Pb
RoHS
EH1100TTS-20.000M
EH11 00 T TS -20.000M
Series
RoHS Compliant (Pb-free) 5.0V 14 Pin DIP Metal
Thru-Hole HCMOS/TTL High Frequency Oscillator
Frequency Tolerance/Stability
±100ppm Maximum
Package
Operating Temperature Range
0°C to +70°C
Nominal Frequency
20.000MHz
Pin 1 Connection
Tri-State (High Impedance)
Duty Cycle
50 ±5(%)
ELECTRICAL SPECIFICATIONS
Nominal Frequency 20.000MHz
Frequency Tolerance/Stability ±100ppm Maximum (Inclusive of all conditions: Calibration Tolerance at 25°C, Frequency Stability over the
Operation Temperature Range, Supply Voltage Change, Output Load Change, 1st Year Aging at 25°C,
Shock, and Vibration)
Aging at 25°C ±5ppm/year Maximum
Operating Temperature Range 0°C to +70°C
Supply Voltage 5.0Vdc ±10%
Input Current 50mA Maximum (No Load)
Output Voltage Logic High (Voh) 2.4Vdc Minimum with TTL Load, Vdd-0.4Vdc Minimum with HCMOS Load (IOH = -16mA)
Output Voltage Logic Low (Vol) 0.4Vdc Maximum with TTL Load, 0.5Vdc Maximum with HCMOS Load (IOL = +16mA)
Rise/Fall Time 6nSec Maximum (Measured at 0.8Vdc to 2.0Vdc with TTL Load, 20% to 80% of waveform with HCMOS
Load)
Duty Cycle 50 ±5(%) (Measured at 50% of waveform with TTL Load or with HCMOS Load)
Load Drive Capability 10TTL Load or 50pF HCMOS Load Maximum
Output Logic Type CMOS
Pin 1 Connection Tri-State (High Impedance)
Tri-State Input Voltage (Vih and Vil) +2.2Vdc Minimum to enable output, +0.8Vdc Maximum to disable output (High Impedance), No Connect to
enable output.
Absolute Clock Jitter ±250pSec Maximum, ±100pSec Typical
One Sigma Clock Period Jitter ±50pSec Maximum, ±30pSec Maximum
Start Up Time 10mSec Maximum
Storage Temperature Range -55°C to +125°C
ENVIRONMENTAL & MECHANICAL SPECIFICATIONS
Fine Leak Test MIL-STD-883, Method 1014, Condition A
Gross Leak Test MIL-STD-883, Method 1014, Condition C
Lead Integrity MIL-STD-883, Method 2004
Mechanical Shock MIL-STD-202, Method 213, Condition C
Resistance to Soldering Heat MIL-STD-202, Method 210
Resistance to Solvents MIL-STD-202, Method 215
Solderability MIL-STD-883, Method 2003
Temperature Cycling MIL-STD-883, Method 1010
Vibration MIL-STD-883, Method 2007, Condition A
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 2/17/2010 | Page 1 of 7
EH1100TTS-20.000M
MECHANICAL DIMENSIONS (all dimensions in millimeters)
MARKING
ORIENTATION
7.620
±0.203
13.2
MAX
20.8 MAX
15.240
±0.203
1 7
8
14
DIA 0.457
±0.100 (X4)
5.08 MIN
5.08 MAX
0.9 MAX
PIN CONNECTION
1 Tri-State (High
Impedance)
7 Ground/Case Ground
8 Output
14 Supply Voltage
LINE MARKING
1ECLIPTEK
2EH11TS
EH11=Product Series
320.000M
4XXYZZ
XX=Ecliptek Manufacturing
Code
Y=Last Digit of the Year
ZZ=Week of the Year
OUTPUT DISABLE
(HIGH IMPED ANCE
STATE)
OUTPUT WAVEFORM & TIMING DIAGRAM
VOH
VOL
80% or 2.0VDC
50% or 1.4VDC
20% or 0.8VDC
Fall
Time Rise
Time TW
T
Duty Cycle (%) = TW/T x 100
VIH
VIL
tPLZ tPZL
CLOCK OUTPUT TRI-STATE INPUT
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 2/17/2010 | Page 2 of 7
EH1100TTS-20.000M
Supply
Voltage
(VDD)
Test Circuit for TTL Output
Output
No Connect
or Tri-State
Ground
+ +
+
+
_
_
__
Power
Supply Voltage
Meter
Current
Meter
0.01µF
(Note 1) 0.1µF
(Note 1) CL
(Note 3)
RL
(Note 4)
Power
Supply
Oscilloscope Frequency
Counter
Probe
(Note 2)
Note 1: An external 0.1µF low frequency tantalum bypass capacitor in parallel with a 0.01µF high frequency
ceramic bypass capacitor close to the package ground and VDD pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth
(>300MHz) passive probe is recommended.
Note 3: Capacitance value CL includes sum of all probe and fixture capacitance.
Note 4: Resistance value RL is shown in Table 1. See applicable specification sheet for 'Load Drive Capability'.
Note 5: All diodes are MMBD7000, MMBD914, or equivalent.
Table 1: RL Resistance Value and CL Capacitance
Value Vs. Output Load Drive Capability
Output Load
Drive Capability RL Value
(Ohms) CL Value
(pF)
10TTL
5TTL
2TTL
10LSTTL
1TTL
390
780
1100
2000
2200
15
15
6
15
3
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 2/17/2010 | Page 3 of 7
EH1100TTS-20.000M
Supply
Voltage
(VDD)
Test Circuit for CMOS Output
Output
No Connect
or Tri-State
Ground
+ +
+_
__
Power
Supply 0.01µF
(Note 1) 0.1µF
(Note 1) CL
(Note 3)
Note 1: An external 0.1µF low frequency tantalum bypass capacitor in parallel with a 0.01µF high frequency
ceramic bypass capacitor close to the package ground and VDD pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth
(>300MHz) passive probe is recommended.
Note 3: Capacitance value CL includes sum of all probe and fixture capacitance.
Voltage
Meter
Current
Meter
Oscilloscope Frequency
Counter
Probe
(Note 2)
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 2/17/2010 | Page 4 of 7
T Min
S
T Max
S
Critical Zone
T to T
L P
Ramp-up Ramp-down
TL
TP
t 25°C to Peak
t Preheat
StL
tP
Temperature (T)
Time (t)
Recommended Solder Reflow Methods
EH1100TTS-20.000M
High Temperature Solder Bath (Wave Solder)
TS MAX to TL (Ramp-up Rate) 3°C/second Maximum
Preheat
- Temperature Minimum (TS MIN) 150°C
- Temperature Typical (TS TYP) 175°C
- Temperature Maximum (TS MAX) 200°C
- Time (tS MIN) 60 - 180 Seconds
Ramp-up Rate (TL to TP)3°C/second Maximum
Time Maintained Above:
- Temperature (TL)217°C
- Time (tL)60 - 150 Seconds
Peak Temperature (TP)260°C Maximum for 10 Seconds Maximum
Target Peak Temperature (TP Target) 250°C +0/-5°C
Time within 5°C of actual peak (tp)20 - 40 seconds
Ramp-down Rate 6°C/second Maximum
Time 25°C to Peak Temperature (t) 8 minutes Maximum
Moisture Sensitivity Level Level 1
Additional Notes Temperatures shown are applied to back of PCB board and device leads
only. Do not use this method for product with the Gull Wing option.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 2/17/2010 | Page 5 of 7
T Min
S
T Max
S
Critical Zone
T to T
L P
Ramp-up Ramp-down
TL
TP
t 25°C to Peak
t Preheat
StL
tP
Temperature (T)
Time (t)
Recommended Solder Reflow Methods
EH1100TTS-20.000M
Low Temperature Infrared/Convection 185°C
TS MAX to TL (Ramp-up Rate) 5°C/second Maximum
Preheat
- Temperature Minimum (TS MIN) N/A
- Temperature Typical (TS TYP) 150°C
- Temperature Maximum (TS MAX) N/A
- Time (tS MIN) 60 - 120 Seconds
Ramp-up Rate (TL to TP)5°C/second Maximum
Time Maintained Above:
- Temperature (TL)150°C
- Time (tL)200 Seconds Maximum
Peak Temperature (TP)185°C Maximum
Target Peak Temperature (TP Target) 185°C Maximum 2 Times
Time within 5°C of actual peak (tp)10 seconds Maximum 2 Times
Ramp-down Rate 5°C/second Maximum
Time 25°C to Peak Temperature (t) N/A
Moisture Sensitivity Level Level 1
Additional Notes Temperatures shown are applied to body of device. Use this method only
for product with the Gull Wing option.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 2/17/2010 | Page 6 of 7
T Min
S
T Max
S
Critical Zone
T to T
L P
Ramp-up Ramp-down
TL
TP
t 25°C to Peak
t Preheat
StL
tP
Temperature (T)
Time (t)
Recommended Solder Reflow Methods
EH1100TTS-20.000M
Low Temperature Solder Bath (Wave Solder)
TS MAX to TL (Ramp-up Rate) 5°C/second Maximum
Preheat
- Temperature Minimum (TS MIN) N/A
- Temperature Typical (TS TYP) 150°C
- Temperature Maximum (TS MAX) N/A
- Time (tS MIN) 30 - 60 Seconds
Ramp-up Rate (TL to TP)5°C/second Maximum
Time Maintained Above:
- Temperature (TL)150°C
- Time (tL)200 Seconds Maximum
Peak Temperature (TP)245°C Maximum
Target Peak Temperature (TP Target) 245°C Maximum 1 Time / 235°C Maximum 2 Times
Time within 5°C of actual peak (tp)5 seconds Maximum 1 Time / 15 seconds Maximum 2 Times
Ramp-down Rate 5°C/second Maximum
Time 25°C to Peak Temperature (t) N/A
Moisture Sensitivity Level Level 1
Additional Notes Temperatures shown are applied to back of PCB board and device leads
only. Do not use this method for product with the Gull Wing option.
Low Temperature Manual Soldering
185°C Maximum for 10 seconds Maximum, 2 times Maximum. (Temperatures listed are applied to device leads only.
This method can be utilized with both Gull Wing and Non-Gull Wing devices.)
High Temperature Manual Soldering
260°C Maximum for 5 seconds Maximum, 2 times Maximum. (Temperatures listed are applied to device leads only. This
method can be utilized with both Gull Wing and Non-Gull Wing devices.)
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 2/17/2010 | Page 7 of 7