TSP) CAN1 Message Slot 7 Standard ID0 CAN1 Message Slot 7 Standard ID1 (C1MSL7SID0) (C1MSL7SID1) CAN1 Message Slot 7 Extended ID0 CAN1 Message Slot 7 Extended ID1 (C1MSL7EID0) (C1MSL7EID1) CAN1 Message Slot 7 Extended ID2 CAN1 Message Slot 7 Data Length Register (C1MSL7EID2) (C1MSL7DLC) CAN1 Message Slot 7 Data 0 CAN1 Message Slot 7 Data 1 (C1MSL7DT0) (C1MSL7DT1) CAN1 Message Slot 7 Data 2 CAN1 Message Slot 7 Data 3 (C1MSL7DT2) (C1MSL7DT3) CAN1 Message Slot 7 Data 4 CAN1 Message Slot 7 Data 5 (C1MSL7DT4) (C1MSL7DT5) CAN1 Message Slot 7 Data 6 CAN1 Message Slot 7 Data 7 (C1MSL7DT6) (C1MSL7DT7) CAN1 Message Slot 7 Timestamp (C1MSL7TSP) CAN1 Message Slot 8 Standard ID0 CAN1 Message Slot 8 Standard ID1 (C1MSL8SID0) (C1MSL8SID1) CAN1 Message Slot 8 Extended ID0 CAN1 Message Slot 8 Extended ID1 (C1MSL8EID0) (C1MSL8EID1) CAN1 Message Slot 8 Extended ID2 CAN1 Message Slot 8 Data Length Register (C1MSL8EID2) (C1MSL8DLC) CAN1 Message Slot 8 Data 0 CAN1 Message Slot 8 Data 1 (C1MSL8DT0) (C1MSL8DT1) CAN1 Message Slot 8 Data 2 CAN1 Message Slot 8 Data 3 (C1MSL8DT2) (C1MSL8DT3) CAN1 Message Slot 8 Data 4 CAN1 Message Slot 8 Data 5 (C1MSL8DT4) (C1MSL8DT5) CAN1 Message Slot 8 Data 6 CAN1 Message Slot 8 Data 7 (C1MSL8DT6) (C1MSL8DT7) CAN1 Message Slot 8 Timestamp (C1MSL8TSP) CAN1 Message Slot 9 Standard ID0 CAN1 Message Slot 9 Standard ID1 (C1MSL9SID0) (C1MSL9SID1) CAN1 Message Slot 9 Extended ID0 CAN1 Message Slot 9 Extended ID1 (C1MSL9EID0) (C1MSL9EID1) CAN1 Message Slot 9 Extended ID2 CAN1 Message Slot 9 Data Length Register (C1MSL9EID2) (C1MSL9DLC) CAN1 Message Slot 9 Data 0 CAN1 Message Slot 9 Data 1 (C1MSL9DT0) (C1MSL9DT1) CAN1 Message Slot 9 Data 2 CAN1 Message Slot 9 Data 3 (C1MSL9DT2) (C1MSL9DT3) CAN1 Message Slot 9 Data 4 CAN1 Message Slot 9 Data 5 (C1MSL9DT4) (C1MSL9DT5) CAN1 Message Slot 9 Data 6 CAN1 Message Slot 9 Data 7 (C1MSL9DT6) (C1MSL9DT7) CAN1 Message Slot 9 Timestamp (C1MSL9TSP) 13-12 See pages b15 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (10/11) Address +0 address b0 H'0080 15A0 H'0080 15A2 H'0080 15A4 H'0080 15A6 H'0080 15A8 H'0080 15AA H'0080 15AC H'0080 15AE H'0080 15B0 H'0080 15B2 H'0080 15B4 H'0080 15B6 H'0080 15B8 H'0080 15BA H'0080 15BC H'0080 15BE H'0080 15C0 H'0080 15C2 H'0080 15C4 H'0080 15C6 H'0080 15C8 H'0080 15CA H'0080 15CC H'0080 15CE H'0080 15D0 H'0080 15D2 H'0080 15D4 H'0080 15D6 H'0080 15D8 H'0080 15DA H'0080 15DC H'0080 15DE +1 address b7 b8 CAN1 Message Slot 10 Standard ID0 CAN1 Message Slot 10 Standard ID1 (C1MSL10SID0) (C1MSL10SID1) CAN1 Message Slot 10 Extended ID0 CAN1 Message Slot 10 Extended ID1 (C1MSL10EID0) (C1MSL10EID1) CAN1 Message Slot 10 Extended ID2 CAN1 Message Slot 10 Data Length Register (C1MSL10EID2) (C1MSL10DLC) CAN1 Message Slot 10 Data 0 CAN1 Message Slot 10 Data 1 (C1MSL10DT0) (C1MSL10DT1) CAN1 Message Slot 10 Data 2 CAN1 Message Slot 10 Data 3 (C1MSL10DT2) (C1MSL10DT3) CAN1 Message Slot 10 Data 4 CAN1 Message Slot 10 Data 5 (C1MSL10DT4) (C1MSL10DT5) CAN1 Message Slot 10 Data 6 CAN1 Message Slot 10 Data 7 (C1MSL10DT6) (C1MSL10DT7) CAN1 Message Slot 10 Timestamp (C1MSL10TSP) CAN1 Message Slot 11 Standard ID0 CAN1 Message Slot 11 Standard ID1 (C1MSL11SID0) (C1MSL11SID1) CAN1 Message Slot 11 Extended ID0 CAN1 Message Slot 11 Extended ID1 (C1MSL11EID0) (C1MSL11EID1) CAN1 Message Slot 11 Extended ID2 CAN1 Message Slot 11 Data Length Register (C1MSL11EID2) (C1MSL11DLC) CAN1 Message Slot 11 Data 0 CAN1 Message Slot 11 Data 1 (C1MSL11DT0) (C1MSL11DT1) CAN1 Message Slot 11 Data 2 CAN1 Message Slot 11 Data 3 (C1MSL11DT2) (C1MSL11DT3) CAN1 Message Slot 11 Data 4 CAN1 Message Slot 11 Data 5 (C1MSL11DT4) (C1MSL11DT5) CAN1 Message Slot 11 Data 6 CAN1 Message Slot 11 Data 7 (C1MSL11DT6) (C1MSL11DT7) CAN1 Message Slot 11 Timestamp (C1MSL11TSP) CAN1 Message Slot 12 Standard ID0 CAN1 Message Slot 12 Standard ID1 (C1MSL12SID0) (C1MSL12SID1) CAN1 Message Slot 12 Extended ID0 CAN1 Message Slot 12 Extended ID1 (C1MSL12EID0) (C1MSL12EID1) CAN1 Message Slot 12 Extended ID2 CAN1 Message Slot 12 Data Length Register (C1MSL12EID2) (C1MSL12DLC) CAN1 Message Slot 12 Data 0 CAN1 Message Slot 12 Data 1 (C1MSL12DT0) (C1MSL12DT1) CAN1 Message Slot 12 Data 2 CAN1 Message Slot 12 Data 3 (C1MSL12DT2) (C1MSL12DT3) CAN1 Message Slot 12 Data 4 CAN1 Message Slot 12 Data 5 (C1MSL12DT4) (C1MSL12DT5) CAN1 Message Slot 12 Data 6 CAN1 Message Slot 12 Data 7 (C1MSL12DT6) (C1MSL12DT7) CAN1 Message Slot 12 Timestamp (C1MSL12TSP) CAN1 Message Slot 13 Standard ID0 CAN1 Message Slot 13 Standard ID1 (C1MSL13SID0) (C1MSL13SID1) CAN1 Message Slot 13 Extended ID0 CAN1 Message Slot 13 Extended ID1 (C1MSL13EID0) (C1MSL13EID1) CAN1 Message Slot 13 Extended ID2 CAN1 Message Slot 13 Data Length Register (C1MSL13EID2) (C1MSL13DLC) CAN1 Message Slot 13 Data 0 CAN1 Message Slot 13 Data 1 (C1MSL13DT0) (C1MSL13DT1) CAN1 Message Slot 13 Data 2 CAN1 Message Slot 13 Data 3 (C1MSL13DT2) (C1MSL13DT3) CAN1 Message Slot 13 Data 4 CAN1 Message Slot 13 Data 5 (C1MSL13DT4) (C1MSL13DT5) CAN1 Message Slot 13 Data 6 CAN1 Message Slot 13 Data 7 (C1MSL13DT6) (C1MSL13DT7) CAN1 Message Slot 13 Timestamp (C1MSL13TSP) 13-13 See pages b15 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN Module Related Register Map (11/11) Address +0 address b0 H'0080 15E0 H'0080 15E2 H'0080 15E4 H'0080 15E6 H'0080 15E8 H'0080 15EA H'0080 15EC H'0080 15EE H'0080 15F0 H'0080 15F2 H'0080 15F4 H'0080 15F6 H'0080 15F8 H'0080 15FA H'0080 15FC H'0080 15FE +1 address b7 b8 CAN1 Message Slot 14 Standard ID0 CAN1 Message Slot 14 Standard ID1 (C1MSL14SID0) (C1MSL14SID1) CAN1 Message Slot 14 Extended ID0 CAN1 Message Slot 14 Extended ID1 (C1MSL14EID0) (C1MSL14EID1) CAN1 Message Slot 14 Extended ID2 CAN1 Message Slot 14 Data Length Register (C1MSL14EID2) (C1MSL14DLC) CAN1 Message Slot 14 Data 0 CAN1 Message Slot 14 Data 1 (C1MSL14DT0) (C1MSL14DT1) CAN1 Message Slot 14 Data 2 CAN1 Message Slot 14 Data 3 (C1MSL14DT2) (C1MSL14DT3) CAN1 Message Slot 14 Data 4 CAN1 Message Slot 14 Data 5 (C1MSL14DT4) (C1MSL14DT5) CAN1 Message Slot 14 Data 6 CAN1 Message Slot 14 Data 7 (C1MSL14DT6) (C1MSL14DT7) CAN1 Message Slot 14 Timestamp (C1MSL14TSP) CAN1 Message Slot 15 Standard ID0 CAN1 Message Slot 15 Standard ID1 (C1MSL15SID0) (C1MSL15SID1) CAN1 Message Slot 15 Extended ID0 CAN1 Message Slot 15 Extended ID1 (C1MSL15EID0) (C1MSL15EID1) CAN1 Message Slot 15 Extended ID2 CAN1 Message Slot 15 Data Length Register (C1MSL15EID2) (C1MSL15DLC) CAN1 Message Slot 15 Data 0 CAN1 Message Slot 15 Data 1 (C1MSL15DT0) (C1MSL15DT1) CAN1 Message Slot 15 Data 2 CAN1 Message Slot 15 Data 3 (C1MSL15DT2) (C1MSL15DT3) CAN1 Message Slot 15 Data 4 CAN1 Message Slot 15 Data 5 (C1MSL15DT4) (C1MSL15DT5) CAN1 Message Slot 15 Data 6 CAN1 Message Slot 15 Data 7 (C1MSL15DT6) (C1MSL15DT7) CAN1 Message Slot 15 Timestamp (C1MSL15TSP) 13-14 See pages b15 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 13-57 13-58 13-59 13-60 13-61 13-62 13-63 13-64 13-65 13-66 13-67 13-68 13-69 13-70 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.1 CAN Control Registers CAN0 Control Register (CAN0CNT) CAN1 Control Register (CAN1CNT) b0 0 1 0 2 0 3 0 4 5 RBO TSR 0 0 6 7 8 9 10 TSP 0 0 0 0 0 11 12 FRST BCM 1 0 13 0 14 b15 LBM RST 0 1 b Bit Name 0-3 No function assigned. Fix to "0". Function 4 RBO Return bus off bit 0: Enable normal operation 1: Request clearing of error counter R(Note 1) 5 TSR Timestamp counter reset bit 0: Enable count operation 1: Initialize count (to H'0000) R(Note 1) 6-7 TSP Timestamp prescaler bit 00: 01: 10: 11: R W 8-10 No function assigned. Fix to "0". 0 0 11 FRST Forcible reset bit 0: Negate reset 1: Forcibly reset R W 12 BCM BasicCAN mode bit 0: Disable BasicCAN mode 1: BasicCAN mode R W 13 No function assigned. Fix to "0". 0 0 14 LBM Loopback mode bit 0: Disable loopback function 1: Enable loopback function R W 15 RST CAN reset bit 0: Negate reset 1: Request reset R W Select CAN bus bit clock Select CAN bus bit clock divided by 2 Select CAN bus bit clock divided by 3 Select CAN bus bit clock divided by 4 R W 0 0 Note 1: Only writing "1" is effective. Automatically cleared to "0" in hardware. 13-15 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers (1) RBO (Return Bus Off) bit (Bit 4) Setting this bit to "1" clears the CAN Receive Error Count Register (CANnREC) and CAN Transmit Error Count Register (CANnTEC) to H'00 and forcibly places the CAN module into an error active state. This bit is cleared when the CAN module goes to an error active state. Note: * Communication becomes possible when 11 consecutive recessive bits are detected on the CAN bus after clearing the error counters. (2) TSR (Timestamp Counter Reset) bit (Bit 5) Setting this bit to "1" clears the value of the CAN Timestamp Count Register (CANnTSTMP) to H'0000. This bit is cleared after the value of the CAN Timestamp Count Register (CANnTSTMP) is cleared to H'0000. (3) TSP (Timestamp Prescaler) bits (Bits 6-7) These bits select the count clock source for the timestamp counter. Note: * Do not change settings of the TSP bits while CAN is operating (CAN Status Register CRS bit = "0"). (4) FRST (Forcible Reset) bit (Bit 11) When the FRST bit is set to "1", the CAN module is separated from the CAN bus and the protocol control unit is reset regardless of whether the CAN module currently is communicating. Up to 5 BCLK periods are required before the protocol control unit is reset after setting the FRST bit. Notes: * In order for CAN communication to start, the FRST and RST bits must be cleared to "0". * If the FRST bit is set to "1" during communication, the CTX pin output goes high immediately after that. Therefore, setting the FRST bit to "1" while sending CAN frame may cause a CAN bus error. * The CAN Message Slot Control Register's transmit/receive requests are not cleared for reasons that the FRST or RST bits are set. * When the protocol control unit is reset by setting the FRST bit to "1", the CAN Timestamp Count and CAN Transmit/Receive Error Count Registers are initialized to "0". (5) BCM (BasicCAN Mode) bit (Bit 12) By setting this bit to "1", the CAN module can be operated in BasicCAN mode. * Operation during BasicCAN mode During BasicCAN mode, two local slots--slots 14 and 15--are used as dual buffers, and the received frames with matching ID are stored alternately in slots 14 and 15 by acceptance filtering. Used for this acceptance filtering when slot 14 is active (next received frame to be stored in slot 14) are the ID set in slot 14 and local mask A, and those when slot 15 is active are the ID set in slot 15 and local mask B. Two types of frames--data frame and remote frame--can be received in this mode. By setting the same ID and the same mask register value for the two slots, the possibility of loosing messages when, for example, receiving frames which have many IDs may be reduced. 13-16 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers * Procedure for entering BasicCAN mode Follow the procedure below during initialization: 1) Set the ID for slots 14 and 15 and the local mask registers A and B. (We recommend setting the same value.) 2) Set the frame types to be handled by slots 14 and 15 (standard or extended) in the CAN Extended ID Register. (We recommend setting the same type.) 3) Set the Message Slot Control Registers for slots 14 and 15 for data frame reception. 4) Set the BCM bit to "1". Notes: * Do not change settings of the BCM bit while CAN is operating (CAN Status Register CRS bit = "0"). * The first slot that is active after clearing the RST bit is slot 14. * Even during BasicCAN mode, slots 0 to 13 can be used the same way as in normal operation. (6) LBM (Loopback Mode) bit (Bit 14) When the LBM bit is set to "1", if a receive slot exists whose ID matches that of the frame sent by the CAN module itself, then the frame can be received. Notes: * ACK is not returned for the transmit frame. * Do not change settings of the LBM bit while CAN is operating (CAN Status Register CRS bit = "0"). (7) RST (CAN Reset) bit (Bit 15) When the RST bit is cleared to "0", the CAN module is connected to the CAN bus and becomes ready to communicate after detecting 11 consecutive recessive bits. Also, the CAN Timestamp Count Register thereby starts counting. When the RST bit is set to "1", the bus will enter an idle state after sending frames from the slots which have transmit requests set by that time, then the protocol control unit is reset and the CAN module is disconnected from the CAN bus. Frames received during this time are processed normally. Notes: * It is inhibited to set a new transmit request until the CAN Status Register CRS bit is set to "1" and the protocol control unit is reset after setting the RST bit to "1". * When the protocol control unit is reset by setting the RST bit to "1", the CAN Timestamp Count and CAN Transmit/Receive Error Count Registers are initialized to "0". * In order for CAN communication to start, the FRST and RST bits must be cleared to "0". 13-17 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.2 CAN Status Registers CAN0 Status Register (CAN0STAT) CAN1 Status Register (CAN1STAT) b0 0 1 2 3 4 BOS EPS CBS BCS 0 0 0 0 5 0 6 7 8 9 10 11 LBS CRS RSB TSB RSC TSC 0 1 0 0 0 0 12 13 14 b15 MSN 0 0 0 0 b Bit Name 0 No function assigned. Fix to "0". 1 BOS Bus off status bit 2 Function R W 0 0 0: Not bus off 1: Bus off state R - EPS Error passive status bit 0: Not error passive 1: Error passive state R - 3 CBS CAN bus error bit 0: No error occurred 1: Error occurred R - 4 BCS BasicCAN mode status bit 0: Normal mode 1: BasicCAN mode R - 5 No function assigned. Fix to "0". 0 0 6 LBS Loopback status bit 0: Normal mode 1: Loopback mode R - 7 CRS CAN reset status bit 0: Operating 1: Reset R - 8 RSB Receive status bit 0: Not receiving 1: Receiving R - 9 TSB Transmit status bit 0: Not sending 1: Sending R - 10 RSC Reception completed status bit 0: Reception not completed 1: Reception completed R - 11 TSC Transmission completed status bit 0: Transmission not completed 1: Transmission completed R - 12-15 MSN Message slot number bit Number of the message slot which has finished sending or receiving 0000: Slot 0 0001: Slot 1 0010: Slot 2 0011: Slot 3 0100: Slot 4 0101: Slot 5 0110: Slot 6 0111: Slot 7 1000: Slot 8 1001: Slot 9 1010: Slot 10 1011: Slot 11 1100: Slot 12 1101: Slot 13 1110: Slot 14 1111: Slot 15 R - 13-18 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers (1) BOS (Bus Off Status) bit (Bit 1) When BOS bit = "1", it means that the CAN module is in a bus off state. [Set condition] This bit is set to "1" when the transmit error count register value exceeded 255 and a bus off state is entered. [Clear condition] This bit is cleared when restored from the bus off state. (2) EPS (Error Passive Status) bit (Bit 2) When EPS bit = "1", it means that the CAN module is in an error passive state. [Set condition] This bit is set to "1" when the transmit or receive error count register value exceeded 127 and an error passive state is entered. [Clear condition] This bit is cleared when restored from the error passive state. (3) CBS (CAN Bus Error) bit (Bit 3) [Set condition] This bit is set to "1" when an error is detected on the CAN bus. [Clear condition] This bit is cleared when the CAN module finished sending or receiving normally. (4) BCS (BasicCAN Status) bit (Bit 4) When BCS bit = "1", it means that the CAN module is operating in BasicCAN mode. [Set condition] This bit is set to "1" when the CAN module is operating in BasicCAN mode. BasicCAN mode is useful when the following conditions are met: * CAN Control Register BCM bit = "1" * Slots 14 and 15 both are set for data frame reception [Clear condition] This bit is cleared by clearing the BCM bit to "0". (5) LBS (Loopback Status) bit (Bit 6) When LBS bit = "1", it means that the CAN module is operating in loopback mode. [Set condition] This bit is set to "1" by setting the CAN Control Register LBM (loopback mode) bit to "1". [Clear condition] This bit is cleared by clearing the LBM bit to "0". 13-19 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers (6) CRS (CAN Reset Status) bit (Bit 7) When CRS bit = "1", it means that the protocol control unit is in a reset state. [Set condition] This bit is set to "1" when the CAN protocol control unit is in a reset state. [Clear condition] This bit is cleared by clearing the CAN Control Register RST (CAN reset) and FRST bits to "0". (7) RSB (Receive Status) bit (Bit 8) [Set condition] This bit is set to "1" when the CAN module is operating as a receive node. [Clear condition] This bit is cleared when the CAN module starts operating as a transmit node or enters a bus idle state. (8) TSB (Transmit Status) bit (Bit 9) [Set condition] This bit is set to "1" when the CAN module is operating as a transmit node. [Clear condition] This bit is cleared when the CAN module starts operating as a receive node or enters a bus idle state. (9) RSC (Reception Completed Status) bit (Bit 10) [Set condition] This bit is set to "1" when the CAN module has finished receiving normally (regardless of whether there is any slot that meets receive conditions). [Clear condition] This bit is cleared when the CAN module has finished sending normally. (10) TSC (Transmission Completed Status) bit (Bit 11) [Set condition] This bit is set to "1" when the CAN module has finished sending normally. [Clear condition] This bit is cleared when the CAN module has finished receiving normally. (11) MSN (Message Slot Number) bits (Bits 12-15) These bits indicate the relevant slot number when the CAN module has finished sending or finished storing the received data. These bits cannot be cleared to "0" in software. Note: * When CAN module receives the frame that is transmitted by the CAN module itself during loopback mode, the MSN bits indicate the transmit slot number. 13-20 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.3 CAN Frame Format Select Registers CAN0 Frame Format Select Register (CAN0FFS) CAN1 Frame Format Select Register (CAN1FFS) b0 FFE0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 FFE1 FFE2 FFE3 FFE4 FFE5 FFE6 FFE7 FFE8 FFE9 FFE10 FFE11 FFE12 FFE13 FFE14 FFE15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 FFE0 (slot 0 extended format bit) 0: Standard ID format R W 1 FFE1 (slot 1 extended format bit) 1: Extended ID format 2 FFE2 (slot 2 extended format bit) 3 FFE3 (slot 3 extended format bit) 4 FFE4 (slot 4 extended format bit) 5 FFE5 (slot 5 extended format bit) 6 FFE6 (slot 6 extended format bit) 7 FFE7 (slot 7 extended format bit) 8 FFE8 (slot 8 extended format bit) 9 FFE9 (slot 9 extended format bit) 10 FFE10 (slot 10 extended format bit) 11 FFE11 (slot 11 extended format bit) 12 FFE12 (slot 12 extended format bit) 13 FFE13 (slot 13 extended format bit) 14 FFE14 (slot 14 extended format bit) 15 FFE15 (slot 15 extended format bit) This register selects the format of frames handled by message slots corresponding to the respective bits in the register. Setting any bit in this register to "0" selects the standard ID format, and setting any bit in this register to "1" selects the extended ID format. Note: * Settings of any bit in this register can only be changed when the corresponding slot does not have transmit or receive requests set. 13-21 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.4 CAN Configuration Registers CAN0 Configuration Register (CAN0CONF) CAN1 Configuration Register (CAN1CONF) b0 1 2 SJW 0 3 4 5 PH2 0 0 0 6 7 8 9 PH1 0 0 0 10 11 PRB 0 0 0 12 13 14 0 0 0 b15 SAM 0 0 0 b Bit Name Function 0-1 SJW reSynchronization Jump Width setting bit 00: 01: 10: 11: R W R W 2-4 PH2 Phase Segment2 setting bit 000: Phase Segment2 001: Phase Segment2 010: Phase Segment2 011: Phase Segment2 100: Phase Segment2 101: Phase Segment2 110: Phase Segment2 111: Phase Segment2 = = = = = = = = 1Tq 2Tq 3Tq 4Tq 5Tq 6Tq 7Tq 8Tq R W 5-7 PH1 Phase Segment1 setting bit 000: Phase Segment1 001: Phase Segment1 010: Phase Segment1 011: Phase Segment1 100: Phase Segment1 101: Phase Segment1 110: Phase Segment1 111: Phase Segment1 = = = = = = = = 1Tq 2Tq 3Tq 4Tq 5Tq 6Tq 7Tq 8Tq R W 8-10 PRB Propagation Segment setting bit 000: Propagation Segment = 1Tq 001: Propagation Segment = 2Tq 010: Propagation Segment = 3Tq 011: Propagation Segment = 4Tq 100: Propagation Segment = 5Tq 101: Propagation Segment = 6Tq 110: Propagation Segment = 7Tq 111: Propagation Segment = 8Tq R W 11 SAM Sampling count select bit 0: Sampled one time 1: Sampled three times R W 12-15 No function assigned. Fix to "0". 0 0 SJW SJW SJW SJW = = = = 1Tq 2Tq 3Tq 4Tq Notes: * Do not change settings of the CAN Configuration Register (CAN0CONF or CAN1CONF) during CAN operation (CAN Status Register CRS bit = "0"). * When setting the bits in this register, make sure the conditions given below are met: * Number of Tq's for one bit: 8-25 Tq's * SJW min (Phase Segment1, Phase Segment2) * Phase Segment2 = max (Phase Segment1, IPT) where IPT = 1 for the internal CAN modules of the 32182 min() is the function that returns the smaller of two values; max() is the function that returns the maximum value. 13-22 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers (1) SJW bits (Bits 0-1) These bits set the reSynchronization Jump Width. (2) PH2 bits (Bits 2-4) These bits set the width of Phase Segment2. (3) PH1 bits (Bits 5-7) These bits set the width of Phase Segment1. (4) PRB bits (Bits 8-10) These bits set the width of Propagation Segment. (5) SAM bit (Bit 11) This bit sets the number of times each bit is sampled. When SAM = "0", the value sampled at the end of Phase Segment1 is assumed to be the value of the bit. When SAM = "1", the value of the bit is determined by a majority circuit from three sampled values, each sampled 2 Tq's before, 1 Tq before, and at the end of Phase Segment1. Table 13.2.1 Typical Settings of Bit Timing when CPU Clock = 80 MHz Baud Rate BRP Set Value 1M bps 1 500K bps Tq Period (ns) No. of Tq's in 1 Bit PROP + PH1 PH2 Sampling Point 50 20 13 6 70% 3 100 10 7 2 80% 3 100 10 6 3 70% 3 100 10 5 4 60% 4 125 8 5 2 75% 4 125 8 4 3 63% 4 125 16 13 2 88% 4 125 16 12 3 81% 4 125 16 11 4 75% 7 200 10 7 2 80% 7 200 10 6 3 70% 7 200 10 5 4 60% 9 250 8 5 2 75% 9 250 8 4 3 63% Table 13.2.2 Typical Settings of Bit Timing when CPU Clock = 64 MHz Baud Rate BRP Set Value 1M bps 1 500K bps Tq Period (ns) 62.5 No. of Tq's in 1 Bit PROP + PH1 PH2 Sampling Point 16 10 5 69% 3 125 8 5 2 75% 3 125 8 4 3 63% 3 125 16 13 2 88% 3 125 16 11 4 75% 7 250 8 5 2 75% 7 250 8 4 3 63% 13-23 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.5 CAN Timestamp Count Registers CAN0 Timestamp Count Register (CAN0TSTMP) CAN1 Timestamp Count Register (CAN1TSTMP) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0 0 0 0 0 b15 CANTSTMP 0 0 0 0 0 0 0 0 0 0 b Bit Name Function R W 0-15 CANTSTMP 16-bit timestamp count value R - The CAN module contains a 16-bit up-count register. The count period can be selected from the CAN bus bit period divided by 1, 2, 3 or 4 by setting the CAN Control Register (CANnCNT) TSP (Timestamp Prescaler) bits. When the CAN module finishes sending or receiving, it captures the count register value and stores the value in a message slot. The counter is made to start counting by clearing the CAN Control Register (CANnCNT) RST bit to "0". Notes: * The CAN protocol control unit can be reset and the counter initialized to H'0000 by setting the CAN Control Register (CANnCNT) RST (CAN Reset) bit to "1". Or the counter can be initialized to H'0000 while the CAN module remains operating by setting the TSR (Timestamp Counter Reset) bit to "1". * If any slot with the matching ID exists during loopback mode, the CAN module stores the timestamp value in that slot when it finished receiving. (No timestamp values are stored this way when the CAN module finished sending.) * The count period of the CAN Timestamp Count Register varies with the CAN resynchronization function. 13-24 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.6 CAN Error Count Registers CAN0 Receive Error Count Register (CAN0REC) CAN1 Receive Error Count Register (CAN1REC) b0 1 2 3 4 5 6 b7 0 0 0 0 REC 0 0 0 0 b Bit Name Function R W 0-7 REC Receive error count value R - During an error active/error passive state, a receive error count value is stored in this register. The count is decremented when frames are received normally or incremented when an error occurred. If the CAN module finished receiving normally when REC 128 (error passive), REC is set to 127. During a bus off state, an undefined value is stored in this register. The count is reset to H'00 upon returning to an error active state. CAN0 Transmit Error Count Register (CAN0TEC) CAN1 Transmit Error Count Register (CAN1TEC) b8 9 10 11 12 13 14 b15 0 0 0 0 TEC 0 0 0 0 b Bit Name Function R W 8-15 TEC Transmit error count value R - During an error active/error passive state, a transmit error count value is stored in this register. The count is decremented when frames are transmitted normally or incremented when an error occurred. During a bus off state, an undefined value is stored in this register. The count is reset to H'00 upon returning to an error active state. 13-25 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.7 CAN Baud Rate Prescalers CAN0 Baud Rate Prescaler (CAN0BRP) CAN1 Baud Rate Prescaler (CAN1BRP) b0 1 2 3 4 5 6 b7 0 0 0 1 BRP 0 0 0 0 b Bit Name Function R W 0-7 BRP Baud rate prescaler value R W This register sets the Tq period of CAN. The CAN baud rate is determined by (Tq period x number of Tq's in one bit). Tq period = (BRP + 1) / (CPU clock/2) CAN transfer baud rate = 1 Tq period x number of Tq's in one bit Number of Tq's in one bit = Synchronization Segment + Propagation Segment + Phase Segment 1 + Phase Segment 2 Notes: * Setting H'00 (divide by 1) is inhibited. * Do not change settings of the CAN Baud Rate Prescaler (CANnBRP) during CAN operation (CAN Status Register CRS bit = "0"). 13-26 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.8 CAN Interrupt Related Registers The CAN interrupt related registers are used to control the interrupt request signals output to the Interrupt Controller by CAN. (1) Interrupt request status bit This status bit is used to determine whether an interrupt is requested. When an interrupt request occurs, this bit is set in hardware (cannot be set in software). The status bit is cleared by writing "0". Writing "1" has no effect; the bit retains the status it had before the write. Because this bit is unaffected by the interrupt request enable bit, it can also be used to inspect the operating status of peripheral functions. In interrupt handling, make sure that within the grouped interrupt request status, only the status bit for the interrupt request that has been serviced is cleared. If the status bit for any interrupt request that has not been serviced is cleared, the pending interrupt request is cleared simultaneously with its status bit. (2) Interrupt request enable bit This bit is used to disable unnecessary interrupt requests within the grouped interrupt request. Set this bit to "1" to enable interrupt requests or "0" to disable interrupt requests. * Group interrupt Interrupt request from each peripheral function Set Data bus Data = 0 clear Interrupt request status F/F F/F To the Interrupt Controller Interrupt request enable Figure 13.2.1 Interrupt Request Status and Enable Registers 13-27 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers Example for clearing interrupt request status Interrupt request status Initial state b4 5 6 b7 0 0 0 0 Interrupt request Event occurs on bit 6 0 0 1 0 Event occurs on bit 4 1 0 1 0 1 0 0 0 Write to the interrupt request status b4 5 6 b7 1 1 0 1 Only bit 6 cleared Bit 4 data retained Program example * To clear the Interrupt Request Status Register 0 (ISTREG) interrupt request status 1, ISTAT1 (0x02 bit) ISTREG = 0xfd; /* Clear ISTAT1 (0x02 bit) only */ To clear an interrupt request status, always be sure to write 1 to all other interrupt request status bits. At this time, avoid using a logic operation like the one shown below. Because it requires three step-ISTREG read, logic operation and write, if another interrupt request occurs between the read and write, status may be inadvertently cleared. ISTREG &= 0xfd; /* Clear ISTAT1 (0x02 bit) only */ Interrupt request status Event occurs on bit 6 b4 5 6 b7 0 0 1 0 Read 0 Event occurs on bit 4 1 0 1 0 0 1 0 Clear bit 6 (AND'ing with 1101) 0 0 0 0 0 0 0 Write 0 Only bit 6 cleared Bit 4 also cleared Figure 13.2.2 Example for Clearing Interrupt Request Status 13-28 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 Slot Interrupt Request Status Register (CAN0SLIST) CAN1 Slot Interrupt Request Status Register (CAN1SLIST) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 SSB0 SSB1 SSB2 SSB3 SSB4 SSB5 SSB6 SSB7 SSB8 SSB9 SSB10 SSB11 SSB12 SSB13 SSB14 SSB15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 SSB0 (slot 0 interrupt request status bit) 0: Interrupt not requested R(Note 1) 1 SSB1 (slot 1 interrupt request status bit) 1: Interrupt requested 2 SSB2 (slot 2 interrupt request status bit) 3 SSB3 (slot 3 interrupt request status bit) 4 SSB4 (slot 4 interrupt request status bit) 5 SSB5 (slot 5 interrupt request status bit) 6 SSB6 (slot 6 interrupt request status bit) 7 SSB7 (slot 7 interrupt request status bit) 8 SSB8 (slot 8 interrupt request status bit) 9 SSB9 (slot 9 interrupt request status bit) 10 SSB10 (slot 10 interrupt request status bit) 11 SSB11 (slot 11 interrupt request status bit) 12 SSB12 (slot 12 interrupt request status bit) 13 SSB13 (slot 13 interrupt request status bit) 14 SSB14 (slot 14 interrupt request status bit) 15 SSB15 (slot 15 interrupt request status bit) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the status it had before the write. When using CAN interrupts, this register helps to know which slot requested an interrupt. * Slots set for transmission The corresponding bit is set to "1" when the CAN module finished sending. This bit is cleared by writing "0" in software. * Slots set for reception The corresponding bit is set to "1" when the CAN module finished receiving and finished storing the received message in the message slot. This bit is cleared by writing "0" in software. When writing to the CAN slot interrupt request status, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write. Notes: * If the automatic response function is enabled for remote frame receive slots, the request status is set after the CAN module finished receiving a remote frame and after it finished sending a data frame. * For remote frame transmit slots, the request status is set after the CAN module finished sending a remote frame and after it finished receiving a data frame. * If the request status is set by an interrupt request at the same time it is cleared in software, the former has priority so that the request status is set. 13-29 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 Slot Interrupt Request Enable Register (CAN0SLIEN) CAN1 Slot Interrupt Request Enable Register (CAN1SLIEN) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 IRB0 IRB1 IRB2 IRB3 IRB4 IRB5 IRB6 IRB7 IRB8 IRB9 IRB10 IRB11 IRB12 IRB13 IRB14 IRB15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 1 IRB0 (slot 0 interrupt request enable bit) 0: Mask (disable) interrupt request R W IRB1 (slot 1 interrupt request enable bit) 1: Enable interrupt request 2 IRB2 (slot 2 interrupt request enable bit) 3 IRB3 (slot 3 interrupt request enable bit) 4 IRB4 (slot 4 interrupt request enable bit) 5 IRB5 (slot 5 interrupt request enable bit) 6 IRB6 (slot 6 interrupt request enable bit) 7 IRB7 (slot 7 interrupt request enable bit) 8 IRB8 (slot 8 interrupt request enable bit) 9 IRB9 (slot 9 interrupt request enable bit) 10 IRB10 (slot 10 interrupt request enable bit) 11 IRB11 (slot 11 interrupt request enable bit) 12 IRB12 (slot 12 interrupt request enable bit) 13 IRB13 (slot 13 interrupt request enable bit) 14 IRB14 (slot 14 interrupt request enable bit) 15 IRB15 (slot 15 interrupt request enable bit) This register is used to enable or disable the interrupt requests that will be generated when data transmission or reception in each corresponding slot is completed. Setting IRBn (n = 0-15) to "1" enables the interrupt request to be generated when data transmission or reception in the corresponding slot is completed. The CAN Slot Interrupt Request Status Register (CANnSLIST) helps to know which slot requested the interrupt. 13-30 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 Error Interrupt Request Status Register (CAN0ERIST) CAN1 Error Interrupt Request Status Register (CAN1ERIST) b0 0 1 0 2 0 3 0 4 5 6 b7 BEIS EPIS EOIS 0 0 0 0 b Bit Name 0-4 No function assigned. Fix to "0". 5 BEIS CAN bus error interrupt request status bit 6 EPIS Error passive interrupt request status bit 7 EOIS Bus off interrupt request status bit Function 0: Interrupt not requested 1: Interrupt requested R W 0 0 R(Note 1) Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the status it had before the write. When using CAN interrupts, if the interrupt request sources are associated with errors, this register helps to know which source generated the interrupt. (1) BEIS (CAN Bus Error Interrupt Request Status) bit (Bit 5) The BEIS bit is set to "1" when a communication error is detected. This bit is cleared by writing "0" in software. (2) EPIS (Error Passive Interrupt Request Status) bit (Bit 6) The EPIS bit is set to "1" when the CAN module goes to an error passive state. This bit is cleared by writing "0" in software. (3) EOIS (Bus Off Interrupt Request Status) bit (Bit 7) The EOIS bit is set to "1" when the CAN module goes to a bus off passive state. This bit is cleared by writing "0" in software. When writing to the CAN error interrupt request status, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write. 13-31 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 Error Interrupt Request Enable Register (CAN0ERIEN) CAN1 Error Interrupt Request Enable Register (CAN1ERIEN) b8 9 10 11 12 13 BEIEN 0 0 0 0 0 14 b15 EPIEN EOIEN 0 0 0 b Bit Name 8-12 No function assigned. Fix to "0". 13 BEIEN CAN bus error interrupt request enable bit 14 EPIEN Error passive interrupt request enable bit 15 EOIEN Bus off interrupt request enable bit Function 0: Mask (disable) interrupt request 1: Enable interrupt request R W 0 0 R W (1) BEIEN (CAN Bus Error Interrupt Request Enable) bit (Bit 5) The BEIEN bit enables or disables the interrupt requests to be generated when CAN bus errors occurred. CAN bus error interrupt requests are enabled by setting this bit to "1". (2) EPIEN (Error Passive Interrupt Request Enable) bit (Bit 6) The EPIEN bit enables or disables the interrupt requests to be generated when the CAN module entered an error passive state. Error passive interrupt requests are enabled by setting this bit to "1". (3) EOIEN (Bus Off Interrupt Request Enable) bit (Bit 7) The EOIEN bit enables or disables the interrupt requests to be generated when the CAN module entered a bus off state. Bus off interrupt requests are enabled by setting this bit to "1". 13-32 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 Single-Shot Interrupt Request Status Register (CAN0SSIST) CAN1 Single-Shot Interrupt Request Status Register (CAN1SSIST) b0 1 2 3 4 5 6 7 8 9 SSIST0 SSIST1 SSIST2 SSIST3 SSIST4 SSIST5 SSIST6 SSIST7 SSIST8 SSIST9 0 0 0 0 0 0 0 0 0 0 10 11 12 13 14 b15 SSIST10 SSIST11 SSIST12 SSIST13 SSIST14 SSIST15 0 0 0 0 0 0 b Bit Name Function R W 0 SSIST0 Slot 0 single-shot interrupt request status 0: No arbitration-lost or transmit error 1: Arbitration-lost or transmit error occurred R(Note 1) 1 SSIST1 Slot 1 single-shot interrupt request status 2 SSIST2 Slot 2 single-shot interrupt request status 3 SSIST3 Slot 3 single-shot interrupt request status 4 SSIST4 Slot 4 single-shot interrupt request status 5 SSIST5 Slot 5 single-shot interrupt request status 6 SSIST6 Slot 6 single-shot interrupt request status 7 SSIST7 Slot 7 single-shot interrupt request status 8 SSIST8 Slot 8 single-shot interrupt request status 9 SSIST9 Slot 9 single-shot interrupt request status 10 SSIST10 Slot 10 single-shot interrupt request status 11 SSIST11 Slot 11 single-shot interrupt request status 12 SSIST12 Slot 12 single-shot interrupt request status 13 SSIST13 Slot 13 single-shot interrupt request status 14 SSIST14 Slot 14 single-shot interrupt request status 15 SSIST15 Slot 15 single-shot interrupt request status Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the status it had before the write. If transmission in any slot failed for reasons of a detection of arbitration-lost or a transmit error, the corresponding bit in this register is set to "1". The bit is cleared by writing "0" in software. Furthermore, if the corresponding bit in the CAN single-shot interrupt request enable register has been set to "1", an interrupt request can be generated when transmission failed. When writing to the CAN single-shot interrupt request status, make sure only the bits to be cleared are set to "0" and all other bits are set to "1". Those bits that have been set to "1" are unaffected by writing in software and retain the value they had before the write. 13-33 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 Single-Shot Interrupt Request Enable Register (CAN0SSIEN) CAN1 Single-Shot Interrupt Request Enable Register (CAN1SSIEN) 1 2 3 4 5 6 7 8 SSIEN0 b0 SSIEN1 SSIEN2 SSIEN3 SSIEN4 SSIEN5 SSIEN6 SSIEN7 SSIEN8 0 0 0 0 0 0 0 0 0 9 10 11 12 13 14 b15 SSIEN9 SSIEN10 SSIEN11 SSIEN12 SSIEN13 SSIEN14 SSIEN15 0 0 0 0 0 0 0 b Bit Name Function R W 0 SSIEN0 Slot 0 single-shot interrupt request enable bit 0: Disable interrupt request 1: Enable interrupt request R W 1 SSIEN1 Slot 1 single-shot interrupt request enable bit 2 SSIEN2 Slot 2 single-shot interrupt request enable bit 3 SSIEN3 Slot 3 single-shot interrupt request enable bit 4 SSIEN4 Slot 4 single-shot interrupt request enable bit 5 SSIEN5 Slot 5 single-shot interrupt request enable bit 6 SSIEN6 Slot 6 single-shot interrupt request enable bit 7 SSIEN7 Slot 7 single-shot interrupt request enable bit 8 SSIEN8 Slot 8 single-shot interrupt request enable bit 9 SSIEN9 Slot 9 single-shot interrupt request enable bit 10 SSIEN10 Slot 10 single-shot interrupt request enable bit 11 SSIEN11 Slot 11 single-shot interrupt request enable bit 12 SSIEN12 Slot 12 single-shot interrupt request enable bit 13 SSIEN13 Slot 13 single-shot interrupt request enable bit 14 SSIEN14 Slot 14 single-shot interrupt request enable bit 15 SSIEN15 Slot 15 single-shot interrupt request enable bit This register is used to enable or disable the interrupt requests that will be generated when transmission in each corresponding slot has failed. Setting any bit in this register to "1" enables the interrupt request to be generated when transmission in the corresponding slot (in single-shot mode only) has failed. The CAN Single-Shot Interrupt Request Status Register helps to know which slot requested the interrupt. 13-34 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0SLIST (H'0080 100C) CAN0SLIEN (H'0080 1010) Slot 0 transmission/reception completed Data bus b0 SSB0 F/F b0 IRB0 F/F 35-source inputs (Level) CAN0 transmit/receive & error interrupt request Slot 1 transmission/reception completed b1 SSB1 F/F b1 IRB1 F/F Slot 2 transmission/reception completed b2 SSB2 F/F b2 IRB2 F/F Slot 3 transmission/reception completed b3 SSB3 F/F b3 IRB3 F/F Slot 4 transmission/reception completed b4 SSB4 F/F b4 IRB4 F/F Slot 5 transmission/reception completed b5 SSB5 F/F b5 IRB5 F/F Slot 6 transmission/reception completed b6 SSB6 F/F b6 IRB6 F/F Slot 7 transmission/reception completed b7 SSB7 F/F b7 IRB7 F/F To the remaining 27-source inputs in the next page Figure 13.2.3 Block Diagram of the CAN0 Transmit/Receive & Error Interrupt Requests (1/5) 13-35 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0SLIST (H'0080 100C) CAN0SLIEN (H'0080 1010) Slot 8 transmission/reception completed Data bus b8 SSB8 F/F b8 IRB8 F/F 27-source inputs (Level) To the preceding page Slot 9 transmission/reception completed b9 SSB9 F/F b9 IRB9 F/F Slot 10 transmission/reception completed b10 SSB10 F/F b10 IRB10 F/F Slot 11 transmission/reception completed b11 SSB11 F/F b11 IRB11 F/F Slot 12 transmission/reception completed b12 SSB12 F/F b12 IRB12 F/F Slot 13 transmission/reception completed b13 SSB13 F/F b13 IRB13 F/F Slot 14 transmission/reception completed b14 SSB14 F/F b14 IRB14 F/F Slot 15 transmission/reception completed b15 SSB15 F/F b15 IRB15 F/F To the remaining 19-source inputs in the next page Figure 13.2.4 Block Diagram of the CAN0 Transmit/Receive & Error Interrupt Requests (2/5) 13-36 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0ERIST (H'0080 1014) CAN0ERIEN (H'0080 1015) CAN bus error occurs Data bus b5 BEIS F/F b13 BEIEN F/F 19-source inputs (Level) To the preceding page Go to error passive state b6 EPIS F/F b14 EPIEN F/F Go to bus off state b7 EOIS F/F b15 EOIEN F/F To the remaining 16-source inputs in the next page Figure 13.2.5 Block Diagram of the CAN0 Transmit/Receive & Error Interrupt Requests (3/5) 13-37 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0SSIST (H'0080 1044) CAN0SSIEN (H'0080 1048) Slot 0 arbitration-lost/transmit error occurs Data bus b0 SSIST0 F/F b0 SSIEN0 F/F 16-source inputs (Level) To the preceding page Slot 1 arbitration-lost/transmit error occurs b1 SSIST1 F/F b1 SSIEN1 F/F Slot 2 arbitration-lost/transmit error occurs b2 SSIST2 F/F b2 SSIEN2 F/F Slot 3 arbitration-lost/transmit error occurs b3 SSIST3 F/F b3 SSIEN3 F/F Slot 4 arbitration-lost/transmit error occurs b4 SSIST4 F/F b4 SSIEN4 F/F Slot 5 arbitration-lost/transmit error occurs b5 SSIST5 F/F b5 SSIEN5 F/F Slot 6 arbitration-lost/transmit error occurs b6 SSIST6 F/F b6 SSIEN6 F/F Slot 7 arbitration-lost/transmit error occurs b7 SSIST7 F/F b7 SSIEN7 F/F To the remaining 8-source inputs in the next page Figure 13.2.6 Block Diagram of the CAN0 Transmit/Receive & Error Interrupt Requests (4/5) 13-38 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0SSIST (H'0080 1044) CAN0SSIEN (H'0080 1048) Slot 8 arbitration-lost/transmit error occurs Data bus b8 SSIST8 F/F b8 SSIEN8 F/F 8-source inputs (Level) To the preceding page Slot 9 arbitration-lost/transmit error occurs b9 SSIST9 F/F b9 SSIEN9 F/F Slot 10 arbitration-lost/transmit error occurs b10 SSIST10 F/F b10 SSIEN10 F/F Slot 11 arbitration-lost/transmit error occurs b11 SSIST11 F/F b11 SSIEN11 F/F Slot 12 arbitration-lost/transmit error occurs b12 SSIST12 F/F b12 SSIEN12 F/F Slot 13 arbitration-lost/transmit error occurs b13 SSIST13 F/F b13 SSIEN13 F/F Slot 14 arbitration-lost/transmit error occurs b14 SSIST14 F/F b14 SSIEN14 F/F Slot 15 arbitration-lost/transmit error occurs b15 SSIST15 F/F b15 SSIEN15 F/F Figure 13.2.7 Block Diagram of the CAN0 Transmit/Receive & Error Interrupt Requests (5/5) 13-39 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN1SLIST (H'0080 140C) CAN1SLIEN (H'0080 1410) Slot 0 transmission/reception completed Data bus b0 SSB0 F/F b0 IRB0 F/F 35-source inputs (Level) CAN1 transmit/receive & error interrupt request Slot 1 transmission/reception completed b1 SSB1 F/F b1 IRB1 F/F Slot 2 transmission/reception completed b2 SSB2 F/F b2 IRB2 F/F Slot 3 transmission/reception completed b3 SSB3 F/F b3 IRB3 F/F Slot 4 transmission/reception completed b4 SSB4 F/F b4 IRB4 F/F Slot 5 transmission/reception completed b5 SSB5 F/F b5 IRB5 F/F Slot 6 transmission/reception completed b6 SSB6 F/F b6 IRB6 F/F Slot 7 transmission/reception completed b7 SSB7 F/F b7 IRB7 F/F To the remaining 27-source inputs in the next page Figure 13.2.8 Block Diagram of the CAN1 Transmit/Receive & Error Interrupt Requests (1/5) 13-40 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN1SLIST (H'0080 140C) CAN1SLIEN (H'0080 1410) Slot 8 transmission/reception completed Data bus SSB8 b8 27-source inputs F/F IRB8 b8 (Level) To the preceding page F/F Slot 9 transmission/reception completed SSB9 b9 F/F IRB9 b9 F/F Slot 10 transmission/reception completed SSB10 b10 F/F IRB10 b10 F/F Slot 11 transmission/reception completed SSB11 b11 F/F IRB11 b11 F/F Slot 12 transmission/reception completed b12 SSB12 F/F b12 IRB12 F/F Slot 13 transmission/reception completed SSB13 b13 F/F b13 IRB13 F/F Slot 14 transmission/reception completed b14 SSB14 F/F b14 IRB14 F/F Slot 15 transmission/reception completed b15 SSB15 F/F b15 IRB15 F/F To the remaining 19-source inputs in the next page Figure 13.2.9 Block Diagram of the CAN1 Transmit/Receive & Error Interrupt Requests (2/5) 13-41 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN1ERIST (H'0080 1414) CAN1ERIEN (H'0080 1415) CAN bus error occurs Data bus b5 BEIS F/F b13 BEIEN F/F 19-source inputs (Level) To the preceding page Go to error passive state b6 EPIS F/F b14 EPIEN F/F Go to bus off state b7 EOIS F/F b15 EOIEN F/F To the remaining 16-source inputs in the next page Figure 13.2.10 Block Diagram of the CAN1 Transmit/Receive & Error Interrupt Requests (3/5) 13-42 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN1SSIST (H'0080 1444) CAN1SSIEN (H'0080 1488) Slot 0 arbitration-lost/transmit error occurs Data bus b0 SSIST0 F/F b0 SSIEN0 F/F 16-source inputs To the preceding page (Level) Slot 1 arbitration-lost/transmit error occurs b1 SSIST1 F/F b1 SSIEN1 F/F Slot 2 arbitration-lost/transmit error occurs b2 SSIST2 F/F b2 SSIEN2 F/F Slot 3 arbitration-lost/transmit error occurs b3 SSIST3 F/F b3 SSIEN3 F/F Slot 4 arbitration-lost/transmit error occurs b4 SSIST4 F/F b4 SSIEN4 F/F Slot 5 arbitration-lost/transmit error occurs b5 SSIST5 F/F b5 SSIEN5 F/F Slot 6 arbitration-lost/transmit error occurs b6 SSIST6 F/F b6 SSIEN6 F/F Slot 7 arbitration-lost/transmit error occurs b7 SSIST7 F/F b7 SSIEN7 F/F To the remaining 8-source inputs in the next page Figure 13.2.11 Block Diagram of the CAN1 Transmit/Receive & Error Interrupt Requests (4/5) 13-43 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN1SSIST (H'0080 1444) CAN1SSIEN (H'0080 1488) Slot 8 arbitration-lost/transmit error occurs Data bus b8 SSIST8 F/F b8 SSIEN8 F/F 8-source inputs (Level) To the preceding page Slot 9 arbitration-lost/transmit error occurs b9 SSIST9 F/F b9 SSIEN9 F/F Slot 10 arbitration-lost/transmit error occurs b10 SSIST10 F/F b10 SSIEN10 F/F Slot 11 arbitration-lost/transmit error occurs b11 SSIST11 F/F b11 SSIEN11 F/F Slot 12 arbitration-lost/transmit error occurs b12 SSIST12 F/F b12 SSIEN12 F/F Slot 13 arbitration-lost/transmit error occurs b13 SSIST13 F/F b13 SSIEN13 F/F Slot 14 arbitration-lost/transmit error occurs b14 SSIST14 F/F b14 SSIEN14 F/F Slot 15 arbitration-lost/transmit error occurs b15 SSIST15 F/F b15 SSIEN15 F/F Figure 13.2.12 Block Diagram of the CAN1 Transmit/Receive & Error Interrupt Requests (5/5) 13-44 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.9 CAN Cause of Error Registers CAN0 Cause of Error Register (CAN0EF) CAN1 Cause of Error Register (CAN1EF) b8 0 9 10 11 ETR BITE 0 0 0 12 13 14 STFE FORME CRCE 0 0 b15 ACKE 0 0 b Bit Name 8-9 No function assigned. Fix to "0". 10 ETR Transmit/receive error judgment bit 11 Function R W 0 0 0: Error detected when sending 1: Error detected when receiving R - BITE Bit error detection bit 0: Bit error not detected 1: Bit error detected R - 12 STFE Stuff error detection bit 0: Stuff error not detected 1: Stuff error detected R - 13 FORME Form error detection bit 0: Form error not detected 1: Form error detected R - 14 CRCE CRC error detection bit 0: CRC error not detected 1: CRC error detected R - 15 ACKE ACK error detection bit 0: ACK error not detected 1: ACK error detected R - This register indicates error information when a communication error occurred. (1) ETR (Transmit/Receive Error Judgement) bit (Bit 10) This bit is set to "1" if the CAN module was operating as a reception node when a communication error occurred. The bit is cleared to "0" by a read of this register. (2) BITE (Bit Error Detection) bit (Bit 11) This bit is set to "1" when a bit error was detected. The bit is cleared to "0" by a read of this register. (3) STFE (Stuff Error Detection) bit (Bit 12) This bit is set to "1" when a stuff error was detected. The bit is cleared to "0" by a read of this register. (4) FORME (Form Error Detection) bit (Bit 13) This bit is set to "1" when a form error was detected. The bit is cleared to "0" by a read of this register. (5) CRCE (CRC Error Detection) bit (Bit 14) This bit is set to "1" when a CRC error was detected. The bit is cleared to "0" by a read of this register. (6) ACKE (ACK Error Detection) bit (Bit 15) This bit is set to "1" when an ACK error was detected. The bit is cleared to "0" by a read of this register. Note: * Depending on the error status, two or more bits may be set at the same time. 13-45 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.10 CAN Mode Registers CAN0 Mode Register (CAN0MOD) CAN1 Mode Register (CAN1MOD) b0 1 2 3 4 5 6 b7 CMOD 0 0 0 0 0 0 0 0 b Bit Name Function 0-5 No function assigned. Fix to "0". 6-7 CMOD CAN operation mode select bit 00: 01: 10: 11: Normal mode Bus monitor mode Self-diagnostic mode Settings inhibited R W 0 0 R W (1) CMOD (CAN Operation Mode Select) bits (Bit 6, Bit 7) These bits select the CAN operation mode. * Normal operation mode Normal transmit/receive operations can be performed. * Bus monitor mode Only receive operation is performed. During bus monitor mode, the CTX output is fixed high and neither ACK nor an error frame can be returned. Note: * During bus monitor mode, issuing transmit requests is inhibited. The ACK bit is handled as "Don't care" during bus monitor mode. Therefore, if all bits of data including the CRC delimiter are received normally, it is assumed that data has been received normally no matter whether the ACK bit is high. * Self-diagnostic mode CTX and CRX are connected together internally in the CAN module. When combined with loopback mode, this mode allows communication to be performed within the CAN module alone. During selfdiagnostic mode, the CTX pin output is fixed high even when transmitting. M32R/ECU CAN module Self-diagnostic mode CRX pin Rx Ack signal generating circuit Tx CTX pin Figure 13.2.13 Conceptual Diagram of Self-Diagnostic Mode 13-46 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.11 CAN DMA Transfer Request Select Register CAN0 DMA Transfer Request Select Register (CAN0DMARQ) b8 9 10 11 12 13 14 b15 CDMSEL1 CDMSEL0 0 0 0 0 0 0 0 0 b Bit Name Function R W 8-13 No function assigned. Fix to "0". 0 0 14 CDMSEL1 CAN DMA1 transfer request source select bit 0: Slot 1 transmission failed 1: Slot 14 transmission/reception completed R W 15 CDMSEL0 CAN DMA0 transfer request source select bit 0: Slot 0 transmission failed 1: Slot 15 transmission/reception completed R W CAN0 can generate DMA transfer requests. This register is used to select the cause or source of that request. (1) CDMSEL1 (CAN DMA1 Transfer Request Source Select) bit (Bit 14) This bit selects one of the following two as the cause or source of a transfer request to DMA2. * Slot 1 transmission failed If the CDMSEL1 bit is set to "0", a transfer request is generated when transmission in slot 1 has failed for reasons of arbitration-lost or transmit error. * Slot 14 transmission/reception completed If the CDMSEL1 bit is set to "1", a transfer request is generated when transmission/reception in slot 14 is completed. Notes: * If slot 14 has been set for remote frame transmission, a DMA transfer request is generated when remote frame transmission is completed as well as when data frame reception is completed. * If slot 14 has been set for remote frame reception (automatic response), a DMA transfer request is generated when remote frame reception is completed as well as when data frame transmission is completed. Note: * CAN1 does not have the DMA transfer request function. (2) CDMSEL0 (CAN DMA0 Transfer Request Source Select) bit (Bit 15) This bit selects one of the following two as the cause or source of a transfer request to DMA0. * Slot 0 transmission failed If the CDMSEL0 bit is set to "0", a transfer request is generated when transmission in slot 0 has failed for reasons of arbitration-lost or transmit error. * Slot 15 transmission/reception completed If the CDMSEL0 bit is set to "1", a transfer request is generated when transmission/reception in slot 15 is completed. Notes: * If slot 15 has been set for remote frame transmission, a DMA transfer request is generated when remote frame transmission is completed as well as when data frame reception is completed. * If slot 15 has been set for remote frame reception (automatic response), a DMA transfer request is generated when remote frame reception is completed as well as when data frame transmission is completed. 13-47 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.12 CAN Mask Registers CAN0 Global Mask Register Standard ID0 (C0GMSKS0) CAN0 Local Mask Register A Standard ID0 (C0LMSKAS0) CAN0 Local Mask Register B Standard ID0 (C0LMSKBS0) CAN1 Global Mask Register Standard ID0 (C1GMSKS0) CAN1 Local Mask Register A Standard ID0 (C1LMSKAS0) CAN1 Local Mask Register B Standard ID0 (C1LMSKBS0) b0 1 2 3 4 5 6 b7 SID0M SID1M SID2M SID3M SID4M 0 0 0 0 0 0 0 0 b Bit Name 0-2 No function assigned. Fix to "0". 3-7 SID0M-SID4M (Standard mask ID0-standard mask ID4) Function R W 0 0 0: ID not checked 1: ID checked R W CAN0 Global Mask Register Standard ID1 (C0GMSKS1) CAN0 Local Mask Register A Standard ID1 (C0LMSKAS1) CAN0 Local Mask Register B Standard ID1 (C0LMSKBS1) CAN1 Global Mask Register Standard ID1 (C1GMSKS1) CAN1 Local Mask Register A Standard ID1 (C1LMSKAS1) CAN1 Local Mask Register B Standard ID1 (C1LMSKBS1) b8 9 10 11 12 13 14 b15 SID5M SID6M SID7M SID8M SID9M SID10M 0 0 0 0 0 0 0 0 b Bit Name 8-9 No function assigned. Fix to "0". 10-15 SID5M-SID10M (Standard mask ID5-standard mask ID10) Function 0: ID not checked 1: ID checked R W 0 0 R W Three mask registers are used in acceptance filtering: global mask register, local mask register A and local mask register B. The global mask register is used for message slots 0-13, while local mask registers A and B are used for message slots 14 and 15, respectively. * If any bit in this register is set to "0", the corresponding ID bit is masked (assumed to have matched) during acceptance filtering. * If any bit in this register is set to "1", the corresponding ID bit is compared with the receive ID during acceptance filtering and when it matches the ID set in the message slot, the received data is stored in it. Notes: * SID0M corresponds to the MSB of the standard ID. * The global mask register can only be modified when none of slots 0-13 have receive requests set. * The local mask register A can only be modified when slot 14 does not have a receive request set. * The local mask register B can only be modified when slot 15 does not have a receive request set. 13-48 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 Global Mask Register Extended ID0 (C0GMSKE0) CAN0 Local Mask Register A Extended ID0 (C0LMSKAE0) CAN0 Local Mask Register B Extended ID0 (C0LMSKBE0) CAN1 Global Mask Register Extended ID0 (C1GMSKE0) CAN1 Local Mask Register A Extended ID0 (C1LMSKAE0) CAN1 Local Mask Register B Extended ID0 (C1LMSKBE0) b0 1 2 3 4 EID0M 0 0 0 0 5 6 b7 EID1M EID2M EID3M 0 0 0 0 b Bit Name Function 0-3 No function assigned. Fix to "0". 4-7 EID0M-EID3M (Extended mask ID0-extended mask ID3) 0: ID not checked 1: ID checked R W 0 0 R W CAN0 Global Mask Register Extended ID1 (C0GMSKE1) CAN0 Local Mask Register A Extended ID1 (C0LMSKAE1) CAN0 Local Mask Register B Extended ID1 (C0LMSKBE1) CAN1 Global Mask Register Extended ID1 (C1GMSKE1) CAN1 Local Mask Register A Extended ID1 (C1LMSKAE1) CAN1 Local Mask Register B Extended ID1 (C1LMSKBE1) b8 9 10 11 12 13 14 b15 EID4M EID5M EID6M EID7M EID8M EID9M EID10M EID11M 0 0 0 0 0 0 0 0 b Bit Name Function R W 8-15 EID4M-EID11M (Extended mask ID4-extended mask ID11) 0: ID not checked 1: ID checked R W 13-49 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 Global Mask Register Extended ID2 (C0GMSKE2) CAN0 Local Mask Register A Extended ID2 (C0LMSKAE2) CAN0 Local Mask Register B Extended ID2 (C0LMSKBE2) CAN1 Global Mask Register Extended ID2 (C1GMSKE2) CAN1 Local Mask Register A Extended ID2 (C1LMSKAE2) CAN1 Local Mask Register B Extended ID2 (C1LMSKBE2) b0 1 2 3 4 5 6 B7 EID12M EID13M EID14M EID15M EID16M EID17M 0 0 0 0 0 0 0 0 b Bit Name 0,1 No function assigned. Fix to "0". 2-7 EID12M-EID17M (Extended mask ID12-extended mask ID17) Function 0: ID not checked 1: ID checked R W 0 0 R W Three mask registers are used in acceptance filtering: global mask register, local mask register A and local mask register B. The global mask register is used for message slots 0-13, while local mask registers A and B are used for message slots 14 and 15, respectively. * If any bit in this register is set to "0", the corresponding ID bit is masked (assumed to have matched) during acceptance filtering. * If any bit in this register is set to "1", the corresponding ID bit is compared with the receive ID during acceptance filtering and when it matches the ID set in the message slot, the received data is stored in it. Notes: * EID0M corresponds to the MSB of the extended ID. * The global mask register can only be modified when none of slots 0-13 have receive requests set. * The local mask register A can only be modified when slot 14 does not have a receive request set. * The local mask register B can only be modified when slot 15 does not have a receive request set. 13-50 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers Slot 0 Slot 1 Slots controlled by the global mask register Slot 2 Slot 13 Slot 14 Slot controlled by local mask register A Slot 15 Slot controlled by local mask register B Figure 13.2.14 Relationship between the Mask Registers and the Controlled Slots Mask bit value ID of received frame ID set in slot Mask register set value 0: The received message and slot IDs are not checked for matching and handled as "Don't care" (masked) 1: The received message and slot IDs are checked for matching Acceptance judgment signal Acceptance judgment signal 0: The received message is ignored (not stored in any slot) 1: The received message is stored in the slot that has the matching ID Figure 13.2.15 Concept of Acceptance Filtering 13-51 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.13 CAN Single-Shot Mode Control Registers CAN0 Single-Shot Mode Control Register (CAN0SSMODE) CAN1 Single-Shot Mode Control Register (CAN1SSMODE) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15 SSCNT0 SSCNT1 SSCNT2 SSCNT3 SSCNT4 SSCNT5 SSCNT6 SSCNT7 SSCNT8 SSCNT9 SSCNT10 SSCNT11 SSCNT12 SSCNT13 SSCNT14 SSCNT15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 SSCNT0 (Slot 0 single-shot mode bit) 0: Normal mode R W 1 SSCNT1 (Slot 1 single-shot mode bit) 1: Single-shot mode 2 SSCNT2 (Slot 2 single-shot mode bit) 3 SSCNT3 (Slot 3 single-shot mode bit) 4 SSCNT4 (Slot 4 single-shot mode bit) 5 SSCNT5 (Slot 5 single-shot mode bit) 6 SSCNT6 (Slot 6 single-shot mode bit) 7 SSCNT7 (Slot 7 single-shot mode bit) 8 SSCNT8 (Slot 8 single-shot mode bit) 9 SSCNT9 (Slot 9 single-shot mode bit) 10 SSCNT10 (Slot 10 single-shot mode bit) 11 SSCNT11 (Slot 11 single-shot mode bit) 12 SSCNT12 (Slot 12 single-shot mode bit) 13 SSCNT13 (Slot 13 single-shot mode bit) 14 SSCNT14 (Slot 14 single-shot mode bit) 15 SSCNT15 (Slot 15 single-shot mode bit) Normally in CAN, if transmission has failed for reasons of arbitration-lost or transmit error, the transmit operation is continued until successfully transmitted. This register is used to specify for each slot whether or not to retry a transmit operation in such a case. In single-shot mode, if transmission fails for reasons of arbitration-lost or transmit error, the transmit operation is not retried. If any bit in this register is set to "1", the corresponding slot operates in single-shot mode. Note: * Settings of this register can only be changed when the message slot control register for the slot whose corresponding bit is to be modified is in the H'00 state. 13-52 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.14 CAN Message Slot Control Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Control Register (C0MSL0CNT) Slot 1 Control Register (C0MSL1CNT) Slot 2 Control Register (C0MSL2CNT) Slot 3 Control Register (C0MSL3CNT) Slot 4 Control Register (C0MSL4CNT) Slot 5 Control Register (C0MSL5CNT) Slot 6 Control Register (C0MSL6CNT) Slot 7 Control Register (C0MSL7CNT) Slot 8 Control Register (C0MSL8CNT) Slot 9 Control Register (C0MSL9CNT) Slot 10 Control Register (C0MSL10CNT) Slot 11 Control Register (C0MSL11CNT) Slot12 Control Register (C0MSL12CNT) Slot 13 Control Register (C0MSL13CNT) Slot 14 Control Register (C0MSL14CNT) Slot 15 Control Register (C0MSL15CNT) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Control Register (C1MSL0CNT) 1 Control Register (C1MSL1CNT) 2 Control Register (C1MSL2CNT) 3 Control Register (C1MSL3CNT) 4 Control Register (C1MSL4CNT) 5 Control Register (C1MSL5CNT) 6 Control Register (C1MSL6CNT) 7 Control Register (C1MSL7CNT) 8 Control Register (C1MSL8CNT) 9 Control Register (C1MSL9CNT) 10 Control Register (C1MSL10CNT) 11 Control Register (C1MSL11CNT) 12 Control Register (C1MSL12CNT) 13 Control Register (C1MSL13CNT) 14 Control Register (C1MSL14CNT) 15 Control Register (C1MSL15CNT) 13-53 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers b0(b8) 1 2 3 4 5 TR RR RM RL RA ML 0 0 0 0 0 0 6 b7(b15) TRSTAT TRFIN 0 0 b Bit Name Function R W 0 TR Transmit request bit 0: Do not use the message slot as transmit slot 1: Use the message slot as transmit slot R W 1 RR Receive request bit 0: Do not use the message slot as receive slot 1: Use the message slot as receive slot R W 2 RM Remote bit 0: Transmit/receive data frame 1: Transmit/receive remote frame R W 3 RL Automatic response inhibit bit 0: Enable automatic response for remote frame 1: Disable automatic response for remote frame R W 4 RA Remote active bit During BasicCAN mode 0: Receive data frame (status) 1: Receive remote frame (status) During normal mode 0: Data frame 1: Remote frame R - 5 ML Message lost bit 0: No message was lost 1: Message was lost R(Note 1) 6 TRSTAT Transmit/receive status bit During a transmit slot 0: Transmission idle 1: Transmit request accepted During a receive slot 0: Reception idle 1: Storing received data R 7 TRFIN Transmission/reception finished bit During a transmit slot 0: Not transmitted yet 1: Finished transmitting During a receive slot 0: Not received yet 1: Finished receiving R(Note 1) - Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the status it had before the write. Notes: * If a transmit request is written to this register while the CAN module is reset (CANnCNT FRST or RST bit = "1"), it starts sending upon detecting 11 consecutive recessive bits on the CAN bus after exiting the reset state. * If data/remote frame transmit requests are issued for two or more slots, the slot with the smallest slot number sends a frame. If data/remote frame receive requests are issued for two or more slots, the slot with the smallest slot number among the slots satisfying the receive condition receives a frame. * If transmission failed when single-shot mode is selected, this register is cleared to H'00. (1) TR (Transmit Request) bit (Bit 0) To use the message slot as a transmit slot, set this bit to "1". To use the message slot as a data frame or remote frame receive slot, set this bit to "0". 13-54 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers (2) RR (Receive Request) bit (Bit 1) To use the message slot as a receive slot, set this bit to "1". To use the message slot as a data frame or remote frame transmit slot, set this bit to "0". If TR (Transmit Request) bit and RR (Receive Request) bit both are set to "1", device operation is undefined. (3) RM (Remote) bit (Bit 2) To handle remote frames in the message slot, set this bit to "1". There are following two methods of settings to handle remote frames: * Set for remote frame transmission The data set in the message slot is transmitted as a remote frame. When the CAN module finished sending, the slot automatically changes to a data frame receive slot. However, if a data frame is received before the CAN module finished sending a remote frame, the received data is stored in the message slot and the remote frame is not transmitted. * Set for remote frame reception Remote frames are received. The processing to be performed after receiving a remote frame is selected by RL (automatic response inhibit) bit. (4) RL (Automatic Response Inhibit) bit (Bit 3) This bit is effective when the message slot has been set as a remote frame receive slot. It selects the processing to be performed after receiving a remote frame. If this bit is set to "0", the message slot automatically changes to a transmit slot after receiving a remote frame and transmits the data set in it as a data frame. If this bit is set to "1", the message slot stops operating after receiving a remote frame. Note: * Always set this bit to "0" unless the message slot is set for remote frame reception. (5) RA (Remote Active) bit (Bit 4) This bit functions differently for slots 0-13 and slots 14 and 15. * Slots 0-13 This bit is set to "1" when the message slot is set for remote frame transmission (reception). Then, when remote frame transmission (reception) is completed, the bit is cleared to "0". * Slots 14 and 15 The function of this bit differs depending on how the CAN Control Register BCM (BasicCAN Mode) bit is set. If BCM = "0" (normal operation), this bit is set to "1" when the message slot is set for remote frame transmission (reception). If BCM = "1" (BasicCAN), this bit indicates which type of frame is received. During BasicCAN mode, the received data is stored in slots 14 and 15 for both data and remote frames. If RA = "0", it means that the frame stored in the slot is a data frame. If RA = "1", it means that the frame stored in the slot is a remote frame. (6) ML (Message Lost) bit (Bit 5) This bit is effective for receive slots. It is set to "1" when unread received data contained in the message slot is overwritten by reception. This bit is cleared by writing "0" in software. 13-55 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers (7) TRSTAT (Transmit/Receive Status) bit (Bit 6) This bit indicates that the CAN module is sending or receiving and is accessing the message slot. This bit is set to "1" when the CAN module is accessing, and set to "0" when not accessing. * During a transmit slot This bit is set to "1" when a transmit request for the message slot is accepted. It is cleared to "0" when the CAN module lost in bus arbitration, when a CAN bus error occurs, or when transmission is completed. * During a receive slot This bit is set to "1" while the CAN module is receiving data, with the received data being stored in the message slot. Note that the value read from the message slot while the TRSTAT bit remains set is undefined. (8) TRFIN (Transmit/Receive Finished) bit (Bit 7) This bit indicates that the CAN module finished sending or receiving. * When set for a transmit slot This bit is set to "1" when the CAN module finished sending the data stored in the message slot. This bit is cleared by writing "0" in software. However, it cannot be cleared when the TRSTAT (Transmit/ Receive Status) bit = "1". * When set for a receive slot This bit is set to "1" when the CAN module finished receiving normally the data to be stored in the message slot. This bit is cleared by writing "0" in software. However, it cannot be cleared when the TRSTAT (Transmit/Receive Status) bit = "1". Notes: * Before reading the received data out of the message slot, be sure to clear the TRFIN (Transmit/Receive Finished) bit to "0". If the TRFIN (Transmit/Receive Finished) bit happens to be set to "1" after a read, it means that new received data was stored while reading and the read data contains an undefined value. In that case, discard the read data, clear the TRFIN bit to "0" and read out data again. * When sending/receiving remote frames, the TRFIN bit is automatically cleared to "0" by hardware. Therefore, the TRFIN bit cannot be used as a transmission/reception-finished flag. 13-56 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers 13.2.15 CAN Message Slots CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Standard ID0 (C0MSL0SID0) Slot 1 Standard ID0 (C0MSL1SID0) Slot 2 Standard ID0 (C0MSL2SID0) Slot 3 Standard ID0 (C0MSL3SID0) Slot 4 Standard ID0 (C0MSL4SID0) Slot 5 Standard ID0 (C0MSL5SID0) Slot 6 Standard ID0 (C0MSL6SID0) Slot 7 Standard ID0 (C0MSL7SID0) Slot 8 Standard ID0 (C0MSL8SID0) Slot 9 Standard ID0 (C0MSL9SID0) Slot 10 Standard ID0 (C0MSL10SID0) Slot 11 Standard ID0 (C0MSL11SID0) Slot 12 Standard ID0 (C0MSL12SID0) Slot 13 Standard ID0 (C0MSL13SID0) Slot 14 Standard ID0 (C0MSL14SID0) Slot 15 Standard ID0 (C0MSL15SID0) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Standard ID0 (C1MSL0SID0) Slot 1 Standard ID0 (C1MSL1SID0) Slot 2 Standard ID0 (C1MSL2SID0) Slot 3 Standard ID0 (C1MSL3SID0) Slot 4 Standard ID0 (C1MSL4SID0) Slot 5 Standard ID0 (C1MSL5SID0) Slot 6 Standard ID0 (C1MSL6SID0) Slot 7 Standard ID0 (C1MSL7SID0) Slot 8 Standard ID0 (C1MSL8SID0) Slot 9 Standard ID0 (C1MSL9SID0) Slot 10 Standard ID0 (C1MSL10SID0) Slot 11 Standard ID0 (C1MSL11SID0) Slot 12 Standard ID0 (C1MSL12SID0) Slot 13 Standard ID0 (C1MSL13SID0) Slot 14 Standard ID0 (C1MSL14SID0) Slot 15 Standard ID0 (C1MSL15SID0) b0 ? 1 ? 2 ? 3 4 5 6 b7 SID0 SID1 SID2 SID3 SID4 ? ? ? ? ? b Bit Name 0-2 No function assigned. Fix to "0". 3-7 SID0-SID4 (Standard ID0-standard ID4) Function R W 0 0 Standard ID0-standard ID4 R W These registers are the memory space for transmit and receive frames. 13-57 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Standard ID1 (C0MSL0SID1) Slot 1 Standard ID1 (C0MSL1SID1) Slot 2 Standard ID1 (C0MSL2SID1) Slot 3 Standard ID1 (C0MSL3SID1) Slot 4 Standard ID1 (C0MSL4SID1) Slot 5 Standard ID1 (C0MSL5SID1) Slot 6 Standard ID1 (C0MSL6SID1) Slot 7 Standard ID1 (C0MSL7SID1) Slot 8 Standard ID1 (C0MSL8SID1) Slot 9 Standard ID1 (C0MSL9SID1) Slot 10 Standard ID1 (C0MSL10SID1) Slot 11 Standard ID1 (C0MSL11SID1) Slot 12 Standard ID1 (C0MSL12SID1) Slot 13 Standard ID1 (C0MSL13SID1) Slot 14 Standard ID1 (C0MSL14SID1) Slot 15 Standard ID1 (C0MSL15SID1) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Standard ID1 (C1MSL0SID1) Slot 1 Standard ID1 (C1MSL1SID1) Slot 2 Standard ID1 (C1MSL2SID1) Slot 3 Standard ID1 (C1MSL3SID1) Slot 4 Standard ID1 (C1MSL4SID1) Slot 5 Standard ID1 (C1MSL5SID1) Slot 6 Standard ID1 (C1MSL6SID1) Slot 7 Standard ID1 (C1MSL7SID1) Slot 8 Standard ID1 (C1MSL8SID1) Slot 9 Standard ID1 (C1MSL9SID1) Slot 10 Standard ID1 (C1MSL10SID1) Slot 11 Standard ID1 (C1MSL11SID1) Slot 12 Standard ID1 (C1MSL12SID1) Slot 13 Standard ID1 (C1MSL13SID1) Slot 14 Standard ID1 (C1MSL14SID1) Slot 15 Standard ID1 (C1MSL15SID1) b8 ? 9 10 11 12 13 14 b15 SID5 SID6 SID7 SID8 SID9 SID10 ? ? ? ? ? ? ? b Bit Name 8, 9 No function assigned. Fix to "0". 10-15 SID5-SID10 (Standard ID5-standard ID10) Function Standard ID5-standard ID10 R W 0 0 R W These registers are the memory space for transmit and receive frames. 13-58 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Extended ID0 (C0MSL0EID0) 1 Extended ID0 (C0MSL1EID0) 2 Extended ID0 (C0MSL2EID0) 3 Extended ID0 (C0MSL3EID0) 4 Extended ID0 (C0MSL4EID0) 5 Extended ID0 (C0MSL5EID0) 6 Extended ID0 (C0MSL6EID0) 7 Extended ID0 (C0MSL7EID0) 8 Extended ID0 (C0MSL8EID0) 9 Extended ID0 (C0MSL9EID0) 10 Extended ID0 (C0MSL10EID0) 11 Extended ID0 (C0MSL11EID0) 12 Extended ID0 (C0MSL12EID0) 13 Extended ID0 (C0MSL13EID0) 14 Extended ID0 (C0MSL14EID0) 15 Extended ID0 (C0MSL15EID0) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Extended ID0 (C1MSL0EID0) 1 Extended ID0 (C1MSL1EID0) 2 Extended ID0 (C1MSL2EID0) 3 Extended ID0 (C1MSL3EID0) 4 Extended ID0 (C1MSL4EID0) 5 Extended ID0 (C1MSL5EID0) 6 Extended ID0 (C1MSL6EID0) 7 Extended ID0 (C1MSL7EID0) 8 Extended ID0 (C1MSL8EID0) 9 Extended ID0 (C1MSL9EID0) 10 Extended ID0 (C1MSL10EID0) 11 Extended ID0 (C1MSL11EID0) 12 Extended ID0 (C1MSL12EID0) 13 Extended ID0 (C1MSL13EID0) 14 Extended ID0 (C1MSL14EID0) 15 Extended ID0 (C1MSL15EID0) b0 ? 1 ? 2 ? 3 ? 4 5 6 b7 EID0 EID1 EID2 EID3 ? ? ? ? b Bit Name 0-3 No function assigned. Fix to "0". 4-7 EID0-EID3 (Extended ID0-extended ID3) Function Extended ID0-extended ID3 R W 0 0 R W These registers are the memory space for transmit and receive frames. Note: * If the message slot is set for the receive slot standard ID format, an undefined value is written to the EID bits when storing received data. 13-59 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Extended ID1 (C0MSL0EID1) 1 Extended ID1 (C0MSL1EID1) 2 Extended ID1 (C0MSL2EID1) 3 Extended ID1 (C0MSL3EID1) 4 Extended ID1 (C0MSL4EID1) 5 Extended ID1 (C0MSL5EID1) 6 Extended ID1 (C0MSL6EID1) 7 Extended ID1 (C0MSL7EID1) 8 Extended ID1 (C0MSL8EID1) 9 Extended ID1 (C0MSL9EID1) 10 Extended ID1 (C0MSL10EID1) 11 Extended ID1 (C0MSL11EID1) 12 Extended ID1 (C0MSL12EID1) 13 Extended ID1 (C0MSL13EID1) 14 Extended ID1 (C0MSL14EID1) 15 Extended ID1 (C0MSL15EID1) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Extended ID1 (C1MSL0EID1) 1 Extended ID1 (C1MSL1EID1) 2 Extended ID1 (C1MSL2EID1) 3 Extended ID1 (C1MSL3EID1) 4 Extended ID1 (C1MSL4EID1) 5 Extended ID1 (C1MSL5EID1) 6 Extended ID1 (C1MSL6EID1) 7 Extended ID1 (C1MSL7EID1) 8 Extended ID1 (C1MSL8EID1) 9 Extended ID1 (C1MSL9EID1) 10 Extended ID1 (C1MSL10EID1) 11 Extended ID1 (C1MSL11EID1) 12 Extended ID1 (C1MSL12EID1) 13 Extended ID1 (C1MSL13EID1) 14 Extended ID1 (C1MSL14EID1) 15 Extended ID1 (C1MSL15EID1) b8 9 10 11 12 13 14 b15 EID4 EID5 EID6 EID7 EID8 EID9 EID10 EID11 ? ? ? ? ? ? ? ? b Bit Name Function R W 8-15 EID4-EID11 (Extended ID4-extended ID11) Extended ID4-extended ID11 R W These registers are the memory space for transmit and receive frames. Note: * If the message slot is set for the receive slot standard ID format, an undefined value is written to the EID bits when storing received data. 13-60 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Extended ID2 (C0MSL0EID2) 1 Extended ID2 (C0MSL1EID2) 2 Extended ID2 (C0MSL2EID2) 3 Extended ID2 (C0MSL3EID2) 4 Extended ID2 (C0MSL4EID2) 5 Extended ID2 (C0MSL5EID2) 6 Extended ID2 (C0MSL6EID2) 7 Extended ID2 (C0MSL7EID2) 8 Extended ID2 (C0MSL8EID2) 9 Extended ID2 (C0MSL9EID2) 10 Extended ID2 (C0MSL10EID2) 11 Extended ID2 (C0MSL11EID2) 12 Extended ID2 (C0MSL12EID2) 13 Extended ID2 (C0MSL13EID2) 14 Extended ID2 (C0MSL14EID2) 15 Extended ID2 (C0MSL15EID2) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Extended ID2 (C1MSL0EID2) 1 Extended ID2 (C1MSL1EID2) 2 Extended ID2 (C1MSL2EID2) 3 Extended ID2 (C1MSL3EID2) 4 Extended ID2 (C1MSL4EID2) 5 Extended ID2 (C1MSL5EID2) 6 Extended ID2 (C1MSL6EID2) 7 Extended ID2 (C1MSL7EID2) 8 Extended ID2 (C1MSL8EID2) 9 Extended ID2 (C1MSL9EID2) 10 Extended ID2 (C1MSL10EID2) 11 Extended ID2 (C1MSL11EID2) 12 Extended ID2 (C1MSL12EID2) 13 Extended ID2 (C1MSL13EID2) 14 Extended ID2 (C1MSL14EID2) 15 Extended ID2 (C1MSL15EID2) b0 ? 1 2 3 4 5 6 b7 EID12 EID13 EID14 EID15 EID16 EID17 ? ? ? ? ? ? ? b Bit Name 0, 1 No function assigned. Fix to "0". 2-7 EID12-EID17 (Extended ID12-extended ID17) Function Extended ID12-extended ID17 R W 0 0 R W These registers are the memory space for transmit and receive frames. Note: * If the message slot is set for the receive slot standard ID format, an undefined value is written to the EID bits when storing received data. 13-61 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Data Length Register (C0MSL0DLC) Slot 1 Data Length Register (C0MSL1DLC) Slot 2 Data Length Register (C0MSL2DLC) Slot 3 Data Length Register (C0MSL3DLC) Slot 4 Data Length Register (C0MSL4DLC) Slot 5 Data Length Register (C0MSL5DLC) Slot 6 Data Length Register (C0MSL6DLC) Slot 7 Data Length Register (C0MSL7DLC) Slot 8 Data Length Register (C0MSL8DLC) Slot 9 Data Length Register (C0MSL9DLC) Slot 10 Data Length Register (C0MSL10DLC) Slot 11 Data Length Register (C0MSL11DLC) Slot 12 Data Length Register (C0MSL12DLC) Slot 13 Data Length Register (C0MSL13DLC) Slot 14 Data Length Register (C0MSL14DLC) Slot 15 Data Length Register (C0MSL15DLC) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Data Length Register (C1MSL0DLC) Slot 1 Data Length Register (C1MSL1DLC) Slot 2 Data Length Register (C1MSL2DLC) Slot 3 Data Length Register (C1MSL3DLC) Slot 4 Data Length Register (C1MSL4DLC) Slot 5 Data Length Register (C1MSL5DLC) Slot 6 Data Length Register (C1MSL6DLC) Slot 7 Data Length Register (C1MSL7DLC) Slot 8 Data Length Register (C1MSL8DLC) Slot 9 Data Length Register (C1MSL9DLC) Slot 10 Data Length Register (C1MSL10DLC) Slot 11 Data Length Register (C1MSL11DLC) Slot 12 Data Length Register (C1MSL12DLC) Slot 13 Data Length Register (C1MSL13DLC) Slot 14 Data Length Register (C1MSL14DLC) Slot 15 Data Length Register (C1MSL15DLC) b8 ? 9 ? 10 ? 11 ? 12 13 14 b15 DLC0 DLC1 DLC2 DLC3 ? ? ? ? b Bit Name 8-11 No function assigned. Fix to "0". 12-15 DLC0-DLC3 Data length setting bit Function 0000: 0001: 0010: 0011: 0100: 0101: 0110: 0111: 1000: | 1111: 0 1 2 3 4 5 6 7 8 bytes bytes bytes bytes bytes bytes bytes bytes bytes | 8 bytes R W 0 0 R W These registers are the memory space for transmit and receive frames. When sending, the register is used to set the transmit data length. When receiving, the register is used to store the receive frame DLC. 13-62 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Data 0 (C0MSL0DT0) 1 Data 0 (C0MSL1DT0) 2 Data 0 (C0MSL2DT0) 3 Data 0 (C0MSL3DT0) 4 Data 0 (C0MSL4DT0) 5 Data 0 (C0MSL5DT0) 6 Data 0 (C0MSL6DT0) 7 Data 0 (C0MSL7DT0) 8 Data 0 (C0MSL8DT0) 9 Data 0 (C0MSL9DT0) 10 Data 0 (C0MSL10DT0) 11 Data 0 (C0MSL11DT0) 12 Data 0 (C0MSL12DT0) 13 Data 0 (C0MSL13DT0) 14 Data 0 (C0MSL14DT0) 15 Data 0 (C0MSL15DT0) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Data 0 (C1MSL0DT0) 1 Data 0 (C1MSL1DT0) 2 Data 0 (C1MSL2DT0) 3 Data 0 (C1MSL3DT0) 4 Data 0 (C1MSL4DT0) 5 Data 0 (C1MSL5DT0) 6 Data 0 (C1MSL6DT0) 7 Data 0 (C1MSL7DT0) 8 Data 0 (C1MSL8DT0) 9 Data 0 (C1MSL9DT0) 10 Data 0 (C1MSL10DT0) 11 Data 0 (C1MSL11DT0) 12 Data 0 (C1MSL12DT0) 13 Data 0 (C1MSL13DT0) 14 Data 0 (C1MSL14DT0) 15 Data 0 (C1MSL15DT0) D0 1 2 3 4 5 6 D7 C0MSL0DT0-C0MSL15DT0, C1MSL0DT0-C1MSL15DT0 ? ? ? ? ? ? ? ? b Bit Name Function R W 0-7 C0MSL0DT0-C0MSL15DT0, C1MSL0DT0-C1MSL15DT0 Message slot data 0 R W These registers are the memory space for transmit and receive frames. Notes: * During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) = "0". * The first byte of the CAN frame data field corresponds to message slot n data 0. Data is transmitted or received beginning with the MSB side of the register. 13-63 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Data 1 (C0MSL0DT1) 1 Data 1 (C0MSL1DT1) 2 Data 1 (C0MSL2DT1) 3 Data 1 (C0MSL3DT1) 4 Data 1 (C0MSL4DT1) 5 Data 1 (C0MSL5DT1) 6 Data 1 (C0MSL6DT1) 7 Data 1 (C0MSL7DT1) 8 Data 1 (C0MSL8DT1) 9 Data 1 (C0MSL9DT1) 10 Data 1 (C0MSL10DT1) 11 Data 1 (C0MSL11DT1) 12 Data 1 (C0MSL12DT1) 13 Data 1 (C0MSL13DT1) 14 Data 1 (C0MSL14DT1) 15 Data 1 (C0MSL15DT1) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Data 1 (C1MSL0DT1) 1 Data 1 (C1MSL1DT1) 2 Data 1 (C1MSL2DT1) 3 Data 1 (C1MSL3DT1) 4 Data 1 (C1MSL4DT1) 5 Data 1 (C1MSL5DT1) 6 Data 1 (C1MSL6DT1) 7 Data 1 (C1MSL7DT1) 8 Data 1 (C1MSL8DT1) 9 Data 1 (C1MSL9DT1) 10 Data 1 (C1MSL10DT1) 11 Data 1 (C1MSL11DT1) 12 Data 1 (C1MSL12DT1) 13 Data 1 (C1MSL13DT1) 14 Data 1 (C1MSL14DT1) 15 Data 1 (C1MSL15DT1) b8 9 10 11 12 13 14 b15 C0MSL0DT1-C0MSL15DT1, C1MSL0DT1-C1MSL15DT1 ? ? ? ? ? ? ? ? b Bit Name Function R W 8-15 C0MSL0DT1-C0MSL15DT1, C1MSL0DT1-C1MSL15DT1 Message slot data 1 R W These registers are the memory space for transmit and receive frames. Note: * During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 1. 13-64 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Data 2 (C0MSL0DT2) 1 Data 2 (C0MSL1DT2) 2 Data 2 (C0MSL2DT2) 3 Data 2 (C0MSL3DT2) 4 Data 2 (C0MSL4DT2) 5 Data 2 (C0MSL5DT2) 6 Data 2 (C0MSL6DT2) 7 Data 2 (C0MSL7DT2) 8 Data 2 (C0MSL8DT2) 9 Data 2 (C0MSL9DT2) 10 Data 2 (C0MSL10DT2) 11 Data 2 (C0MSL11DT2) 12 Data 2 (C0MSL12DT2) 13 Data 2 (C0MSL13DT2) 14 Data 2 (C0MSL14DT2) 15 Data 2 (C0MSL15DT2) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Data 2 (C1MSL0DT2) 1 Data 2 (C1MSL1DT2) 2 Data 2 (C1MSL2DT2) 3 Data 2 (C1MSL3DT2) 4 Data 2 (C1MSL4DT2) 5 Data 2 (C1MSL5DT2) 6 Data 2 (C1MSL6DT2) 7 Data 2 (C1MSL7DT2) 8 Data 2 (C1MSL8DT2) 9 Data 2 (C1MSL9DT2) 10 Data 2 (C1MSL10DT2) 11 Data 2 (C1MSL11DT2) 12 Data 2 (C1MSL12DT2) 13 Data 2 (C1MSL13DT2) 14 Data 2 (C1MSL14DT2) 15 Data 2 (C1MSL15DT2) b0 1 2 3 4 5 6 b7 C0MSL0DT2-C0MSL15DT2, C1MSL0DT2-C1MSL15DT2 ? ? ? ? ? ? ? ? b Bit Name Function R W 0-7 C0MSL0DT2-C0MSL15DT2, C1MSL0DT2-C1MSL15DT2 Message slot data 2 R W These registers are the memory space for transmit and receive frames. Note: * During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 2. 13-65 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Data 3 (C0MSL0DT3) 1 Data 3 (C0MSL1DT3) 2 Data 3 (C0MSL2DT3) 3 Data 3 (C0MSL3DT3) 4 Data 3 (C0MSL4DT3) 5 Data 3 (C0MSL5DT3) 6 Data 3 (C0MSL6DT3) 7 Data 3 (C0MSL7DT3) 8 Data 3 (C0MSL8DT3) 9 Data 3 (C0MSL9DT3) 10 Data 3 (C0MSL10DT3) 11 Data 3 (C0MSL11DT3) 12 Data 3 (C0MSL12DT3) 13 Data 3 (C0MSL13DT3) 14 Data 3 (C0MSL14DT3) 15 Data 3 (C0MSL15DT3) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot Slot 0 Data 3 (C1MSL0DT3) 1 Data 3 (C1MSL1DT3) 2 Data 3 (C1MSL2DT3) 3 Data 3 (C1MSL3DT3) 4 Data 3 (C1MSL4DT3) 5 Data 3 (C1MSL5DT3) 6 Data 3 (C1MSL6DT3) 7 Data 3 (C1MSL7DT3) 8 Data 3 (C1MSL8DT3) 9 Data 3 (C1MSL9DT3) 10 Data 3 (C1MSL10DT3) 11 Data 3 (C1MSL11DT3) 12 Data 3 (C1MSL12DT3) 13 Data 3 (C1MSL13DT3) 14 Data 3 (C1MSL14DT3) 15 Data 3 (C1MSL15DT3) b8 9 10 11 12 13 14 b15 C0MSL0DT3-C0MSL15DT3, C1MSL0DT3-C1MSL15DT3 ? ? ? ? ? ? ? ? b Bit Name Function R W 8-15 C0MSL0DT3-C0MSL15DT3, C1MSL0DT3-C1MSL15DT3 Message slot data 3 R W These registers are the memory space for transmit and receive frames. Note: * During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 3. 13-66 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Data 4 (C0MSL0DT4) Slot 1 Data 4 (C0MSL1DT4) Slot 2 Data 4 (C0MSL2DT4) Slot 3 Data 4 (C0MSL3DT4) Slot 4 Data 4 (C0MSL4DT4) Slot 5 Data 4 (C0MSL5DT4) Slot 6 Data 4 (C0MSL6DT4) Slot 7 Data 4 (C0MSL7DT4) Slot 8 Data 4 (C0MSL8DT4) Slot 9 Data 4 (C0MSL9DT4) Slot 10 Data 4 (C0MSL10DT4) Slot 11 Data 4 (C0MSL11DT4) Slot 12 Data 4 (C0MSL12DT4) Slot 13 Data 4 (C0MSL13DT4) Slot 14 Data 4 (C0MSL14DT4) Slot 15 Data 4 (C0MSL15DT4) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Data 4 (C1MSL0DT4) Slot 1 Data 4 (C1MSL1DT4) Slot 2 Data 4 (C1MSL2DT4) Slot 3 Data 4 (C1MSL3DT4) Slot 4 Data 4 (C1MSL4DT4) Slot 5 Data 4 (C1MSL5DT4) Slot 6 Data 4 (C1MSL6DT4) Slot 7 Data 4 (C1MSL7DT4) Slot 8 Data 4 (C1MSL8DT4) Slot 9 Data 4 (C1MSL9DT4) Slot 10 Data 4 (C1MSL10DT4) Slot 11 Data 4 (C1MSL11DT4) Slot 12 Data 4 (C1MSL12DT4) Slot 13 Data 4 (C1MSL13DT4) Slot 14 Data 4 (C1MSL14DT4) Slot 15 Data 4 (C1MSL15DT4) b0 1 2 3 4 5 6 b7 C0MSL0DT4-C0MSL15DT4, C1MSL0DT4-C1MSL15DT4 ? ? ? ? ? ? ? ? b Bit Name Function R W 0-7 C0MSL0DT4-C0MSL15DT4, C1MSL0DT4-C1MSL15DT4 Message slot data 4 R W These registers are the memory space for transmit and receive frames. Note: * During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 4. 13-67 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 Message Slot 0 Data 5 (C0MSL0DT5) CAN0 Message Slot 1 Data 5 (C0MSL1DT5) CAN0 Message Slot 2 Data 5 (C0MSL2DT5) CAN0 Message Slot 3 Data 5 (C0MSL3DT5) CAN0 Message Slot 4 Data 5 (C0MSL4DT5) CAN0 Message Slot 5 Data 5 (C0MSL5DT5) CAN0 Message Slot 6 Data 5 (C0MSL6DT5) CAN0 Message Slot 7 Data 5 (C0MSL7DT5) CAN0 Message Slot 8 Data 5 (C0MSL8DT5) CAN0 Message Slot 9 Data 5 (C0MSL9DT5) CAN0 Message Slot 10 Data 5 (C0MSL10DT5) CAN0 Message Slot 11 Data 5 (C0MSL11DT5) CAN0 Message Slot 12 Data 5 (C0MSL12DT5) CAN0 Message Slot 13 Data 5 (C0MSL13DT5) CAN0 Message Slot 14 Data 5 (C0MSL14DT5) CAN0 Message Slot 15 Data 5 (C0MSL15DT5) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Slot 0 Data 5 (C1MSL0DT5) Message Slot 1 Data 5 (C1MSL1DT5) Message Slot 2 Data 5 (C1MSL2DT5) Message Slot 3 Data 5 (C1MSL3DT5) Message Slot 4 Data 5 (C1MSL4DT5) Message Slot 5 Data 5 (C1MSL5DT5) Message Slot 6 Data 5 (C1MSL6DT5) Message Slot 7 Data 5 (C1MSL7DT5) Message Slot 8 Data 5 (C1MSL8DT5) Message Slot 9 Data 5 (C1MSL9DT5) Message Slot 10 Data 5 (C1MSL10DT5) Message Slot 11 Data 5 (C1MSL11DT5) Message Slot 12 Data 5 (C1MSL12DT5) Message Slot 13 Data 5 (C1MSL13DT5) Message Slot 14 Data 5 (C1MSL14DT5) Message Slot 15 Data 5 (C1MSL15DT5) b8 9 10 11 12 13 14 b15 C0MSL0DT5-C0MSL15DT5, C1MSL0DT5-C1MSL15DT5 ? ? ? ? ? ? ? ? b Bit Name Function R W 8-15 C0MSL0DT5-C0MSL15DT5, C1MSL0DT5-C1MSL15DT5 Message slot data 5 R W These registers are the memory space for transmit and receive frames. Note: * During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 5. 13-68 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Data 6 (C0MSL0DT6) Slot 1 Data 6 (C0MSL1DT6) Slot 2 Data 6 (C0MSL2DT6) Slot 3 Data 6 (C0MSL3DT6) Slot 4 Data 6 (C0MSL4DT6) Slot 5 Data 6 (C0MSL5DT6) Slot 6 Data 6 (C0MSL6DT6) Slot 7 Data 6 (C0MSL7DT6) Slot 8 Data 6 (C0MSL8DT6) Slot 9 Data 6 (C0MSL9DT6) Slot 10 Data 6 (C0MSL10DT6) Slot 11 Data 6 (C0MSL11DT6) Slot 12 Data 6 (C0MSL12DT6) Slot 13 Data 6 (C0MSL13DT6) Slot 14 Data 6 (C0MSL14DT6) Slot 15 Data 6 (C0MSL15DT6) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Data 6 (C1MSL0DT6) Slot 1 Data 6 (C1MSL1DT6) Slot 2 Data 6 (C1MSL2DT6) Slot 3 Data 6 (C1MSL3DT6) Slot 4 Data 6 (C1MSL4DT6) Slot 5 Data 6 (C1MSL5DT6) Slot 6 Data 6 (C1MSL6DT6) Slot 7 Data 6 (C1MSL7DT6) Slot 8 Data 6 (C1MSL8DT6) Slot 9 Data 6 (C1MSL9DT6) Slot 10 Data 6 (C1MSL10DT6) Slot 11 Data 6 (C1MSL11DT6) Slot 12 Data 6 (C1MSL12DT6) Slot 13 Data 6 (C1MSL13DT6) Slot 14 Data 6 (C1MSL14DT6) Slot 15 Data 6 (C1MSL15DT6) b0 1 2 3 4 5 6 b7 C0MSL0DT6-C0MSL15DT6, C1MSL0DT6-C1MSL15DT6 ? ? ? ? ? ? ? ? b Bit Name Function R W 0-7 C0MSL0DT6-C0MSL15DT6, C1MSL0DT6-C1MSL15DT6 Message slot data 6 R W These registers are the memory space for transmit and receive frames. Note: * During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 6. 13-69 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Data 7 (C0MSL0DT7) Slot 1 Data 7 (C0MSL1DT7) Slot 2 Data 7 (C0MSL2DT7) Slot 3 Data 7 (C0MSL3DT7) Slot 4 Data 7 (C0MSL4DT7) Slot 5 Data 7 (C0MSL5DT7) Slot 6 Data 7 (C0MSL6DT7) Slot 7 Data 7 (C0MSL7DT7) Slot 8 Data 7 (C0MSL8DT7) Slot 9 Data 7 (C0MSL9DT7) Slot 10 Data 7 (C0MSL10DT7) Slot 11 Data 7 (C0MSL11DT7) Slot 12 Data 7 (C0MSL12DT7) Slot 13 Data 7 (C0MSL13DT7) Slot 14 Data 7 (C0MSL14DT7) Slot 15 Data 7 (C0MSL15DT7) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Message Slot 0 Data 7 (C1MSL0DT7) Slot 1 Data 7 (C1MSL1DT7) Slot 2 Data 7 (C1MSL2DT7) Slot 3 Data 7 (C1MSL3DT7) Slot 4 Data 7 (C1MSL4DT7) Slot 5 Data 7 (C1MSL5DT7) Slot 6 Data 7 (C1MSL6DT7) Slot 7 Data 7 (C1MSL7DT7) Slot 8 Data 7 (C1MSL8DT7) Slot 9 Data 7 (C1MSL9DT7) Slot 10 Data 7 (C1MSL10DT7) Slot 11 Data 7 (C1MSL11DT7) Slot 12 Data 7 (C1MSL12DT7) Slot 13 Data 7 (C1MSL13DT7) Slot 14 Data 7 (C1MSL14DT7) Slot 15 Data 7 (C1MSL15DT7) b8 9 10 11 12 13 14 b15 C0MSL0DT7-C0MSL15DT7, C1MSL0DT7-C1MSL15DT7 ? ? ? ? ? ? ? ? b Bit Name Function R W 0-7 C0MSL0DT7-C0MSL15DT7, C1MSL0DT7-C1MSL15DT7 Message slot data 7 R W These registers are the memory space for transmit and receive frames. Note: * During a receive slot, an undefined value is written to the register if the data length of the data frame being stored (DLC value) is equal to or less than 7. 13-70 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.2 CAN Module Related Registers CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 CAN0 Message Slot 0 Timestamp (C0MSL0TSP) Message Slot 1 Timestamp (C0MSL1TSP) Message Slot 2 Timestamp (C0MSL2TSP) Message Slot 3 Timestamp (C0MSL3TSP) Message Slot 4 Timestamp (C0MSL4TSP) Message Slot 5 Timestamp (C0MSL5TSP) Message Slot 6 Timestamp (C0MSL6TSP) Message Slot 7 Timestamp (C0MSL7TSP) Message Slot 8 Timestamp (C0MSL8TSP) Message Slot 9 Timestamp (C0MSL9TSP) Message Slot 10 Timestamp (C0MSL10TSP) Message Slot 11 Timestamp (C0MSL11TSP) Message Slot 12 Timestamp (C0MSL12TSP) Message Slot 13 Timestamp (C0MSL13TSP) Message Slot 14 Timestamp (C0MSL14TSP) Message Slot 15 Timestamp (C0MSL15TSP) CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 Message Slot 0 Timestamp (C1MSL0TSP) Message Slot 1 Timestamp (C1MSL1TSP) Message Slot 2 Timestamp (C1MSL2TSP) Message Slot 3 Timestamp (C1MSL3TSP) Message Slot 4 Timestamp (C1MSL4TSP) Message Slot 5 Timestamp (C1MSL5TSP) Message Slot 6 Timestamp (C1MSL6TSP) Message Slot 7 Timestamp (C1MSL7TSP) Message Slot 8 Timestamp (C1MSL8TSP) Message Slot 9 Timestamp (C1MSL9TSP) Message Slot 10 Timestamp (C1MSL10TSP) Message Slot 11 Timestamp (C1MSL11TSP) Message Slot 12 Timestamp (C1MSL12TSP) Message Slot 13 Timestamp (C1MSL13TSP) Message Slot 14 Timestamp (C1MSL14TSP) Message Slot 15 Timestamp (C1MSL15TSP) b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ? ? ? ? b15 C0MSL0TSP-C0MSL15TSP, C1MSL0TSP-C1MSL15TSP ? ? ? ? ? ? ? ? ? ? ? ? b Bit Name Function R W 0-15 C0MSL0TSP-C0MSL15TSP, C1MSL0TSP-C1MSL15TSP Message slot timestamp R W These registers are the memory space for transmit and receive frames. When transmission/reception has finished, the CAN timestamp count register value is written to the register. 13-71 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.3 CAN Protocol 13.3 CAN Protocol 13.3.1 CAN Protocol Frames There are four types of frames that are handled by CAN protocol: (1) Data frame (2) Remote frame (3) Error frame (4) Overload frame Frames are separated from each other by an interframe space. Data frame Standard format 1 11 1 6 0-64 16 2 7 Extended format 1 11 1 1 18 1 6 0-64 16 2 SOF 7 EOF Arbitration field ACK field CRC field Data field Control field Remote frame Standard format 1 11 1 6 16 2 7 Extended format 1 11 1 1 18 1 6 16 2 7 SOF EOF Arbitration field ACK field CRC field Control field Note: * The number in each field denotes the number of bits. Figure 13.3.1 CAN Protocol Frames (1) 13-72 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.3 CAN Protocol Error frame 6-12 8 Error flag Interframe space or overload flag Error delimiter Overload frame 6-12 8 Interframe space or overload flag Overload flag Overload delimiter Interframe space For the case of an error active state 0- 3 1 SOF of the next frame Bus idle Intermission For the case of an error passive state 0- 8 3 1 SOF of the next frame Bus idle Suspend transmission Intermission Note: * The number in each field denotes the number of bits. Figure 13.3.2 CAN Protocol Frames (2) 13.3.2 Data Formats during CAN Transmission/Reception Figure 13.3.3 shows an example of the transmit/receive transfer data format that can be used in CAN. Data is transmitted/received sequentially beginning with the MSB side of the CAN message slot . Arbitration field CAN frame MSB Arbitration field SOF SID0 SID1 SID2 SID3 b3 b4 Data field MSB Data field b0 b1 b2 Figure 13.3.3 Example of a CAN Transmit/Receive Transfer Data Format 13-73 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.3 CAN Protocol 13.3.3 CAN Controller Error States The CAN controller assumes one of the following three error states depending on the transmit error and receive error counter values. (1) Error active state * This is a state where almost no errors have occurred. * When an error is detected, an active error flag is transmitted. * The CAN controller is in the state immediately after being initialized. (2) Error passive state * This is a state where many errors have occurred. * When an error is detected, a passive error flag is transmitted. (3) Bus off state * This is a state where a very large number of errors have occurred. * CAN communication with other nodes cannot be performed until the CAN module returns to an error active state. Error Status of the Unit Transmit Error Counter Receive Error Counter Error active state 0-127 AND 0-127 Error passive state 128-255 OR 128 and over Bus off state 256 and over - Initial setting Error active state Transmit error counter 128 OR receive error counter 128 11 consecutive recessive bits detected on CAN bus 128 times or reset by software Transmit error counter < 128 AND receive error counter < 128 Error passive state Bus off state Transmit error counter > 255 Figure 13.3.4 CAN Controller Error States 13-74 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.4 Initializing the CAN Module 13.4 Initializing the CAN Module 13.4.1 Initializing the CAN Module Before performing communication, set up the CAN module as described below. (1) Selecting pin functions The CAN transmit data output pin (CTX) and CAN data receive input pin (CRX) are shared with input/output ports. Be sure to select the functions of these pins. (See Chapter 8, "Input/Output Ports and Pin Functions." (2) Setting the Interrupt Controller (ICU) To use CAN module interrupts, set their interrupt priority levels. (3) Setting the CAN Error, CAN Single-Shot and CAN Slot Interrupt Request Enable Registers To use CAN bus error, CAN error passive, CAN error bus off, CAN single-shot or CAN slot interrupts, set each corresponding bit to "1" to enable the interrupt request. (4) Setting the DMAC To use DMA transfers by CAN, be sure to set the DMAC. (5) Setting the CAN DMA transfer request select register To use DMA transfers by CAN, set the CAN DMA transfer request select register to choose the cause of transfer request. (6) Setting the bit timing and the number of times sampled Using the CAN Configuration Register and CAN Baud Rate Prescaler, set the bit timing and the number of times the CAN bus is sampled. 1) Setting the bit timing Determine the period Tq that is the base of bit timing, the configuration of Propagation Segment, Phase Segment1 and Phase Segment2, and reSynchronization Jump Width. The equation to calculate Tq is given below. Tq = (BRP + 1) / (CPU clock/2) The baud rate is determined by the number of Tq's that comprise one bit. The equation to calculate the baud rate is given below. 1 Baud rate (bps) = Tq period x number of Tq's in one bit Number of Tq's in one bit = Synchronization Segment + Propagation Segment + Phase Segment 1 + Phase Segment 2 2) Setting the number of times sampled Select the number of times the CAN bus is sampled from "one time" and "three times." * If one-time sampling is selected, the value sampled at only the end of Phase Segment1 is assumed to be the value of the bit. * If three-time sampling is selected, the value of the bit is determined by majority from three sampled values, one sampled at the end of Phase Segment1 and the other sampled 1 Tq before and 2 Tq's before that. 13-75 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.4 Initializing the CAN Module 1 Bit Synchronization Segment Propagation Segment Phase Segment1 Phase Segment2 1Tq (3) (2) (1) Sampling Point * This diagram shows the bit timing when one bit consists of 8 Tq's. * If one-time sampling is selected, the value sampled at Sampling Point (1) is assumed to be the value of the bit. * If three-time sampling is selected, the value of the bit is determined by majority from CAN bus values sampled at Sampling Points (1), (2) and (3). Figure 13.4.1 Example of Bit Timing (7) Setting the ID mask registers Set the values of ID mask registers (Global Mask Register, Local Mask Register A and Local Mask Register B) that are used in acceptance filtering of received messages. (8) Settings for use in BasicCAN mode * Set the CAN Extended ID Register IDE14 and IDE15 bits. (We recommend setting the same value in these bits.) * Set IDs in message slots 14 and 15. * Set the Message Control Registers 14 and 15 for data frame reception (H'40). (9) Settings for use in single-shot mode Using the CAN Mode Register (CANnMODE) and CAN Control Register (CANnCNT), select CAN module operation mode (BasicCAN, loopback mode) and the clock source for the timestamp counter. (10) Setting CAN module operation mode In the CAN Single-Shot Mode Control Register, set the slot that is to be operated in single-shot mode. (11) Releasing the CAN module from reset When settings (1) through (10) above are finished, clear the CAN Control Register (CANnCNT)'s forcible reset (FRST) and reset (RST) bits to "0". Then, after detecting 11 consecutive recessive bits on the CAN bus, the CAN module becomes ready to communicate. 13-76 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.4 Initializing the CAN Module Initialize the CAN module Set the Input/Output Port Operation Mode Register Set the Interrupt Controller Set the CAN related interrupt request enable registers Set the DMAC Set the CAN DMA transfer request select register Set the CAN Configuration Register Set the ID Mask Register Set interrupt priority Set the CAN Error Interrupt Request Enable Register * Enable/disable CAN bus error interrupt request * Enable/disable CAN error passive interrupt request * Enable/disable CAN bus off interrupt request Set the DMAC Set the CAN Slot Interrupt Request Enable Register * Enable/disable the interrupt request to be generated when transmission or reception in the relevant slot has finished Set the CAN Single-shot Interrupt Request Enable Regiter * Enable/disable the interrupt request to be generated when single-shot transission in the relevant slot has failed. Select the DMA transfer request source * Set the bit timing (baud rate) * Set the number of times sampled Set the ID mask bit Set loopback mode Set the CAN operation mode Set BasicCAN mode * Set the CAN Extended ID Register * Set IDs in message slots 14 and 15 * Set the Message Slot Control Register Release the CAN module from reset Negate CAN reset * Clear the CAN Control Register (CANnCNT)'s FRST and RST bits CAN module initialization completed Figure 13.4.2 Initializing the CAN Module 13-77 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.5 Transmitting Data Frames 13.5 Transmitting Data Frames 13.5.1 Data Frame Transmit Procedure The following describes the procedure for transmitting data frames. (1) Initializing the CAN Message Slot Control Register Initialize the CAN Message Slot Control Register for the slot to be transmitted by writing H'00 to the register. (2) Confirming that transmission is idle Read the CAN Message Slot Control Register that has been initialized and check the TRSTAT (Transmit/ Receive Status) bit to see that transmission/reception has stopped and remains idle. If this bit = "1", it means that the CAN module is accessing the message slot. Therefore, wait until the bit is cleared to "0". (3) Setting transmit data Set the transmit ID and transmit data in the message slot. (4) Setting the Extended ID Register Set the corresponding bit in the Extended ID Register to "0" if the data is to be transmitted as a standard frame, or "1" if the data is to be transmitted as an extended frame. (5) Setting the CAN Message Slot Control Register Write H'80 (Note 1) to the CAN Message Slot Control Register to set the TR (Transmit Request) bit to "1". Note 1: Always be sure to write H'80 when transmitting data frames. 13-78 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.5 Transmitting Data Frames Data frame transmit procedure Initialize the CAN Message Slot Control Register Write H'00 Read the CAN Message Slot Control Register NO TRSTAT bit = 0 Confirm that transmission is idle YES Set ID and data in the message slot Set the Extended ID Register Set the CAN Message Slot Control Register Standard ID or extended ID Write H'80 (transmit request) End of setting Figure 13.5.1 Data Frame Transmit Procedure 13.5.2 Data Frame Transmit Operation The following describes data frame transmit operation. The operations described below are automatically performed in hardware. (1) Selecting a transmit frame The CAN module checks slots which have transmit requests (including remote frame transmit slots) every intermission to determine the frame to transmit. If two or more transmit slots exist, frames are transmitted in order of slot numbers beginning with the smallest. (2) Transmitting a data frame After determining the transmit slot, the CAN module sets the corresponding CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "1" and starts transmitting. (3) If lost in CAN bus arbitration or a CAN bus error occurs If the CAN module lost in CAN bus arbitration or a CAN bus error occurs in the middle of transmission, the CAN module clears the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "0". If the CAN module requested a transmit abort, the transmit abort is accepted and the message slot is enabled for write. 13-79 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.5 Transmitting Data Frames (4) Completion of data frame transmission When data frame transmission has finished, the CAN Message Slot Control Register's TRFIN (Transmit/ Receive Finished) bit and the CAN Slot Interrupt Request Status Register are set to "1". Also, a timestamp count value at which transmission has finished is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP), and the transmit operation is thereby completed. If the CAN slot interrupt request has been enabled, an interrupt request is generated at completion of transmit operation. The slot which has had transmission completed goes to an inactive state and remains inactive (neither transmit nor receive) until it is newly set in software. Bit arrangement in the CAN Message Slot Control Register b0(b8) 1 2 3 4 5 TR RR RM RL RA ML 0 0 0 0 0 0 6 b7(b15) TRSTAT TRFIN 0 0 L a ost C in AN C bu AN s b er us ro a r o rb cc itra ur tio s n or B'0000 0000 (Note 1) Write H'80 Transmission aborted d pte ce ac Wait for transmission st r ted B'1000 0000 e qu abo e r t ion mi ns iss Tra nsm Transmit request Lost in CAN bus arbitration Tra accepted or a CAN bus error occurs Transmission aborted B'0000 0010 B'0000 0001 (Note 1) B'1000 0010 d r te d bo plete a ion com ss mi sion s n is Tra nsm Tra Transmission completed B'1000 0001 Note 1: When in this state, data can be written to the message slot. Figure 13.5.2 Operation of the CAN Message Slot Control Register during Data Frame Transmission 13.5.3 Transmit Abort Function The transmit abort function is used to cancel a transmit request that has once been set. This is accomplished by writing H'0F to the CAN Message Slot Control Register for the slot to be canceled. When transmit abort is accepted, the CAN module clears the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "0", allowing for data to be written to the message slot. The following shows the conditions under which transmit abort is accepted. [Conditions] * When the target message is waiting for transmission * When a CAN bus error occurs during transmission * When lost in CAN bus arbitration 13-80 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.6 Receiving Data Frames 13.6 Receiving Data Frames 13.6.1 Data Frame Receive Procedure The following describes the procedure for receiving data frames. (1) Initializing the CAN Message Slot Control Register Initialize the CAN Message Slot Control Register for the slot to be received by writing H'00 to the register. (2) Confirming that reception is idle Read the CAN Message Slot Control Register that has been initialized and check the TRSTAT (Transmit/ Receive Status) bit to see that reception has stopped and remains idle. If this bit = "1", it means that the CAN module is accessing the message slot. Therefore, wait until the bit is cleared to "0". (3) Setting the receive ID Set the desired receive ID in the message slot. (4) Setting the Extended ID Register Set the corresponding bit in the Extended ID Register to "0" if a standard frame is to be received, or "1" if an extended frame is to be received. (5) Setting the CAN Message Slot Control Register Write H'40 to the CAN Message Slot Control Register to set the RR (Receive Request) bit to "1". 13-81 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.6 Receiving Data Frames Data frame receive procedure Initialize the CAN Message Slot Control Register Write H'00 Read the CAN Message Slot Control Register NO Confirm that reception is idle TRSTAT bit = 0 YES Set ID in the message slot Set the Extended ID Register Standard ID or extended ID Set the CAN Message Slot Control Register Write H'40 (receive request) End of setting Figure 13.6.1 Data Frame Receive Procedure 13.6.2 Data Frame Receive Operation The following describes data frame receive operation. The operations described below are automatically performed in hardware. (1) Acceptance filtering When the CAN module finished receiving data, it starts searching for the slot that satisfies the conditions for receiving the received message, sequentially from slot 0 (up to slot 15). The following shows receive conditions for the slots that have been set for data frame reception. [Conditions] * The received frame is a data frame. * The receive ID and the slot ID are identical, assuming the ID Mask Register bits set to "0" are "Don't care." * The standard and extended frame types are the same. Note: * In BasicCAN mode, slots 14 and 15 while being set for data frame reception can also receive remote frames. 13-82 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.6 Receiving Data Frames (2) When the receive conditions are met When the receive conditions in (1) above are met, the CAN module sets the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit and TRFIN (Transmit/Receive Finished) bit to "1" while at the same time writing the received data to the message slot. If the TRFIN (Transmit/Receive Finished) bit is already set to "1" at this time, the CAN module also sets the ML (Message Lost) bit to "1", indicating that the message slot has been overwritten. The message slot has both of its ID and DLC fields entirely overwritten and has an undefined value written in its unused area (e.g., extended ID field during standard frame reception and an unused data field). Furthermore, a timestamp count value at which the message was received is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP) along with the received data. When the CAN module finished writing to the message slot, it sets the CAN Slot Interrupt Request Status bit to "1". If the interrupt request for the slot has been enabled, the CAN module generates an interrupt request and enters a wait state for the next reception. (3) When the receive conditions are not met The received frame is discarded, and the CAN module goes to the next transmit/receive operation without writing to the message slot. Bit arrangement in the CAN Message Slot Control Register b0(b8) 1 2 3 4 5 TR RR RM RL RA ML 0 0 0 0 0 0 6 b7(b15) TRSTAT TRFIN 0 B'0000 0000 0 Set a receive request Clear the receive request Wait for the received data Finished storing the received data B'0000 0001 B'0000 0111 Finished storing the received data B'0000 0101 st the ue ing req tor a s e ed dat eiv ish ed rec Fin ceiv r the re lea Clear the receive C request ata st d d que e v e ei r rec eive he rec t ore he St ear t Cl Clear the receive request Store the received data B'0100 0011 Finished storing the received data B'0100 0001 Store the received data B'0100 0111 t he es gt qu rin e o r t s a e Finished storing ed dat eiv the received ish ed rec Fin ceiv the data re lear C Clear the receive request CPU read B'0000 0011 Clear the receive request B'0100 0000 CPU read ata st d d ue ive e req e rec eiv the e rec e r h t o St lear C Store the received data Wait for the received data B'0100 0101 Figure 13.6.2 Operation of the CAN Message Slot Control Register during Data Frame Reception 13-83 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.6 Receiving Data Frames 13.6.3 Reading Out Received Data Frames The following shows the procedure for reading out received data frames from the slot. (1) Clearing the TRFIN (Transmit/Receive Finished) bit Write H'4E, H'40 or H'00 to the CAN Message Slot Control Register (C0MSLnCNT, C1MSLnCNT) to clear the TRFIN bit to "0". After this write, the slot operates as follows: Values Written to CnMSLnCNT Slot Operation after Write H'4E Operates as a data frame receive slot. Whether overwritten can be verified by ML bit. H'40 Operates as a data frame receive slot. Whether overwritten cannot be verified by ML bit. H'00 The slot stops transmit/receive operation. Notes: * If message-lost check by the ML bit is needed, write H'4E to clear the TRFIN bit. * If the TRFIN bit was cleared by writing H'4E, H'40 or H'00, it is possible that new data will be stored in the slot while still reading out a message from it. (2) Reading out from the message slot Read out a message from the message slot. (3) Checking the TRFIN (Transmit/Receive Finished) bit Read the CAN Message Slot Control Register to check the TRFIN (Transmit/Receive Finished) bit. 1) If TRFIN (Transmit/Receive Finished) bit = "1" It means that new data was stored in the slot while still reading out a message from it in (2) above. In this case, the data read out in (2) may contain an undefined value. Therefore, reexecute the above procedure beginning with clearing of the TRFIN (Transmit/Receive Finished) bit in (1). 2) If TRFIN (Transmit/Receive Finished) bit = "0" It means that the CAN module finished reading out from the slot normally. 13-84 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.6 Receiving Data Frames Reading out received data Clear the TRFIN bit to 0 Write H'4E, H'40 or H'00 Read out from the message slot Read the CAN Message Slot Control Register NO TRFIN bit = 0 YES Finished reading out received data Figure 13.6.3 Procedure for Reading Out Received Data 13-85 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.7 Transmitting Remote Frames 13.7 Transmitting Remote Frames 13.7.1 Remote Frame Transmit Procedure The following describes the procedure for transmitting remote frames. (1) Initializing the CAN Message Slot Control Register Initialize the CAN Message Slot Control Register for the slot to be transmitted by writing H'00 to the register. (2) Confirming that transmission is idle Read the CAN Message Slot Control Register that has been initialized and check the TRSTAT (Transmit/ Receive Status) bit to see that transmission/reception has stopped and remains idle. If this bit = "1", it means that the CAN module is accessing the message slot. Therefore, wait until the bit is cleared to "0". (3) Setting transmit ID Set the ID to be transmitted in the message slot. (4) Setting the Extended ID Register Set the corresponding bit in the Extended ID Register to "0" if the data is to be transmitted as a standard frame, or "1" if the data is to be transmitted as an extended frame. (5) Setting the CAN Message Slot Control Register Write H'A0 to the CAN Message Slot Control Register to set the TR (Transmit Request) bit and RM (Remote) bit to "1". 13-86 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.7 Transmitting Remote Frames Remote frame transmit procedure Initialize the CAN Message Slot Control Register Write H'00 Read the CAN Message Slot Control Register NO Confirm that transmission is idle TRSTAT bit = 0 YES Set ID in the message slot Set the Extended ID Register Set the CAN Message Slot Control Register Standard ID or extended ID Write H'A0 (transmit request, remote) End of setting Figure 13.7.1 Remote Frame Transmit Procedure 13.7.2 Remote Frame Transmit Operation The following describes remote frame transmit operation. The operations described below are automatically performed in hardware. (1) Setting the RA (Remote Active) bit The RA (Remote Active) bit is set to "1" at the same time H'A0 (Transmit Request, Remote) is written to the CAN Message Slot Control Register, indicating that the corresponding slot is to handle remote frames. (2) Selecting a transmit frame The CAN module checks slots which have transmit requests (including data frame transmit slots) every intermission to determine the frame to transmit. If two or more transmit slots exist, frames are transmitted in order of slot numbers beginning with the smallest. (3) Transmitting a remote frame After determining the transmit slot, the CAN module sets the corresponding CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "1" and starts transmitting. 13-87 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.7 Transmitting Remote Frames (4) If lost in CAN bus arbitration or a CAN bus error occurs If the CAN module lost in CAN bus arbitration or a CAN bus error occurs in the middle of transmission, the CAN module clears the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "0". If the CAN module requested a transmit abort, the transmit abort is accepted and the message slot is enabled for write. (5) Completion of remote frame transmission When remote frame transmission finishes, the timestamp count value at which transmission finished is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP) and the CAN Message Slot Control Register's RA (Remote Active) bit is cleared to "0". In addition, the CAN Slot Interrupt Request Status bit is set to "1" by completion of transmission, but the CAN Message Slot Control Register's TRFIN (Transmit/ Receive Finished) bit is not set to "1". If the CAN slot interrupt request has been enabled, an interrupt request is generated when transmission has finished. (6) Receiving a data frame When remote frame transmission finishes, the slot automatically starts functioning as a data frame receive slot. (7) Acceptance filtering When the CAN module finished receiving data, it starts searching for the slot that satisfies the conditions for receiving the received message, sequentially from slot 0 (up to slot 15). The following shows receive conditions for the slots that have been set for data frame reception. [Conditions] * The received frame is a data frame. * The receive ID and the slot ID are identical, assuming the ID Mask Register bits set to "0" are "Don't care." * The standard and extended frame types are the same. Note: * In BasicCAN mode, slots 14 and 15 cannot be used as a transmit slot. (8) When the receive conditions are met When the receive conditions in (7) above are met, the CAN module sets the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit and TRFIN (Transmit/Receive Finished) bit to "1" while at the same time writing the received data to the message slot. If the TRFIN (Transmit/Receive Finished) bit is already set to "1" at this time, the CAN module also sets the ML (Message Lost) bit to "1", indicating that the message slot has been overwritten. The message slot has both of its ID and DLC fields entirely overwritten and has an undefined value written in its unused area (e.g., extended ID field during standard frame reception and an unused data field). Furthermore, a timestamp count value at which the message was received is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP) along with the received data. When the CAN module finished writing to the message slot, it sets the CAN Slot Interrupt Request Status bit to "1". If the interrupt request for the slot has been enabled, the CAN module generates an interrupt request and enters a wait state for the next reception. Note: * If the CAN module receives a corresponding data frame before sending a remote frame, it stores the received data frame in the slot and does not transmit the remote frame. (9) When the receive conditions are not met The received frame is discarded, and the CAN module goes to the next transmit/receive operation without writing to the message slot. 13-88 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.7 Transmitting Remote Frames Bit arrangement in the CAN Message Slot Control Register b0(b8) 1 2 3 4 5 TR RR RM RL RA ML 0 0 0 0 0 0 6 b7(b15) TRSTAT TRFIN 0 0 B'0000 0000 Store the received data B'0000 1000 Clear the transmit request B'1010 1000 B'1010 1011 Finished storing the received data Finished storing the received data CAN bus error occurred B'0000 1011 Clear the transmit request B'1010 1010 B'0000 1010 Finished sending a remote frame s bu CAN N CA or a rred n i ion ccu it st Lo itrat or o ansm arb s err he tr bu ear t t Cl ues req B'0000 0000 Finished sending a remote frame Wait for received data B'1010 0000 Store the received data Clear the receive request B'0000 0011 the ing a tor dat eive s ed ved rec ish cei he Fin re ear t uest Cl req B'0000 0001 Finished storing the received data Finished sending a remote frame B'1010 0001 Store the received data B'1010 0111 the the ing ar tor Cle st Finished s ed ata que sending ish d d re a remote Fineive eive frame c c e re r B'0000 0101 Store the received data B'1010 0011 Store the received data Clear the receive request B'0000 0111 B'0000 0001 Store the received data B'1010 0101 Wait for received data CPU read Figure 13.7.2 Operation of the CAN Message Slot Control Register during Remote Frame Transmission 13.7.3 Reading Out Received Data Frames when Set for Remote Frame Transmission The following shows the procedure for reading out the data frames that have been received in the slot when it is set for remote frame transmission. (1) Clearing the TRFIN (Transmit/Receive Finished) bit Write H'AE or H'00 to the CAN Message Slot Control Register (C0MSLnCNT, C1MSLnCNT) to clear the TRFIN bit to "0". After this write, the slot operates as follows: Values Written to CnMSLnCNT Slot Operation after Write H'AE Operates as a data frame receive slot. Whether overwritten can be verified by ML bit. H'00 The slot stops transmit/receive operation. Notes: * If message-lost check by the ML bit is needed, write H'AE to clear the TRFIN bit. * If the TRFIN bit was cleared by writing H'AE or H'00, it is possible that new data will be stored in the slot while still reading out a message from it. * The received data frame cannot be read out by writing H'A0 to the register. If the TRFIN bit is cleared by writing H'A0, the slot performs remote frame transmit operation. 13-89 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.7 Transmitting Remote Frames (2) Reading out from the message slot Read out a message from the message slot. (3) Checking the TRFIN (Transmit/Receive Finished) bit Read the CAN Message Slot Control Register to check the TRFIN (Transmit/Receive Finished) bit. 1) If TRFIN (Transmit/Receive Finished) bit = "1" It means that new data was stored in the slot while still reading out a message from it in (2) above. In this case, the data read out in (2) may contain an undefined value. Therefore, reexecute the above procedure beginning with clearing of the TRFIN (Transmit/Receive Finished) bit in (1). 2) If TRFIN (Transmit/Receive Finished) bit = "0" It means that the CAN module finished reading out from the slot normally. Reading out received data Clear the TRFIN bit to 0 Write H'AE or H'00 Read out from the message slot Read the CAN Message Slot Control Register NO TRFIN bit = 0 YES Finished reading out received data Figure 13.7.3 Procedure for Reading Out Received Data when Set for Remote Frame Transmission 13-90 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.8 Receiving Remote Frames 13.8 Receiving Remote Frames 13.8.1 Remote Frame Receive Procedure The following describes the procedure for receiving remote frames. (1) Initializing the CAN Message Slot Control Register Initialize the CAN Message Slot Control Register for the slot to be received by writing H'00 to the register. (2) Confirming that reception is idle Read the CAN Message Slot Control Register that has been initialized and check the TRSTAT (Transmit/ Receive Status) bit to see that reception has stopped and remains idle. If this bit = "1", it means that the CAN module is accessing the message slot. Therefore, wait until the bit is cleared to "0". (3) Setting the receive ID Set the desired receive ID in the message slot. (4) Setting the Extended ID Register Set the corresponding bit in the Extended ID Register to "0" if a standard frame is to be received, or "1" if an extended frame is to be received. (5) Setting the CAN Message Slot Control Register 1) When automatic response (data frame transmission) for remote frame reception is desired Write H'60 to the CAN Message Slot Control Register to set the RR (Receive Request) bit and RM (Remote) bit to "1". 2) When automatic response (data frame transmission) for remote frame reception is to be disabled Write H'70 to the CAN Message Slot Control Register to set the RR (Receive Request) bit, RM (Remote) bit and RL (Automatic Response Enable) bit to "1". Note: * During BasicCAN mode, slots 14 and 15, although capable of receiving remote frames, cannot automatically respond to remote frame reception. 13-91 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.8 Receiving Remote Frames Remote frame receive procedure Initialize the CAN Message Slot Control Register Write H'00 Read the CAN Message Slot Control Register NO Confirm that reception is idle TRSTAT bit = 0 YES Set ID in the message slot Standard ID or extended ID Set the Extended ID Register Write H'60 (receive request, remote and automatic response enable) Write H'70 (receive request, remote and automatic response disable) Set the CAN Message Slot Control Register End of setting Figure 13.8.1 Remote Frame Receive Procedure 13.8.2 Remote Frame Receive Operation The following describes remote frame receive operation. The operations described below are automatically performed in hardware. (1) Setting the RA (Remote Active) bit The RA (Remote Active) bit indicating that the corresponding slot is to handle remote frames is set to "1" at the same time H'60 (Receive Request, Remote) or H'70 (Receive Request, Remote, Automatic Response Disable) is written to the CAN Message Slot Control Register. (2) Acceptance filtering When the CAN module finished receiving data, it starts searching for the slot that satisfies the conditions for receiving the received message, sequentially from slot 0 (up to slot 15). The following shows receive conditions for the slots that have been set for data frame reception. [Conditions] * The received frame is a remote frame. * The receive ID and the slot ID are identical, assuming the ID Mask Register bits set to "0" are "Don't care." * The standard and extended frame types are the same. 13-92 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.8 Receiving Remote Frames (3) When the receive conditions are met When the receive conditions in (2) above are met, the CAN module sets the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit and TRFIN (Transmit/Receive Finished) bit to "1" while at the same time writing the received data to the message slot. In addition, a timestamp count value at which the message was received is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP) along with the received data. When the CAN module finished writing to the message slot, it sets the CAN Slot Interrupt Request Status bit to "1". If the interrupt request for the slot has been enabled, the CAN module generates an interrupt request. Notes: * The ID field and DLC value are written to the message slot. * An undefined value is written to the extended ID area when receiving standard format frames. * The data field is not written to. * The RA and TRFIN bits are cleared to "0" after writing the received remote frame data. (4) When the receive conditions are not met The received data is discarded, and the CAN module waits for the next receive frame. No data is written to the message slot. (5) Operation after receiving a remote frame The operation performed after receiving a remote frame differs depending on how automatic response is set. 1) When automatic response is disabled The slot which has had reception completed goes to an inactive state and remains inactive (neither transmit nor receive) until it is newly set in software. 2) When automatic response is enabled After receiving a remote frame, the slot automatically changes to a data frame transmit slot and performs the transmit operation described below. In this case, the transmitted data conforms to the ID and DLC of the received remote frame. * Selecting a transmit frame The CAN module checks slots which have transmit requests (including remote frame transmit slots) every intermission to determine the frame to transmit. If two or more transmit slots exist, frames are transmitted in order of slot numbers beginning with the smallest. * Transmitting a data frame After determining the transmit slot, the CAN module sets the corresponding CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "1" and starts transmitting. * If lost in CAN bus arbitration or a CAN bus error occurs If the CAN module lost in CAN bus arbitration or a CAN bus error occurs in the middle of transmission, the CAN module clears the CAN Message Slot Control Register's TRSTAT (Transmit/Receive Status) bit to "0". If the CAN module requested a transmit abort, the transmit abort is accepted and the message slot is enabled for write. * Completion of data frame transmission When data frame transmission has finished, the CAN Message Slot Control Register's TRFIN (Transmit/ Receive Finished) bit and the CAN Slot Interrupt Request Status Register are set to "1". Also, a timestamp count value at which transmission has finished is written to the CAN Message Slot Timestamp (C0MSLnTSP, C1MSLnTSP), and the transmit operation is thereby completed. If the CAN slot interrupt request has been enabled, an interrupt request is generated at completion of transmit operation. The slot which has had transmission completed goes to an inactive state and remains inactive (neither transmit nor receive) until it is newly set in software. 13-93 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.8 Receiving Remote Frames Bit arrangement in the CAN Message Slot Control Register b0(b8) 1 2 3 4 5 TR RR RM RL RA ML 0 0 0 0 0 0 6 b7(b15) TRSTAT TRFIN 0 0 B'0000 0000 Write H'70 (automatic response disabled) Write H'60 (automatic response enabled) Clear the receive request Wait for reception B'0110 1000 Store the received data B'0111 1000 Store the received data Store the received data Clear the receive request B'0000 1010 B'0110 1011 Finished storing Finished storing the received data the received data Finished storing the received data B'0000 0000 B'0111 B'0110 0000 Finished storing the received data Clear the receive request Store the received data Clear the receive request 1011 B'0000 Fin is Cle reched s e ar ive tor reqthe re d daing th ue ce ta e st ive B'0111 0000 1010 B'0000 0000 Send a data frame Send a data frame Clear the receive request B'0000 0010 Finished sending a data frame B'0000 0001 B'0110 0010 Finished sending a data frame B'0110 0001 Figure 13.8.2 Operation of the CAN Message Slot Control Register during Remote Frame Reception 13-94 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.9 Precautions about CAN Module 13.9 Precautions about CAN Module * Note for cancelation of transmit and receive CAN remote frame When aborting remote frame transmission or canceling remote frame receiving, make sure that the RA (Remote Active) bit is cleared to "0" after writing "H'00" or "H'0F" to the CAN Message Slot Control Register. (1) When aborting remote frame transmission Start transmission abort Write H'00 or H'0F to CAN message slot control register (Note 1) Read CAN message slot control register No RA (Remote Active) bit = "0" Yes Complete transmission abort Note 1: H'00 or H'0F can be used. Figure 13.9.1 Opertion Flow when Aborting Remote Frame Transmission (2) When canceling remote frame receiving Start receiving abort Write H'00 or H'0F to CAN message slot control register (Note 1) Read CAN message slot control register No RA (Remote Active) bit = "0" Yes Complete receiving abort Note 1: H'00 or H'0F can be used. Figure 13.9.2 Opertion Flow when Canceling Remote Frame Receiving 13-95 32182 Group User's Manual (Rev.1.0) CAN MODULE 13 13.9 Precautions about CAN Module This page is blank for reasons of layout. 13-96 32182 Group User's Manual (Rev.1.0) CHAPTER 14 REAL TIME DEBUGGER (RTD) 14.1 14.2 14.3 14.4 Outline of the Real-Time Debugger (RTD) Pin Functions of the RTD Functional Description of the RTD Typical Connection with the Host REAL TIME DEBUGGER (RTD) 14 14.1 Outline of the Real-Time Debugger (RTD) 14.1 Outline of the Real-Time Debugger (RTD) The Real-Time Debugger (RTD) is a serial I/O through which to read or write to any location in the entire area of the internal RAM by using commands from outside the microcomputer. Because data transfers between the RTD and internal RAM are performed via a dedicated internal bus independently of the M32R-FPU, RTD operation can be controlled without the need to stop the M32R-FPU. Table 14.1.1 Outline of the Real-Time Debugger (RTD) Item Description Transfer method Clock-synchronous serial I/O Generation of transfer clock Generated by external host RAM access area Entire area of the internal RAM (controlled by A16-A29) Transmit/receive data length 32 bits (fixed) Bit transfer sequence LSB first Maximum transfer rate 2 Mbits/second Input/output pins 4 pins (RTDTXD, RTDRXD, RTDACK, RTDCLK) Number of commands Following five functions * Monitor continuously * Output real-time RAM content * Forcibly rewrite RAM content (with verify) * Recover from runaway condition * Request RTD interrupt RTD Control Circuit CPU Entire RAM area Control Circuit RTDCLK Address Data Address Commands Data RTDTXD Address Data RTDACK Data RTDRXD Bus Switching Circuit Figure 14.1.1 Block Diagram of the Real-Time Debugger (RTD) 14-2 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.2 Pin Functions of the RTD 14.2 Pin Functions of the RTD Pin Functions of the RTD are shown below. Table 14.2.1 Pin Functions of the RTD Pin Name Type Function RTDTXD Output RTD serial data output RTDRXD Input RTD serial data input RTDACK Output Output a low-level pulse synchronously with the beginning clock edge of the output data word. The width of this pulse indicates the type of instruction or data the RTD has received. 1 clock period: VER (continuous monitor) command 1 clock period: VEI (RTD interrupt request) command 2 clock periods: RDR (real-time RAM content output) command 3 clock periods: WRR (RAM content forcible rewrite) command or the data to rewrite 4 clock periods or more: RCV (recover from runaway) command RTDCLK Input RTD transfer clock input 14-3 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.3 Functional Description of the RTD 14.3 Functional Description of the RTD 14.3.1 Outline of the RTD Operation Operation of the RTD is specified by a command entered from devices external to the chip. A command is indicated by bits 16-19 (Note 1) of the RTD received data. Table 14.3.1 RTD Commands RTD Received Data b19 b18 b17 b16 Command Mnemonic RTD Function 0 0 0 0 VER (VERify) Continuous monitor 0 1 0 0 0 1 0 1 0 1 1 0 VEI (VErify Interrupt request) RTD interrupt request 0 0 1 0 RDR (ReaD RAM) Real-time RAM content output 0 0 1 1 WRR (WRite RAM) RAM content forcible rewrite (with verify) 1 1 1 1 RCV (ReCoVer) Recover from runaway condition (Note 2), (Note 3) 0 0 0 1 System reserved (use inhibited) (Note 1) Note 1: The RTD received data bit 19 actually is not stored in the command register, and except for the RCV command, handled as a "Don't care" bit. (Bits 16-18 are effective for the command specified.) Note 2: The RCV command must always be transmitted twice in succession. Note 3: For the RCV command, all bits, not just 16-19, (i.e., bits 0-15 and bits 20-31) must be set to "1". 14.3.2 Operation of RDR (Real-time RAM Content Output) When the RDR (real-time RAM content output) command is issued, the RTD is enabled to transfer the contents of the internal RAM to external devices without causing the CPU's internal bus to stop. Because the RTD reads data from the internal RAM while there are no transfers performed between the CPU and internal RAM, no extra CPU load is incurred. Only the 32-bit word-aligned addresses can be specified for read from the internal RAM. (The two low-order address bits specified by a command are ignored.) Data are read out and transferred from the internal RAM in 32-bit units. (LSB side) RTDRXD (MSB side) 31 20 19 18 17 16 15 14 13 12 X X 0 0 1 0 0 Command (RDR) 0 A29 A28 1 0 A17 A16 Specified address Note: * X = Don't care. (However, if issued immediately after the RCV command, bits 20-31 must all be set to 1.) Figure 14.3.1 RDR Command Data Format 14-4 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.3 Functional Description of the RTD 32 clock periods 32 clock periods 32 clock periods RDR (A1) RDR (A2) RDR (A3) 32 clock periods RTDCLK RTDRXD RTDTXD D (A1) D (A2) RTDACK 2 clock periods Note: * (An) = Specified address * D(An) = Data at specified address (An) Figure 14.3.2 Operation of the RDR Command (LSB side) 31 30 (MSB side) 1 0 b31 b30 b1 b0 RTDTXD Read data Note: * The read data is transferred LSB-first. Figure 14.3.3 Read Data Transfer Format 14-5 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.3 Functional Description of the RTD 14.3.3 Operation of the WRR (RAM Content Forcible Rewrite) When the WRR (RAM content forcible rewrite) command is issued, the RTD forcibly rewrites the contents of the internal RAM without causing the CPU's internal bus to stop. Because the RTD writes data to the internal RAM while there are no transfers performed between the CPU and internal RAM, no extra CPU load is incurred. Only the 32-bit word-aligned addresses can be specified for read from the internal RAM. (The two low-order address bits specified by a command are ignored.) Data are written to the internal RAM in 32-bit units. The external host should transmit the command and address in the first frame and then the write data in the second frame. The RTD writes to the internal RAM in the third frame after receiving the write data. a) First frame (LSB side) RTDRXD (MSB side) 31 20 19 18 17 16 15 14 13 12 X X 0 0 1 0 1 0 Command (WRR) A29 A28 1 0 A17 A16 Specified address b) Second frame (LSB side) RTDRXD (MSB side) 31 30 1 0 b31 b30 b1 b0 Write data Notes: * X = Don't care. (However, if issued immediately after the RCV command, bits 20-31 must all be set to 1.) * The specified address and write data are transferred LSB-first. Figure 14.3.4 WRR Command Data Format The RTD reads out data from the specified address before writing to the internal RAM and again reads out data from the same address immediately after writing to the internal RAM (this helps to verify the data written to the internal RAM). The read data is output at the timing shown below. 32 clock periods 32 clock periods 32 clock periods 32 clock periods WRR(A1) (A1) Write data WRR(A2) (A2) Write data RTDCLK RTDRXD RTDTXD RTDACK D (A1) Read value before writing 3 clock periods D (A1) Verify value after writing Notes: * (An) = Specified address * D(An) = Data at specified address (An) Figure 14.3.5 Operation of the WRR Command 14-6 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.3 Functional Description of the RTD 14.3.4 Operation of VER (Continuous Monitor) When the VER (continuous monitor) command is issued, the RTD outputs the data from the address that has been accessed by an instruction (either read or write) immediately before receiving the VER command. (MSB side) (LSB side) RTDRXD 31 20 19 18 17 16 15 14 0 X X X 0 0 0 0 0 0 Command (VER) Notes: * X = Don't care. (However, if issued immediately after the RCV command, bits 20-31 must all be set to 1.) Figure 14.3.6 VER (Continuous Monitor) Command Data Format 32 clock periods 32 clock periods 32 clock periods VER VER 32 clock periods RTDCLK RDR(A1) RTDRXD (Note 1) RTDTXD RTDACK D (A1) Read value 2 clock periods D (A1) Latest read value Note 1: WRR command can also be used. Notes: * (An) = Specified address * D(An) = Data at specified address (An) Figure 14.3.7 Operation of the VER (Continuous Monitor) Command 14.3.5 Operation of VEI (Interrupt Request) When the VEI (interrupt request) command is issued, the RTD generates an interrupt request. Furthermore, the RTD outputs the data from the address that has been accessed by an instruction (either read or write) immediately before receiving the VEI command. (MSB side) (LSB side) RTDRXD 31 20 19 18 17 16 15 14 0 X X X 0 1 1 0 0 0 VEI (interrupt request generation) command Note: * X = Don't care. (However, if issued immediately after the VEI command, bits 20-31 must all be set to 1.) Figure 14.3.8 VEI (Interrupt Request) Command Data Format 14-7 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.3 Functional Description of the RTD 32 clock periods 32 clock periods 32 clock periods 32 clock periods RTDCLK RDR(A1) (Note 1) RTDRXD VEI RTDTXD RTDACK 2 clock periods RTD interrupt request D (A1) Read value D (A1) Read value RTD interrupt Note 1: WRR command can also be used. Notes: * (An) = Specified address * D(An) = Data at specified address (An) Figure 14.3.9 Operation of the VEI (Interrupt Request) Command 14.3.6 Operation of RCV (Recover from Runaway) If the RTD runs out of control, the RCV (recover from runaway) command may be issued to recover from the runaway condition without the need to reset the system. The RCV command must always be issued twice in succession. Also, any command issued immediately following the RCV command must have all of its bits 20-31 set to "1". (LSB side) RTDRXD (MSB side) 31 20 19 18 17 16 15 0 1 1 1 1 1 1 1 1 Command (RCV) Notes: * All of 32 data bits are 1's. * The RCV command must always be issued twice in succession. Figure 14.3.10 RCV Command Data Format 14-8 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.3 Functional Description of the RTD 32 clock periods 32 clock periods 32 clock periods 32 clock periods RTDCLK Bits 20-31 RCV RTDRXD RCV 1 * * * 1 RDR(A1) Next command following RCV command RTDTXD D(A1) Indeterminate data during runaway condition Indeterminate value during runaway condition RTDACK 2 clock periods 2 clock periods RCV command stored Note: * The next command following the RCV command must have all of its bits 20-31 set to 1. Figure 14.3.11 Operation of the RCV Command 14.3.7 Method for Setting a Specified Address when Using the RTD In the Real-Time Debugger (RTD), the low-order 16-bit addresses of the internal RAM can be specified. Because the internal RAM is located in a 64-KB area ranging from H'0080 4000 to H'0081 3FFF, the low-order 16bit addresses of that area (H'4000 to H'FFFF, H'0000 to H'3FFF) can be set. Setting the 16-bit lower addresses H'4000-H'FFFF specifies a RAM area from H'0080 4000 to H'0080 FFFF. Similarly, setting the 16-bit lower addresses H'0000-H'3FFF specifies a RAM area from H'0081 0000 to H'0081 3FFF. Note also that two least significant address bits, A31 and A30, area always 0 because data are read and written to and from the internal RAM in a fixed length of 32 bits. Memory map X * * * X A29 - A16 H'0080 0000 SFR 16KB H'0080 4000 Only H'0080 4000 to H'0081 3FFF can be specified RAM area 64 KB H'0081 3FFF Figure 14.3.12 Setting Addresses in the Real-Time Debugger 14-9 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.3 Functional Description of the RTD 14.3.8 Resetting the RTD The RTD is reset by applying a system reset (i.e., RESET# signal). The status of the RTD related output pins after a system reset are shown below. Table 14.3.2 RTD Pin Status after System Reset Pin Name Status RTDACK High-level output RTDTXD High-level output The first command transfer to the RTD after being reset is initiated by transferring data to the RTDRXD pin synchronously with the falling edge of RTDCLK. 32 clock periods 32 clock periods RDR(A1) RDR(A2) 0000 0000 0000 0000 32 clock periods 32 clock periods D(A1) D(A2) RTDCLK RESET# System reset RTDRXD Don't Care RTDTXD "H" RTDACK "H" Notes: * (An) = Specified address * D(An) = Data at specified address (An) Figure 14.3.13 Command Transfer to the RTD after System Reset 14-10 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.4 Typical Connection with the Host 14.4 Typical Connection with the Host The host uses a serial synchronous interface to transfer data. The clock for synchronous communication should be generated by the host. An example for connecting the RTD and host is shown below. Host microprocessor M32R/ECU RTDCLK SCLK RTDRXD RXD TXD RTDTXD (Note 1) RTDACK PORT Note 1: This applies to the case where the RTDACK level is checked between transfer frames. Figure 14.4.1 Connecting the RTD and Host The RTD communication is performed in a fixed length of 32 bits per frame. Because serial interfaces generally handle data in 8-bit units, data is transferred separately in four operations, 8 bits at a time. The RTDACK signal is used to verify that communication is performed normally. The RTDACK signal goes low after a command is sent, providing a means of verifying the communication status. When issuing the VER command, the RTDACK signal is pulled low for only one clock period. Therefore, after sending 32 bits in one frame via a serial interface, turn off RTDCLK output and check that RTDACK is low. That way, it is possible to know whether the RTD is communicating normally. If it is desirable to identify the type of transmitted command by the width of RTDACK, use the microcomputer's internal measurement timer (to count RTDCLK pulses while RTDACK is low), or design a dedicated circuit. Transfer of the next frame Transfer of one frame (32 bits) 1 2 RTDCLK RTDRXD (8 bits) (8 bits) (8 bits) RTDTXD RTDACK Check that the RTDACK signal is low. Figure 14.4.2 Example of Communication with the Host (when Using VER Command) 14-11 32182 Group User's Manual (Rev.1.0) REAL TIME DEBUGGER (RTD) 14 14.4 Typical Connection with the Host This page is blank for reasons of layout. 14-12 32182 Group User's Manual (Rev.1.0) CHAPTER 15 EXTERNAL BUS INTERFACE 15.1 15.2 15.3 15.4 15.5 15.6 Outline of the External Bus Interface External Bus Interface Related Registers Read/Write Operations Bus Arbitration Typical Connection of External Extension Memory Example of Bus Voltage Settings Using VCC-BUS EXTERNAL BUS INTERFACE 15 15.1 Outline of the External Bus Interface 15.1 Outline of the External Bus Interface 15.1.1 External Bus Interface Related Signals The 32182 has the external bus interface related signals described below. These signals can be used in external extension and processor modes. Furthermore, a dedicated power supply for the bus control pins (bus power supply: VCC-BUS) is included. When used separately from other power supplies, it allows external devices operating with other than the main power supply voltage to be connected. The symbol "#" suffixed to the pin names (or signal names) means that the pins (or signals) are active-low. (1) Address The 32182 outputs a 20-bit address (A11-A30) for addressing any location in a 2-Mbyte space. The least significant A31 is not output. Note: * During external extension mode, these pins are switched for port after reset. Their pin functions must be set for address output using the corresponding port operation mode register as necessary. (2) Chip select (CS0#-CS3#) The CS0#-CS3# signals are output for extended external areas divided in 2-Mbyte units. The CS0# signal points to a 2-Mbyte area during processor mode or a 1-Mbyte area during external extension mode. (For details, see Chapter 3, "Address Space.") Note: * During external extension mode, these pins are switched for port after reset. Their pin functions must be set for chip select using the corresponding port operation mode register as necessary. (3) Read strobe (RD#) Output during an external read cycle, this signal indicates the timing at which to read data from the bus. This signal is driven high when writing to the bus or accessing the internal area. (4) Byte High Write/Byte High Enable (BHW#/BHE#) The pin function changes depending on the Bus Mode Control Register (BUSMODC). When BUSMOD = "0" and this signal is Byte High Write (BHW#), during external write access it indicates that the upper byte (DB0-DB7) of the data bus is the valid data transferred. During external read and when accessing the internal area it outputs a high. When BUSMOD = "1" and this signal is Byte High Enable (BHE#), during external access (for read or write) it indicates that the upper byte (DB0-DB7) of the data bus is the valid data transferred. When accessing the internal area it outputs a high. (5) Byte Low Write/Byte Low Enable (BLW#/BLE#) The pin function changes depending on the Bus Mode Control Register (BUSMODC). When BUSMOD = "0" and this signal is Byte Low Write (BLW#), during external write access it indicates that the lower byte (DB8-DB15) of the data bus is the valid data transferred. During external read and when accessing the internal area it outputs a high. When BUSMOD = "1" and this signal is Byte Low Enable (BLE#), during external access (for read or write) it indicates that the lower byte (DB8-DB15) of the data bus is the valid data transferred. When accessing the internal area it outputs a high. 15-2 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.1 Outline of the External Bus Interface (6) Data bus (DB0-DB15) This is the 16-bit data bus used to access external devices. During external read access, data is latched from the bus synchronously with the rising edge of the read strobe. During external write access, data is output from the bus. When accessing the internal area, the bus functions as an input bus. Note: * During external extension mode, these pins are switched for port after reset. Their pin functions must be set for data bus using the corresponding port operation mode register as necessary. (7) System clock/write (BCLK/WR#) The pin function changes depending on the Bus Mode Control Register (BUSMODC). When BUSMOD = "0" and this signal is System Clock (BCLK), it outputs the system clock necessary to synchronize operations in an external system. When the CPU clock = 80 MHz, a 20 MHz clock is output from BCLK. When not using the BCLK/WR function, this pin can be used as P70 by clearing the P7 Operation Mode Register P70MD bit to "0". When BUSMOD = "1" and this signal is Write (WR#), during external write access it indicates the valid data transferred on the data bus. During external read cycle and when accessing the internal area it outputs a high. Note: * During external extension mode, this pin is switched for port after reset. Its pin function must be set for system clock/write using the corresponding port operation mode register as necessary. (8) Wait (WAIT#) When the 32182 started an external bus cycle, it automatically inserts wait states while the WAIT# input signal is asserted. For details, see Chapter 16, "Wait Controller." When not using the WAIT function, this pin can be used as P71 by clearing the P7 Operation Mode Register P71MD bit to "0". Note: * During external extension mode, this pin is switched for port after reset. Its pin function must be set for wait using the corresponding port operation mode register as necessary. (9) Hold control (HREQ#, HACK#) The hold state refers to a state in which the microcomputer has stopped accessing the bus and the bus interface related pins are tristated (high impedance). While the microcomputer is in a hold state, any bus master external to the chip can use the system bus to transfer data. A low signal input on the HREQ# pin places the microcomputer into a hold state. While the microcomputer remains in a hold state after accepting the hold request and during a transition to the hold state, the HACK# pin outputs a low-level signal. To exit the hold state and return to normal operating state, release the HREQ# signal back high. Note: * During external extension mode, these pins are switched for port after reset. Their pin functions must be set for hold control using the corresponding port operation mode register as necessary. The status of each pin during hold are shown below. Table 15.1.1 Pin State during Hold Period Pin Name Pin State or Operation A11-A30, DB0-DB15, CS0#-CS3#, RD#, BHW#, BLW#, BHE#, BLE#, WR# High impedance HACK# Output a low Other pins (e.g., ports and timer output) Normal operation (10) Bus power supply (VCC-BUS) This pin supplies power to the bus control pins. A voltage different from that of the main power supply can be applied, which is convenient when external devices are connected to the system. 15-3 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.2 External Bus Interface Related Registers 15.2 External Bus Interface Related Registers The following describes the external bus interface related registers. 15.2.1 Port Operation Mode Registers Ports P0-P4 (except P41-P43), P224 and P225 are switched for external access signal pins during external extension mode when so set by the corresponding operation mode register. During processor mode, these ports always function as external access signal pins. During external extension mode, these pins are switched for port after reset. Therefore, by switching the pin functions for only those pins that are needed for external access, the remaining pins can be used as port. Ports P70-P73 can be switched for external access signal pins at any time irrespective of the CPU operation mode. Ports P41-P43 always function as external access signal pins during external extension and processor modes. P0 Operation Mode Register (P0MOD) b0 1 2 3 4 5 6 b7 P00MD P01MD P02MD P03MD P04MD P05MD P06MD P07MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 P00MD Port P00 operation mode bit 0: P00 1: DB0 R W 1 P01MD Port P01 operation mode bit 0: P01 1: DB1 R W 2 P02MD Port P02 operation mode bit 0: P02 1: DB2 R W 3 P03MD Port P03 operation mode bit 0: P03 1: DB3 R W 4 P04MD Port P04 operation mode bit 0: P04 1: DB4 R W 5 P05MD Port P05 operation mode bit 0: P05 1: DB5 R W 6 P06MD Port P06 operation mode bit 0: P06 1: DB6 R W 7 P07MD Port P07 operation mode bit 0: P07 1: DB7 R W Note: * Settings of the P0 Operation Mode Register are effective only when the CPU is operating in external extension mode. 15-4 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.2 External Bus Interface Related Registers P1 Operation Mode Register (P1MOD) b8 9 10 11 12 13 14 b15 P10MD P11MD P12MD P13MD P14MD P15MD P16MD P17MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P10MD Port P10 operation mode bit 0: P10 1: DB8 R W 9 P11MD Port P11 operation mode bit 0: P11 1: DB9 R W 10 P12MD Port P12 operation mode bit 0: P12 1: DB10 R W 11 P13MD Port P13 operation mode bit 0: P13 1: DB11 R W 12 P14MD Port P14 operation mode bit 0: P14 1: DB12 R W 13 P15MD Port P15 operation mode bit 0: P15 1: DB13 R W 14 P16MD Port P16 operation mode bit 0: P16 1: DB14 R W 15 P17MD Port P17 operation mode bit 0: P17 1: DB15 R W Note: * Settings of the P1 Operation Mode Register are effective only when the CPU is operating in external extension mode. P2 Operation Mode Register (P2MOD) b0 1 2 3 4 5 6 b7 P20MD P21MD P22MD P23MD P24MD P25MD P26MD P27MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 0 P20MD Port P20 operation mode bit 0: P20 1: A23 R W 1 P21MD Port P21 operation mode bit 0: P21 1: A24 R W 2 P22MD Port P22 operation mode bit 0: P22 1: A25 R W 3 P23MD Port P23 operation mode bit 0: P23 1: A26 R W 4 P24MD Port P24 operation mode bit 0: P24 1: A27 R W 5 P25MD Port P25 operation mode bit 0: P25 1: A28 R W 6 P26MD Port P26 operation mode bit 0: P26 1: A29 R W 7 P27MD Port P27 operation mode bit 0: P27 1: A30 R W Note: * Settings of the P2 Operation Mode Register are effective only when the CPU is operating in external extension mode. 15-5 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.2 External Bus Interface Related Registers P3 Operation Mode Register (P3MOD) b8 9 10 11 12 13 14 b15 P30MD P31MD P32MD P33MD P34MD P35MD P36MD P37MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P30MD Port P30 operation mode bit 0: P30 1: A15 R W 9 P31MD Port P31 operation mode bit 0: P31 1: A16 R W 10 P32MD Port P32 operation mode bit 0: P32 1: A17 R W 11 P33MD Port P33 operation mode bit 0: P33 1: A18 R W 12 P34MD Port P34 operation mode bit 0: P34 1: A19 R W 13 P35MD Port P35 operation mode bit 0: P35 1: A20 R W 14 P36MD Port P36 operation mode bit 0: P36 1: A21 R W 15 P37MD Port P37 operation mode bit 0: P37 1: A22 R W Note: * Settings of the P3 Operation Mode Register are effective only when the CPU is operating in external extension mode. P4 Operation Mode Register (P4MOD) b0 0 1 0 2 0 3 0 4 5 6 b7 P44MD P45MD P46MD P47MD 0 0 0 0 b Bit Name 0-3 No function assigned. Fix to "0". 4 P44MD Port P44 operation mode bit 5 Function R W 0 0 0: P44 1: CS0# R W P45MD Port P45 operation mode bit 0: P45 1: CS1# R W 6 P46MD Port P46 operation mode bit 0: P46 1: A13 R W 7 P47MD Port P47 operation mode bit 0: P47 1: A14 R W Note: * Settings of the P4 Operation Mode Register are effective only when the CPU is operating in external extension mode. 15-6 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.2 External Bus Interface Related Registers P7 Operation Mode Register (P7MOD) b8 9 10 11 12 13 14 b15 P70MD P71MD P72MD P73MD P74MD P75MD P76MD P77MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P70MD Port P70 operation mode bit 0: P70 1: BCLK/WR# R W 9 P71MD Port P71 operation mode bit 0: P71 1: WAIT# R W 10 P72MD Port P72 operation mode bit 0: P72 1: HREQ# R W 11 P73MD Port P73 operation mode bit 0: P73 1: HACK# R W 12 P74MD Port P74 operation mode bit 0: P74 1: RTDTXD R W 13 P75MD Port P75 operation mode bit 0: P75 1: RTDRXD R W 14 P76MD Port P76 operation mode bit 0: P76 1: RTDACK R W 15 P77MD Port P77 operation mode bit 0: P77 1: RTDCLK R W P22 Operation Mode Register (P22MOD) b0 1 P220MD 0 0 2 3 4 5 6 b7 P222MD P223MD P224MD P225MD P226MD P227MD 0 0 0 0 0 0 b Bit Name Function R W 0 P220MD Port P220 operation mode bit 0: P220 1: CTX0 R W 1 No function assigned. Fix to "0". 0 0 2, 3 Fix to "0" 0 0 4 P224MD Port P224 operation mode bit (Note 1) 0: P224 1: A11/CS2# (Note 2) R W 5 P225MD Port P225 operation mode bit (Note 1) 0: P225 1: A12/CS3# (Note 2) R W 6, 7 Fix to "0" 0 0 Note 1: Port P224 and P225 operation modes are effective only when the CPU is operating in external extension mode. Note 2: Either of the functions is selected using the P22 Peripheral Output Select Register. Notes: * P221 is a CAN input-only pin. * Although no pins are available for P222, P223, P226 and P227, because internal circuits are included, make sure the ports are set for low-level output when initialized (to prevent current from flowing in through the port). However, P223 is an inputonly pin, so that there is no need to set it for output. 15-7 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.2 External Bus Interface Related Registers 15.2.2 Port Peripheral Output Select Register To use ports P224 and P225 as external access signal pins, their pin functions must be set using the P22 Peripheral Output Select Register, because the A11 and CS2# pins and the A12 and CS3# pins are shared. P22 Peripheral Output Select Register (P22SMOD) b0 0 1 0 2 0 3 4 5 6 b7 0 P224 SMD 0 P225 SMD 0 0 0 b Bit Name 0-3 No function assigned. Fix to "0". 4 P224SMD Port P224 peripheral output select mode bit 5 P225SMD Port P225 peripheral output select mode bit 6-7 No function assigned. Fix to "0". Function R W 0 0 0: A11 1: CS2# R W 0: A12 1: CS3# R W 0 0 15-8 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.2 External Bus Interface Related Registers 15.2.3 Bus Mode Control Register Bus Mode Control Register (BUSMODC) b8 9 10 11 12 13 14 b15 BUSMOD 0 0 0 0 0 0 0 0 b Bit Name 8-14 No function assigned. Fix to "0". 15 BUSMOD Bus mode control bit Function R W 0 0 0: WR signal separate mode 1: Byte enable separate mode R W This register is used to facilitate memory connections during processor mode and external extension mode. When the Bus Mode Control bit (BUSMOD) = "0", the WR# signal is output separately for each byte area. Signals RD#, BHW#, BLW#, BCLK# and WAIT# can be used. When the Bus Mode Control bit (BUSMOD) = "1", the byte enable signal is output separately for each byte area. Signals RD#, BHE#, BLE#, WR# and WAIT# can be used. In a WAIT control circuit configuration, because BCLK output is not available, timing must be controlled external to the chip. Note: * Any external bus area must temporarily be accessed for read or write before the Bus Mode Control bit (BUSMOD) can be set to "1" (= byte enable separate mode). For memory connection in boot mode, the Bus Mode Control Register has no effect, and the microcomputer operates in the same way as when the Bus Mode Control bit (BUSMOD) is cleared to "0". BUSMOD bit = 0 BUSMOD bit = 1 A11-A30 A11-A30 CS0#-CS3# CS0#-CS3# RD# BCLK RD# WR# BHW# BHE# BLW# BLE# DB0-DB15 DB0-DB15 WAIT# WAIT# Figure 15.2.1 Pin Functions when External Bus Modes are Changed 15-9 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.3 Read/Write Operations 15.3 Read/Write Operations (1) When the Bus Mode Control Register = "0" External read/write operations are performed using the address bus, data bus and the signals CS0#-CS3#, RD#, BHW#, BLW#, WAIT# and BCLK. In the external read cycle, the RD# signal is low while BHW# and BLW# both are high, with data read in from only the necessary byte position. In the external write cycle, the BHW# or BLW# signal output for the byte position to write is asserted low as data is written to the bus. When an external bus cycle starts, wait states are inserted as long as the WAIT# signal is low. Unless necessary, the WAIT# signal must always be held high. Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) Bus-free state Internal bus access BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# "H" DB0-DB15 WAIT# Hi-z (Don't Care) Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note: * Hi-Z denotes a high-impedance state. Figure 15.3.1 Internal Bus Access during Bus Free State 15-10 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.3 Read/Write Operations Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 000 (zero wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (1 cycle) BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) Write Write (1 cycle) BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Note: * When zero wait state is selected, assertion of WAIT# is not accepted. Figure 15.3.2 Read/Write Timing (for Zero Wait Access) 15-11 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.3 Read/Write Operations Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 010 (2 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (4 cycles) Internal 2 wait states External 1 wait state BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" Write (4 cycles) Write Internal 2 wait states External 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Note: * Circles in the above diagram denote the sampling timing. Figure 15.3.3 Read/Write Timing (for Access with Internal 2 and External 1 Wait States) 15-12 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.3 Read/Write Operations (2) When the Bus Mode Control Register = "1" External read/write operations are performed using the address bus, data bus and the signals CS0#-CS3#, RD#, BHE#, BLE#, WAIT# and WR#. In the external read cycle, the RD# signal is low and the BHE# or BLE# signal output for the byte position from which to read is asserted low, with data read in from only the necessary byte position of the bus. In the external write cycle, the WR# signal goes low and the BHE# or BLE# signal output for the byte position to write is asserted low, with data written to the necessary byte position. When an external bus cycle starts, wait states are inserted as long as the WAIT# signal is low. Unless necessary, the WAIT# signal must always be held high. Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) Bus-free state Internal bus access BCLK A11-A30 CS0#-CS3# RD# "H" WR# "H" BHE#, BLE# "H" DB0-DB15 WAIT# Hi-z (Don't Care) Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Notes: * Hi-Z denotes a high-impedance state. * BCLK is not output. Figure 15.3.4 Internal Bus Access during Bus Free State 15-13 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.3 Read/Write Operations Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 000 (zero wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (1 cycle) BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) Write (1 cycle) Write BCLK A11-A30 CS0#-CS3# RD# "H" WR# BHE#, BLE# BCLK DB0-DB15 WAIT# (Don't Care) Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * When zero wait state is selected, assertion of WAIT# is not accepted. * BCLK is not output. Figure 15.3.5 Read/Write Timing (for Zero Wait Access) 15-14 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.3 Read/Write Operations Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 010 (2 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (4 cycles) Internal 2 wait states External 1 wait state BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "L" "H" Write (4 cycles) Write Internal 2 wait states External 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" WR# BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram denote the sampling timing. * BCLK is not output. Figure 15.3.6 Read/Write Timing (for Access with Internal 2 and External 1 Wait States) 15-15 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.4 Bus Arbitration 15.4 Bus Arbitration (1) When the Bus Mode Control Register = "0" When the input signal on the HREQ# pin is pulled low and the hold request is accepted, the microcomputer goes to a hold state and outputs a low from the HACK# pin. During hold state, all bus related pins are placed in the high-impedance state, allowing data to be transferred on the system bus. To exit the hold state and return to normal operating state, release the HREQ# signal back high. Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) Bus cycle Idle Go to hold state Hold state Return Next bus cycle BCLK HREQ# HACK# Hi-Z A11-A30 Hi-Z CS0#-CS3# Hi-Z RD# Hi-Z BHW#, BLW# Hi-Z DB0-DB15 WAIT# (Don't Care) Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Notes: * Circles in the above diagram denote the sampling timing. * Hi-Z denotes a high-impedance state. * Idle cycles are inserted only when a hold state is entered immediately following an external read access. Figure 15.4.1 Bus Arbitration Timing 15-16 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.4 Bus Arbitration (2) When the Bus Mode Control Register = "1" When the input signal on the HREQ# pin is pulled low and the hold request is accepted, the microcomputer goes to a hold state and outputs a low from the HACK# pin. During hold state, all bus related pins are placed in the high-impedance state, allowing data to be transferred on the system bus. To exit the hold state and return to normal operating state, release the HREQ# signal back high. Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) Bus cycle Idle Go to hold state Hold state Return Next bus cycle BCLK HREQ# HACK# Hi-Z A11-A30 Hi-Z CS0#-CS3# Hi-Z RD# Hi-Z WR# Hi-Z BHW#, BLW# Hi-Z DB0-DB15 (Don't Care) WAIT# Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Notes: * Circles in the above diagram denote the sampling timing. * Hi-Z denotes a high-impedance state. * Idle cycles are inserted only when a hold state is entered immediately following an external read access. Figure 15.4.2 Bus Arbitration Timing 15-17 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.5 Typical Connection of External Extension Memory 15.5 Typical Connection of External Extension Memory (1) When the Bus Mode Control Register = "0" A typical memory connection when using external extension memory is shown in Figure 15.5.1. (External extension memory can only be used in external extension mode and processor mode.) Flash memory M32182F3 Memory mapping H'0000 0000 A11 A18 H'0006 0000 A30 A0 D0 D15 D15 D0 RD# RD# CS0# CS# Internal flash memory (384KB) Not used max1MB H'000F FFFF H'0010 0000 External memory area (1MB) 1M-CS0 area External memory area (2MB) 2M-CS1 area SRAM H'0020 0000 A18 A0 D15 max1MB 2 * (total2MB) D0 BHW# BLW# CS1# WR#(D0-D7) WR#(D8-D15) RD#(D0-D15) CS# H'0040 0000 WAIT# Number of bus wait states can be set to 0-7. Normally used as port. WAIT is used only when seven or more wait states are needed. Figure 15.5.1 Typical Connection of External Extension Memory (when BUSMOD bit = "0") Note: * The address and data are connected in such a way that pin 0 is the MSB and pin 15 is the LSB. When connecting external extension memory, connections of the MSB and LSB sides must be reversed. 15-18 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.5 Typical Connection of External Extension Memory (2) When the Bus Mode Control Register = "1" A typical memory connection when using external extension memory is shown in Figure 15.5.2. (External extension memory can only be used in external extension mode and processor mode.) Flash memory M32182F3 Memory mapping H'0000 0000 A11 A18 Internal flash memory (384KB) H'0006 0000 A30 A0 D0 D15 D15 D0 RD# RD# CS0# CS# Not used max1MB H'000F FFFF H'0010 0000 External memory area (1MB) 1M-CS0 area SRAM H'0020 0000 A19 A0 D15 External memory area (2MB) max2MB 2M-CS1 area D0 BHE# BLE# CS1# WR# BHE#(D0-D7) BLE#(D8-D15) RD#(D0-D15) CS# WR#(D0-D15) H'0040 0000 WAIT# Number of bus wait states can be set to 0-7. Normally used as port. WAIT is used only when seven or more wait states are needed. Figure 15.5.2 Typical Connection of External Extension Memory (when BUSMOD bit = "1") Note: * The address and data are connected in such a way that pin 0 is the MSB and pin 15 is the LSB. When connecting external extension memory, connections of the MSB and LSB sides must be reversed. 15-19 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.5 Typical Connection of External Extension Memory (3) When the Bus Mode Control Register = "1" using a combination of 8/16-bit data bus memories The diagram below shows a typical connection of external extension memory, with an 8-bit data bus memory located in the CS0 area, and a 16-bit data bus memory located in the CS1 area. (External extension memory can only be used in external extension mode and processor mode.) When CL = 50 pF, memory can be connected with only 2 ns of data delay. M32182F3 Memory mapping 8-bit memory H'0000 0000 A11 A18 H'0006 0000 A30 D0 D7 D8 D15 QS32X2245 A B A B OE A1 Not used D7 max1MB D0 H'000F FFFF H'0010 0000 WR# External memory area (1MB) RD# CS# A0 RD# CS0# Internal flash memory (384KB) 1M-CS0 area 8-bit bus area SRAM H'0020 0000 A19 A0 External memory area (2MB) 2M-CS1 area D15 max2MB D0 WR#(D0-D15) RD#(D0-D15) BHE# BLE# CS# WR# BHE# BLE# CS1# WAIT# 16-bit bus area H'0040 0000 Number of bus wait states can be set to 0-7. Normally used as port. WAIT is used only when seven or more wait states are needed. Note: * The QS32X2245 is a product made by the IDT Company. Figure 15.5.3 Typical Connection of External Extension Memory (when BUSMOD bit = "1" using a combination of 8/16-Bit Memories) Note: * The address and data are connected in such a way that pin 0 is the MSB and pin 15 is the LSB. When connecting external extension memory, connections of the MSB and LSB sides must be reversed. 15-20 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.6 Example of Bus Voltage Settings Using VCC-BUS 15.6 Example of Bus Voltage Settings Using VCC-BUS (1) When both port and memory are connected at 5 V Ports and memory can be connected with external circuits via 5 V interfaces. 5V M32R/ECU Port VCCE Connected at 5 V VDDE OSC-VCC Bus 5V Memory 5V VCC VCC-BUS Figure 15.6.1 When Both Port and Memory are Connected at 5 V (2) When ports and memory are connected at 3.3 V and 5 V, respectively Ports and memory can be connected with external circuits via a 3.3 V interface and a 5 V interface, respectively. 3.3V M32R/ECU Port VCCE Connected at 3.3 V VDDE OSC-VCC 5V Bus Memory 5V 5V VCC VCC-BUS Figure 15.6.2 When Port and Memory are Connected at 3.3 V and 5 V, Respectively 15-21 32182 Group User's Manual (Rev.1.0) EXTERNAL BUS INTERFACE 15 15.6 Example of Bus Voltage Settings Using VCC-BUS (3) When ports and memory are connected at 5 V and 3.3 V, respectively Ports and memory can be connected with external circuits via a 5 V interface and a 3.3 V interface, respectively. 5V M32R/ECU Port VCCE Connected at 5 V VDDE OSC-VCC 3.3V Bus Memory 3.3V 3.3V VCC VCC-BUS Figure 15.6.3 When Port and Memory are Connected at 5 V and 3.3 V, Respectively (4) When both port and memory are connected at 3.3 V Ports and memory can be connected with external circuits via 3.3 V interfaces. 3.3V M32R/ECU Port VCCE Connected at 3.3V VDDE OSC-VCC Bus Memory 3.3V 3.3V VCC VCC-BUS Figure 15.6.4 When Both Port and Memory are Connected at 3.3 V 15-22 32182 Group User's Manual (Rev.1.0) CHAPTER 16 WAIT CONTROLLER 16.1 Outline of the Wait Controller 16.2 Wait Controller Related Registers 16.3 Typical Operation of the Wait Controller WAIT CONTROLLER 16 16.1 Outline of the Wait Controller 16.1 Outline of the Wait Controller The Wait Controller controls the number of wait states inserted in bus cycles when accessing an extended external area. The Wait Controller is outlined in the table below. Table 16.1.1 Outline of the Wait Controller Item Description Target space Control is applied to the following address spaces depending on operation mode: Single-chip mode: No target space (Settings of the Wait Controller have no effect) External extension mode: CS0 area (1 Mbytes), CS1 area (2 Mbytes), CS2 area (2 Mbytes), CS3 area (2 Mbytes) Processor mode: CS0 area (2 Mbytes), CS1 area (2 Mbytes), CS2 area (2 Mbytes), CS3 area (2 Mbytes) Number of wait states that can be inserted 0-7 wait states set by software + any number of wait states set from the WAIT# pin During external extension and processor modes, four chip select signals (CS0# to CS3#) are output, each corresponding to one of the four extended external areas referred to as CS0 through CS3. Non-CS0 area (Internal ROM access area) H'0000 0000 Internal ROM area Reserved area H'000F FFFF H'0010 0000 CS1 area CS2 area (2MB) Extended external area H'003F FFFF H'0040 0000 Extended external area H'001F FFFF H'0020 0000 CS0 area CS0 area CS1 area (2MB) CS2 area (2MB) H'005F FFFF H'0060 0000 CS3 area CS3 area (2MB) H'007F FFFF Figure 16.1.1 CS0-CS3 Area Address Map When accessing the extended external area, the Wait Controller controls the number of wait states inserted in bus cycles based on the number of wait states set by software and those entered from the WAIT# pin. The number of wait states that can be controlled in software is 0 to 7. When the input signal on the WAIT# pin is sampled low in the last cycle of internal wait state, the wait state is extended as long as the WAIT# input signal is held low. Then when the WAIT# input signal is released back high, the wait state is terminated and the next new bus cycle is entered into. 16-2 32180 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.1 Outline of the Wait Controller Table 16.1.2 Number of Wait States that Can Be Set by the Wait Controller Extended External Area CS0 area Address Number of Wait States Inserted H'0010 0000 to H'001F FFFF Zero to 7 wait states set by software (external extension mode) + any number of wait states entered from the WAIT# pin H'0000 0000 to H'001F FFFF (However, software settings have priority.) (processor mode) CS1 area CS2 area CS3 area H'0020 0000 to H'003F FFFF Zero to 7 wait states set by software (external extension and + any number of wait states entered from the WAIT# pin processor modes) (However, software settings have priority.) H'0040 0000 to H'005F FFFF Zero to 7 wait states set by software (external extension and + any number of wait states entered from the WAIT# pin processor modes) (However, software settings have priority.) H'0060 0000 to H'007F FFFF Zero to 7 wait states set by software (external extension and + any number of wait states entered from the WAIT# pin processor modes) (However, software settings have priority.) 16-3 32180 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.2 Wait Controller Related Registers 16.2 Wait Controller Related Registers Shown below is a Wait Controller related register map. Wait Controller Related Register Map Address +0 address +1 address b0 b7 b8 H'0080 0180 CS0 Area Wait Control Register (CS0WTCR) CS2 Area Wait Control Register (CS2WTCR) H'0080 0182 b15 CS1 Area Wait Control Register (CS1WTCR) CS3 Area Wait Control Register (CS3WTCR) See pages 16-4 16-4 16.2.1 CS Area Wait Control Registers CS0 CS1 CS2 CS3 Area Area Area Area Wait Wait Wait Wait b0 b8 1 9 0 1 Control Control Control Control 2 10 Register Register Register Register 3 11 WTCSEL 1 1 (CS0WTCR) (CS1WTCR) (CS2WTCR) (CS3WTCR) 0181> 0182> 0183> b Bit Name Function R W 0 (8) No function assigned. Fix to "0". 0 0 1-3 (9-11) WTCSEL CSn block wait states select bit R W 4 (12) When using external bus, set this bit to "0". (Note 3) R W 5 (13) SWAIT Strobe signal wait bit 0: No strobe wait 1: Strobe wait added R W 6 (14) RECOV Recovery cycle addition bit 0: No recovery cycle 1: Recovery cycle added R W 7 (15) IDLE Post-read idle cycle addition bit 0: No post-read idle cycle 1: Post-read idle cycle added R W 000: 0 wait state (Note 1) 001: 1 wait state (Note 2) 010: 2 wait state 011: 3 wait state 100: 4 wait state 101: 5 wait state 110: 6 wait state 111: 7 wait state Note 1: When zero wait state is selected, wait states inserted by external WAIT input are not accepted. For zero wait state also, make sure the SWAIT, RECOV and IDLE bits all are set to "0". Otherwise, device operation cannot be guaranteed. Note 2: When one wait state is selected, do not set SWAIT bit = 1. Otherwise, device operation cannot be guaranteed. Note 3: When using an external bus, set this bit to "0". If a read cycle is followed immediately by a write cycle, one idle cycle is inserted unless RECOV bit = 1 and IDLE bit = 0. Table 16.2.1 shows the relationship between RECOV bit and IDLE bit settings and the number of idle cycles inserted after the bus cycle. 16-4 32180 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.2 Wait Controller Related Registers Table 16.2.1 RECOV Bit and IDLE Bit Settings and the Number of Idle Cycles Inserted after Bus Cycle RECOV IDLE Read (Followed by Write) Read (Followed by Read) Write 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 Note: * Under each of the above conditions, no recovery cycle is inserted when RECOV bit = 0, and one recovery cycle is inserted when RECOV bit = 1. 16-5 32180 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller 16.3 Typical Operation of the Wait Controller The following shows a typical operation of the Wait Controller. The Wait Controller can control bus access in zero to 7 cycles. If more access cycles than that are needed, use the WAIT function in combination with the Wait Controller. (1) When the Bus Mode Control Register = 0 External read/write operations are performed using the address bus, data bus and the signals CS0#-CS3#, RD#, BHW#, BLW#, WAIT# and BCLK. Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) Bus free state Internal bus access BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# "H" DB0-DB15 WAIT# Hi-z (Don't Care) Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note: * Hi-Z denotes a high-impedance state. Figure 16.3.1 Internal Bus Access during Bus Free State 16-6 32180 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 000 (zero wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read (1 cycle) Read BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) Write Write (1 cycle) BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Note: * When zero wait state is selected, wait states inserted by WAIT# are not accepted. Figure 16.3.2 Read/Write Timing (for Zero Wait Access) 16-7 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (2 cycles) 1 wait state BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (2 cycles) 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Note: * Circles in the above diagram indicate the sampling timing. Figure 16.3.3 Read/Write Timing (for Access with Internal 1 Wait State) 16-8 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 111 (7 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (8 cycles) Internal 7 wait states BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (8 cycles) Internal 7 wait states BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Note: * Circles in the above diagram indicate the sampling timing. Figure 16.3.4 Read/Write Timing (for Access with Internal 7 Wait States) 16-9 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 010 (2 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (4 cycles) External Internal 2 wait states 1 wait state BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" Write Write (4 cycles) External Internal 2 wait states 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Note: * Circles in the above diagram indicate the sampling timing. Figure 16.3.5 Read/Write Timing (for Access with Internal 2 and External 1 Wait States) 16-10 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 010 (2 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (3 + n cycles) Internal 2 wait states External n wait states BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" Write "L" "L" Write (3 + n cycles) Internal 2 wait states External n wait states BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" "L" "L" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Note: * Circles in the above diagram indicate the sampling timing. Figure 16.3.6 Read/Write Timing (for Access with Internal 2 and External n Wait States) 16-11 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 1 (with strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (2 cycles) 1 wait state BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (2 cycles) 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Note: * Circles in the above diagram indicate the sampling timing. Figure 16.3.7 Read/Write Timing (for Access with Internal 1 Wait State + Strobe Wait) 16-12 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 1 (with recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (3 cycles) Internal Recovery 1 wait state cycle BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (3 cycles) Internal Recovery 1 wait state cycle BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Note: * Circles in the above diagram indicate the sampling timing. Figure 16.3.8 Read/Write Timing (Internal 1 Wait State + Recovery Cycle Added) 16-13 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 1 (with idle cycle) Read Read (3 cycles) Internal 1 wait state Idle cycle BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (2 cycles) Internal 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * No idle cycles are added after the write cycle. Figure 16.3.9 Read/Write Timing (Internal 1 Wait State + Idle Cycle Added) 16-14 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 0 (WR signal separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 1 (with recovery cycle) IDLE bit = 1 (with idle cycle) Read Read (4 cycles) Internal Recovery 1 wait state cycle Idle cycle BCLK A11-A30 CS0#-CS3# RD# BHW#, BLW# "H" DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (3 cycles) Internal Recovery 1 wait state cycle BCLK A11-A30 CS0#-CS3# RD# "H" BHW#, BLW# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * No idle cycles are added after the write cycle. Figure 16.3.10 Read/Write Timing (Internal 1 Wait State + Recovery and Idle Cycles Added) 16-15 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller (2) When the Bus Mode Control Register = 1 External read/write operations are performed using the address bus, data bus and the signals CS0#-CS3#, RD#, BHE#, BLE#, WAIT# and WR#. Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) Bus free state Internal bus access BCLK A11-A30 CS0#-CS3# RD# "H" WR# "H" BHE#, BLE# "H" DB0-DB15 WAIT# Hi-z (Don't Care) Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Notes: * Hi-Z denotes a high-impedance state. * BCLK is not output. Figure 16.3.11 Internal Bus Access during Bus Free State 16-16 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 000 (zero wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (1 cycle) BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) Write Write (1 cycle) BCLK A11-A30 CS0#-CS3# RD# "H" WR# BHE#, BLE# DB0-DB15 WAIT# (Don't Care) Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * When zero wait state is selected, wait states inserted by WAIT# are not accepted. Figure 16.3.12 Read/Write Timing (for Zero Wait Access) 16-17 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (2 cycles) Internal 1 wait state BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write (2 cycles) Write Internal 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" WR# BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * BCLK is not output. Figure 16.3.13 Read/Write Timing (for Access with Internal 1 Wait State) 16-18 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 111 (7 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read (8 cycles) Read Internal 7 wait states BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (8 cycles) Internal 7 wait states BCLK A11-A30 CS0#-CS3# RD# "H" WR# BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * BCLK is not output. Figure 16.3.14 Read/Write Timing (for Access with Internal 7 Wait States) 16-19 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 010 (2 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (4 cycles) Internal 2 wait states External 1 wait state BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" Write Write (4 cycles) Internal 2 wait states External 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" WR# BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * BCLK is not output. Figure 16.3.15 Read/Write Timing (for Access with Internal 2 and External 1 Wait States) 16-20 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 010 (2 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read (3 + n cycles) Read Internal 2 wait states External n wait states BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" Write "L" "L" Write (3 + n cycles) Internal 2 wait states External n wait states BCLK A11-A30 CS0#-CS3# RD# "H" WR# BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" "L" "L" "L" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * BCLK is not output. Figure 16.3.16 Read/Write Timing (for Access with Internal 2 and External n Wait States) 16-21 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 1 (with strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 0 (without idle cycle) Read (2 cycles) Read Internal 1 wait state BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (2 cycles) Internal 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" WR# Assert the valid byte position BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * BCLK is not output. Figure 16.3.17 Read/Write Timing (for Access with Internal 1 Wait State + Strobe Wait) 16-22 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 1 (with recovery cycle) IDLE bit = 0 (without idle cycle) Read Read (3 cycles) Internal Recovery 1 wait state cycle BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (3 cycles) Internal Recovery 1 wait state cycle BCLK A11-A30 CS0#-CS3# RD# "H" WR# Assert the valid byte position BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * BCLK is not output. Figure 16.3.18 Read/Write Timing (Internal 1 Wait State + Recovery Cycle Added) 16-23 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 0 (without recovery cycle) IDLE bit = 1 (with idle cycle) Read Read (3 cycles) Internal 1 wait state Idle cycle BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (2 cycles) Internal 1 wait state BCLK A11-A30 CS0#-CS3# RD# "H" WR# BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * BCLK is not output. * No idle cycles are added after the write cycle. Figure 16.3.19 Read/Write Timing (Internal 1 Wait State + Idle Cycle Added) 16-24 32182 Group User's Manual (Rev.1.0) WAIT CONTROLLER 16 16.3 Typical Operation of the Wait Controller Bus Mode Control Register (Note 1) BUSMOD bit = 1 (byte enable separated) CS Area Wait Control Register (Note 2) WTCSEL bit = 001 (1 wait) SWAIT bit = 0 (without strobe wait) RECOV bit = 1 (with recovery cycle) IDLE bit = 1 (with idle cycle) Read (4 cycles) Read Internal Recovery 1 wait state cycle Idle cycle BCLK A11-A30 CS0#-CS3# RD# WR# "H" BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Write Write (3 cycles) Internal Recovery 1 wait state cycle BCLK A11-A30 CS0#-CS3# RD# "H" WR# BHE#, BLE# DB0-DB15 WAIT# (Don't Care) (Don't Care) "H" Note 1: For details about the Bus Mode Control Register, see Section 15.2.3, "Bus Mode Control Register." Note 2: For details about the CS Area Wait Control Register, see Section 16.2.1, "CS Area Wait Control Registers." Notes: * Circles in the above diagram indicate the sampling timing. * BCLK is not output. * No idle cycles are added after the write cycle. Figure 16.3.20 Read/Write Timing (Internal 1 Wait State + Recovery and Idle Cycles Added) 16-25 32182 Group User's Manual (Rev.1.0) 16 WAIT CONTROLLER 16.3 Typical Operation of the Wait Controller This page is blank for reasons of layout. 16-26 32182 Group User's Manual (Rev.1.0) CHAPTER 17 RAM BACKUP MODE 17.1 Outline of RAM Backup Mode 17.2 Example of RAM Backup when Power is Off 17.3 Example of RAM Backup for Saving Power Consumption 17.4 Exiting RAM Backup Mode (Wakeup) RAM BACKUP MODE 17 17.1 Outline of RAM Backup Mode 17.1 Outline of RAM Backup Mode In RAM backup mode, the contents of the internal RAM are retained while the power is turned off (power for only the RAM is on). RAM backup mode is used for the following two purposes: * Back up the internal RAM data when the power is forcibly turned off from the outside (RAM backup when the power is off) * For the M32R/ECU to turn off the power to the CPU at any time as needed to reduce the system's power consumption while retaining the internal RAM data (RAM backup for saving the power consumption) The M32R/ECU is placed in RAM backup mode by applying a voltage of 3.0-5.5 V to the VDDE pin (provided for RAM backup) and 0 V to all other pins. During RAM backup mode, the contents of the internal RAM are retained, while the CPU and internal peripheral I/ O remain idle. Because all pins except VDDE are held low during RAM backup mode, the power consumption in the system can effectively be reduced. 17-2 32182 Group User's Manual (Rev.1.0) RAM BACKUP MODE 17 17.2 Example of RAM Backup when Power is Down 17.2 Example of RAM Backup when Power is Off A typical circuit for RAM backup at power outage is shown in Figure 17.2.1. The following explains how the RAM can be backed up by using this circuit as an example. DC IN Input Regulator Output C Power supply monitor IC Backup power supply for power outage VCC VDDE (Note 1) Reference voltage for power outage detection VREF VBB Backup battery VDDE VCCE VREFn AVCCn VCC-BUS OSC-VCC (Note 3) Power outage detection signal SBI# (Note 2) M32R/ECU OUT ADnINi Note 1: Power outage is detected by the DC IN (regulator input) voltage. Note 2: These pins are used to detect a RAM backup signal. Note 3: This pin outputs a high when the power is on and outputs a low when the power is off. Figure 17.2.1 Typical Circuit for RAM Backup at Power Outage 17.2.1 Normal Operating State Figure 17.2.2 shows the normal operating state of the M32R/ECU. During normal operation, input on the SBI# pin or ADnINi (i = 0-15) pin which is used to detect a RAM backup signal remains high. DC IN Input Regulator Output C Power supply monitor IC Backup power supply for power outage VCC VDDE (Note 4) (Note 1) 5V 5V 5V 5V 5V Reference voltage for VDDE VCCE VREFn AVCCn VCC-BUS OSC-VCC power outage detection VREF (Note 3) Power outage detection signal SBI# (Note 2) M32R/ECU OUT VBB ADnINi "H" Backup battery Note 1: Power outage is detected by the DC IN (regulator input) voltage. Note 2: These pins are used to detect a RAM backup signal. Note 3: This pin outputs a high when the power is on and outputs a low when the power is down. Note 4: Backup power supply = 3.0 to 5.5 V Figure 17.2.2 Normal Operating State (when VCCE = 5 V) 17-3 32182 Group User's Manual (Rev.1.0) RAM BACKUP MODE 17 17.2 Example of RAM Backup when Power is Down 17.2.2 RAM Backup State Figure 17.2.3 shows the power outage RAM backup state of the M32R/ECU. When the power supply goes off, the power supply monitor IC starts feeding current from the backup battery to the M32R/ECU. Also, the power supply monitor IC's power outage detection pin outputs a low, causing the SBI# pin or ADnINi pin to go low, which generates a RAM backup signal ((a) in Figure 17.2.3). Determination of whether the power is off must be made with respect to the DC IN (regulator input) voltage in order to allow for a software processing time at power outage. To enable RAM backup mode, make the following setting: (1) Create data for RAM check to verify whether the RAM data has been retained normally after returning from RAM backup mode to normal mode ((b) in Figure 17.2.3). If the power supply to VCC goes off after making above setting, the VDDE pin voltage goes to 3.0-5.5 V and all other pin voltages drop to 0 V, and the M32R/ECU is thereby placed in RAM backup mode ((c) in Figure 17.2.3). DC IN Input Regulator Output C Power supply monitor IC Backup power supply for power outage VCC VDDE (Note 1) 3.0-5.5V 0V 0V 0V 0V 0V Reference voltage for power outage detection VDDE VCCE VREFn AVCCn VCC-BUS OSC-VCC VREF (Note 3) Power outage detection signal SBI# (Note 2) M32R/ECU OUT VBB ADnINi "L" Backup battery (Note 5) Example of RAM backup processing (a) Power goes off (Note 4) (b) Create data for backup RAM check (c) RAM backup mode Note 1: Power outage is detected by the DC IN (regulator input) voltage. Note 2: These pins are used to detect a RAM backup signal. Note 3: This pin outputs a high when the power is on and outputs a low when the power is off. Note 4: Determined by the input level on SBI# pin or ADnINi pin. Note 5: The time needed for processing in (b) is secured by adjusting the capacitance. Figure 17.2.3 Power Outage RAM Backup State 17-4 32182 Group User's Manual (Rev.1.0) RAM BACKUP MODE 17 17.3 Example of RAM Backup for Saving Power Consumption 17.3 Example of RAM Backup for Saving Power Consumption A typical RAM backup circuit for saving the microcomputer's power consumption is shown in Figure 17.3.1. The following explains how the RAM is backed up for the purpose of low-power operation by using this circuit as an example. DC IN Input Output RAM backup power supply Regulator Output Regulator IB External circuit RAM backup signal (Note 1) Port X (Note 2) VCCE SBI# (Note 3) ADnINi OSC-VCC VREFn VCC-BUS AVCCn VDDE M32R/ECU Note 1: This circuit outputs a low during RAM backup. Note 2: This port outputs a high when the power is on, and is set for input mode when in RAM backup mode. Note 3: These pins are used to detect a RAM backup signal. Figure 17.3.1 Typical RAM Backup Circuit for Saving Power Consumption 17.3.1 Normal Operating State Figure 17.3.2 shows the normal operating state of the M32R/ECU. During normal operation, the RAM backup signal output by the external circuit is high. Also, input on the SBI# pin or ADnINi (i = 0-15) pin which is used to detect a RAM backup signal remains high. Port X, which connects to the transistor's base, should output a high. This causes the transistor's base voltage, IB, to go high so that current is fed from the power supply to the VCCE pin via the transistor. DC IN Input Output RAM backup power supply Regulator Output Regulator IB External circuit "H" RAM backup signal (Note 1) "H" Port X (Note 2) "H" SBI# (Note 3) ADnINi 5V VCCE 5V 5V VCC-BUS VREFn 5V 5V 5V OSC-VCC AVCCn VDDE M32R/ECU Note 1: This circuit outputs a low during RAM backup. Note 2: This port outputs a high when the power is on, and is set for input mode when in RAM backup mode (one of the port pins selected). Note 3: These pins are used to detect a RAM backup signal. Figure 17.3.2 Normal Operating State (when VCCE = 5 V) 17-5 32182 Group User's Manual (Rev.1.0) RAM BACKUP MODE 17 17.3 Example of RAM Backup for Saving Power Consumption 17.3.2 RAM Backup State Figure 17.3.3 shows the RAM backup state of the M32R/ECU. Figure 17.3.4 shows a RAM backup sequence. When the external circuit outputs a low, input on the SBI# or ADnINi pin is pulled low. A low on these input pins generates a RAM backup signal (A and (a) in Figure 17.3.3). To enable RAM backup mode, make the following settings: (1) Create data for RAM check to verify after returning from RAM backup mode to normal mode whether the RAM data has been retained normally ((b) in Figure 17.3.3). (2) To materialize low-power operation, set all programmable input/output pins except port X for input mode (or for output mode, with the output level fixed low) ((c) in Figure 17.3.3). (3) Set port X for input mode (B and (d) in Figure 17.3.3). This causes the transistor's base voltage, IB, to go low, so that the power to all power supply pins except VDDE is shut off (C and D in Figure 17.3.3). By settings in (1) to (3), the VDDE pin voltage goes to 3.0-5.5 V and all other pin voltages drop to 0 V, and the M32R/ECU is thereby placed in RAM backup mode ((d) in Figure 17.3.3). DC IN Input Output Regulator RAM power supply D C Output Regulator IB "L" External circuit "L" RAM backup signal (Note 1) "L" B "L" 0V Port X (Note 2) A "L" VCCE 0V VCC-BUS 0V VREFn 0V 0V 5V OSC-VCC AVCCn VDDE SBI# (Note 3) ADnINi M32R/ECU Example of RAM backup processing (a) (b) (c) (d) Generate a RAM backup signal (Note 4) Create data for backup RAM check Note 1: This circuit outputs a low during RAM backup. Note 2: This port outputs a high when the power is on, and is set for input mode when in RAM backup mode (one of the port pins selected). Note 3: These pins are used to detect a RAM backup signal. Note 4: Determined by the input level on SBI# pin or ADnINi pin. Note 5: Base voltage IB = 0 causes the power to all power supply pins except VDDE to stop. See A to D in the above explanation. Set the pin connecting to the transistor's base (port X) for input mode (Note 5) RAM backup mode Figure 17.3.3 RAM Backup State for Low Power Operation 17-6 32182 Group User's Manual (Rev.1.0) RAM BACKUP MODE 17 17.3 Example of RAM Backup for Saving Power Consumption RAM backup period Power on 5.0V or 3.3V VCCE, VREFn , AVCCn VCC-BUS,OSC-VCC 0V VDDE Port output setting (high level) Port output setting (high level) Port input mode Port X External input signal goes low External input signal goes high SBI# ADnINi f(XIN) Oscillation stabilization time Oscillation stabilization time RESET# Figure 17.3.4 Example of a RAM Backup Sequence for Low Power Operation 17.3.3 Precautions to Be Observed at Power-On When changing port X from input mode to output mode after power-on, pay attention to the following. If port X is set for output mode while no data is set in the Port X Data Register, the port's initial output level is instable. Therefore, before changing port X for output mode, make sure the Port X Data Register is set to output a high. Unless this precaution is followed, port output may go low at the same time the port is set for output after the oscillation has stabilized, causing the microcomputer to enter RAM backup mode. 17-7 32182 Group User's Manual (Rev.1.0) RAM BACKUP MODE 17 17.4 Exiting RAM Backup Mode (Wakeup) 17.4 Exiting RAM Backup Mode (Wakeup) The processing to place the M32R/ECU out of RAM backup mode and return it to normal operation mode is referred to as "wakeup" processing. Figure 17.4.1 shows an example of wakeup processing. Wakeup processing is initiated by applying a reset. The following shows how to execute wakeup processing. (1) Reset the microcomputer ((a) in Figure 17.4.1). (2) Set port X for output mode and output a high from the port ((b) in Figure 17.4.1) (Note 1) (3) Compare the RAM content against the RAM check data created before entering RAM backup mode ((c) in Figure 17.4.1). (4) If the comparison in (3) did not match, initialize the RAM ((d) in Figure 17.4.1). If the comparison in (3) matched, use the retained data in the program. (5) Initialize each internal circuit ((e) in Figure 17.4.1) before returning to the main routine ((f) in Figure 17.4.1). Note 1: For wakeup from power outage RAM backup mode, port X settings are unnecessary. Example of wakeup processing (a) (b) (c) Reset Set the transistor's base connecting pin (port X) for high-level output mode (Note 1) Compare RAM content against backup RAM check data OK Error (d) Initialize the RAM (e) Initialize each circuit (f) To the main routine Note 1: For wakeup from power outage RAM backup mode, port X settings are unnecessary. Figure 17.4.1 Wakeup Processing 17-8 32182 Group User's Manual (Rev.1.0) CHAPTER 18 OSCILLATOR CIRCUIT 18.1 Oscillator Circuit 18.2 Clock Generator Circuit OSCILLATOR CIRCUIT 18 18.1 Oscillator Circuit 18.1 Oscillator Circuit The M32R/ECU contains an oscillator circuit that supplies operating clocks for the CPU core, internal peripheral I/ O and internal memory. The frequency supplied to the clock input pin (XIN) is multiplied by 8 by an internal PLL circuit to produce the CPU clock, which is the operating clock for the CPU core and internal memory. The frequency of this clock is divided by 4 in the subsequent circuit to produce the peripheral clock, which is the operating clock for the internal peripheral I/O and external data bus. 18.1.1 Example of an Oscillator Circuit An oscillator circuit can be configured by connecting a ceramic (or crystal) resonator between the XIN and XOUT pins external to the chip. Figure 18.1.1 shows an example of a system clock generating circuit illustrating a resonator connected external to the chip and a circuit connected to the PLL circuit control pin (VCNT). For the constants Rf, Cin, Cout and Rd, the resonator manufacturer should be consulted to determine the appropriate values. To use an externally sourced clock signal without using an internal oscillator circuit, connect the external clock signal to the XIN pin and leave the XOUT pin open. M32R/ECU Oscillator module Oscillation stoppage detection circuit To the CPU clock Oscillator circuit OSC-VSS XIN OSC-VCC Rf PLL circuit VCNT XOUT To the peripheral clock 1/4 BCLK/P70 560pF (Note 1) Rd C CIN 1K COUT (Note 1) 0.1F (Note 1) Note 1: Permissible error 10% Figure 18.1.1 Example of an Oscillator Circuit 18-2 32182 Group User's Manual (Rev.1.0) OSCILLATOR CIRCUIT 18 18.1 Oscillator Circuit 18.1.2 XIN Oscillation Stoppage Detection Circuit The M32R/ECU contains a detection circuit to find whether oscillation input to the PLL circuit has stopped. The PLL circuit oscillates with the frequency of its normal mode of vibration in the absence of the reference oscillation input. The XIN oscillation input is sampled at the multiply-by-n frequency of the PLL circuit and when the XIN oscillation is found to be at the same level, the XSTAT bit is set. Because the CPU continues operating with the PLL circuit's natural frequency even when the XIN oscillation has stopped, error handling for the stoppage of XIN oscillation can be accomplished by inspecting XSTAT in software. Oscillator circuit XIN PLL circuit Counter Determination circuit XSTAT flag XIN oscillation stoppage detection circuit Figure 18.1.2 Block Diagram of the XIN Oscillation Stoppage Detection Circuit Port Input Special Function Control Register (PICNT) b8 9 10 11 12 13 XSTAT 0 0 0 0 0 0 14 b15 PISEL PIEN0 0 0 b Bit Name 8-10 No function assigned. Fix to "0". 11 XSTAT XIN oscillation status bit 12-13 No function assigned. Fix to "0". 14 PISEL Port input data select bit 15 PIEN0 Port input enable bit Function 0: XIN oscillating 1: XIN inactive R W 0 0 R (Note1) 0 0 0: Content of port output latch 1: Port pin level R W 0: Disable input 1: Enable input R W Note 1: Only writing "0" is effective. Writing "1" has no effect; the bit retains the value it had before the write. For details about the function of the port input data select bit (PISEL) and port input enable bit (PIEN0), see Section 8.3.5, "Port Input Special Function Control Register." 18-3 32182 Group User's Manual (Rev.1.0) OSCILLATOR CIRCUIT 18 18.1 Oscillator Circuit (1) XSTAT (XIN oscillation status) bit (Bit 11) 1) Conditions under which XSTAT is set to "1" XSTAT is set to "1" upon detecting that XIN oscillation has stopped. When XIN remains at the same level for a predetermined time (3 BCLK periods up to 4 BCLK periods), XIN oscillation is assumed to have stopped. When operating normally, XIN changes state (high or low) once every BCLK period. 2) Conditions under which XSTAT is cleared to "0" XSTAT is cleared to "0" by a system reset or by writing "0". If XSTAT is cleared at the same time it is set in 1) above, the former has priority so that XSTAT is cleared. Writing "1" to XSTAT is ignored. 3) Method for detecting XIN oscillation stoppage by using XSTAT Because the M32R/ECU internally contains a PLL, the internal clock remains active even when XIN oscillation has stopped. By reading XSTAT without clearing it after reset, it is possible to know whether XIN has stopped since the reset signal was deasserted. Similarly, by reading XSTAT after clearing it by writing 0, it is possible to know the current oscillating status of XIN. (However, there must be an interval of at least 5 BCLK periods (20 CPU clock periods) between read and write.) (1) To know whether XIN oscillation has stopped after being reset Read XSTAT (2) To know the current status of XIN oscillation Write XSTAT = 0 Wait before inspecting XSTAT Wait for 20 CPU clock periods or more Read XSTAT Figure 18.1.3 Procedure for Setting XSTAT 18-4 32182 Group User's Manual (Rev.1.0) OSCILLATOR CIRCUIT 18 18.1 Oscillator Circuit 18.1.3 Oscillation Drive Capability Select Function The microcomputer incorporates a four-stage oscillation drive capability select function. Once the oscillation of the oscillator circuit has stabilized, the XIN-XOUT drive capability can be lowered. The lower the drive capability, the smaller the amount of power consumption. Clock Control Register (CLKCR) b0 1 2 3 4 0 0 0 0 0 5 6 XDRVP 0 b7 XDRV 1 1 b Bit Name Function R W 0-4 No function assigned. Fix to "0". 0 0 5 XDRVP XDRV write control bit 0 W 6-7 XDRV XIN-XOUT drive capability select bit R W XIN-XOUT drive capability (performance ratio) 00: Low 0.25 01: 0.50 10: 11: High 0.75 1.00 (1) XDRV write control bit (XDRVP) (Bit 5) This bit controls writing to the XIN-XOUT drive capability select bits. (2) XIN-XOUT drive capability select bits (Bits 6, 7) The following shows the procedure for writing to these bits. 1. Set the write control bit (XDRVP) to "1". 2. Immediately following the above, reset the write control bit (XDRVP) to "0" and write the appropriate value to the XIN-XOUT drive capability select bits. Note: * If a write cycle to any other area occurs between 1 and 2, write to XDRV has no effect and the written value is not reflected. Therefore, disable interrupts and DMA transfers before setting the drive capability control bits. Note that a pair of two consecutive writes comprise a write operation. 18-5 32182 Group User's Manual (Rev.1.0) OSCILLATOR CIRCUIT 18 18.1 Oscillator Circuit * Example of correct setting XDRVP "1" If a write cycle to other area exists in this interval, settings of XDRV bits are not reflected. XDRVP XDRV "0" Set value * Settings that do not have effect (1) XDRVP "1" Write to other area XDRVP XDRV "0" Set value XDRVP "1" Because a write cycle to other area exists, the set value is not reflected. (2) Because these two consecutive writes comprise a pair, the next set value is not reflected. XDRVP "1" XDRVP XDRV "0" Set value Figure 18.1.4 Procedure for Setting the Oscillation Drive Capability 18-6 32182 Group User's Manual (Rev.1.0) OSCILLATOR CIRCUIT 18 18.1 Oscillator Circuit 18.1.4 System Clock Output Function A clock whose frequency is twice that of the input clock (i.e., the peripheral clock) can be output from the BCLK pin. The BCLK pin is shared with port P70. To use this pin to output the peripheral clock, set the P7 Operation Mode Register (P7MOD) bit 8 to "1". Configuration of the P7 Operation Mode Register is shown below. P7 Operation Mode Register (P7MOD) b8 9 10 11 12 13 14 b15 P70MD P71MD P72MD P73MD P74MD P75MD P76MD P77MD 0 0 0 0 0 0 0 0 b Bit Name Function R W 8 P70MD Port P70 operation mode bit 0:P70 1:BCLK R W 9 P71MD Port P71 operation mode bit 0:P71 1:WAIT# R W 10 P72MD Port P72 operation mode bit 0:P72 1:HREQ# R W 11 P73MD Port P73 operation mode bit 0:P73 1:HACK# R W 12 P74MD Port P74 operation mode bit 0:P74 1:RTDTXD R W 13 P75MD Port P75 operation mode bit 0:P75 1:RTDRXD R W 14 P76MD Port P76 operation mode bit 0:P76 1:RTDACK R W 15 P77MD Port P77 operation mode bit 0:P77 1:RTDCLK R W 18.1.5 Oscillation Stabilization Time at Power-On The oscillator circuit comprised of a ceramic (or crystal) resonator requires a finite time before its oscillation stabilizes after being powered on. Therefore, there must be a certain amount of oscillation stabilization time that suits the oscillator circuit used. Figure 18.1.5 shows an oscillation stabilization time required at power-on. Oscillation stabilization time OSC-VCC RESET# XIN Figure 18.1.5 Oscillation Stabilization Time at Power-On 18-7 32182 Group User's Manual (Rev.1.0) OSCILLATOR CIRCUIT 18 18.2 Clock Generator Circuit 18.2 Clock Generator Circuit Supply independent clocks to the CPU and the internal peripheral circuit. XIN pin (8MHz-10MHz) X8 CPUCLK(CPU clock) (64MHz-80MHz) PLL 1/4 BCLK(peripheral clock) (16MHz-20MHz) Figure 18.2.1 Conceptual Diagram of Clock Generation 18-8 32182 Group User's Manual (Rev.1.0) CHAPTER 19 JTAG 19.1 19.2 19.3 19.4 19.5 19.6 19.7 Outline of JTAG Configuration of the JTAG Circuit JTAG Registers Basic Operation of JTAG Boundary Scan Description Language Notes on Board Design when Connecting JTAG Processing Pins when Not Using JTAG JTAG 19 19.1 Outline of JTAG 19.1 Outline of JTAG The M32R/ECU contains a JTAG (Joint Test Action Group) interface compliant with IEEE Standard Test Access Port and Boundary-Scan Architecture (IEEE Std. 1149.1a-1993). This JTAG interface can be used as an input/ output path for boundary-scan test (boundary-scan path). For details about IEEE 1149.1 JTAG test access ports, see IEEE Std. 1149.1a-1993 documentation. Note: * The JTAG interface in the M32R/ECU is used to connect a JTAG emulator during debugging as well. In this chapter, the JTAG interface is explained assuming its use as an input/output path for boundaryscan test. Functions of the JTAG interface-related pins mounted on the M32R/ECU are shown below. Table 19.1.1 JTAG Pin Functions Type Pin Name Signal Name I/O Function TAP JTCK Test clock Input Clock input to the test circuit. Test data Input Input (Note 1) JTDI Synchronous serial data input pin used to supply the test instruction code and test data. This input is sampled on the rising edge of JTCK. JTDO Test data Output Output Synchronous serial data output pin used to output the test instruction code and test data. This signal changes state on the falling edge of JTCK, and is output in only the Shift-IR or Shift-DR state. Otherwise, it goes to a high-impedance state. JTMS Test mode select Input Test mode select input to control the test circuit's state transition. This input is sampled on the rising edge of JTCK. JTRST Test reset Input Active-low test reset input to initialize the test circuit asynchronously. To ensure that the test circuit is reset without fail, JTMS input signal must be held high while this signal changes state from low to high. Note: TAP stands for Test Access Port (JTAG interface specified in IEEE 1149.1). 19-2 32182 Group User's Manual (Rev.1.0) JTAG 19 19.2 Configuration of the JTAG Circuit 19.2 Configuration of the JTAG Circuit The JTAG circuit included in the M32R/ECU consists of several circuit blocks as shown in Figure 19.2.1. * Instruction register to hold the instruction code that is fetched through the boundary-scan path * A set of registers which are accessed through the boundary-scan path (boundary-scan register, bypass register and ID code register) * Test access port (abbreviated TAP) controller to control the JTAG unit's state transition * Control logic to select input, output, etc. M32R/ECU Bypass Register (JTAGBPR) ID Code Register (JTAGIDR) Decoder Instruction Register (6-bit) (JTAGIR) Buffer Boundary Scan Register (JTAGBSR) Output selection JTDI Output selection Data register set JTDO JTMS JTCK TAP Controller JTRST Figure 19.2.1 Configuration of the JTAG Circuit 19-3 32182 Group User's Manual (Rev.1.0) JTAG 19 19.3 JTAG Registers 19.3 JTAG Registers 19.3.1 Instruction Register (JTAGIR) The Instruction Register is a 6-bit register to hold instruction code. This register is set in the IR path sequence. The instructions set in this register determine the data register to be selected in the subsequent DR path sequence. The initial value of this register after test is reset (to initialize the test circuit) is b'000010 (IDCODE instruction). After a test reset, the ID Code Register is selected as the data register until instruction code is set by an external device. In the Capture-IR state, this register always has b'110001 (fixed value) loaded into it. Therefore, when in the Shift-IR state, no matter what value was set in this register, the value b'110001 is always output from the JTDO pin (sequentially beginning with the LSB). However, this value normally is not handled as instruction code. Shown below is outside the scope of guaranteed operations. If this operation is attempted, the microcomputer may handle b'110001 as instruction code, which makes the microcomputer unable to operate normally. Capture-IR Exit1-IR Update-IR Following instructions are supported for the JTAG interface of the M32R/ECU: * Three instructions specified as essential in IEEE 1149.1 (EXTEST, SAMPLE/PRELOAD, BYPASS) * Device identification register access instruction (IDCODE) Table 19.3.1 JTAG Instruction List Instruction Code Abbreviation Operation b'000000 EXTEST Test the circuit/board-level connections external to the chip. b'000001 SAMPLE/PRELOAD Sample the operating status of the circuit and output the sampled status from the JTDO pin, while at the same time supplying the data used for boundary-scan test from the JTDI pin and preset it in the Boundary Scan Register. b'000010 IDCODE Select the ID Code Register to output the device and manufacturer identification data from the JTDO pin. b'111111 BYPASS Select the Bypass Register to inspect or set data. Notes: * Do not set any other instruction code. * For details about the IR path sequence, DR path sequence, test reset, Capture-IR state, Shift-IR state, Exit1-IR state and Update-IR state, see Section 19.4, "Basic Operation of JTAG." 19-4 32182 Group User's Manual (Rev.1.0) JTAG 19 19.3 JTAG Registers 19.3.2 Data Register (1) Boundary Scan Register (JTAGBSR) The Boundary Scan Register is a 475-bit register used to perform boundary-scan test. The bits in this register are assigned to each pin on the microcomputer. Connected between the JTDI and JTDO pins, this register is selected when issuing EXTEST or SAMPLE/ PRELOAD instruction. In the Capture-DR state, this register captures the status of input pins or internal logic outputs. In the Shift-DR state, while outputting the sampled value, this register receives the input data for boundary-scan test to set pin functions (direction of input/output and tristate output pins) and output values. (2) Bypass Register (JTAGBPR) The Bypass Register is a 1-bit register used to bypass the boundary-scan path when the microcomputer is not the target of boundary-scan test. Connected between the JTDI and JTDO pins, this register is selected when issuing BYPASS instruction. This register is loaded with b'0 (fixed value) in the Capture-DR state. (3) ID Code Register (JTAGIDR) The ID Code Register is a 32-bit register used to identify the device and manufacturer. It holds the following information: * Version information (4 bits) * Part number (16 bits) * Manufacturer ID (11 bits) : b'0000 : b'0011 0010 0010 0011 : b'000 0001 1100 This register is connected between the JTDI and JTDO pins, and is selected when issuing IDCODE instruction. This register is loaded with said IDCODE data in the Capture-DR state, and outputs it from the JTDO pin in the Shift-DR state. The ID Code Register is a read-only register. Because the data written from the JTDI pin during DR path sequence is ignored, make sure JTDI input = low while in the Shift-DR state. 0 3 4 19 20 30 31 Version Part number Manufacturer ID 4 bits 16 bits 11 bits 1 Note: * For details about the Capture-DR and Shift-DR states, see Section 19.4, "Basic Operation of JTAG." 19-5 32182 Group User's Manual (Rev.1.0) JTAG 19 19.4 Basic Operation of JTAG 19.4 Basic Operation of JTAG 19.4.1 Outline of JTAG Operation The instruction and data registers basically are accessed in conjunction with the following three operations, which are performed based on the TAP Controller's state transition. The TAP Controller changes state according to JTMS input, and generates control signals required for operation in each state. * Capture operation The result of boundary-scan test or the fixed data defined for each register is sampled. As a register operation, data input is latched into the shift register stage. * Shift operation The register is accessed from outside through the boundary-scan path. The sample value is output to the outside at the same time data is set from the outside. As a register operation, the bits are shifted right between each shift register stage. * Update operation The data set from the outside during shifting is driven. As a register operation, the value set in the shift register stage is transferred to the parallel output stage. The JTAG interface undergoes transition of the internal state depending on JTMS input and on such state transition, it performs the following two operations. In either case, the operation basically is performed in order of Capture Shift Update. * IR path sequence Instruction code is set in the instruction register to select the data register to be operated on in the subsequent DR path sequence. * DR path sequence Data inspection or setting is performed for the selected data register. 19-6 32182 Group User's Manual (Rev.1.0) JTAG 19 19.4 Basic Operation of JTAG The state transition of the TAP Controller and the basic configuration of the JTAG related registers are shown below. 1 Test-Logic-Reset 0 0 Run-Test/Idle 1 1 Select-DR-Scan Select-IR-Scan 0 1 0 1 Capture-DR 0 Capture-IR 0 0 Shift-DR 1 1 Exit1-DR 0 1 Exit1-IR 0 0 Pause-DR 0 Pause-IR 1 1 0 Exit2-DR Exit2-IR 1 1 Update-DR 1 0 Shift-IR 1 0 1 Update-IR 0 1 0 Note: * The values (0 or 1) in this diagram denote the state of JTMS input signal. Figure 19.4.1 TAP Controller State Transition Input multiplexer Shift register stage To the next cell Data input 0 D 1 Q T G D Q Data output T R Shift-DR or Shift-IR Clock-DR or Clock-IR Parallel output stage Update-DR or Update-IR Test reset From the preceding cell Note: * This diagram only shows the basic configuration; not all DR and IR are configured the same way as shown here. Figure 19.4.2 Basic Configuration of the JTAG Related Registers 19-7 32182 Group User's Manual (Rev.1.0) JTAG 19 19.4 Basic Operation of JTAG 19.4.2 IR Path Sequence Instruction code is set in the Instruction Register (JTAGIR) to select the data register to be accessed in the subsequent DR path sequence. The IR path sequence is performed following the procedure described below. (1) From the Run-Test/Idle state, apply JTMS = high for a period of 2 JTCK cycles to enter the Select-IRScan state. (2) Apply JTMS = low to enter the Capture-IR state. At this time, b'110001 (fixed value) is set in the Instruction Register's shift register stage. (3) Proceed and apply JTMS = low to enter the Shift-IR state. In the Shift-IR state, the value of the shift register stage is shifted right one bit every cycle, and the data b'110001 (fixed value) that was set in (2) is serially output from the JTDO pin. At the same time, instruction code is set in the shift register stage bit by bit as it is serially fed from the JTDI pin. Because the instruction code is set in the Instruction Register that consists of 6 bits, the Shift-IR state must be continued for a period of 6 JTCK cycles. To stop the shift operation in the middle of the execution, enter the Pause-IR state via the Exit1-IR state (by setting JTMS input from high to low). To return from the Pause-IR state, enter the Shift-IR state via the Exit2-IR state (by setting JTMS input from high to low). (4) Apply JTMS = high to move from the Shift-IR state to the Exit1-IR state. This completes the shift operation. (5) Proceed and apply JTMS = high to enter the Update-IR state. In the Update-IR state, the instruction code that was set in the Instruction Register's shift register stage is transferred to the Instruction Register's parallel output stage, and decoding of JTAG instruction is thereby started. (6) Proceed and apply JTMS = high to enter the Select-DR-Scan state or JTMS = low to enter the Run-Test/ Idle state. JTDI input is sampled at rise of JTCK in the Shift-IR state. Instruction code is set in the parallel output stage at fall of JTCK in the Update-IR state. JTCK JTDI Instruction code (6 bits) Don't Care LSB value MSB value High impedance 1 JTDO is output at fall of JTCK in the Shift-IR state. Run-Test/Idle Don't Care High impedance JTDO Update-IR Exit1-IR Shift-IR Capture-IR Select-IR-Scan Run-Test/Idle TAP states Select-DR-Scan JTMS 0 0 0 1 1 Shift output from the instruction Finished storing instruction code in the register is fixed to b'110001. instruction register's shift register stage. Figure 19.4.3 IR Path Sequence 19-8 32182 Group User's Manual (Rev.1.0) JTAG 19 19.4 Basic Operation of JTAG 19.4.3 DR Path Sequence Data inspection or setting is performed for the data register selected in the IR path sequence prior to the DR path sequence. The DR path sequence is performed following the procedure described below. (1) From the Run-Test/Idle state, apply JTMS = high for a period of 1 JTCK cycle to enter the Select-DRScan state. Which data register will be selected at this time depends on the instruction that was set during the IR path sequence performed prior to the DR path sequence. (2) Apply JTMS = low to enter the Capture-DR state. At this time, the result of boundary-scan test or the fixed data defined for each register is set in the data register's shift register stage. (3) Proceed and apply JTMS = low to enter the Shift-DR state. In the Shift-DR state, the DR value is shifted right one bit every cycle, and the data that was set in (2) is serially output from the JTDO pin. At the same time, setup data is set in the data register's shift register stage bit by bit as it is serially fed from the JTDI pin. By continuing the Shift-IR state as long as the number of bits that comprise the selected data register (by applying JTMS = low), all bits of data can be set in and read out from the shift register stage. To stop the shift operation in the middle of the execution, enter the Pause-DR state via the Exit1-DR state (by setting JTMS input from high to low). To return from the Pause-DR state, enter the Shift-DR state via the Exit2-DR state (by setting JTMS input from high to low). (4) Apply JTMS = high to move from the Shift-DR state to the Exit1-DR state. This completes the shift operation. (5) Proceed and apply JTMS = high to enter the Update-DR state. In the Update-DR state, the data that was set in the data register's shift register stage is transferred to the parallel output stage, and the setup data is thereby made ready for use. (6) Proceed and apply JTMS = high to enter the Select-DR-Scan state or JTMS = low to enter the Run-Test/Idle state. JTDI input is sampled at rise of JTCK in the Shift-DR state. Setup data is set in the parallel output stage at fall of JTCK in the Update-DR state. JTCK JTDI Don't Care Run-Test/Idle Update-DR Exit1-DR Shift-DR Capture-DR Run-Test/Idle TAP states Select-DR-Scan JTMS Don't Care LSB value MSB value High impedance High impedance JTDO JTDO is output at fall of JTCK in the Shift-DR state. Finished storing setup data in the selected data register's shift register stage. Note: * Because all bits in the data register's shift register stage also are shifted right, data is output from JTDO beginning with the LSB. Similarly, data is supplied to JTDI beginning with the LSB. Figure 19.4.4 DR Path Sequence 19-9 32182 Group User's Manual (Rev.1.0) JTAG 19 19.4 Basic Operation of JTAG 19.4.4 Inspecting and Setting Data Registers To inspect or set the data register, follow the procedure described below. (1) To access the test access port (JTAG) for the first time, apply a test reset (to initialize the test circuit). One of the following two methods may be used to apply a test reset: * Pull the JTRST# pin low. * Drive the JTMS pin high to apply 5 or more JTCK cycles (2) Apply JTMS = low to enter the Run-Test/Idle state. To continue the idle state, hold JTMS input low. (3) Apply JTMS = high to exit the Run-Test/Idle state and perform IR path sequence. In the IR path sequence, specify the data register to inspect or set. (4) Proceed to perform DR path sequence. Feed setup data from the JTDI pin into the data register specified in the IR path sequence, and read out reference data from the JTDO pin. (5) To proceed to perform IR path or DR path sequence after the DR path sequence is completed, apply JTMS = high to return to the Select-DR-Scan state. To wait for the next processing after a series of IR and DR sequence processing is completed, apply JTMS = low to enter the Run-Test/Idle state and keep that state. TAP states Test-Logic- Run-Test Reset state /Idle state IR path sequence DR path sequence Instruction code Setup data #0 JTDI (Note 1) #0 Fixed value JTDO (Note 2) b'110001 Run-Test /Idle state DR path sequence Instruction code Setup data #1 #1 Fixed value (Note 3) Specify the data register to inspect or set. IR path sequence b'110001 (Note 3) Setup data is serially fed from JTDI. Reference data is serially output from JTDO. (1) Basic access TAP states Test-Logic- Run-Test Reset state /Idle state JTDI (Note 1) IR path sequence DR path sequence Instruction code Setup data #0 #0 Fixed value JTDO (Note 2) b'110001 (Note 3) Run-Test /Idle state DR path sequence DR path sequence Setup data Setup data #1 #2 (Note 3) (Note 3) The same data register can be successively operated on to set or inspect. Specify the data register to inspect or set. (2) Successive accesses to the same data register Note 1: The setup value for each register must be supplied to the JTDI pin beginning with the LSB. Note 2: The value in each register is output to the JTDO pin beginning with the LSB. It is only in the Shift-IR state of IR path sequence and the Shift-DR state of DR path sequence that valid data is output from the JTDO pin. In all other states, the JTDO pin goes to a high-impedance state. Note 3: This shows readout from the data register selected by the instruction that was set in the immediately preceding IR path sequence. The value sampled during Capture-DR state is output at the shift register stage of the selected data register. Figure 19.4.5 Successive JTAG Access 19-10 32182 Group User's Manual (Rev.1.0) JTAG 19 19.5 Boundary Scan Description Language 19.5 Boundary Scan Description Language The Boundary Scan Description Language (abbreviated BSDL) is described in the supplements to the Standard Test Access Port and Boundary-Scan Architecture of IEEE 1149.1-1990 and IEEE 1149.1a-1993. BSDL is a subset of IEEE 1076-1993 Standard VHSIC Hardware Description Language (VHDL). BSDL allows to precisely describe the functions of conforming components to be tested. For package connection test, this language is used by Automated Test Pattern Generation tools, and for synthesized test logic and verification, this language is used by Electronic Design Automation tools. BSDL provides powerful extended functions usable in internal test generation and necessary to write hardware debug and diagnostics software. The primary section of BSDL has statements of logical port description, physical pin map, instruction set and boundary register description. * Logical port description The logical port description assigns meaningful symbol names to each pin on the chip. The logic type of each pin, whether input, output, input/output, buffer or link, that defines the logical direction of signal flow is determined here. * Physical pin map The physical pin map correlates the chip's logical ports to the physical pins on each package. By using separate names for each map, it is possible to define two or more physical pin maps in one BSDL description. * Instruction set statement The instruction set statement writes bit patterns to be shifted in into the chip's instruction register. This bit pattern is necessary to place the chip into each test mode defined in standards. Instructions exclusive to the chip can also be written. * Boundary register description The boundary register description is a list of boundary register cells or shift stages. Each cell is assigned a separate number. The cell with number 0 is located nearest to the test data output (JTDO) pin, and the cell with the largest number is located nearest to the test data input (JTDI) pin. Cells also contain related other information which includes cell type, logical port corresponding to the cell, logical function of the cell, safety value, control cell number, disable value and result value. Note: * The Boundary Scan Description Language (BSDL) will be made available after mass-production from our website for the M32R family application technology data. 19-11 32182 Group User's Manual (Rev.1.0) JTAG 19 19.6 Notes on Board Design when Connecting JTAG 19.6 Notes on Board Design when Connecting JTAG To materialize fast and highly reliable communication with JTAG tools, make sure wiring lengths of JTAG pins are matched during board design. SDI connector (JTAG connector) VCCE(5V) M32R/ECU JTAG tool Power 10K (Note 1) RESET# 33 RESET 33 TDO 33 TDI 33 TMS 33 TCK 33 TRST (Note 2) 10K JTDO 10K JTDI 10K JTMS 10K JTCK JTRST 2K 0.1F GND VSS User board Make sure wiring lengths are the same, and avoid bending wires as much as possible. Be careful not to use through-holes within the wiring. Note 1: The RESET# related circuit and resistance-capacitance values must be determined depending on the user board's system design conditions and the microcomputer's operating conditions. Note 2: N-channel open-drain output is recommended for the RESET output of JTAG tools. For details, see JTAG tool specifications. Notes: * Only if the JTRST pin is firmly tied to ground, the JTDO, JTDI, JTMS and JTCLK pins can be processed by either pullup or pulldown. * Each of these pins must always be processed even when not using JTAG tools. The same pullup/pulldown resistance values as when using JTAG tools may be used. Figure 19.6.1 Notes on Board Design when Connecting JTAG Tools 19-12 32182 Group User's Manual (Rev.1.0) JTAG 19 19.7 Processing Pins when Not Using JTAG 19.7 Processing Pins when Not Using JTAG The following shows how the pins on the chip should be processed when not using JTAG tools. VCCE(5V) M32R/ECU 0-100K JTDO 0-100K JTDI 0-100K JTMS 0-100K JTCK JTRST 0-100K User board Note: * Only if the JTRST pin is firmly tied to ground, the JTDO, JTDI, JTMS and JTCLK pins can be processed by either pullup or pulldown. Figure 19.7.1 Processing Pins when Not Using JTAG 19-13 32182 Group User's Manual (Rev.1.0) 19 JTAG 19.7 Processing Pins when Not Using JTAG This page is blank for reasons of layout. 19-14 32182 Group User's Manual (Rev.1.0) CHAPTER 20 POWER SUPPLY CIRCUIT 20.1 Configuration of the Power Supply Circuit 20.2 Power-On Sequence 20.3 Power-Off Sequence POWER SUPPLY CIRCUIT 20 20.1 Configuration of the Power Supply Circuit 20.1 Configuration of the Power Supply Circuit The 32182 operates with a single 5 V 0.5 V or 3.3 V 0.3 V single power supply. Unless otherwise noted, 5 V 0.5 V and 3.3 V 0.3 V in this chapter are referred to simply by 5 V and 3.3 V, respectively. Table 20.1.1 Power Supply Functions Power Supply Type Pin Name Function 5.0V or 3.3V VCCE Main power supply AVCC0 Power supply for the A-D converter VREF0 Reference voltage for the A-D converter VCC-BUS Power supply for the external bus OSC-VCC Power supply for the oscillator circuit VDDE Power supply for the internal RAM backup 32182 I/O Control Circuit VCCE VDDE Internal Voltage Generator Circuit Main VDC Backup Voltage Generator Circuit Sub-VDC VDC 1-10 F EXCVDD CPU Peripheral Circuit RAM 1-10 F Flash Memory EXCVCC PLL OSC-VCC (Note 1) Oscillator Circuit AVCC A-D Converter Circuit VCC-BUS External Bus Note 1: Make sure this voltage is the same as VCCE. Figure 20.1.1 Configuration of the Power Supply Circuit (VCCE = 5.0 V or 3.3 V) 20-2 32182 Group User's Manual (Rev.1.0) POWER SUPPLY CIRCUIT 20 20.2 Power-On Sequence 20.2 Power-On Sequence 20.2.1 Power-On Sequence when Not Using RAM Backup The diagram below shows a turn-on sequence of the power supply (5.0 V or 3.3 V) when not using RAM backup. VCCE,VDDE VCC-BUS, OSC-VCC 0V AVCC 0V VREF 0V (Note 1) RESET# 0V Note 1: After turning on all power supplies and holding the RESET# pin low for an oscillation stabilization time, release the RESET# pin back high (to deassert the reset input). Notes: * Power-on limitations VCCE = OSC-VCC VDDE VCCE, OSC-VCC * However, if the above power-on limitations cannot be met, sufficient evaluation must be made during system design in order to ensure that no power will be applied to the microcomputer with a potential difference of 1 V or more. For potential differences 0 V to 0.6 V, there is almost no in-flow current. The amount of in-flow current begins to increase when the potential difference exceeds 0.6 V. Figure 20.2.1 Power-On Sequence when Not Using RAM Backup 20-3 32182 Group User's Manual (Rev.1.0) POWER SUPPLY CIRCUIT 20 20.2 Power-On Sequence 20.2.2 Power-On Sequence when Using RAM Backup The diagram below shows a turn-on sequence of the power supply (5.0 V or 3.3 V) when using RAM backup. If VDDE is 3.0 V or more, there will be no problem even when the limitations VDDE VCCE, OSC-VCC cannot be met. VCCE, VCC-BUS, OSC-VCC 0V AVCC 0V VREF 0V RESET# 0V (Note 1) (Note 2) VDDE 3.0V 0V Note 1: After turning on all power supplies and holding the RESET# pin low for an oscillation stabilization time, release the RESET# pin back high (to deassert the reset input). Note 2: Because of RAM backup, it is assumed that VDDE is 3.0 V or more. The diagram here is shown for the VCCE = 5 V case. Notes: * Power-on limitations VCCE = OSC-VCC VDDE VCCE, OSC-VCC * However, if the above power-on limitations cannot be met, sufficient evaluation must be made during system design in order to ensure that no power will be applied to the microcomputer with a potential difference of 1 V or more. For potential differences 0 V to 0.6 V, there is almost no in-flow current. The amount of in-flow current begins to increase when the potential difference exceeds 0.6 V. Figure 20.2.2 Power-On Sequence when Using RAM Backup 20-4 32182 Group User's Manual (Rev.1.0) POWER SUPPLY CIRCUIT 20 20.3 Power-Off Sequence 20.3 Power-Off Sequence 20.3.1 Power-Off Sequence when Not Using RAM Backup The diagram below shows a turn-off sequence of the power supply (5.0 V or 3.3 V) when not using RAM backup. VCCE, VCC-BUS, OSC-VCC 0V AVCC 0V VREF 0V (Note 1) RESET# 0V VDDE 0V Note 1: Wait until the RESET# pin goes low before turning the power supply off. Notes: * Power-off limitations VCCE = OSC-VCC VDDE VCCE, OSC-VCC * However, if the above power-off limitations cannot be met, sufficient evaluation must be made during system design in order to ensure that no power will be applied to the microcomputer with a potential difference of 1 V or more. For potential differences 0 V to 0.6 V, there is almost no in-flow current. The amount of in-flow current begins to increase when the potential difference exceeds 0.6 V. Figure 20.3.1 Power-Off Sequence when Not Using RAM Backup 20-5 32182 Group User's Manual (Rev.1.0) POWER SUPPLY CIRCUIT 20 20.3 Power-Off Sequence 20.3.2 Power-Off Sequence when Using RAM Backup The diagram below shows a turn-off sequence of the power supply (5.0 V or 3.3 V) when using RAM backup with HREQ function. VCCE, VCC-BUS, OSC-VCC 0V AVCC 0V VREF 0V (Note 1) P72/HREQ# (Note 2) 0V RESET# (Note 3) 0V (Note 4) VDDE 3V Note 1: Pull the HREQ# input pin low to halt the CPU at the end of the bus cycle. Or disable RAM access in software. P72 can be used as HREQ# irrespective of the operation mode. However, HREQ# must be selected with the Port Operation Mode Register for P72. Note 2: Pull the RESET# input pin low while the CPU is halted or RAM access is disabled. Note 3: Wait until the RESET# pin goes low before turning the power supply off. Note 4: Lower the VDDE voltage from 5.0 V to 3.0 V as necessary. Notes: * Power-off limitations VCCE = OSC-VCC VDDE VCCE, OSC-VCC * However, if the above power-off limitations cannot be met, sufficient evaluation must be made during system design in order to ensure that no power will be applied to the microcomputer with a potential difference of 1 V or more. For potential differences 0 V to 0.6 V, there is almost no in-flow current. The amount of in-flow current begins to increase when the potential difference exceeds 0.6 V. Figure 20.3.2 Power-Off Sequence when Using RAM Backup (VCCE = 5.0 V or 3.3 V) 20-6 32182 Group User's Manual (Rev.1.0) POWER SUPPLY CIRCUIT 20 20.3 Power-Off Sequence VCCE, VCC-BUS, OSC-VCC 0V AVCC 0V VREF 0V (Note 1) P72/HREQ# 5V (Note 2) 0V RESET# 5V (Note 3) 0V VDDE (Note 4) 3.3V 3V Note 1: Pull the HREQ# input pin low to halt the CPU at the end of the bus cycle. Or disable RAM access in software. P72 can be used as HREQ# irrespective of the operation mode. However, HREQ# must be selected with the Port Operation Mode Register for P72. Note 2: Pull the RESET# input pin low while the CPU is halted or RAM access is disabled. Note 3: Wait until the RESET# pin goes low before turning the power supply off. Note 4: Lower the VDDE voltage from 3.3 V to 3.0 V as necessary. Notes: * Power-off limitations VCCE = OSC-VCC * However, if the above power-off limitations cannot be met, sufficient evaluation must be made during system design in order to ensure that no power will be applied to the microcomputer with a potential difference of 1 V or more. For potential differences 0 V to 0.6 V, there is almost no in-flow current. The amount of in-flow current begins to increase when the potential difference exceeds 0.6 V. Figure 20.3.3 Power-Off Sequence when Using RAM Backup (VCCE = 5.0 V, VDDE = 3.3 V) 20-7 32182 Group User's Manual (Rev.1.0) POWER SUPPLY CIRCUIT 20 20.3 Power-Off Sequence 32182 I/O Control Circuit Internal Voltage Generator Circuit Main VDC 5 V or 3.3 V VCCE VDDE 5 V or 3.3 V Backup Voltage Generator Circuit Sub-VDC VDC (Note 2) EXCVDD 1-10 F CPU Peripheral Circuit RAM Flash Memory EXCVCC 1-10 F PLL OSC-VCC 5 V or 3.3 V (Note 1) Oscillator Circuit AVCC 5 V or 3.3 V A-D Converter Circuit VCC-BUS 5 V or 3.3 V External Bus Note 1: Make sure this voltage is the same as VCCE. Note 2: When the microcomputer is ready to operate, it automatically switches to the main VDC. Figure 20.3.4 Microcomputer Ready to Operate State (VCCE = 5.0 V or 3.3 V) 32182 I/O Control Circuit 0V 3.0-5.5V Internal Voltage Generator Circuit Main VDC VCCE VDDE Backup Voltage Generator Circuit Sub-VDC VDC (Note 2) 1-10 F EXCVDD CPU Peripheral Circuit RAM 1-10 F Flash Memory EXCVCC PLL 0V 0V 0V OSC-VCC (Note 1) Oscillator Circuit AVCC A-D Converter Circuit VCC-BUS External Bus Note 1: Make sure this voltage is the same as VCCE. Note 2: During RAM backup mode, it automatically switches to the sub-VDC for low-power operation. Figure 20.3.5 SRAM Data Backup State (VCCE = 5.0 V or 3.3 V) 20-8 32182 Group User's Manual (Rev.1.0) CHAPTER 21 ELECTRICAL CHARACTERISTICS 21.1 Absolute Maximum Ratings 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz 21.6 Flash Memory Related Characteristics 21.7 A.C. Characteristics (when VCCE = 5 V) 21.8 A.C. Characteristics (when VCCE = 3.3 V) ELECTRICAL CHARACTERISTICS 21 21.1 Absolute Maximum Ratings 21.1 Absolute Maximum Ratings Absolute Maximum Ratings Symbol Parameter Test Condition Rated Value Unit VCCE Main Power Supply VCCE=OSC-VCC -0.3-6.5 V OSC-VCC Clock Power Supply VCCE=OSC-VCC -0.3-6.5 V VCC-BUS Bus Power Supply VCCE=OSC-VCC -0.3-6.5 V VDDE RAM Power Supply VCCE=OSC-VCC -0.3-6.5 V AVCC Analog Power Supply VCCEAVCCVREF -0.3-6.5 V VREF Reference Voltage Input VCCEAVCCVREF -0.3-6.5 V -0.3-OSC-VCC+0.3 V VCNT -0.3-3.2 V Other -0.3-VCCE+0.3 V Xout -0.3-OSC-VCC+0.3 V Other -0.3-VCCE+0.3 V Ta=-40-85C 600 mW Ta=-40-105C 500 mW Ta=-40-125C 500 mW Operating Ambient Temperature (Note 1) -40-125 C Storage Temperature -65-150 C VI VO Pd TOPR Tstg Xin Power Dissipation Note 1: This does not guarantee that the microcomputer can operate continuously. Consult Renesas if the microcomputer is going to be used for 85C-plus applications. 21-2 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz 21.2.1 Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 10 MHz) Recommended Operating Conditions (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 5 V 0.5 V, Ta = -40C to 105C Unless Otherwise Noted) Symbol Parameter Rated Value MIN TYP Unit MAX VCCE Main Power Supply (Note 1) 4.5 5.0 5.5 V OSC-VCC Clock Power Supply (Note 1) 4.5 5.0 5.5 V VCC-BUS Bus Power Supply (Note 1) 4.5 5.0 5.5 V VDDE RAM Power Supply (Note 1) 4.5 5.0 5.5 V AVCC Analog Power Supply (Note 1) 4.5 5.0 5.5 V VREF Reference Voltage Input (Note 1) 4.5 5.0 5.5 V 0.45VCCE VCCE V 0.6VCCE VCCE V 0.8VCCE VCCE V 0.6VCCE VCCE V 0.8VCCE VCCE V 0.8VCCE VCCE V FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0.8VCCE VCCE V Standard input for the following pins: 0.8VCCE VCCE V Standard input for the following pins: DB0-15, WAIT 0.43VCCE VCCE V Standard input for the following pins: SBI, HREQ 0.6VCCE VCCE V 0 0.25VCCE V 0 0.4VCCE V 0 0.6VCCE V 0 0.25VCCE V 0 0.25VCCE V 0 0.4VCCE V VIH Input High When When Threshold selection Voltage threshold CMOS input : 0.35 VCCE switching is selected (Note 4) Threshold selection function is : 0.5VCCE used Threshold selection : 0.7VCCE When VT+/VT- Schmitt input : 0.5VCCE/0.35VCCE is selected VT+/VT: 0.7VCCE/0.35VCCE VT+/VT: 0.7VCCE/0.5VCCE RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, TCLK0-3, TIN0-33, CRX0, 1 VIL Input Low When When Threshold selection Voltage threshold CMOS input : 0.35VCCE switching is selected (Note 4) Threshold selection function : 0.5VCCE is used Threshold selection : 0.7VCCE When VT+/VT- Schmitt input : 0.5VCCE/0.35VCCE is selected VT+/VT: 0.7VCCE/0.35VCCE VT+/VT: 0.7VCCE/0.5VCCE 21-3 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz Symbol Parameter Rated Value MIN VIL TYP Unit MAX Input Low FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0 0.2VCCE V Voltage Standard input for the following pins: 0 0.25VCCE V (Note 4) RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, Standard input for the following pins: DB0-15, WAIT 0 0.16VCCE V Standard input for the followingpins: SBI, HREQ 0 0.25VCCE V IOH(peak) High State Peak Output Current P0-P22 (Note 2) -10 mA IOH(avg) -5 mA IOL(peak) Low State Peak Output Current P0-P22 (Note 2) 10 mA IOL(avg) Low State Average Output Current P0-P22 (Note 3) 5 mA Output Load JTDO, JTMS 80 pF Capacitance Other than above 50 pF 10 MHz TCLK0-3, TIN0-33, CRX0, 1 CL f(XIN) High State Average Output Current P0-P22 (Note 3) External Clock Input Frequency 5 Note 1: Subject to conditions VCCE AVCC VREF, VCCE = OSC-VCC Note 2: Make sure the total output current (peak) of ports is | ports P0 + P1 + P41-P43 + P70-P73 | 80 mA | ports P2 + P3 + P44-P47 + P224-P227 | 80 mA | ports P6 + P9 + P11 + P12 | 80 mA | ports P8 + P17 | 80 mA | ports P74-P77 + P10 | 80 mA | ports P13 + P15 + P220-P221 | 80 mA Note 3: The average output current is a value averaged during a 100 ms period. Note 4: The ports listed below operate with the VCC-BUS power supply, and not with the VCCE power supply. Therefore, the reference voltage for these ports is the VCC-BUS input voltage. P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224, P225 21-4 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz 21.2.2 D.C. Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz) Electrical Characteristics (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 5 V 0.5 V, Ta = -40C to 105C Unless Otherwise Noted) Symbol Parameter Test Condition Rated Value MIN VOH Output High Voltage IOH-5mA TYP VCCE+0.165 Unit MAX VCCE V 0.15xIOL V xIOH(mA) VOL Output Low Voltage IOL5mA 0 (mA) VDDE RAM Retention Power Supply Voltage When operating 4.5 5.5 V During backup 3.0 5.5 V IIH High State Input Current VI=VCCE -5 5 A IIL Low State Input Current VI=0V -5 5 A ICC Total Power Supply Current (Note 1) f(XIN)=10.0MHz, 75 mA When reset f(XIN)=10.0MHz, 80 120 1 50 When operating IDDEhold RAM Retention VDDE=5.5V Power Supply Current VDDE=3.0V VT+VT- Ta=25C Ta=85C 1500 Ta=105C 4000 Ta=25C 0.5 10 Ta=85C 300 Ta=105C 1500 FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 1.0 Standard input for the following pins: 1.0 A V RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, TCLK0-3, TIN0-33, CRX0, 1 Standard input for the following pins: SBI, HREQ 0.3 When threshold 0.7VCCE/0.35VCCE 1.0 switching function 0.7VCCE/0.5VCCE 0.3 is used (VT+ / VT-) 0.5VCCE/0.35VCCE 0.3 Note 1: Total amount of current when VCCE = OSC-VCC = VCC-BUS = VDDE = AVCC = VREF in single-chip mode Electrical Characteristics of Each Power Supply Pin Symbol Parameter Test Condition Rated Value MIN TYP Unit MAX ICCE VCCE/OSC-VCC Power Supply Current When Operating f(XIN)=10.0MHz 120 mA IDDE VDDE Power Supply Current When Operating f(XIN)=10.0MHz 1 mA VCC-BUS Power Supply Current When Operating f(XIN)=10.0MHz 10 mA IAVCC AVCC Power Supply Current When Operating f(XIN)=10.0MHz 3 mA IVREF VREF Power Supply Current When Operating f(XIN)=10.0MHz 1 mA ICC-BUS 21-5 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.2 Electrical Characteristics when VCCE = 5 V, f(XIN) = 10 MHz 21.2.3 A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 10 MHz) A-D Conversion Characteristics (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 5.12 V, Ta = -40C to 105C Unless Otherwise Noted) Symbol Parameter Test Condition Rated Value MIN - Resolution - Absolute VREF=VCCE=AVCC Without sample- Slow mode Normal speed Accuracy and-hold or (Note 1) during normal 3 Slow mode Normal speed 3 Double speed 3 Fast mode Normal speed 3 Double speed 8 IIAN 14.95 Double speed 8.65 Fast mode Normal speed 6.55 Double speed 4.45 Slow mode Normal speed 9.55 Double speed 5.05 Fast mode Normal speed 4.75 Double speed 2.65 sample-and -hold LSB Double speed sample-and-hold During fast 2 3 and-hold or during normal bits Fast mode Normal speed TCONV Conversion Without sample- Slow mode Normal speed Time 10 2 sample-and -hold MAX Double speed sample-and-hold During fast TYP Unit Analog Input Leakage Current (Note 2) AVSSANiAVCC -5 s 5 A Note 1: Absolute accuracy refers to the accuracy of output code relative to the analog input including all error sources (including quantization error) in an A-D converter, and is calculated using the equation below. Absolute accuracy = output code - (analog input voltage Ani / 1 LSB) When AVCC = AVREF = 5.12 V, 1 LSB = 5 mV. Note 2: This refers to the input leakage current on ANi while the A-D converter remains idle. 21-6 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz 21.3.1 Recommended Operating Conditions (when VCCE = 5 V, f(XIN) = 8 MHz) Recommended Operating Conditions (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 5 V 0.5 V, Ta = -40C to 125C Unless Otherwise Noted) Symbol Parameter Rated Value Unit MIN TYP MAX 4.5 5.0 5.5 V OSC-VCC Clock Power Supply (Note 1) 4.5 5.0 5.5 V VCC-BUS Bus Power Supply (Note 1) 4.5 5.0 5.5 V VCCE Main Power Supply (Note 1) VDDE RAM Power Supply (Note 1) 4.5 5.0 5.5 V AVCC Analog Power Supply (Note 1) 4.5 5.0 5.5 V VREF Reference Voltage Input (Note 1) 4.5 5.0 5.5 V 0.45VCCE VCCE V 0.6VCCE VCCE V 0.8VCCE VCCE V 0.6VCCE VCCE V 0.8VCCE VCCE V 0.8VCCE VCCE V FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0.8VCCE VCCE V Standard input for the following pins: 0.8VCCE VCCE V Standard input for the following pins: DB0-15, WAIT 0.43VCCE VCCE V Standard input for the following pins: SBI, HREQ 0.6VCCE VCCE V 0 0.25VCCE V 0 0.4VCCE V 0 0.6VCCE V 0 0.25VCCE V 0 0.25VCCE V 0 0.4VCCE V VIH Input High When When Threshold selection Voltage threshold CMOS input : 0.35 VCCE (Note 4) switching is selected Threshold selection function is : 0.5VCCE used Threshold selection : 0.7VCCE When VT+/VT- Schmitt input : 0.5VCCE/0.35VCCE is selected VT+/VT: 0.7VCCE/0.35VCCE VT+/VT: 0.7VCCE/0.5VCCE RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, TCLK0-3, TIN0-33, CRX0, 1 VIL Input Low When When Threshold selection Voltage threshold CMOS input : 0.35VCCE (Note 4) switching is selected Threshold selection function : 0.5VCCE is used Threshold selection : 0.7VCCE When VT+/VT- Schmitt input : 0.5VCCE/0.35VCCE is selected VT+/VT: 0.7VCCE/0.35VCCE VT+/VT: 0.7VCCE/0.5VCCE 21-7 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz Symbol Parameter Rated Value MIN VIL Input Low TYP Unit MAX FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0 0.2VCCE V Voltage Standard input for the following pins: 0 0.25VCCE V (Note 4) RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, Standard input for the following pins: DB0-15, WAIT 0 0.16VCCE V Standard input for the followingpins: SBI, HREQ 0 0.25VCCE V IOH(peak) High State Peak Output Current P0-P22 (Note 2) -10 mA IOH(avg) -5 mA IOL(peak) Low State Peak Output Current P0-P22 (Note 2) 10 mA IOL(avg) Low State Average Output Current P0-P22 (Note 3) 5 mA Output Load JTDO, JTMS 80 pF Capacitance Other than above 50 pF 10 MHz TCLK0-3, TIN0-33, CRX0, 1 CL f(XIN) High State Average Output Current P0-P22 (Note 3) External Clock Input Frequency 5 Note 1: Subject to conditions VCCE AVCC VREF, VCCE = OSC-VCC Note 2: Make sure the total output current (peak) of ports is | ports P0 + P1 + P41-P43 + P70-P73 | 80 mA | ports P2 + P3 + P44-P47 + P224-P227 | 80 mA | ports P6 + P9 + P11 + P12 | 80 mA | ports P8 + P17 | 80 mA | ports P74-P77 + P10 | 80 mA | ports P13 + P15 + P220-P221 | 80 mA Note 3: The average output current is a value averaged during a 100 ms period. Note 4: The ports listed below operate with the VCC-BUS power supply, and not with the VCCE power supply. Therefore, the reference voltage for these ports is the VCC-BUS input voltage. P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224, P225 21-8 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz 21.3.2 D.C. Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz) Electrical Characteristics (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 5 V 0.5 V, Ta = -40C to 125C Unless Otherwise Noted) Symbol Parameter Test Condition Rated Value MIN VOH Output High Voltage IOH-5mA TYP VCCE+0.165 Unit MAX VCCE V 0.15xIOL V xIOH(mA) VOL Output Low Voltage IOL5mA 0 (mA) VDDE RAM Retention Power Supply Voltage When operating 4.5 5.5 V During backup 3.0 5.5 V IIH High State Input Current VI=VCCE -5 5 A IIL Low State Input Current VI=0V -5 5 A Total Power Supply Current (Note 1) f(XIN)=8.0MHz, 65 mA ICC When reset f(XIN)=8.0MHz, 65 90 1 50 When operating IDDEhold RAM Retention VDDE=5.5V Power Supply Current Ta=25C Ta=125C VDDE=3.0V A 4000 Ta=25C 0.5 Ta=125C 10 1500 VT+- FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 1.0 VT- Standard input for the following pins: 1.0 V RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, TCLK0-3, TIN0-33, CRX0, 1 Standard input for the following pins: SBI, HREQ 0.3 When threshold 0.7VCCE/0.35VCCE 1.0 switching function 0.7VCCE/0.5VCCE 0.3 is used (VT+ / VT-) 0.5VCCE/0.35VCCE 0.3 Note 1: Total amount of current when VCCE = OSC-VCC = VCC-BUS = VDDE = AVCC = VREF in single-chip mode Electrical Characteristics of Each Power Supply Pin Symbol Parameter Test Condition Rated Value MIN TYP Unit MAX ICCE VCCE/OSC-VCC Power Supply Current When Operating f(XIN)=8.0MHz 90 mA IDDE VDDE Power Supply Current When Operating f(XIN)=8.0MHz 1 mA VCC-BUS Power Supply Current When Operating f(XIN)=8.0MHz 10 mA IAVCC AVCC Power Supply Current When Operating f(XIN)=8.0MHz 3 mA IVREF VREF Power Supply Current When Operating f(XIN)=8.0MHz 1 mA ICC-BUS 21-9 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.3 Electrical Characteristics when VCCE = 5 V, f(XIN) = 8 MHz 21.3.3 A-D Conversion Characteristics (when VCCE = 5 V, f(XIN) = 8 MHz) A-D Conversion Characteristics (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 5.12 V, Ta = -40C to 125C Unless Otherwise Noted) Symbol Parameter Test Condition Rated Value MIN - Resolution - Absolute VREF=VCCE=AVCC Without sample- Slow mode Normal speed Accuracy and-hold or (Note 1) during normal 3 Slow mode Normal speed 3 Double speed 3 Fast mode Normal speed 3 Double speed 8 IIAN 18.6875 Double speed 10.8125 Fast mode Normal speed 8.1875 Double speed 5.5625 Slow mode Normal speed 11.9375 Double speed 6.3125 Fast mode Normal speed 5.9375 Double speed 3.3125 sample-and -hold LSB Double speed sample-and-hold During fast 2 3 and-hold or during normal bits Fast mode Normal speed TCONV Conversion Without sample- Slow mode Normal speed Time 10 2 sample-and -hold MAX Double speed sample-and-hold During fast TYP Unit Analog Input Leakage Current (Note 2) AVSSANiAVCC -5 s 5 A Note 1: Absolute accuracy refers to the accuracy of output code relative to the analog input including all error sources (including quantization error) in an A-D converter, and is calculated using the equation below. Absolute accuracy = output code - (analog input voltage Ani / 1 LSB) When AVCC = AVREF = 5.12 V, 1 LSB = 5 mV. Note 2: This refers to the input leakage current on ANi while the A-D converter remains idle. 21-10 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz 21.4.1 Recommended Operating Conditions (when VCCE = 3.3 V 0.3 V, f(XIN) = 10 MHz) Recommended Operating Conditions (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 3.3 V 0.3 V, Ta = -40C to 105C Unless Otherwise Noted) Symbol Parameter Rated Value MIN TYP Unit MAX VCCE Main Power Supply (Note 1) 3.0 3.3 3.6 V OSC-VCC Clock Power Supply (Note 1) 3.0 VCCE 3.6 V VCC-BUS Bus Power Supply (Note 1) 3.0 VCCE 3.6 V VDDE RAM Power Supply (Note 1) 3.0 VCCE 3.6 V AVCC Analog Power Supply (Note 1) 3.0 VCCE 3.6 V VREF Reference Voltage Input (Note 1) 3.0 VCCE 3.6 V 0.5VCCE VCCE V 0.65VCCE VCCE V 0.8VCCE VCCE V 0.65VCCE VCCE V 0.8VCCE VCCE V 0.8VCCE VCCE V FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0.8VCCE VCCE V Standard input for the following pins: 0.8VCCE VCCE V Standard input for the following pins: DB0-15, WAIT 0.5VCCE VCCE V Standard input for the following pins: SBI, HREQ 0.65VCCE VCCE V 0 0.2VCCE V 0 0.35VCCE V 0 0.5VCCE V 0 0.2VCCE V 0 0.2VCCE V 0 0.35VCCE V VIH Input High When When Threshold selection Voltage threshold CMOS input : 0.35 VCCE switching is selected (Note 4) Threshold selection function is : 0.5VCCE used Threshold selection : 0.7VCCE When VT+/VT- Schmitt input : 0.5VCCE/0.35VCCE is selected VT+/VT: 0.7VCCE/0.35VCCE VT+/VT: 0.7VCCE/0.5VCCE RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, TCLK0-3, TIN0-33, CRX0, 1 VIL Input Low When When Threshold selection Voltage threshold CMOS input : 0.35VCCE switching is selected (Note 4) Threshold selection function : 0.5VCCE is used Threshold selection : 0.7VCCE When VT+/VT- Schmitt input : 0.5VCCE/0.35VCCE is selected VT+/VT: 0.7VCCE/0.35VCCE VT+/VT: 0.7VCCE/0.5VCCE 21-11 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz Symbol Parameter Rated Value MIN VIL TYP Unit MAX Input Low FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0 0.2VCCE V Voltage Standard input for the following pins: 0 0.2VCCE V (Note 4) RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, Standard input for the following pins: DB0-15, WAIT 0 0.2VCCE V Standard input for the followingpins: SBI, HREQ 0 0.2VCCE V -10 mA -5 mA IOL(peak) Low State Peak Output Current P0-P22 (Note 2) 10 mA IOL(avg) Low State Average Output Current P0-P22 (Note 3) 5 mA Output Load JTDO, JTMS 80 pF Capacitance Other than above 50 pF 10 MHz TCLK0-3, TIN0-33, CRX0, 1 IOH(peak) High State Peak Output Current P0-P22 (Note 2) IOH(avg) CL f(XIN) High State Average Output Current P0-P22 (Note 3) External Clock Input Frequency 5 Note 1: Subject to conditions VCCE AVCC VREF, VCCE = OSC-VCC Note 2: Make sure the total output current (peak) of ports is | ports P0 + P1 + P41-P43 + P70-P73 | 80 mA | ports P2 + P3 + P44-P47 + P224-P227 | 80 mA | ports P6 + P9 + P11 + P12 | 80 mA | ports P8 + P17 | 80 mA | ports P74-P77 + P10 | 80 mA | ports P13 + P15 + P220-P221 | 80 mA Note 3: The average output current is a value averaged during a 100 ms period. Note 4: The ports listed below operate with the VCC-BUS power supply, and not with the VCCE power supply. Therefore, the reference voltage for these ports is the VCC-BUS input voltage. P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224, P225 21-12 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz 21.4.2 D.C. Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 10 MHz) Electrical Characteristics (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 3.3 V 0.3 V, Ta = -40C to 105C Unless Otherwise Noted) Symbol Parameter Test Condition Rated Value MIN VOH Output High Voltage IOH-2mA TYP VCCE+0.5 Unit MAX VCCE V 0.225xIOL V xIOH(mA) VOL Output Low Voltage IOL2mA 0 (mA) VDDE RAM Retention Power Supply Voltage When operating 3.0 3.6 V During backup 3.0 3.6 V IIH High State Input Current VI=VCCE -5 5 A IIL Low State Input Current VI=0V -5 5 A Total Power Supply Current (Note 1) f(XIN)=10.0MHz, 75 mA ICC When reset f(XIN)=10.0MHz, 80 120 0.5 10 When operating IDDEhold RAM Retention Power Supply Current Ta=25C Ta=85C 300 Ta=105C 1500 VT+- FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0.65 VT- Standard input for the following pins: 0.5 A V RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, TCLK0-3, TIN0-33, CRX0, 1 Standard input for the following pins: SBI, HREQ 0.2 When threshold 0.7VCCE/0.35VCCE 0.5 switching function 0.7VCCE/0.5VCCE 0.2 is used (VT+ / VT-) 0.5VCCE/0.35VCCE 0.2 Note 1: Total amount of current when VCCE = OSC-VCC = VCC-BUS = VDDE = AVCC = VREF in single-chip mode Electrical Characteristics of Each Power Supply Pin Symbol Parameter Test Condition Rated Value MIN TYP Unit MAX ICCE VCCE/OSC-VCC Power Supply Current When Operating f(XIN)=10.0MHz 120 mA IDDE VDDE Power Supply Current When Operating f(XIN)=10.0MHz 1 mA VCC-BUS Power Supply Current When Operating f(XIN)=10.0MHz 7 mA IAVCC AVCC Power Supply Current When Operating f(XIN)=10.0MHz 2 mA IVREF VREF Power Supply Current When Operating f(XIN)=10.0MHz 1 mA ICC-BUS 21-13 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.4 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 10 MHz 21.4.3 A-D Conversion Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 10 MHz) A-D Conversion Characteristics (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 3.3 V, Ta = -40C to 105C Unless Otherwise Noted) Symbol Parameter Test Condition Rated Value MIN - Resolution - Absolute VREF=VCCE=AVCC Without sample- Slow mode Normal speed Accuracy and-hold or (Note 1) during normal 6 Slow mode Normal speed 4 Double speed 4 Fast mode Normal speed 6 Double speed 16 IIAN 14.95 Double speed 8.65 Fast mode Normal speed 6.55 Double speed 4.45 Slow mode Normal speed 9.55 Double speed 5.05 Fast mode Normal speed 4.75 Double speed 2.65 sample-and -hold LSB Double speed sample-and-hold During fast 4 6 and-hold or during normal bits Fast mode Normal speed TCONV Conversion Without sample- Slow mode Normal speed Time 10 4 sample-and -hold MAX Double speed sample-and-hold During fast TYP Unit Analog Input Leakage Current (Note 2) AVSSANiAVCC -5 s 5 A Note 1: Absolute accuracy refers to the accuracy of output code relative to the analog input including all error sources (including quantization error) in an A-D converter, and is calculated using the equation below. Absolute accuracy = output code - (analog input voltage Ani / 1 LSB) When AVCC = AVREF = 3.072 V, 1 LSB = 3 mV. Note 2: This refers to the input leakage current on ANi while the A-D converter remains idle. 21-14 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz 21.5.1 Recommended Operating Conditions (when VCCE = 3.3 V 0.3 V f(XIN) = 8 MHz) Recommended Operating Conditions (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 3.3 V 0.3 V, Ta = -40C to 125C Unless Otherwise Noted) Symbol Parameter Rated Value MIN TYP Unit MAX VCCE Main Power Supply (Note 1) 3.0 3.3 3.6 V OSC-VCC Clock Power Supply (Note 1) 3.0 VCCE 3.6 V VCC-BUS Bus Power Supply (Note 1) 3.0 VCCE 3.6 V VDDE RAM Power Supply (Note 1) 3.0 VCCE 3.6 V AVCC Analog Power Supply (Note 1) 3.0 VCCE 3.6 V VREF Reference Voltage Input (Note 1) 3.0 VCCE 3.6 V 0.5VCCE VCCE V 0.65VCCE VCCE V 0.8VCCE VCCE V 0.65VCCE VCCE V 0.8VCCE VCCE V 0.8VCCE VCCE V FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0.8VCCE VCCE V Standard input for the following pins: 0.8VCCE VCCE V Standard input for the following pins: DB0-15, WAIT 0.5VCCE VCCE V Standard input for the following pins: SBI, HREQ 0.65VCCE VCCE V 0 0.2VCCE V 0 0.35VCCE V 0 0.5VCCE V 0 0.2VCCE V 0 0.2VCCE V 0 0.35VCCE V VIH Input High When When Threshold selection Voltage threshold CMOS input : 0.35 VCCE switching is selected (Note 4) Threshold selection function is : 0.5VCCE used Threshold selection : 0.7VCCE When VT+/VT- Schmitt input : 0.5VCCE/0.35VCCE is selected VT+/VT: 0.7VCCE/0.35VCCE VT+/VT: 0.7VCCE/0.5VCCE RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, TCLK0-3, TIN0-33, CRX0, 1 VIL Input Low When When Threshold selection Voltage threshold CMOS input : 0.35VCCE (Note 4) switching is selected Threshold selection function : 0.5VCCE is used Threshold selection : 0.7VCCE When VT+/VT- Schmitt input : 0.5VCCE/0.35VCCE is selected VT+/VT: 0.7VCCE/0.35VCCE VT+/VT: 0.7VCCE/0.5VCCE 21-15 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz Symbol Parameter Rated Value MIN VIL TYP Unit MAX Input Low FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0 0.2VCCE V Voltage Standard input for the following pins: 0 0.2VCCE V (Note 4) RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, Standard input for the following pins: DB0-15, WAIT 0 0.2VCCE V Standard input for the followingpins: SBI, HREQ 0 0.2VCCE V IOH(peak) High State Peak Output Current P0-P22 (Note 2) -10 mA IOH(avg) -5 mA IOL(peak) Low State Peak Output Current P0-P22 (Note 2) 10 mA IOL(avg) Low State Average Output Current P0-P22 (Note 3) 5 mA Output Load JTDO, JTMS 80 pF Capacitance Other than above 50 pF 8 MHz TCLK0-3, TIN0-33, CRX0, 1 CL f(XIN) High State Average Output Current P0-P22 (Note 3) External Clock Input Frequency 5 Note 1: Subject to conditions VCCE AVCC VREF, VCCE = OSC-VCC Note 2: Make sure the total output current (peak) of ports is | ports P0 + P1 + P41-P43 + P70-P73 | 80 mA | ports P2 + P3 + P44-P47 + P224-P227 | 80 mA | ports P6 + P9 + P11 + P12 | 80 mA | ports P8 + P17 | 80 mA | ports P74-P77 + P10 | 80 mA | ports P13 + P15 + P220-P221 | 80 mA Note 3: The average output current is a value averaged during a 100 ms period. Note 4: The ports listed below operate with the VCC-BUS power supply, and not with the VCCE power supply. Therefore, the reference voltage for these ports is the VCC-BUS input voltage. P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224, P225 21-16 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz 21.5.2 D.C. Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 8 MHz) Electrical Characteristics (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 3.3 V 0.3 V, Ta = -40C to 125C Unless Otherwise Noted) Symbol Parameter Test Condition Rated Value MIN VOH Output High Voltage IOH-2mA TYP VCCE+0.5 Unit MAX VCCE V 0.225xIOL V xIOH(mA) VOL Output Low Voltage IOL2mA 0 (mA) VDDE RAM Retention Power Supply Voltage When operating 3.0 3.6 V During backup 3.0 3.6 V IIH High State Input Current VI=VCCE -5 5 A IIL Low State Input Current VI=0V -5 5 A Total Power Supply Current (Note 1) f(XIN)=8.0MHz, 65 mA ICC When reset f(XIN)=8.0MHz, 65 90 0.5 10 When operating IDDEhold RAM Retention Power Supply Current Ta=25C Ta=125C VT+VT- A 1500 FP, MOD0, 1, JTMS, JTRST, JTDI, RESET 0.65 Standard input for the following pins: 0.5 V RTDCLK, RTDRXD, SCLKI0, 1, 4, 5, RXD0-5, TCLK0-3, TIN0-33, CRX0, 1 Standard input for the following pins: SBI, HREQ 0.2 When threshold 0.7VCCE/0.35VCCE 0.5 switching function 0.7VCCE/0.5VCCE 0.2 is used (VT+ / VT-) 0.5VCCE/0.35VCCE 0.2 Note 1: Total amount of current when VCCE = OSC-VCC = VCC-BUS = VDDE = AVCC = VREF in single-chip mode Electrical Characteristics of Each Power Supply Pin Symbol Parameter Test Condition Rated Value MIN TYP Unit MAX ICCE VCCE/OSC-VCC Power Supply Current When Operating f(XIN)=8.0MHz 90 mA IDDE VDDE Power Supply Current When Operating f(XIN)=8.0MHz 1 mA VCC-BUS Power Supply Current When Operating f(XIN)=8.0MHz 7 mA IAVCC AVCC Power Supply Current When Operating f(XIN)=8.0MHz 2 mA IVREF VREF Power Supply Current When Operating f(XIN)=8.0MHz 1 mA ICC-BUS 21-17 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.5 Electrical Characteristics when VCCE = 3.3 V, f(XIN) = 8 MHz 21.5.3 A-D Conversion Characteristics (when VCCE = 3.3 V 0.3 V, f(XIN) = 8 MHz) A-D Conversion Characteristics (Referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 3.3 V, Ta = -40C to 125C Unless Otherwise Noted) Symbol Parameter Test Condition Rated Value MIN - Resolution - Absolute VREF=VCCE=AVCC Without sample- Slow mode Normal speed Accuracy and-hold or (Note 1) during normal TBD Slow mode Normal speed TBD Double speed TBD Fast mode Normal speed TBD Double speed TBD IIAN 18.6875 Double speed 10.8125 Fast mode Normal speed 8.1875 Double speed 5.5625 Slow mode Normal speed 11.9375 Double speed 6.3125 Fast mode Normal speed 5.9375 Double speed 3.3125 sample-and -hold LSB Double speed sample-and-hold During fast TBD TBD and-hold or during normal bits Fast mode Normal speed TCONV Conversion Without sample- Slow mode Normal speed Time 10 TBD sample-and -hold MAX Double speed sample-and-hold During fast TYP Unit Analog Input Leakage Current (Note 2) AVSSANiAVCC -5 s 5 A Note 1: Absolute accuracy refers to the accuracy of output code relative to the analog input including all error sources (including quantization error) in an A-D converter, and is calculated using the equation below. Absolute accuracy = output code - (analog input voltage Ani / 1 LSB) When AVCC = AVREF = 3.072 V, 1 LSB = 3 mV. Note 2: This refers to the input leakage current on ANi while the A-D converter remains idle. 21-18 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.6 Flash Memory Related Characteristics 21.6 Flash Memory Related Characteristics Symbol Parameter Test Condition Rated Value MIN Topr Flash Rewrite Ambient Temperature cycle Flash Rewrite Durability tPRG Program Space 1page Block Erase Time 1Block TBERS TYP 0 21-19 Unit MAX 70 C 100 times 8 120 ms 50 600 ms 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) 21.7 A.C. Characteristics (when VCCE = 5 V) * The timing conditions are referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 5 V 0.5 V, Ta = -40C to 125C unless otherwise noted. * The rated values below are guaranteed for the case where the output load capacitance of the measured pins are 15 pF to 50 pF (for JTAG related values, a concentrated capacitance of 80 pF). * The terms S, R, ID and W in the rated values shown below have the following meaning: S: "1" when the CS Area Wait Control Register SWAIT bit = 1, or "0" when SWAIT bit = 0 R: "1" when the CS Area Wait Control Register RECOV bit = 1, or "0" when RECOV bit = 0 ID: Number of idle cycles inserted at the end of the bus cycle. Idle cycles may be inserted as specified by the CS Area Wait Control Register IDLE bit, or inserted by default when a write operation is executed immediately after a read (ID = 0 or 1). W: Number of wait states (selected by the WTCSEL bit) 21.7.1 Timing Requirements (1) Input/output ports Symbol Parameter Rated Value MIN Unit MAX See Fig. 21.7.1 tsu(P-E) Port Input Setup Time 100 ns [1] th(E-P) Port Input Hold Time 0 ns [2] Unit See Fig. (2) Serial I/O a) CSIO mode, with internal clock selected Symbol Parameter Rated Value MIN MAX 21.7.2 tsu(D-CLK) RXD Input Setup Time 150 ns [4] th(CLK-D) RXD Input Hold Time 50 ns [5] Unit See Fig. b) CSIO mode, with external clock selected Symbol Parameter Rated Value MIN tc(CLK) MAX 21.7.2 CLK Input Cycle Time 640 ns [7] tw(CLKH) CLK Input High Pulse Width 300 ns [8] tw(CLKL) CLK Input Low Pulse Width 300 ns [9] tsu(D-CLK) RXD Input Setup Time 60 ns [10] th(CLK-D) RXD Input Hold Time 100 ns [11] Unit See Fig. (3) SBI Symbol Parameter Rated Value MIN tw(SBIL) tc(BCLK) 5x 2 SBI# Input Pulse Width 21-20 MAX 21.7.3 ns [13] 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) (4) TINi (i=0-33) Symbol Parameter Rated Value MIN tw(TINi) MAX tc(BCLK) 7x 2 TINi Input Pulse Width Unit See Fig. 21.7.5 ns [14] Unit See Figs. 21.7.6 21.7.7 21.7.8 21.7.9 21.7.10 (5) Read and write timing Symbol Parameter Rated Value MIN MAX tsu(D-BCLKH) Data Input Setup Time before BCLK 26 ns [31] th(BCLKH-D) Data Input Hold Time after BCLK 0 ns [32] tsu(WAITL-BCLKH) WAIT# Input Setup Time before BCLK 26 ns [33] th(BCLKH-WAITL) WAIT# Input Hold Time after BCLK 0 ns [34] tsu(WAITH-BCLKH) WAIT# Input Setup Time before BCLK 26 ns [78] th(BCLKH-WAITH) WAIT# Input Hold Time after BCLK 0 ns [79] tc(BCLK) ( )x(1+2W-S)-20 2 ns [43] tw(RDL) Read Low Pulse Width tsu(D-RDH) Data Input Setup Time before Read 30 ns [44] th(RDH-D) Data Input Hold Time after Read 0 ns [45] tw(BLWL) Write Low Pulse Width ns [51] tw(BHWL) (byte write mode) With zero wait state tc(BCLK) 2 -8 With 1 or more wait states ( tc(BCLK) )x(2W-S)-20 2 td(RDH-BLWL) Write Delay Time after Read tc(BCLK)x( 1 +R+ID)-10 ns [56] Read Delay Time after Write With zero wait state ns [57] ns [68] tc(BCLK)x( 1 +R+ID)-10 ns [80] Read Delay Time after Write With zero wait state ns [81] (byte enable mode) tc(BCLK) 2 ns [90] ns [92] 2 td(RDH-BHWL) td(BLWH-RDL) tc(BCLK) 2 td(BHWH-RDL) -10 With 1 or more wait states tc(BCLK)x(1+R)-10 tw(WRL) Write Low Pulse Width (byte enable mode) With zero wait state tc(BCLK) 2 -6 With 1 or more wait states ( tc(BCLK) )x(2W-S)-20 2 td(RDH-WRL) Write Delay Time after Read 2 (byte enable mode) td(WRH-RDL) -20 With 1 or more wait states tc(BCLK)x(1+R)-20 tv(BCLKH-BLWL) Write Valid Time after BCLK tv(BCLKH-BHWL) (with zero wait state) td(BCLKH-RDL) -5 Read Delay Time after BCLK 12 (when SWAIT = 1) 21-21 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) Symbol Parameter Rated Value MIN td(CSL-RDL) td(CSL-BLWL) Unit See Figs. 21.7.6 21.7.8 21.7.9 21.7.10 MAX Chip Select Delay Time before Read ( tc(BCLK) )x(1+S)-16 2 ns [93] Chip Select Delay Time before Write ( tc(BCLK) )x(1+S)-15 2 ns [95] Chip Select Delay Time before Write ( tc(BCLK) )x(1+S)-15 ns [96] ns [97] Unit See Fig. td(CSL-BHWL) td(CSL-WRL) 2 (byte enable mode) td(BCLKL-BLWH) Write Delay Time after BCLK 14 td(BCLKL-BHWH) (6) Bus arbitration timing Symbol Parameter Rated Value MIN MAX 21.7.11 tsu(HREQL-BCLKH) HREQ# Input Setup Time before BCLK 27 ns [35] th(BCLKH-HREQL) HREQ# Input Hold Time after BCLK 0 ns [36] Unit See Fig. (7) Input transition time of JTAG pins Symbol Parameter Rated Value MIN tr High-going Other than JTRST pin MAX 21.7.12 10 ns 10 ns 2 ms 10 ns 10 ns 2 ms [58] Transition Time (JTCK, JTDI, JTMS, JTDO) of Input JTRST pin When using TAP When not using TAP tf Low-going Other than JTRST pin [59] Transition Time (JTCK, JTDI, JTMS, JTDO) of Input JTRST pin When using TAP When not using TAP Note: * The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF. 21-22 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) (8) JTAG interface timing Symbol Parameter Rated Value MIN tc(JTCK) Unit MAX See Fig. 21.7.13 JTCK Input Cycle Time 100 ns [60] tw(JTCKH) JTCK Input High Pulse Width 40 ns [61] tw(JTCKL) JTCK Input Low Pulse Width 40 ns [62] tsu(JTDI-JTCK) JTDI, JTMS Input Setup Time 15 ns [63] th(JTCK-JTDI) JTDI, JTMS Input Hold Time 20 ns [64] td(JTCK-JTDOV) JTDO Output Delay Time after JTCK Fall 40 ns [65] td(JTCK-JTDOX) JTDO Output Hi-Z Delay Time after JTCK Fall 40 ns [66] ns [67] tw(JTRST) JTRST Input Low Pulse Width tc(JTCK) Note: * The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF. (9) RTD timing Symbol Parameter Rated Value MIN tc(RTDCLK) Unit MAX See Fig. 21.7.14 RTDCLK Input Cycle Time 500 ns [82] tw(RTDCLKH) RTDCLK Input High Pulse Width 230 ns [83] tw(RTDCLKL) RTDCLK Input Low Pulse Width 230 ns [84] td(RTDCLKH-RTDACK) RTDACK Delay Time after RTDCLK Input 160 ns [85] tv(RTDCLKL-RTDACK) RTDACK Valid Time after RTDCLK Input 160 ns [86] td(RTDCLKH-RTDTXD) RTDTXD Delay Time after RTDCLK Input tw(RTDCLKH)+160 ns [87] th(RTDCLKH-RTDRXD) RTDRXD Input Hold Time ns [88] ns [89] 50 tsu(RTDRXD-RTDCLKL) RTDRXD Input Setup Time 60 21-23 tc(RTDCLK) +160 2 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) 21.7.2 Switching Characteristics (1) Input/output ports Symbol Parameter Rated Value MIN td(E-P) Unit MAX Port Data Output Delay Time 100 See Fig. 21.7.1 ns [3] Unit See Fig. (2) Serial I/O a) CSIO mode, with internal clock selected Symbol Parameter Rated Value MIN td(CLK-D) TXD Output Delay Time th(CLK-D) TXD Hold Time MAX 60 0 21.7.2 ns [6] ns [98] Unit See Fig. b) CSIO mode, with external clock selected Symbol Parameter Rated Value MIN td(CLK-D) MAX TXD Output Delay Time 160 21.7.2 ns [12] Unit See Fig. (3)TOi (i=0-44) Symbol Parameter Rated Value MIN td(BCLK-TOi) TOi Output Delay Time MAX 100 21-24 21.7.4 ns [15] 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) (4) Read and write timing Symbol Parameter Rated Value Unit See Figs. 21.7.6 21.7.7 MIN tc(BCLK) BCLK Output High Pulse Width tw(BCLKL) BCLK Output Low Pulse Width td(BCLKH-CS) tv(BCLKH-A) tc(Xin) 2 BCLK Output Cycle Time tw(BCLKH) td(BCLKH-A) MAX tc(BCLK) -5 2 tc(BCLK) -5 2 21.7.8 21.7.9 ns [16] ns [17] ns [18] Address Delay Time after BCLK 24 ns [19] Chip Select Delay Time after BCLK 24 ns [20] Address Valid Time after BCLK -5 ns [21] tv(BCLKH-CS) Chip Select Valid Time after BCLK -5 ns [22] td(BCLKL-RDL) Read Delay Time after BCLK ns [23] tv(BCLKH-RDL) Read Valid Time after BCLK ns [24] ns [25] ns [26] ns [27] ns [28] ns [29] ns [30] tc(BCLK) )x(1+S)-15 2 tc(BCLK) ( )x(1+S)-15 2 ns [39] ns [40] tc(BCLK)x(R+ID) ns [41] 10 -5 td(BCLKL-BLWL) Write Delay Time after BCLK 11 td(BCLKL-BHWL) tv(BCLKL-BLWL) Write Valid Time after BCLK -5 tv(BCLKL-BHWL) td(BCLKL-D) Data Output Delay Time after BCLK tv(BCLKH-D) Data Output Valid Time after BCLK With zero wait state: 11 With 1 or more wait states: 18 With zero wait state: -4 With 1 or more wait states: -10 tpzx(BCLKL-DZ) Data Output Enable Time after BCLK -10 tpxz(BCLKH-DZ) Data Output Disable Time after BCLK td(A-RDL) td(CS-RDL) tv(RDH-A) Address Delay Time before Read Chip Select Delay Time before Read Address Valid Time after Read 5 ( tv(RDH-CS) Chip Select Valid Time after Read tc(BCLK)xR ns [42] tpzx(RDH-DZ) Data Output Enable Time after Read tc(BCLK)x(12 +R+ID) ns [46] td(A-BLWL) Address Delay Time before Write ( tc(BCLK) )x(1+S)-15 ns [47] td(A-BHWL) (byte write mode) td(CS-BLWL) Chip Select Delay Time before Write ( tc(BCLK) )x(1+S)-15 ns [48] td(CS-BHWL) (byte write mode) With zero wait state: -5 ns [49] ns [50] tv(BLWH-A) Address Valid Time after Write tv(BHWH-A) (byte write mode) 2 2 With 1 or more wait states: tc(BCLK)x(12 +R)-5 tv(BLWH-CS) Chip Select Valid Time after Write tv(BHWH-CS) (byte write mode) With zero wait state: -5 With 1 or more wait states: 1 tc(BCLK)x( 2 +R)-5 21-25 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) Read and write timing (continued from the preceding page) Symbol Parameter Rated Value MIN MAX td(BLWL-D) Data Output Delay Time after Write With zero wait state: 5 td(BHWL-D) (byte write mode) With 1 or more wait states: Unit See Figs. 21.7.6 21.7.7 21.7.8 21.7.9 ns [52] ns [53] ns [54] tc(BCLK) )x(1+S)-15 2 ns [69] ( tc(BCLK) )x(1+S)-15 ns [70] Address Valid Time after Write With zero wait state: -5 ns [71] (byte enable mode) With 1 or more wait states: ns [72] ( tc(BCLK) )x(1+S)-15 ns [73] ns [74] ns [75] ns [76] ns [77] ns [55] 15-( tv(BLWH-D) Data Output Valid Time after Write With zero wait state: -7 tv(BHWH-D) (byte write mode) With 1 or more wait states: tc(BCLK) )xS 2 1 tc(BCLK)x( 2 +R)-13 tpxz(BLWH-DZ) Data Output Disable Time after Write tpxz(BHWH-DZ) (byte write mode) With zero wait state: 5 With 1 or more wait states: 1 tc(BCLK)x( 2 +R)+5 td(A-WRL) Address Delay Time before Write ( (byte enable mode) td(CS-WRL) Chip Select Delay Time before Write 2 (byte enable mode) tv(WRH-A) 1 tc(BCLK)x(2 +R)-5 tv(WRH-CS) Chip Select Valid Time after Write With zero wait state: -5 (byte enable mode) With 1 or more wait states: 1 tc(BCLK)x( 2 +R)-5 td(BLE-WRL) Byte Enable Delay Time before Write td(BHE-WRL) (byte enable mode) 2 tv(WRH-BLE) Byte Enable Valid Time after Write With zero wait state: -5 tv(WRH-BHE) (byte enable mode) With 1 or more wait states: 1 tc(BCLK)x( 2 +R)-5 td(WRL-D) Data Output Delay Time after Write With zero wait state: 7 (byte enable mode) With 1 or more wait states: 15-( tc(BCLK) )xS 2 tv(WRH-D) Data Output Valid Time after Write With zero wait state: -7 (byte enable mode) With 1 or more wait states: 1 tc(BCLK)x( 2 +R)-13 tpxz(WRH-DZ) Data Output Disable Time after Write With zero wait state: 5 (byte enable mode) With 1 or more wait states: 1 tc(BCLK)x( 2 +R)+5 tw(RDH) Read High Pulse Width ( tc(BCLK) )x(1+S)-5 2 (5) Bus arbitration Symbol Parameter Rated Value MIN td(BCLKL-HACKL) HACK# Delay Time after BCLK tv(BCLKL-HACKL) HACK# Valid Time after BCLK Unit MAX 29 -11 21-26 See Fig. 21.7.11 ns [37] ns [38] 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) 21.7.3 A.C. Characteristics 0.8VCCE BCLK 0.2VCCE [1] tsu(P-E) [2] 0.8VCCE 0.2VCCE Port input th(E-P) 0.8VCCE 0.2VCCE [3] td(E-P) 0.8VCCE 0.2VCCE Port output Note: * The ports listed below operate with the VCC-BUS power supply, and not with the VCCE power supply. Therefore, the reference voltage for these ports is the VCC-BUS input voltage. P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224, P225 Figure 21.7.1 Input/Output Port Timing a) CSIO mode, with internal clock selected 0.8VCCE SCLKO 0.2VCCE [98] th(CLK-D) [6] td(CLK-D) 0.8VCCE 0.2VCCE TXD [4] tsu(D-CLK) [5] th(CLK-D) 0.8VCCE 0.2VCCE 0.8VCCE 0.2VCCE RXD b) CSIO mode, with external clock selected [7] tc(CLK) [8] tw(CLKH) 0.8VCCE SCLKI 0.2VCCE [12] td(CLK-D) [9] tw(CLKL) 0.8VCCE 0.2VCCE TXD [10] tsu(D-CLK) RXD 0.8VCCE 0.2VCCE [11] th(CLK-D) 0.8VCCE 0.2VCCE Figure 21.7.2 Serial I/O Timing 21-27 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) SBI# 0.2VCCE 0.2VCCE [13] tw(SBIL) Figure 21.7.3 SBI Timing BCLK 0.2VCC-BUS [15] td(BCLK-TOi) 0.8VCCE 0.2VCCE TOi Figure 21.7.4 TOi Timing [14] tw(TINi) TINi 0.8VCCE 0.2VCCE 0.8VCCE 0.2VCCE Figure 21.7.5 TINi Timing 21-28 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) [16] tc(BCLK) [18] tw(BCLKL) BCLK 0.43VCC-BUS 0.16VCC-BUS [17] tw(BCLKH) [19] td(BCLKH-A) Address (A11-A30) [21] tv(BCLKH-A) 0.43VCC-BUS 0.16VCC-BUS [20] td(BCLKH-CS) [22] tv(BCLKH-CS) CS# (Access area) 0.43VCC-BUS 0.16VCC-BUS [20] td(BCLKH-CS) CS# (Non-access area) [22] tv(BCLKH-CS) 0.43VCC-BUS [23] td(BCLKL-RDL) [92] td(BCLKH-RDL) [24] tv(BCLKH-RDL) RD# 0.16VCC-BUS Data input (DB0-DB15) 0.43VCC-BUS 0.16VCC-BUS [31] tsu(D-BCLKH) [32] th(BCLKH-D) [97] td(BCLKL-BLWH) td(BCLKL-BHWH) BLW# BHW# 0.16VCC-BUS [25] td(BCLKL-BLWL) [26] tv(BCLKL-BLWL) td(BCLKL-BHWL) tv(BCLKL-BHWL) [28] tv(BCLKH-D) Data output (DB0-DB15) 0.43VCC-BUS [29] tpzx(BCLKL-DZ) 0.16VCC-BUS [27] td(BCLKL-D) [33] tsu(WAITL-BCLKH) [34] th(BCLKH-WAITL) WAIT# [30] tpxz(BCLKH-DZ) 0.43VCC-BUS 0.16VCC-BUS [78] tsu(WAITH-BCLKH) [79] th(BCLKH-WAITH) Notes: * For signal-to-signal timing, see Figure 21.7.8, "Read Timing (Relative to Read Pulse)," and Figure 21.7.9, "Write Timing (Relative to Write Pulse)." * When using the threshold switching function, the data input and WAIT# voltage levels are determined with respect to the rated minimum and maximum values for VIH and VIL. Figure 21.7.6 Read and Write Timing (Relative to BCLK) with 1 or More Wait States 21-29 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) [16] tc(BCLK) [18] BCLK 0.43VCC-BUS 0.16VCC-BUS [17] Address (A11-A30) CS0#, CS1#, CS2#, CS3# tw(BCLKL) [20] [19] tw(BCLKH) [22] [21] td(BCLKH-CS) td(BCLKH-A) tv(BCLKH-CS) tv(BCLKH-A) 0.43VCC-BUS 0.16VCC-BUS [23] td(BCLKL-RDL) [24] tv(BCLKH-RDL) RD# 0.16VCC-BUS Data input (DB0-DB15) 0.43VCC-BUS 0.16VCC-BUS [31] tsu(D-BCLKH) [32] BLW# BHW# 0.16VCC-BUS [25] Data output (DB0-DB15) th(BCLKH-D) td(BCLKL-BLWL) td(BCLKL-BHWL) [90] tv(BCLKH-BLWL) tv(BCLKH-BHWL) [28] tv(BCLKH-D) 0.43VCC-BUS [29] 0.16VCC-BUS tpzx(BCLKL-DZ) [27] td(BCLKL-D) [30] tpxz(BCLKH-DZ) Note: * When using the threshold switching function, the data input voltage levels are determined with respect to the rated minimum and maximum values for VIH and VIL. Figure 21.7.7 Read and Write Timing (Relative to BCLK) with Zero Wait State 21-30 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) [55] RD# tw(RDL) 0.43VCC-BUS 0.16VCC-BUS [57] BLW# BHW# [43] tw(RDH) [56] td(BLWH-RDL) td(BHWH-RDL) 0.43VCC-BUS 0.16VCC-BUS [39] [41] td(A-RDL) tv(RDH-A) Address (A11-A30) 0.43VCC-BUS 0.16VCC-BUS [93] [42] td(CSL-RDL) CS# (Access area) tv(RDH-CS) 0.16VCC-BUS [40] CS# (Non-access area) td(RDH-BLWL) td(RDH-BHWL) [42] td(CS-RDL) tv(RDH-CS) 0.43VCC-BUS Data input (DB0-DB15) 0.43VCC-BUS 0.16VCC-BUS [44] tsu(D-RDH) [45] th(RDH-D) [46] Data output (DB0-DB15) tpzx(RDH-DZ) 0.43VCC-BUS 0.16VCC-BUS Note: * When using the threshold switching function, the data input voltage levels are determined with respect to the rated minimum and maximum values for VIH and VIL. Figure 21.7.8 Read Timing (Relative to Read Pulse) 21-31 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) [51] BLW# BHW# 0.43VCC-BUS 0.16VCC-BUS [56] RD# [57] td(RDH-BLWL) td(RDH-BHWL) 0.16VCC-BUS [49] tv(BLWH-A) tv(BHWH-A) [50] tv(BLWH-CS) tv(BHWH-CS) td(A-BLWL) td(A-BHWL) 0.43VCC-BUS 0.16VCC-BUS [95] td(CSL-BLWL) td(CSL-BHWL) CS# (Access area) 0.16VCC-BUS [48] CS# (Non-access area) td(BLWH-RDL) td(BHWH-RDL) 0.43VCC-BUS [47] Address (A11-A30) tw(BLWL) tw(BHWL) [50] td(CS-BLWL) td(CS-BHWL) tv(BLWH-CS) tv(BHWH-CS) 0.43VCC-BUS [52] td(BLWL-D) td(BHWL-D) [53] Data output (DB0-DB15) tv(BLWH-D) tv(BHWH-D) 0.43VCC-BUS 0.16VCC-BUS [54] tpxz(BLWH-DZ) tpxz(BHWH-DZ) Figure 21.7.9 Write Timing (Relative to Write Pulse) 21-32 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) [68] tw(WRL) WR# BLE# BHE# 0.43VCC-BUS 0.16VCC-BUS [73] td(BLEL-WRL) [74] tv(WRH-BLEL) td(BHEL-WRL) tv(WRH-BHEL) 0.16VCC-BUS [80] td(RDH-WRL) RD# [81] td(WRH-RDL) 0.43VCC-BUS 0.16VCC-BUS [71] tv(WRH-A) [69] td(A-WRL) Address (A11-A30) 0.43VCC-BUS 0.16VCC-BUS [96] td(CSL-WRL) CS# (Access area) 0.16VCC-BUS [72] tv(WRH-CS) [70] td(CS-WRL) CS# (Non-access area) [72] tv(WRH-CS) 0.43VCC-BUS [75] td(WRL-D) [76] tv(WRH-D) Data output (DB0-DB15) 0.43VCC-BUS 0.16VCC-BUS [77] tpxz(WRH-DZ) Figure 21.7.10 Write Timing (Byte Enable Mode) 21-33 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) 0.43VCC-BUS BCLK 0.16VCC-BUS [35] tsu(HREQL-BCLKH) HREQ# 0.16VCC-BUS 0.16VCC-BUS [36] th(BCLKH-HREQL) [38] tv(BCLKL-HACKL) HACK# 0.16VCC-BUS 0.16VCC-BUS [37] td(BCLKL-HACKL) Figure 21.7.11 Bus Arbitration Timing [58] tr JTCK, JTDI JTMS, JTRST [59] tf 0.8VCCE 0.2VCCE 0.8VCCE 0.2VCCE Note: * The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF. Figure 21.7.12 Input Transition Time of JTAG Pins 21-34 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.7 A.C. Characteristics (when VCCE = 5 V) [60] tc(JTCK) [61] tw(JTCKH) JTCK [62] tw(JTCKL) 0.5VCCE [63] tsu(JTDI-JTCK) [64] th(JTCK-JTDI) Data input (JTDI) JTMS 0.8VCCE 0.8VCCE 0.2VCCE 0.2VCCE [65] td(JTCK-JTDOV) Data output (JIDO) [66] td(JTCK-JTDOX) 0.8VCCE 0.2VCCE 0.8VCCE 0.2VCCE [67] tw(JTRST) JTRST 0.2VCCE 0.2VCCE Note: * The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF. Figure 21.7.13 JTAG Interface Timing [82] tc(RTDCLK) [83] tw(RTDCLKH) RTDCLK 0.5VCCE [84] tw(RTDCLKL) 0.5VCCE 0.5VCCE 0.5VCCE [85] td(RTDCLKH-RTDACK) RTDACK [86] tv(RTDCLKL-RTDACK) 0.8VCCE 0.2VCCE [87] td(RTDCLKH-RTDTXD) 0.8VCCE 0.2VCCE RTDTXD [88] RTDRXD th(RTDCLKH-RTDRXD) 0.8VCCE 0.2VCCE [89] tsu(RTDRXD-RTDCLKL) 0.8VCCE 0.2VCCE Figure 21.7.14 RTD Timing 21-35 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) 21.8 A.C. Characteristics (when VCCE = 3.3 V) * The timing conditions are referenced to VCCE, OSC-VCC, VCC-BUS, VDDE = 3.3V 0.3 V, Ta = -40C to 125C unless otherwise noted. * The rated values below are guaranteed for the case where the output load capacitance of the measured pins are 15 pF to 50 pF (for JTAG related values, a concentrated capacitance of 80 pF). * The terms S, R, ID and W in the rated values shown below have the following meaning: S: "1" when the CS Area Wait Control Register SWAIT bit = 1, or "0" when SWAIT bit = 0 R: "1" when the CS Area Wait Control Register RECOV bit = 1, or "0" when RECOV bit = 0 ID: Number of idle cycles inserted at the end of the bus cycle. Idle cycles may be inserted as specified by the CS Area Wait Control Register IDLE bit, or inserted by default when a write operation is executed immediately after a read (ID = 0 or 1). W: Number of wait states (selected by the WTCSEL bit) 21.8.1 Timing Requirements (1) Input/output ports Symbol Parameter Rated Value MIN Unit MAX See Fig. 21.8.1 tsu(P-E) Port Input Setup Time 100 ns [1] th(E-P) Port Input Hold Time 0 ns [2] Unit See Fig. (2) Serial I/O a) CSIO mode, with internal clock selected Symbol Parameter Rated Value MIN MAX 21.8.2 tsu(D-CLK) RXD Input Setup Time 150 ns [4] th(CLK-D) RXD Input Hold Time 50 ns [5] Unit See Fig. b) CSIO mode, with external clock selected Symbol Parameter Rated Value MIN tc(CLK) MAX 21.8.2 CLK Input Cycle Time 640 ns [7] tw(CLKH) CLK Input High Pulse Width 300 ns [8] tw(CLKL) CLK Input Low Pulse Width 300 ns [9] tsu(D-CLK) RXD Input Setup Time 60 ns [10] th(CLK-D) RXD Input Hold Time 100 ns [11] Unit See Fig. (3) SBI Symbol Parameter Rated Value MIN tw(SBIL) tc(BCLK) 5x 2 SBI# Input Pulse Width 21-36 MAX 21.8.3 ns [13] 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) (4) TINi (i=0-33) Symbol Parameter Rated Value MIN tw(TINi) MAX tc(BCLK) 7x 2 TINi Input Pulse Width Unit See Fig. 21.8.5 ns [14] Unit See Figs. 21.8.6 21.8.7 21.8.8 21.8.9 21.8.10 (5) Read and write timing Symbol Parameter Rated Value MIN MAX tsu(D-BCLKH) Data Input Setup Time before BCLK 26 ns [31] th(BCLKH-D) Data Input Hold Time after BCLK 0 ns [32] tsu(WAITL-BCLKH) WAIT# Input Setup Time before BCLK 26 ns [33] th(BCLKH-WAITL) WAIT# Input Hold Time after BCLK 0 ns [34] tsu(WAITH-BCLKH) WAIT# Input Setup Time before BCLK 26 ns [78] th(BCLKH-WAITH) WAIT# Input Hold Time after BCLK 0 ns [79] tc(BCLK) ( )x(1+2W-S)-20 2 ns [43] tw(RDL) Read Low Pulse Width tsu(D-RDH) Data Input Setup Time before Read 30 ns [44] th(RDH-D) Data Input Hold Time after Read 0 ns [45] tw(BLWL) Write Low Pulse Width ns [51] tw(BHWL) (byte write mode) With zero wait state tc(BCLK) 2 -11 With 1 or more wait states ( tc(BCLK) )x(2W-S)-20 2 td(RDH-BLWL) Write Delay Time after Read tc(BCLK)x( 1 +R+ID)-10 ns [56] Read Delay Time after Write With zero wait state ns [57] ns [68] tc(BCLK)x( 1 +R+ID)-10 ns [80] Read Delay Time after Write With zero wait state ns [81] (byte enable mode) tc(BCLK) 2 ns [90] ns [92] 2 td(RDH-BHWL) td(BLWH-RDL) tc(BCLK) 2 td(BHWH-RDL) -10 With 1 or more wait states tc(BCLK)x(1+R)-10 tw(WRL) Write Low Pulse Width (byte enable mode) With zero wait state tc(BCLK) -7 2 With 1 or more wait states ( tc(BCLK) )x(2W-S)-20 2 td(RDH-WRL) Write Delay Time after Read 2 (byte enable mode) td(WRH-RDL) -20 With 1 or more wait states tc(BCLK)x(1+R)-20 tv(BCLKH-BLWL) Write Valid Time after BCLK tv(BCLKH-BHWL) (with zero wait state) td(BCLKH-RDL) -5 Read Delay Time after BCLK 17 (when SWAIT = 1) 21-37 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) Symbol Parameter Rated Value MIN td(CSL-RDL) td(CSL-BLWL) Unit See Figs. 21.8.6 21.8.8 21.8.9 21.8.10 MAX Chip Select Delay Time before Read ( tc(BCLK) )x(1+S)-16 2 ns [93] Chip Select Delay Time before Write ( tc(BCLK) )x(1+S)-16 2 ns [95] Chip Select Delay Time before Write ( tc(BCLK) )x(1+S)-20 ns [96] ns [97] Unit See Fig. td(CSL-BHWL) td(CSL-WRL) 2 (byte enable mode) td(BCLKL-BLWH) Write Delay Time after BCLK 14 td(BCLKL-BHWH) (6) Bus arbitration timing Symbol Parameter Rated Value MIN MAX 21.8.11 tsu(HREQL-BCLKH) HREQ# Input Setup Time before BCLK 27 ns [35] th(BCLKH-HREQL) HREQ# Input Hold Time after BCLK 0 ns [36] Unit See Fig. (7) Input transition time of JTAG pins Symbol Parameter Rated Value MIN tr High-going Other than JTRST pin MAX 21.8.12 10 ns 10 ns 2 ms 10 ns 10 ns 2 ms [58] Transition Time (JTCK, JTDI, JTMS, JTDO) of Input JTRST pin When using TAP When not using TAP tf Low-going Other than JTRST pin [59] Transition Time (JTCK, JTDI, JTMS, JTDO) of Input JTRST pin When using TAP When not using TAP Note: * The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF. 21-38 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) (8) JTAG interface timing Symbol Parameter Rated Value MIN tc(JTCK) Unit MAX See Fig. 21.8.13 JTCK Input Cycle Time 100 ns [60] tw(JTCKH) JTCK Input High Pulse Width 40 ns [61] tw(JTCKL) JTCK Input Low Pulse Width 40 ns [62] tsu(JTDI-JTCK) JTDI, JTMS Input Setup Time 15 ns [63] th(JTCK-JTDI) JTDI, JTMS Input Hold Time 20 ns [64] td(JTCK-JTDOV) JTDO Output Delay Time after JTCK Fall 40 ns [65] td(JTCK-JTDOX) JTDO Output Hi-Z Delay Time after JTCK Fall 40 ns [66] ns [67] tw(JTRST) JTRST Input Low Pulse Width tc(JTCK) Note: * The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF. (9) RTD timing Symbol Parameter Rated Value MIN tc(RTDCLK) Unit MAX See Fig. 21.8.14 RTDCLK Input Cycle Time 500 ns [82] tw(RTDCLKH) RTDCLK Input High Pulse Width 230 ns [83] tw(RTDCLKL) RTDCLK Input Low Pulse Width 230 ns [84] td(RTDCLKH-RTDACK) RTDACK Delay Time after RTDCLK Input 160 ns [85] tv(RTDCLKL-RTDACK) RTDACK Valid Time after RTDCLK Input 160 ns [86] td(RTDCLKH-RTDTXD) RTDTXD Delay Time after RTDCLK Input tw(RTDCLKH)+160 ns [87] th(RTDCLKH-RTDRXD) RTDRXD Input Hold Time ns [88] ns [89] 50 tsu(RTDRXD-RTDCLKL) RTDRXD Input Setup Time 60 21-39 tc(RTDCLK) +160 2 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) 21.8.2 Switching Characteristics (1) Input/output ports Symbol Parameter Rated Value MIN td(E-P) Unit MAX Port Data Output Delay Time 100 See Fig. 21.8.1 ns [3] Unit See Fig. (2) Serial I/O a) CSIO mode, with internal clock selected Symbol Parameter Rated Value MIN td(CLK-D) TXD Output Delay Time th(CLK-D) TXD Hold Time MAX 60 0 21.8.2 ns [6] ns [98] Unit See Fig. b) CSIO mode, with external clock selected Symbol Parameter Rated Value MIN td(CLK-D) MAX TXD Output Delay Time 160 21.8.2 ns [12] Unit See Fig. (3)TOi (i=0-44) Symbol Parameter Rated Value MIN td(BCLK-TOi) TOi Output Delay Time MAX 100 21-40 21.8.4 ns [15] 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) (4) Read and write timing Symbol Parameter Rated Value Unit See Figs. 21.8.6 21.8.7 MIN tc(BCLK) BCLK Output High Pulse Width tw(BCLKL) BCLK Output Low Pulse Width td(BCLKH-CS) tv(BCLKH-A) tc(Xin) 2 BCLK Output Cycle Time tw(BCLKH) td(BCLKH-A) MAX tc(BCLK) -5 2 tc(BCLK) -5 2 21.8.8 21.8.9 ns [16] ns [17] ns [18] Address Delay Time after BCLK 29 ns [19] Chip Select Delay Time after BCLK 30 ns [20] Address Valid Time after BCLK -5 ns [21] tv(BCLKH-CS) Chip Select Valid Time after BCLK -5 ns [22] td(BCLKL-RDL) Read Delay Time after BCLK ns [23] tv(BCLKH-RDL) Read Valid Time after BCLK ns [24] ns [25] ns [26] ns [27] ns [28] ns [29] 14 -5 td(BCLKL-BLWL) Write Delay Time after BCLK 14 td(BCLKL-BHWL) tv(BCLKL-BLWL) Write Valid Time after BCLK -5 tv(BCLKL-BHWL) td(BCLKL-D) Data Output Delay Time after BCLK With zero wait state: 14 With 1 or more wait states: 19 tv(BCLKH-D) Data Output Valid Time after BCLK With zero wait state: -4 With 1 or more wait states: -10 tpzx(BCLKL-DZ) Data Output Enable Time after BCLK -10 tpxz(BCLKH-DZ) Data Output Disable Time after BCLK td(A-RDL) td(CS-RDL) tv(RDH-A) tv(RDH-CS) Address Delay Time before Read Chip Select Delay Time before Read Address Valid Time after Read Chip Select Valid Time after Read ns [30] tc(BCLK) ( )x(1+S)-15 2 tc(BCLK) ( )x(1+S)-15 2 5 ns [39] ns [40] tc(BCLK)x(R+ID) ns [41] tc(BCLK)xR ns [42] Data Output Enable Time after Read tc(BCLK)x(12 +R+ID) ns [46] td(A-BLWL) Address Delay Time before Write ( tc(BCLK) )x(1+S)-15 ns [47] td(A-BHWL) (byte write mode) td(CS-BLWL) Chip Select Delay Time before Write ( tc(BCLK) )x(1+S)-15 ns [48] td(CS-BHWL) (byte write mode) With zero wait state: -5 ns [49] ns [50] tpzx(RDH-DZ) tv(BLWH-A) Address Valid Time after Write tv(BHWH-A) (byte write mode) 2 2 With 1 or more wait states: tc(BCLK)x(12 +R)-5 tv(BLWH-CS) Chip Select Valid Time after Write tv(BHWH-CS) (byte write mode) With zero wait state: -5 With 1 or more wait states: 1 tc(BCLK)x( 2 +R)-5 21-41 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) Read and write timing (continued from the preceding page) Symbol Parameter Rated Value MIN MAX td(BLWL-D) Data Output Delay Time after Write With zero wait state: 5 td(BHWL-D) (byte write mode) With 1 or more wait states: Unit See Figs. 21.8.6 21.8.7 21.8.8 21.8.9 ns [52] ns [53] ns [54] tc(BCLK) )x(1+S)-20 2 ns [69] ( tc(BCLK) )x(1+S)-15 ns [70] Address Valid Time after Write With zero wait state: -5 ns [71] (byte enable mode) With 1 or more wait states: ns [72] ( tc(BCLK) )x(1+S)-15 ns [73] ns [74] ns [75] ns [76] ns [77] ns [55] 15-( tv(BLWH-D) Data Output Valid Time after Write With zero wait state: -7 tv(BHWH-D) (byte write mode) With 1 or more wait states: tc(BCLK) )xS 2 1 tc(BCLK)x( 2 +R)-13 tpxz(BLWH-DZ) Data Output Disable Time after Write With zero wait state: 5 tpxz(BHWH-DZ) (byte write mode) With 1 or more wait states: 1 tc(BCLK)x( 2 +R)+5 td(A-WRL) Address Delay Time before Write ( (byte enable mode) td(CS-WRL) Chip Select Delay Time before Write 2 (byte enable mode) tv(WRH-A) 1 tc(BCLK)x(2 +R)-5 tv(WRH-CS) Chip Select Valid Time after Write With zero wait state: -5 (byte enable mode) With 1 or more wait states: 1 tc(BCLK)x( 2 +R)-5 td(BLE-WRL) Byte Enable Delay Time before Write td(BHE-WRL) (byte enable mode) 2 tv(WRH-BLE) Byte Enable Valid Time after Write With zero wait state: -5 tv(WRH-BHE) (byte enable mode) With 1 or more wait states: 1 tc(BCLK)x( 2 +R)-5 td(WRL-D) Data Output Delay Time after Write With zero wait state: 9 (byte enable mode) With 1 or more wait states: 15-( tc(BCLK) )xS 2 tv(WRH-D) Data Output Valid Time after Write With zero wait state: -7 (byte enable mode) With 1 or more wait states: 1 tc(BCLK)x( 2 +R)-13 tpxz(WRH-DZ) Data Output Disable Time after Write With zero wait state: 5 (byte enable mode) With 1 or more wait states: 1 tc(BCLK)x( 2 +R)+5 tw(RDH) Read High Pulse Width ( tc(BCLK) )x(1+S)-5 2 (5) Bus arbitration Symbol Parameter Rated Value MIN td(BCLKL-HACKL) HACK# Delay Time after BCLK tv(BCLKL-HACKL) HACK# Valid Time after BCLK Unit MAX 29 -11 21-42 See Fig. 21.8.11 ns [37] ns [38] 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) 21.8.3 A.C. Characteristics 0.8VCCE BCLK 0.2VCCE [1] [2] tsu(P-E) 0.8VCCE 0.2VCCE Port input th(E-P) 0.8VCCE 0.2VCCE [3] td(E-P) 0.8VCCE 0.2VCCE Port output Note: * The ports listed below operate with the VCC-BUS power supply, and not with the VCCE power supply. Therefore, the reference voltage for these ports is the VCC-BUS input voltage. P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224, P225 Figure 21.8.1 Input/Output Port Timing a) CSIO mode, with internal clock selected 0.8VCCE SCLKO 0.2VCCE [98] th(CLK-D) [6] td(CLK-D) 0.8VCCE 0.2VCCE TXD [4] tsu(D-CLK) [5] th(CLK-D) 0.8VCCE 0.2VCCE 0.8VCCE 0.2VCCE RXD b) CSIO mode, with external clock selected [7] tc(CLK) [8] tw(CLKH) 0.8VCCE SCLKI 0.2VCCE [12] td(CLK-D) [9] tw(CLKL) 0.8VCCE 0.2VCCE TXD [10] tsu(D-CLK) RXD 0.8VCCE 0.2VCCE [11] th(CLK-D) 0.8VCCE 0.2VCCE Figure 21.8.2 Serial I/O Timing 21-43 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) SBI# 0.2VCCE 0.2VCCE [13] tw(SBIL) Figure 21.8.3 SBI Timing BCLK 0.2VCC-BUS [15] td(BCLK-TOi) 0.8VCCE 0.2VCCE TOi Figure 21.8.4 TOi Timing [14] TINi 0.8VCCE 0.2VCCE tw(TINi) 0.8VCCE 0.2VCCE Figure 21.8.5 TINi Timing 21-44 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) [16] tc(BCLK) [18] tw(BCLKL) BCLK 0.43VCC-BUS 0.16VCC-BUS [17] tw(BCLKH) [19] td(BCLKH-A) Address (A11-A30) [21] tv(BCLKH-A) 0.43VCC-BUS 0.16VCC-BUS [20] td(BCLKH-CS) [22] tv(BCLKH-CS) CS# (Access area) 0.43VCC-BUS 0.16VCC-BUS [20] td(BCLKH-CS) CS# (Non-access area) [22] tv(BCLKH-CS) 0.43VCC-BUS [23] td(BCLKL-RDL) [92] td(BCLKH-RDL) [24] tv(BCLKH-RDL) RD# 0.16VCC-BUS Data input (DB0-DB15) 0.43VCC-BUS 0.16VCC-BUS [31] tsu(D-BCLKH) [32] th(BCLKH-D) [97] td(BCLKL-BLWH) td(BCLKL-BHWH) BLW# BHW# 0.16VCC-BUS [25] td(BCLKL-BLWL) [26] tv(BCLKL-BLWL) td(BCLKL-BHWL) tv(BCLKL-BHWL) [28] tv(BCLKH-D) Data output (DB0-DB15) 0.43VCC-BUS [29] tpzx(BCLKL-DZ) 0.16VCC-BUS [27] td(BCLKL-D) [33] tsu(WAITL-BCLKH) [34] th(BCLKH-WAITL) WAIT# [30] tpxz(BCLKH-DZ) 0.43VCC-BUS 0.16VCC-BUS [78] tsu(WAITH-BCLKH) [79] th(BCLKH-WAITH) Notes: * For signal-to-signal timing, see Figure 21.8.8, "Read Timing (Relative to Read Pulse)," and Figure 21.8.9, "Write Timing (Relative to Write Pulse)." * When using the threshold switching function, the data input and WAIT# voltage levels are determined with respect to the rated minimum and maximum values for VIH and VIL. Figure 21.8.6 Read and Write Timing (Relative to BCLK) with 1 or More Wait States 21-45 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) [16] tc(BCLK) [18] BCLK 0.43VCC-BUS 0.16VCC-BUS [17] Address (A11-A30) CS0#, CS1#, CS2#, CS3# tw(BCLKL) [20] [19] tw(BCLKH) [22] [21] td(BCLKH-CS) td(BCLKH-A) tv(BCLKH-CS) tv(BCLKH-A) 0.43VCC-BUS 0.16VCC-BUS [23] td(BCLKL-RDL) [24] tv(BCLKH-RDL) RD# 0.16VCC-BUS Data input (DB0-DB15) 0.43VCC-BUS 0.16VCC-BUS [31] tsu(D-BCLKH) [32] BLW# BHW# 0.16VCC-BUS [25] Data output (DB0-DB15) th(BCLKH-D) td(BCLKL-BLWL) td(BCLKL-BHWL) [90] tv(BCLKH-BLWL) tv(BCLKH-BHWL) [28] tv(BCLKH-D) 0.43VCC-BUS [29] 0.16VCC-BUS tpzx(BCLKL-DZ) [27] td(BCLKL-D) [30] tpxz(BCLKH-DZ) Note: * When using the threshold switching function, the data input voltage levels are determined with respect to the rated minimum and maximum values for VIH and VIL. Figure 21.8.7 Read and Write Timing (Relative to BCLK) with Zero Wait State 21-46 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) [55] RD# tw(RDL) 0.43VCC-BUS 0.16VCC-BUS [57] BLW# BHW# [43] tw(RDH) [56] td(BLWH-RDL) td(BHWH-RDL) 0.43VCC-BUS 0.16VCC-BUS [39] [41] td(A-RDL) tv(RDH-A) Address (A11-A30) 0.43VCC-BUS 0.16VCC-BUS [93] [42] td(CSL-RDL) CS# (Access area) tv(RDH-CS) 0.16VCC-BUS [40] CS# (Non-access area) td(RDH-BLWL) td(RDH-BHWL) [42] td(CS-RDL) tv(RDH-CS) 0.43VCC-BUS Data input (DB0-DB15) 0.43VCC-BUS 0.16VCC-BUS [44] tsu(D-RDH) [45] th(RDH-D) [46] Data output (DB0-DB15) tpzx(RDH-DZ) 0.43VCC-BUS 0.16VCC-BUS Note: * When using the threshold switching function, the data input voltage levels are determined with respect to the rated minimum and maximum values for VIH and VIL. Figure 21.8.8 Read Timing (Relative to Read Pulse) 21-47 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) [51] tw(BLWL) tw(BHWL) BLW# BHW# RD# Address (A11-A30) 0.43VCC-BUS 0.16VCC-BUS [56] td(RDH-BLWL) [57] td(BLWH-RDL) td(RDH-BHWL) td(BHWH-RDL) 0.43VCC-BUS 0.16VCC-BUS [47] td(A-BLWL) [49] tv(BLWH-A) td(A-BHWL) tv(BHWH-A) 0.43VCC-BUS 0.16VCC-BUS [95] td(CSL-BLWL) [50] tv(BLWH-CS) td(CSL-BHWL) tv(BHWH-CS) CS# (Access area) CS# (Non-access area) 0.16VCC-BUS [48] td(CS-BLWL) [50] tv(BLWH-CS) td(CS-BHWL) tv(BHWH-CS) 0.43VCC-BUS [52] td(BLWL-D) [53] tv(BLWH-D) td(BHWL-D) Data output (DB0-DB15) tv(BHWH-D) 0.43VCC-BUS 0.16VCC-BUS [54] tpxz(BLWH-DZ) tpxz(BHWH-DZ) Figure 21.8.9 Write Timing (Relative to Write Pulse) 21-48 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) [68] tw(WRL) WR# BLE# BHE# 0.43VCC-BUS 0.16VCC-BUS [73] td(BLEL-WRL) [74] tv(WRH-BLEL) td(BHEL-WRL) tv(WRH-BHEL) 0.16VCC-BUS [80] td(RDH-WRL) RD# [81] td(WRH-RDL) 0.43VCC-BUS 0.16VCC-BUS [71] tv(WRH-A) [69] td(A-WRL) Address (A11-A30) 0.43VCC-BUS 0.16VCC-BUS [96] td(CSL-WRL) CS# (Access area) 0.16VCC-BUS [72] tv(WRH-CS) [70] td(CS-WRL) CS# (Non-access area) [72] tv(WRH-CS) 0.43VCC-BUS [75] td(WRL-D) [76] tv(WRH-D) Data output (DB0-DB15) 0.43VCC-BUS 0.16VCC-BUS [77] tpxz(WRH-DZ) Figure 21.8.10 Write Timing (Byte Enable Mode) 21-49 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) 0.43VCC-BUS BCLK [35] HREQ# 0.16VCC-BUS tsu(HREQL-BCLKH) 0.16VCC-BUS [36] 0.16VCC-BUS th(BCLKH-HREQL) [38] tv(BCLKL-HACKL) HACK# 0.16VCC-BUS [37] 0.16VCC-BUS td(BCLKL-HACKL) Figure 21.8.11 Bus Arbitration Timing [58] tr JTCK, JTDI JTMS, JTRST [59] tf 0.8VCCE 0.8VCCE 0.2VCCE 0.2VCCE Note: * The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF. Figure 21.8.12 Input Transition Time of JTAG Pins 21-50 32182 Group User's Manual (Rev.1.0) ELECTRICAL CHARACTERISTICS 21 21.8 A.C. Characteristics (when VCCE = 3.3 V) [60] tc(JTCK) [61] tw(JTCKH) [62] tw(JTCKL) 0.5VCCE JTCK [63] tsu(JTDI-JTCK) [64] th(JTCK-JTDI) Data input (JTDI) JTMS 0.8VCCE 0.8VCCE 0.2VCCE 0.2VCCE [65] td(JTCK-JTDOV) Data output (JTDO) [66] td(JTCK-JTDOX) 0.8VCCE 0.2VCCE 0.8VCCE 0.2VCCE [67] tw(JTRST) JTRST 0.2VCCE 0.2VCCE Note: * The rated values here are guaranteed for the case where the measured pin load capacitance CL = 80 pF. Figure 21.8.13 JTAG Interface Timing [82] tc(RTDCLK) [83] tw(RTDCLKH) RTDCLK 0.5VCCE [84] tw(RTDCLKL) 0.5VCCE 0.5VCCE 0.5VCCE [85] td(RTDCLKH-RTDACK) RTDACK [86] tv(RTDCLKL-RTDACK) 0.8VCCE 0.2VCCE [87] td(RTDCLKH-RTDTXD) 0.8VCCE 0.2VCCE RTDTXD [88] RTDRXD th(RTDCLKH-RTDRXD) 0.8VCCE 0.2VCCE [89] tsu(RTDRXD-RTDCLKL) 0.8VCCE 0.2VCCE Figure 21.8.14 RTD Timing 21-51 32182 Group User's Manual (Rev.1.0) 21 ELECTRICAL CHARACTERISTICS 21.8 A.C. Characteristics (when VCCE = 3.3 V) This page is blank for reasons of layout. 21-52 32182 Group User's Manual (Rev.1.0) CHAPTER 22 TYPICAL CHARACTERISTICS TYPICAL CHARACTERISTICS 22 To be written at a later time. 22-2 32182 Group User's Manual (Rev.1.0) APPENDIX 1 MECHANICAL SPECIFICAITONS Appendix 1.1 Dimensional Outline Drawing MECHANICAL SPECIFICAITONS Appendix 1 Appendix 1.1 Dimensional Outline Drawing Appendix 1.1 Dimensional Outline Drawing (1) 144-pin LQFP MMP EIAJ Package Code LQFP144-P-2020-0.50 Plastic 144pin 20x20mm body LQFP Weight(g) 1.23 JEDEC Code - Lead Material Cu Alloy MD e 144P6Q-A b2 D 108 ME HD 73 l2 Recommended Mount Pad 72 109 144 A A1 A2 b c D E e HD HE L L1 Lp HE E Symbol 37 36 1 A L1 F e x M L Detail F Appendix 1-2 Lp c b A1 y A3 A2 A3 x y b2 I2 MD ME Dimension in Millimeters Min Nom Max - - 1.7 0.125 0.2 0.05 1.4 - - 0.17 0.22 0.27 0.105 0.125 0.175 19.9 20.0 20.1 19.9 20.0 20.1 - 0.5 - 21.8 22.0 22.2 21.8 22.0 22.2 0.35 0.5 0.65 1.0 - - 0.6 0.75 0.45 0.25 - - - - 0.08 0.1 - - 0 8 - 0.225 - - 0.95 - - 20.4 - - - - 20.4 32182 Group User's Manual (Rev.1.0) APPENDIX 2 INSTRUCTION PROCESSING TIME Appendix 2.1 32182 Instruction Processing Time INSTRUCTION PROCESSING TIME Appendix 2 Appendix 2.1 32182 Instruction Processing Time Appendix 2.1 32182 Instruction Processing Time For microcomputers, the number of instruction execution cycles in the E stage (Note 1) normally represents their instruction processing time. However, depending on pipeline operation, other stages may affect the instruction processing time. Especially when a branch instruction is executed, the processing time in each of the IF (Instruction Fetch), D (Decode) and E (Execution) stages of the next instruction must be taken into account. The tables below show the instruction processing time in each pipelined stage of the 32182. Note 1: Two E stages, E1 and EM, are used for the FPU instructions. Table 2.1.1 Instruction Processing Time in Each Pipelined Stage (Other Than FPU Instructions) Number of Execution Cycles in Each Stage Instruction IF D E MEM1 MEM2 WB Load instructions (LD, LDB, LDUB, LDH, LDUH, LOCK) R(Note 1) 1 1 R(Note 1) 1 1 Store instructions (ST, STB, STH, UNLOCK) R(Note 1) 1 1 W(Note 1) 1 (1)(Note 2) BSET and BCLR instructions R(Note 1) 1 R(Note 1) W(Note 1) 1 - +3 Multiply instructions (MUL) R(Note 1) 1 3 - - 1 Divide/remainder instructions (DIV, DIVU, REM, REMU) R(Note 1) 1 37 - - 1 Other instructions(including DSP function instructions R(Note 1) 1 1 - - 1 BTST, SETPSW and CLRPSW) Note 1: See the calculation methods for R and W described in the next page. Note 2: Of the store instructions, only those that have register indirect + register update addressing modes require one cycle in the WB stage (but not more than that). Table 2.1.2 Instruction Processing Time in Each Pipelined Stage (FPU Instructions) Number of Execution Cycles in Each Stage Instruction IF FMADD and FMSUB instructions D E1 EM EA E2 WB R(Note 1) 1 - 1 1 1 1 FDIV instruction R(Note 1) 1 14 - - 1 1 Other FPU instructions R(Note 1) 1 1 - - 1 1 Note 1: See the calculation methods for R and W described in the next page. Appendix 2-2 32182 Group User's Manual (Rev.1.0) Appendix 2 INSTRUCTION PROCESSING TIME Appendix 2.1 32182 Instruction Processing Time The following shows the number of memory access cycles in the IF and MEM stages. Shown here are the minimum number of cycles required for memory access. Therefore, these values do not always reflect the number of cycles actually required for memory or bus access. In write access, for example, although the CPU finishes the MEM stage by only writing to the write buffer, this operation actually is followed by a write to memory. Depending on the memory or bus state before or after the CPU requests a memory access, the instruction processing may take more time than the calculated value. * R (read cycle) When existing in the instruction queue ..................................................... When reading the internal resource (RAM) .............................................. When reading the internal resource (ROM) .............................................. When reading the internal resource (SFR) (byte or halfword) .................. When reading the internal resource (SFR) (word) .................................... When reading external memory (byte or halfword) ................................... When reading external memory (word) .................................................... When successively fetching instructions from external memory .............. 1 CPUCLK cycle 1 CPUCLK cycle 2 CPUCLK cycles 4 CPUCLK cycles 8 CPUCLK cycles 1 CPUCLK + 1 BCLK cycles (Note 1) 1 CPUCLK + 2 BCLK cycles (Note 1) 2 BCLK cycles (Note 1) * W (write cycle) When writing to the internal resource (RAM) ........................................... When writing to the internal resource (SFR) (byte or halfword) ................ When writing to the internal resource (SFR) (word) ................................. When writing to external memory (byte or halfword) ................................ When writing to external memory (word) .................................................. 1 CPUCLK cycle 4 CPUCLK cycles 8 CPUCLK cycles 1 BCLK cycle (Note 1) 2 BCLK cycles (Note 1) Note 1: This applies when external memory is accessed with zero wait state. The instruction processing time increases by 1 BCLK when one wait state is inserted. Note: * BCLK and CPUCLK have the relationship 1 BCLK = 4 CPUCLK. Appendix 2-3 32182 Group User's Manual (Rev.1.0) Appendix 2 INSTRUCTION PROCESSING TIME Appendix 2.1 32182 Instruction Processing Time This page is blank for reasons of layout. Appendix 2-4 32182 Group User's Manual (Rev.1.0) APPENDIX 3 PROCESSING OF UNUSED PINS Appendix 3.1 Example Processing of Unused Pins Appendix 3 PROCESSING OF UNUSED PINS Appendix 3.1 Example Processing of Unused Pins Appendix 3.1 Example Processing of Unused Pins An example of how to process the unused pins of the microcomputer is shown below. (1) When operating in single-chip mode Table 3.1.1 Example Processing of Unused Pins during Single-Chip Mode (Note 1) Pin Name Processing Input/output ports (Note 2) P61-P63, P74-P77, P82-P87, P93-P97, P100-P107, P110-P117, P124-P127, P130-P137, P150, P153, P174, P175, P220, P221 Set the port for input mode and pull each pin low to VSS or pull high to VCCE via a 1 k-10 k resistor. Or set the port for output mode and leave the pin open. P00-P07, P10-P17, P20-P27, P30-P37, P41-P47, P70-P73, P224, P225 Set the port for input mode and pull each pin low to VSS or pull high to VCC-BUS via a 1 k-10 k resistor. Or set the port for output mode and leave the pin open. SBI# (Note 3) Pull low to VSS via a 1 k-10 k resistor. XOUT (Note 4) Leave open A-D converter AD0IN0-AD0IN11, AVREF0, AVSS0 Connect to VSS AVCC0 Connect to VCCE JTAG JTDO, JTMS, JTDI, JTCK Pull high to VCCE or low to VSS via a 0-100 k resistor JTRST Pull low to VSS via a 0-100 k resistor Note 1: Process the unused pins in the shortest wiring length possible (within 20 mm) from the microcomputer pins. Note 2: If any port is set for output mode and left open, care should be taken because the port remains set for input before it is changed for output in a program after being reset. Therefore, the voltage level at the pin is instable, and the power supply current tends to increase while the port remains set for input. Because it is possible that the content of the port direction register will inadvertently be altered by noise or noise-induced runaway, higher reliability may be obtained by periodically setting the port direction register back again in a program. Note, however, that P221 is input-only port and does not work as an output port. Note 3: Make sure that unintended falling edges due to noise, etc. will be not applied. (A falling edge at the SBI# input causes a system break interrupt to occur.) Note 4: This is necessary when an external clock is connected to XIN. Appendix 3-2 32182 Group User's Manual (Rev.1.0) Appendix 3 PROCESSING OF UNUSED PINS Appendix 3.1 Example Processing of Unused Pins (2) When operating in external extension mode Table 3.1.2 Example Processing of Unused Pins during External Extension Mode (Note 1) Pin Name Processing Input/output ports (Note 2) P61-P63, P74-P77, P82-P87, P93-P97, P100-P107, P110-P117, P124-P127, P130-P137, P150, P153, P174, P175, P220, P221 Set the port for input mode and pull each pin low to VSS or pull high to VCCE via a 1 k-10 k resistor. Or set the port for output mode and leave the pin open. P00-P07, P10-P17, P20-P27, P30-P37, P44-P47, P70-P73, P224, P225 Set the port for input mode and pull each pin low to VSS or pull high to VCC-BUS via a 1 k-10 k resistor. Or set the port for output mode and leave the pin open. BLW#/BLE#, BHW#/BHE#, RD# Leave open SBI# (Note 3) Pull low to VSS via a 1 k-10 k resistor XOUT (Note 4) Leave open A-D converter AD0IN0-AD0IN11, AVREF0, AVSS0 Connect to VSS AVCC0 Connect to VCCE JTAG JTDO, JTMS, JTDI, JTCK Pull high to VCCE or low to VSS via a 0-100 k resistor JTRST Pull low to VSS via a 0-100 k resistor Note 1: Process the unused pins in the shortest wiring length possible (within 20 mm) from the microcomputer pins. Note 2: If any port is set for output mode and left open, care should be taken because the port remains set for input before it is changed for output in a program after being reset. Therefore, the voltage level at the pin is instable, and the power supply current tends to increase while the port remains set for input. Because it is possible that the content of the port direction register will inadvertently be altered by noise or noise-induced runaway, higher reliability may be obtained by periodically setting the port direction register back again in a program. Note, however, that P221 is input-only port and does not work as an output port. Note 3: Make sure that unintended falling edges due to noise, etc. will be not applied. (A falling edge at the SBI# input causes a system break interrupt to occur.) Note 4: This is necessary when an external clock is connected to XIN. Appendix 3-3 32182 Group User's Manual (Rev.1.0) Appendix 3 PROCESSING OF UNUSED PINS Appendix 3.1 Example Processing of Unused Pins (3) When operating in processor mode Table 3.1.3 Example Processing of Unused Pins during Processor Mode (Note 1) Pin Name Processing Input/output ports (Note 2) P61-P63, P74-P77, P82-P87, P93-P97, P100-P107, P110-P117, P124-P127, P130-P137, P150, P153, P174, P175, P220, P221 Set the port for input mode and pull each pin low to VSS or pull high to VCCE via a 1 k-10 k resistor. Or set the port for output mode and leave the pin open. P70-P73 Set the port for input mode and pull each pin low to VSS or pull high to VCC-BUS via a 1 k-10 k resistor. Or set the port for output mode and leave the pin open. A11-A30, DB0-DB15, BLW#/BLE#, BHW#/BHE#, RD# CS0#, CS1#, CS2#, CS3# Leave open SBI# (Note 3) Pull low to VSS via a 1 k-10 k resistor XOUT (Note 4) Leave open A-D converter AD0IN0-AD0IN11, AVREF0, AVSS0 Connect to VSS AVCC0 Connect to VCCE JTAG JTDO, JTMS, JTDI, JTCK Pull high to VCCE or low to VSS via a 0-100 k resistor JTRST Pull low to VSS via a 0-100 k resistor Note 1: Process the unused pins in the shortest wiring length possible (within 20 mm) from the microcomputer pins. Note 2: If any port is set for output mode and left open, care should be taken because the port remains set for input before it is changed for output in a program after being reset. Therefore, the voltage level at the pin is instable, and the power supply current tends to increase while the port remains set for input. Because it is possible that the content of the port direction register will inadvertently be altered by noise or noise-induced runaway, higher reliability may be obtained by periodically setting the port direction register back again in a program. Note, however, that P221 is input-only port and does not work as an output port. Note 3: Make sure that unintended falling edges due to noise, etc. will be not applied. (A falling edge at the SBI# input causes a system break interrupt to occur.) Note 4: This is necessary when an external clock is connected to XIN. Appendix 3-4 32182 Group User's Manual (Rev.1.0) APPENDIX 4 SUMMARY OF PRECAUTIONS Appendix 4.1 Appendix 4.2 Appendix 4.3 Appendix 4.4 Precautions about the CPU Precautions about the Address Space Precautions about EIT Precautions To Be Observed when Programming Internal Flash Memory Appendix 4.5 Precautions to Be Observed after Reset Appendix 4.6 Precautions about Input/Output Ports Appendix 4.7 Precautions about the DMAC Appendix 4.8 Precautions about the Multijunction Timers Appendix 4.9 Precautions about the A-D Converter Appendix 4.10 Precautions about Serial I/O Appendix 4.11 Precautions about RAM Backup Mode Appendix 4.12 Precautions about JTAG Appendix 4.13 Precautions about Noise SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.1 Precautions about the CPU Appendix 4.1 Precautions about the CPU Appendix 4.1.1 Precautions Regarding Data Transfer When transferring data, be aware that data arrangements in registers and memory are different. Data in registers Data in memory * Word data (32 bits) (R0-R15) HH +0 HL LH b0 LL b31 +1 HH HL +2 +3 LH LL b0 b31 * Halfword data (16 bits) (R0-R15) H b0 +0 +1 H L L b31 b0 (R0-R15) b0 +3 +2 +3 H L b15 +0 H +2 +1 L b31 b16 b31 * Byte data (8 bits) (R0-R15) b0 +0 b31 (R0-R15) b0 b31 b8 +0 +3 +1 +2 +3 +2 +3 b15 +1 b31 (R0-R15) b0 +2 b7 +0 (R0-R15) b0 b0 +1 b16 b23 +0 b31 +1 +2 +3 b24 b31 Figure 4.1.1 Difference in Data Arrangements Appendix 4-2 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.2 Precautions about the Address Space Appendix 4.2 Precautions about the Address Space Appendix 4.2.1 Virtual Flash Emulation Function The microcomputer has the function to map 4-Kbyte memory blocks beginning with the address H'0080 8000 into areas (S banks) of the internal flash memory that are divided in 4-Kbyte units. This functions is referred to as the virtual flash emulation function. This function allows the data located in 4-Kbyte blocks of the internal RAM to be changed with the flash memory contents at the addresses specified by the Virtual Flash Bank Register. For details about this function, see Section 6.6, "Virtual Flash Emulation Function." Appendix 4.3 Precautions about EIT The Address Exception (AE) requires caution because if one of the instructions that use "register indirect + register update" addressing mode (following three instructions) generates an address exception when it is executed, the values of the registers to be automatically updated (Rsrc and Rsrc2) become undefined. Except that the values of Rsrc and Rsrc2 become undefined, these instructions behave the same way as when used in other addressing modes. * Applicable instructions LD ST ST Rdest, @Rsrc+ Rsrc1, @-Rsrc2 Rsrc1, @+Rsrc2 If the above case applies, consider the fact that the register values become undefined when you design the processing to be performed after executing said instructions. (If an address exception occurs, it means that the system has some fatal fault already existing in it. Therefore, address exceptions must be used on condition that control will not be returned from the address exception handler to the program that was being executed when the exception occurred.) Appendix 4.4 Precautions To Be Observed when Programming Internal Flash Memory The following describes precautions to be taken when programming/erasing the internal flash memory. * When the internal flash memory is programmed or erased, a high voltage is generated internally. Because mode transitions during programming/erase operation may cause the chip to break down, make sure the mode setting pin/power supply voltages do not fluctuate to prevent unintended changes of modes. * If the system uses any pins that are to be used by a general-purpose programming/erase tool, care must be taken to prevent adverse effects on the system when the tool is connected. * If the internal flash memory needs to be protected while using a general-purpose programming/erase tool, set any ID in the flash memory protect ID verification area (H'0000 0084 to H'0000 008F). * If the internal flash memory does not need to be protected while using a general-purpose programming/erase tool, fill the entire flash memory protect ID verification area (H'0000 0084 to H'0000 008F) with H'FF. * If the Flash Status Register 2 (FSTAT2)'s each error status is to be cleared (initialized to H'80) by resetting the Flash Control Register 4 (FCNT4) FRESET bit, check to see that the Flash Status Register 1 (FSTAT1) FSTAT bit = "1" (ready) before clearing the error status. * Before resetting the Flash Control Register 1 (FCNT1) FENTRY bit from "1" to "0", check to see that the Flash Status Register 1 (FSTAT1) FSTAT bit = "1" (ready) or the Flash Status Register 2 (FSTAT2) FBUSY bit = "1" (ready). * Do not clear the FENTRY bit if the Flash Control Register 1 (FCNT1) FENTRY bit = "1" and the Flash Status Register 1 (FSTAT1) FSTAT bit = "0" (busy) or the Flash Status Register 2 (FSTAT2) FBUSY bit = "0" (being programmed or erased). Appendix 4-3 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.5 Precautions To Be Observed after Reset Appendix 4.5 Precautions To Be Observed after Reset Appendix 4.5.1 Input/output Ports After reset, the microcomputer's input/output ports are disabled against input in order to prevent current from flowing through the port. To use any ports in input mode, set the Port Input Special Function Control Register (PICNT) PIEN0 bit to enable them for input. For details, see Section 8.3, "Input/Output Port Related Registers." Appendix 4.6 Precautions about Input/Output Ports Appendix 4.6.1 When Using Input/Output Ports in Output Mode Because the value of the Port Data Register is undefined after reset, the Port Data Register must have its initial value set in it before the Port Direction Register can be set for output. Conversely, if the Port Direction Register is set for output before setting data in the Port Data Register, the Port Data Register outputs an undefined value until any data is written into it. Appendix 4.6.2 About the Port Input Disable Function Because the input/output ports are disabled against input after reset, they must be enabled for input by setting the Port Input Enable (PIEN0) bit to "1" before their input functions can be used. When disabled against input, the input/output ports are in a state equivalent to a situation where the pin has a low-level input applied. Consequently, if a peripheral input function is selected for any port (uncontrolled pin) while disabled against input by using the Port Operation Mode Register, the port may operate unexpectedly due to the low-level input on it. Appendix 4-4 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.7 Precautions about the DMAC Appendix 4.7 Precautions about the DMAC Appendix 4.7.1 About Writing to the DMAC Related Registers Because DMA transfer involves exchanging data via the internal bus, the DMAC related registers basically can only be accessed for write immediately after reset or when transfer is disabled (transfer enable bit = "0"). When transfer is enabled, do not write to the DMAC related registers, except the DMA transfer enable bit, the transfer request flag, and the DMA Transfer Count Register that is protected in hardware. This is a precaution necessary to ensure stable DMA operation. The table below lists the registers that can or cannot be accessed for write. Table 4.7.1 DMAC Related Registers That Can or Cannot Be Accessed for Write Status Transfer enable bit Transfer request flag Other DMAC related registers Transfer enabled Can be accessed Can be accessed Cannot be accessed Transfer disabled Can be accessed Can be accessed Can be accessed Even for registers that can exceptionally be written to while transfer is enabled, the following conditions must be observed: (1) DMA Channel Control Register 0 transfer enable bit and transfer request flag For all other bits in this register, be sure to write the same data that those bits had before the write. Note, however, that only writing "0" is effective for the transfer request flag. (2) DMA Transfer Count Register When transfer is enabled, this register is protected in hardware, so that any data rewritten to it is ignored. (3) Rewriting the DMA source and DMA destination addresses on different channels by DMA transfer Although this operation means accessing the DMAC related registers while DMA is enabled, there is no problem. Note, however, that no data can be transferred by DMA to the DMAC related registers on the currently active channel itself. Appendix 4.7.2 Manipulating the DMAC Related Registers by DMA Transfer When manipulating the DMAC related registers by means of DMA transfer (e.g., reloading the DMAC related registers with the initial values by DMA transfer), do not write to the DMAC related registers on the currently active channel through that channel. (If this precaution is neglected, device operation cannot be guaranteed.) It is only the DMAC related registers on other channels that can be rewritten by means of DMA transfer. (For example, the DMAn Source Address and DMAn Destination Address Registers on channel 1 can be rewritten by DMA transfer through channel 0.) Appendix 4.7.3 About the DMA Interrupt Request Status Register When clearing the DMA Interrupt Request Status Register, be sure to write "1" to all bits, except those to be cleared. Writing "1" to any bits in this register has no effect, so that they retain the data they had before the write. Appendix 4.7.4 About the Stable Operation of DMA Transfer To ensure the stable operation of DMA transfer, never rewrite the DMAC related registers, except the channel control register's transfer enable bit, unless transfer is disabled. One exception is that even when transfer is enabled, the DMA Source Address and DMA Destination Address Registers can be rewritten by DMA transfer from one channel to another. Appendix 4-5 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.8 Precautions about the Multijunction Timers Appendix 4.8 Precautions about the Multijunction Timers Appendix 4.8.1 Precautions on Using TOP Single-Shot Output Mode The following describes precautions to be observed when using TOP single-shot output mode. * If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops. * If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. * When writing to the correction register, be careful not to cause the counter to overflow. Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. Therefore, if the counter underflows in the subsequent down-count after an overflow, a false interrupt request is generated for an underflow that includes the overflowed count. In the example in the next page, the reload register is initially set to H'FFF8. When the timer starts, the reload register value is loaded into the counter, letting it start counting down. In the example here, the value H'0014 is written to the correction register when the counter has counted down to H'FFF0. As a result of this correction, the count overflows to H'0004 and the counter fails to count correctly. Also, an interrupt request is generated for an erroneous overflowed count. Appendix 4-6 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.8 Precautions about the Multijunction Timers Enabled Disabled (by writing to the enable bit (by underflow) or by external input) Count clock Enable bit Write to the correction register Overflow occurs H'(FFF0+0014) H'FFFF H'FFFF H'FFF8 H'(FFF8-1) H'FFF0 Indeterminate value Counter H'0004 Actual count after overflow H'0000 Reload register Correction register H'FFF8 Indeterminate H'0014 F/F output Data inverted by enable Data inverted by underflow TOP interrupt request due to underflow Note: * This diagram does not show detailed timing information. Figure 4.8.1 Example of an Operation in TOP Single-shot Output Mode Where Count Overflows Due to Correction Appendix 4-7 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.8 Precautions about the Multijunction Timers Appendix 4.8.2 Precautions on Using TOP Delayed Single-Shot Output Mode The following describes precautions to be observed when using TOP delayed single-shot output mode. * If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops. * If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * Even if the counter overflows due to correction of counts, no interrupt requests are generated for reasons of an overflow. Therefore, if the counter underflows in the subsequent down-count after an overflow, a false interrupt request is generated for an underflow that includes the overflowed count. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. Reload due to underflow Count clock Enable bit "H" Count down from the reload register value Reload cycle Counter value Reload register H'0001 H'0000 H'FFFF H'AAA9 H'AAA8 H'(AAAA-1) H'(AAAA-2) H'AAAA What is seen during reload cycle is always H'FFFF, and not the reload register value (in this case, H'AAAA). Figure 4.8.2 Counter Value Immediately after Underflow Appendix 4-8 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.8 Precautions about the Multijunction Timers Appendix 4.8.3 Precautions on Using TOP Continuous Output Mode The following describes precautions to be observed when using TOP continuous output mode. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. Appendix 4.8.4 Precautions on Using TIO Measure Free-Run/Clear Input Modes The following describes precautions to be observed when using TIO measure free-run/clear input modes. * If measure event input and write to the counter occur in the same clock period, the write value is set in the counter while at the same time latched into the measure register. Appendix 4.8.5 Precautions on Using TIO PWM Output Mode The following describes precautions to be observed when using TIO PWM output mode. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. Appendix 4.8.6 Precautions on Using TIO Single-Shot Output Mode The following describes precautions to be observed when using TIO single-shot output mode. * If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops. * If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. Appendix 4-9 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.8 Precautions about the Multijunction Timers Appendix 4.8.7 Precautions on Using TIO Delayed Single-Shot Output Mode The following describes precautions to be observed when using TIO delayed single-shot output mode. * If the counter stops due to an underflow in the same clock period as the timer is enabled by external input, the former has priority so that the counter stops. * If the counter stops due to an underflow in the same clock period as count is enabled by writing to the enable bit, the latter has priority so that count is enabled. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. Appendix 4.8.8 Precautions on Using TIO Continuous Output Mode The following describes precautions to be observed when using TIO continuous output mode. * If the timer is enabled by external input in the same clock period as count is disabled by writing to the enable bit, the latter has priority so that count is disabled. * If the counter is accessed for read immediately after being reloaded pursuant to an underflow, the counter value temporarily reads as H'FFFF but immediately changes to (reload value - 1) at the next clock edge. * Because the timer operates synchronously with the count clock, a count clock-dependent delay is included before F/F output is inverted after the timer is enabled. Appendix 4.8.9 Precautions on Using TMS Measure Input The following describes precautions to be observed when using TMS measure input. * If measure event input and write to the counter occur in the same clock period, the write value is set in the counter while at the same time latched into the measure register. Appendix 4-10 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.8 Precautions about the Multijunction Timers Appendix 4.8.10 Precautions on Using TML Measure Input The following describes precautions to be observed when using TML measure input. * If measure event input and write to the counter occur in the same clock period, the write value is set in the counter, whereas the up-count value (before being rewritten) is latched into the measure register. * If clock bus 1 is selected and any clock other than BCLK/2 is used for the timer, the counter cannot be written normally. Therefore, when using any clock other than BCLK/2, do not write to the counter. * If clock bus 1 is selected and any clock other than BCLK/2 is used for the timer, the value captured into the measure register is one count larger the counter value. During the count clock to BCLK/2 period interval, however, the captured value is exactly the counter value. The diagram below shows the relationship between counter operation and the valid data that can be captured. * When BCLK/2 is selected BCLK/2 Counter A B C D E F Captured A B C D E F * When clock bus 1 is selected BCLK/2 Count clock Counter Captured A B B C C D Figure 4.8.3 Mistimed Counter Value and the Captured Value Appendix 4-11 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.9 Precautions about the A-D Converter Appendix 4.9 Precautions about the A-D Converter * Forcible termination during scan operation If A-D conversion is forcibly terminated by setting the A-D conversion stop bit (AD0CSTP) to "1" during scan mode operation and the A-D data register for the channel that was in the middle of conversion is accessed for read, the read value shows the last conversion result that had been transferred to the data register before the conversion was forcibly terminated. * Modification of the A-D converter related registers If the content of any register--A-D Conversion Interrupt Control Register, Single or Scan Mode Registers or A-D Successive Approximation Register, except the A-D conversion stop bit--is modified in the middle of A-D conversion, the conversion result cannot be guaranteed. Therefore, do not modify the contents of these registers while AD conversion is in progress, or be sure to restart A-D conversion if register contents have been modified. * Handling of analog input signals When using the A-D Converter with its sample-and-hold function disabled, make sure the analog input level is fixed during A-D conversion. * A-D conversion completed bit read timing To read the A-D conversion completed bit (Single Mode Register 0 bit 5 or Scan Mode Register 0 bit 5) immediately after A-D conversion has started, be sure to adjust the timing 2 BCLK periods by, for example, inserting an NOP instruction before read. * Regarding the analog input pins Figure 4.9.1 shows the internal equivalent circuit of the A-D Converter's analog input part. To obtain accurate AD conversion results, make sure the internal capacitor C2 of the A-D conversion circuit is charged up within a predetermined time (sampling time). To meet this sampling time requirement, it is recommended that a stabilizing capacitor C1 be connected external to the chip. The method for determining the necessary value of this external stabilizing capacitor with respect to the output impedance of an analog output device is described below. Also, an explanation is made of the case where the output impedance of an analog output device is low and the external stabilizing capacitor C1 is unnecessary. * Rated value of the absolute accuracy The rated value of the absolute accuracy is the actual performance value of the microcomputer alone, with influences of the power supply wiring and noise on the board not taken into account. When designing the application system, use caution for the board layout by, for example, separating the analog circuit power supply and ground (AVCC0, AVSS0 and VREF0) from those of the digital circuit and incorporating measures to prevent the analog input pins from being affected by noise, etc. from other digital signals. Inside the microcomputer 10-bit A-D Successive Approximation Register (ADiSAR) VREF 10-bit D-A Converter V2 Analog output device ADIN n R1 E i i1 i2 C2 Cin R2 Comparator Selector C1 C1 : parasitic capacitance of the board R2 : parasitic resistance of the + stabilizing capacitance selector (1-2 K) R1 : resistance of analog output device C2 : comparator capacitance (approx. 2.9 pF) Cin : input pin capacitance (approx. 10 pF) VREF : analog reference voltage V2 : voltage across C2 E : voltage of analog output device Figure 4.9.1 Internal Equivalent Circuit of the Analog Input Part Appendix 4-12 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.9 Precautions about the A-D Converter (a) Example for calculating the external stabilizing capacitor C1 (addition of this capacitor is recommended) Assuming the R1 in Figure 4.9.1 is infinitely large and that the current necessary to charge the internal capacitor C2 is supplied from C1, if the potential fluctuation, Vp, caused by capacitance division of C1 and C2 is to be within 0.1 LSB, then what amount of capacitance C1 should have. For a 10-bit A-D converter where VREF is 5.12 V, 1 LSB determination voltage = 5.12 V / 1,024 = 5 mV. The potential fluctuation of 0.1 LSB means a 0.5 mV fluctuation. The relationship between the capacitance division of C1 and C2 and the potential fluctuation, Vp, is obtained by the equation below: C2 Eq. A-1 Vp = x (E - V2) C1 + C2 Vp is also obtained by the equation below: x-1 1 VREF Vp = Vp1 x < 10 x 2x i = 0 2i Eq. A-2 where Vp1 = potential fluctuation in the first A-D conversion performed and x = 10 for a 10-bit resolution A-D converter When Eq. A-1 and Eq. A-2 are solved, the following results: E - V2 - 1 } C1 = C2 { Vp1 x-1 C1 > C2 {10 x 2x x 21 i - 1 } i=0 Eq. A-3 Eq. A-4 Thus, for a 10-bit resolution A-D converter where C2 = 2.9 pF, C1 is 0.06 F or more. Use this value for reference when setting up C1. (b) Maximum value of the output impedance R1 when C1 is not added If the external capacitor C1 in Figure 4.9.1 is not used, examination must be made to see if the analog input device can fully charge C2 within a predetermined time. First, the equation to find i2 when C1 in Figure 4.9.1 does not exist is shown below. i2 = C2(E - V2) CinxR1+C2(R1+R2) When sample-and-hold is disabled xexp { -t } ----------------------------- Eq. B-1 CinxR1+C2(R1+R2) Conversion time for the first bit Second bit ADINi Sampling time Comparison Sampling time time Repeated (10 times) for 10 bits * When sample-and-hold is enabled, the analog input is sampled for only the first bit. Figure 4.9.2 A-D Conversion Timing Diagram Figure 4.9.2 shows an A-D conversion timing diagram. C2 must be charged up within the sampling time shown in this diagram. When the sample-and-hold function is disabled, the sampling time for the second and subsequent bits is about half that of the first bit. The sampling times at the respective conversion speeds are listed in the table 4.9.1. Note that when the sample-and-hold function is enabled, the analog input is sampled for only the first bit. Appendix 4-13 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.9 Precautions about the A-D Converter Table 4.9.1 Sampling Time (in Which C2 Needs to Be Charged) Conversion start method Conversion speed Single mode Slow mode (when sample-and -hold disabled) Single mode Fast mode Slow mode Comparator mode 27.5BCLK 13.5BCLK Double speed 15.5BCLK 7.5BCLK Normal speed 11.5BCLK 5.5BCLK Double speed 7.5BCLK 3.5BCLK Normal speed 27.5BCLK - Double speed 15.5BCLK - Normal speed 11.5BCLK - Double speed 7.5BCLK - Normal speed 27.5BCLK - Double speed 15.5BCLK - Normal speed 11.5BCLK - Double speed 7.5BCLK - Fast mode Slow mode Fast mode Sampling time for the second and subsequent bits Normal speed (when sample-and -hold enabled) Sampling time for the first bit Therefore, the time in which C2 needs to be charged is found from Eq. B-1, as follows: Sampling time (in which C2 needs to be charged) > Cin x R1 + C2(R1 + R2) --- Eq. B2 Thus, the maximum value of R1 can be obtained as a criterion from the equation below. Note, however, that for single mode (when sample-and-hold is disabled), the sampling time for the second and subsequent bits (C2 charging time) must be applied. R1 < C2 charging time - C2 x R2 Cin + C2 Appendix 4-14 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.10 Precautions about Serial I/O Appendix 4.10 Precautions about Serial I/O Appendix 4.10.1 Precautions on Using CSIO Mode * Settings of SIO Transmit/Receive Mode Register and SIO Baud Rate Register The SIO Transmit/Receive Mode Register and SIO Baud Rate Register and the Transmit Control Register's BRG count source select bit must always be set before the serial I/O starts operating. If these settings need to be changed after a transmit or receive operation has started, first check to see that transmit and receive operations have finished and then clear the transmit and receive enable bits before making changes. * Settings of BRG (Baud Rate Register) If f(BCLK) is selected with the BRG clock source select bit, use caution when setting the BRG register so that the transfer rate will not exceed 2 Mbps. * About successive transmission To transmit data successively, make sure the next transmit data is set in the SIO Transmit Buffer Register before the current data transmission finishes. * About reception Because the receive shift clock in CSIO mode is derived by an operation of the transmit circuit, transmit operation must always be executed (by sending dummy data) even when the serial I/O is used for only receiving data. In this case, be aware that if the port function is set for the TXD pin (by setting the operation mode register to "1"), dummy data may actually be output from the pin. * About successive reception To receive data successively, make sure that data (dummy data) is set in the SIO Transmit Buffer Register before a transmit operation on the transmitter side starts. * Transmission/reception using DMA To transmit/receive data in DMA request mode, enable the DMAC to accept transfer requests (by setting the DMA Mode Register) before serial communication starts. * About reception finished bit If a receive error (overrun error) occurs, the reception finished bit can only be cleared by clearing the receive enable bit, and cannot be cleared by reading out the receive buffer register. * About overrun error If all bits of the next received data have been set in the SIO Receive Shift Register before reading out the SIO Receive Buffer Register (i.e., an overrun error occurred), the received data is not stored in the receive buffer register, with the previous received data retained in it. Although a receive operation continues thereafter, the subsequent received data is not stored in the receive buffer register (receive status bit = "1"). Before normal receive operation can be restarted, the receive enable bit must be temporarily cleared to "0". And this is the only way that the overrun error flag can be cleared. * About DMA transfer request generation during SIO transmission If the transmit buffer register becomes empty (transmit buffer empty flag = "1") while the transmit enable bit remains set to "1" (transmission enabled), an SIO transmit buffer empty DMA transfer request is generated. * About DMA transfer request generation during SIO reception If the reception finished bit is set to "1" (receive buffer register full), a reception finished DMA transfer request is generated. Be aware, however, that if an overrun error occurred during reception, this DMA transfer request is not generated. Appendix 4-15 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.10 Precautions about Serial I/O Appendix 4.10.2 Precautions on Using UART Mode * Settings of SIO Transmit/Receive Mode Register and SIO Baud Rate Register The SIO Transmit/Receive Mode Register and SIO Baud Rate Register and the Transmit Control Register's BRG count source select bit must always be set before the serial I/O starts operating. If these settings need to be changed after a transmit or receive operation has started, first check to see that transmit and receive operations have finished and then clear the transmit and receive enable bits before making changes. * Settings of BRG (Baud Rate Register) If f(BCLK) is selected with the BRG clock source select bit, make sure the value set in the BRG register is equal to or greater than 7. Writes to the SIO Baud Rate Register take effect in the next cycle after the BRG counter has finished counting. However, if the register is accessed for write while transmission and reception are disabled, the written value takes effect at the same time it is written. * Transmission/reception using DMA To transmit/receive data in DMA request mode, enable the DMAC to accept transfer requests (by setting the DMA Mode Register) before serial communication starts. * About overrun error If all bits of the next received data have been set in the SIO Receive Shift Register before reading out the SIO Receive Buffer Register (i.e., an overrun error occurred), the received data is not stored in the receive buffer register, with the previous received data retained in it. Once an overrun error occurs, although a receive operation continues, the subsequent received data is not stored in the receive buffer register. Before normal receive operation can be restarted, the receive enable bit must be temporarily cleared. And this is the only way that the overrun error flag can be cleared. * Flags showing the status of UART receive operation There are following flags that indicate the status of receive operation during UART mode: * SIO Receive Control Register receive status bit * SIO Receive Control Register reception finished bit * SIO Receive Control Register receive error sum bit * SIO Receive Control Register overrun error bit * SIO Receive Control Register parity error bit * SIO Receive Control Register framing error bit The manner in which the reception finished bit and various error flags are cleared differs depending on whether an overrun error occurred, as described below. [When an overrun error did not occur] Cleared by reading out the lower byte of the receive buffer register or by clearing the receive enable bit. [When an overrun error occurred] Cleared by only clearing the receive enable bit. Appendix 4-16 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.11 Precautions about RAM Backup Mode Appendix 4.11 Precautions about RAM Backup Mode Appendix 4.11.1 Precautions to Be Observed at Power-On When changing port X from input mode to output mode after power-on, pay attention to the following. If port X is set for output mode while no data is set in the Port X Data Register, the port's initial output level is instable. Therefore, before changing port X for output mode, make sure the Port X Data Register is set to output a high. Unless this precaution is followed, port output may go low at the same time the port is set for output after the oscillation has stabilized, causing the microcomputer to enter RAM backup mode. Appendix 4-17 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.12 Precautions about JTAG Appendix 4.12 Precautions about JTAG Appendix 4.12.1 Notes on Board Design when Connecting JTAG To materialize fast and highly reliable communication with JTAG tools, make sure wiring lengths of JTAG pins are matched during board design. SDI connector (JTAG connector) VCCE(5V) JTAG tool Power M32R/ECU 10K (Note 1) RESET# 33 RESET 33 TDO 33 TDI 33 TMS 33 TCK 33 TRST (Note 2) 10K JTDO 10K JTDI 10K JTMS 10K JTCK JTRST 2K 0.1F GND VSS User board Make sure wiring lengths are the same, and avoid bending wires as much as possible. Be careful not to use through-holes within the wiring. Note 1: The RESET# related circuit and resistance-capacitance values must be determined depending on the user board's system design conditions and the microcomputer's operating conditions. Note 2: N-channel open-drain output is recommended for the RESET output of JTAG tools. For details, see JTAG tool specifications. Notes: * Only if the JTRST pin is firmly tied to ground, the JTDO, JTDI, JTMS and JTCLK pins can be processed by either pullup or pulldown. * Each of these pins must always be processed even when not using JTAG tools. The same pullup/pulldown resistance values as when using JTAG tools may be used. Figure 4.12.1 Notes on Board Design when Connecting JTAG Tools Appendix 4-18 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.12 Precautions about JTAG Appendix 4.12.2 Processing Pins when Not Using JTAG The following shows how the pins on the chip should be processed when not using JTAG tools. VCCE(5V) M32R/ECU 0-100K JTDO 0-100K JTDI 0-100K JTMS 0-100K JTCK JTRST 0-100K User board Note: * Only if the JTRST pin is firmly tied to ground, the JTDO, JTDI, JTMS and JTCLK pins can be processed by either pullup or pulldown. Figure 4.12.2 Processing Pins when Not Using JTAG Appendix 4-19 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.13 Precautions about Noise Appendix 4.13 Precautions about Noise The following describes precautions to be taken about noise and corrective measures against noise. The corrective measures described here are theoretically effective for noise, but require that the application system incorporating those measures be fully evaluated before it can actually be put to use. Appendix 4.13.1 Reduction of Wiring Length Wiring on the board may serve as an antenna to draw noise into the microcomputer. Shorter the total wiring length, the smaller the possibility of drawing noise into the microcomputer. (1) Wiring of the RESET# pin Reduce the length of wiring connecting to the RESET# pin. Especially when connecting a capacitor between the RESET# and VSS pins, make sure it is wired to each pin in the shortest distance possible (within 20 mm). Reset is a function to initialize the internal logic of the microcomputer. The width of a pulse applied to the RESET# pin is important and is therefore specified as part of timing requirements. If a pulse in width shorter than the specified duration (i.e., noise) is applied to the RESET# pin, the microcomputer will not be reset for a sufficient duration of time and come out of reset before its internal logic is fully initialized, causing the program to malfunction. Noise Reset circuit RESET# VSS VSS VSS Reset circuit Long wiring RESET# VSS Short wiring Figure 4.13.1 Example Wiring of the RESET# Pin Appendix 4-20 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.13 Precautions about Noise (2) Wiring of clock input/output pins Use as much thick and short wiring as possible for connections to the clock input/output pins. When connecting a capacitor to the oscillator, make sure its grounding lead wire and the OSC-VSS pin on the microcomputer are connected in the shortest distance possible (within 20 mm). Also, make sure the VSS pattern used for clock oscillation is a large ground plane and is connected to GND. The microcomputer operates synchronously with the clock generated by an oscillator circuit. Inclusion of noise on the clock input/output pins causes the clock waveform to become distorted, which may result in the microcomputer operating erratically or getting out of control. Furthermore, if a noise-induced potential difference exists between the microcomputer's VSS level and that of the oscillator, the clock fed into the microcomputer may not be an exact clock. Noise OSC-VSS OSC-VSS XIN XIN XOUT XOUT VSS VSS Thick and short wiring Thin and long wiring Figure 4.13.2 Example Wiring of Clock Input/Output Pins Appendix 4-21 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.13 Precautions about Noise (3) Wiring of the VCNT pin Use as much thick and short wiring as possible for connections to the VCNT pin. When connecting a capacitor to VCNT, make sure its grounding lead wire and the OSC-VSS pin on the microcomputer are connected in the shortest distance possible. Also, make sure the VSS pattern used for VCNT is a large ground plane and is connected to GND. The external circuit inserted for the VCNT pin plays the role of a low-pass filter that stabilizes the PLL's internal voltage and eliminates noise. If noise exceeding the limit of the low-pass filter penetrates into the wiring, the internal circuit may be disturbed by that noise and become unable to produce a precise clock, causing the microcomputer to operate erratically or get out of control. Noise OSC-VSS OSC-VSS VCNT VCNT VSS VSS Thick and short wiring Thin and long wiring Figure 4.13.3 Example Wiring of the VCNT Pin (4) Wiring of the operation mode setup pins When connecting the operation mode setup pins and the VCC or VSS pin, make sure they are wired in the shortest distance possible. The levels of the operation mode setup pins affect the microcomputer's operation mode. When connecting the operation mode setup pins and the VCC or VSS pin, be careful that no noise-induced potential difference will exist between the operation mode setup pins and the VCC or VSS pin. This is because the presence of such a potential difference makes operation mode instable, which may result in the microcomputer operating erratically or getting out of control. Noise Operation mode setup pins Operation mode setup pins VSS VSS Long wiring Short wiring Figure 4.13.4 Example Wiring of the MOD0 and MOD1 Pins Appendix 4-22 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.13 Precautions about Noise Appendix 4.13.2 Inserting a Bypass Capacitor between VSS and VCC Lines Insert a bypass capacitor of about 0.1 F between the VSS and VCC lines. At this time, make sure the requirements described below are met. * The wiring length between the VSS pin and bypass capacitor and that between the VCC pin and bypass capacitor are the same. * The wiring length between the VSS pin and bypass capacitor and that between the VCC pin and bypass capacitor are the shortest distance possible. * The VSS and VCC lines have a greater wiring width than that of all other signal lines. VCC Chip Chip VCC VSS VSS VCC VSS Figure 4.13.5 Example of a Bypass Capacitor Inserted between VSS and VCC Lines Appendix 4.13.3 Processing Analog Input Pin Wiring Insert a resistor of about 100 to 500 in series to the analog signal line connecting to the analog input pin at a position as close to the microcomputer as possible. Also, insert a capacitor of about 100 pF between the analog input pin and AVSS pin at a position as close to the AVSS pin as possible. The signal fed into the analog input pin (e.g., A-D converter input pin) normally is an output signal from a sensor. In many cases, a sensor to detect changes of event is located apart from the board on which the microcomputer is mounted, so that wiring to the analog input pin is inevitably long. Because a long wiring serves as an antenna which draws noise into the microcomputer, the signal fed into the analog input pin tends to be noise-ridden. Furthermore, if the capacitor connected between the analog input pin and AVSS pin is grounded at a position apart from the AVSS pin, noise riding on the ground line may penetrate into the microcomputer via the capacitor. Noise Sensor Microcomputer Analog input pin AVSS Figure 4.13.6 Example of a Resistor and Capacitor Inserted for the Analog Signal Line Appendix 4-23 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.13 Precautions about Noise Appendix 4.13.4 Consideration about the Oscillator and VCNT Pin The oscillator that generates the fundamental clock for microcomputer operation requires consideration to make it unsusceptible to influences from other signals. (1) Avoidance from large-current signal lines Signal lines that conduct a large current exceeding the range of current values that the microcomputer can handle must be routed as far away from the microcomputer (especially the oscillator and VCNT pin) as possible. Also, make sure the circuit is protected with a GND pattern. Systems using a microcomputer have signal lines to control a motor, LED or thermal head, for example. When a large current flows in these signal lines, it generates noise due to mutual inductance (M). Noise is generated by mutual inductance between the microcomputer and an adjacent signal line M OSC-VSS XIN Large current XOUT VCNT GND A signal line that conducts a large current exists near the microcomputer. M OSC-VSS XIN XOUT Large current VCNT GND Locate a signal line that conducts a large current apart from the microcomputer. Figure 4.13.7 Example Wiring of a Large-Current Signal Line Appendix 4-24 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.13 Precautions about Noise (2) Avoiding effects of rapidly level-changing signal lines Locate signal lines whose levels change rapidly as far away from the oscillator as possible. Also, make sure the rapidly level-changing signal lines will not intersect the clock-related signal lines and other noise-sensitive signal lines. Rapidly level-changing signal lines tend to affect other signal lines as their voltage level frequently rises and falls. Especially if these signal lines intersect the clock-related signal lines, they will cause the clock waveform to become distorted, which may result in the microcomputer operating erratically or getting out of control. High-speed serial I/O High-speed timer input/output, etc. XIN XOUT VCNT Signal line intersecting the clock-related and other signal lines High-speed serial I/O High-speed timer input/output, etc. XIN XOUT VCNT Locate the signal line away from the clock-related and other signal lines Figure 4.13.8 Example Wiring of a Rapidly Level-Changing Signal Line Appendix 4-25 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.13 Precautions about Noise (3) Protection against signal lines that are the source of strong noise Do not use any pin that will probably be subject to strong noise for an adjacent port near the oscillator and VCNT pins. If the pin can be left unused, set it for input and connect to GND via a resistor, or fix it to output and leave open. If the pin needs to be used, it is recommended that it be used for input-only. For protection against a still stronger noise source, set the adjacent port for input and connect to GND via a resistor, and use those that belong to the same port group as much for input-only as possible. If greater stability is required, do not use those that belong to the same port group and set them for input and connect to GND via a resistor. If they need to be used, insert a limiting resistor for protection against noise. If the ports or pins adjacent to the oscillator and VCNT pins operate at high speed or are exposed to strong noise from an external source, noise may affect the oscillator circuit, causing its oscillation to become instable. XIN XOUT Oscillator Noise VCNT External noise or switching noise Adjacent pin/peripheral pin (set for output) Fast switching Switching noise from an output pin applied directly to the port Adjacent pin/peripheral pin (set for input) Noise External noise from an input pin applied directly to the port Figure 4.13.9 Example Processing of a Noise-Laden Pin Appendix 4-26 32182 Group User's Manual (Rev.1.0) Appendix 4 SUMMARY OF PRECAUTIONS Appendix 4.13 Precautions about Noise Adjacent pin/peripheral pin (set for input) Method for limiting the effect of noise in input mode Adjacent pin/peripheral pin (set for input) Method for limiting the effect of noise in input mode Adjacent pin/peripheral pin (set for output) Method for limiting the effect of noise in output mode Adjacent pin/peripheral pin (set for input) Noise Method for limiting noise with a resistor Noise Adjacent pin/peripheral pin (set for output) Fast switching Method for limiting switching noise with a resistor Figure 4.13.10 Example Processing of Pins Adjacent to the Oscillator and VCNT Pins Appendix 4-27 32182 Group User's Manual (Rev.1.0) SUMMARY OF PRECAUTIONS Appendix 4 Appendix 4.13 Precautions about Noise Appendix 4.13.5 Processing Input/Output Ports For input/output ports, take the appropriate measures in both hardware and software following the procedure described below. Hardware measures * Insert resistors of 100 or more in series to the input/output ports. Software measures * For input ports, read out data in a program two or more times to verify that the levels coincide. * For output ports, rewrite the data register at certain intervals because there is a possibility of the output data being inverted by noise. * Rewrite the direction register at certain intervals. Noise Data bus Noise Direction register Data register Input/output port Figure 4.13.11 Example Processing of Input/Output Ports Appendix 4-28 32182 Group User's Manual (Rev.1.0) RENESAS 32-BIT RISC SINGLE-CHIP MICROCOMPUTER USER'S MANUAL 32182 Group Rev.1.00 Editioned by Committee of editing of RENESAS Semiconductor User's Manual This book, or parts thereof, may not be reproduced in any form without permission of Renesas Technology Corporation. Copyright (c) 2003. Renesas Technology Corporation, All rights reserved. 32182 Group User's Manual 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJ09B0014-0100Z