DS97Z8X1104
P R E L I M I N A R Y
1
1
P
RELIMINARY
P
RODUCT
S
PECIFICATION
Z86E04/E08
1
CMOS Z8 OTP M
ICROCONTROLLERS
PRODUCT DEVICES
Several key product features of the extensive family of Zilog Z86E04/E08 CMOS OTP microcontrollers are presented in
the above table. This table enables the user to identify which of the E04/E08 product variants most closely match the us-
er’s application requirements.
Part Oscillator Operating Operating ROM
Number Type V
CC
Temperature (KB) Package
Z86E0412PEC Crystal 4.5V–5.5V –40
°
C/105
°
C 1 18-Pin DIP
Z86E0412PSC1866 Crystal 4.5V–5.5V 0
°
C/70
°
C 1 18-Pin DIP
Z86E0412PSC1903 RC 4.5V–5.5V 0
°
C/70
°
C 1 18-Pin DIP
Z86E0412PEC1903 RC 4.5V–5.5V –40
°
C/105
°
C 1 18-Pin DIP
Z86E0412SEC Crystal 4.5V–5.5V –40
°
C/105
°
C 1 18-Pin SOIC
Z86E0412SSC1866 Crystal 4.5V–5.5V 0
°
C/70
°
C 1 18-Pin SOIC
Z86E0412SSC1903 RC 4.5V–5.5V 0
°
C/70
°
C 1 18-Pin SOIC
Z86E0412SEC1903 RC 4.5V–5.5V –40
°
C/105
°
C 1 18-Pin SOIC
Z86E0812PEC Crystal 4.5V–5.5V –40
°
C/105
°
C 2 18-Pin DIP
Z86E0812PSC1866 Crystal 4.5V–5.5V 0
°
C/70
°
C 2 18-Pin DIP
Z86E0812PSC1903 RC 4.5V–5.5V 0
°
C/70
°
C 2 18-Pin DIP
Z86E0812PEC1903 RC 4.5V–5.5V –40
°
C/105
°
C 2 18-Pin DIP
Z86E0812SEC Crystal 4.5V–5.5V –40
°
C/105
°
C 2 18-Pin SOIC
Z86E0812SSC1866 Crystal 4.5V–5.5V 0
°
C/70
°
C 2 18-Pin SOIC
Z86E0812SSC1903 RC 4.5V–5.5V 0
°
C/70
°
C 2 18-Pin SOIC
Z86E0812SEC1903 RC 4.5V–5.5V –40
°
C/105
°
C 2 18-Pin SOIC
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
2
P R E L I M I N A R Y
DS97Z8X1104
FEATURES
14 Input/Output Lines
Six Vectored, Prioritized Interrupts
(3 falling edge, 1 rising edge, 2 timers)
Two Analog Comparators
Program Options:
Low Noise
ROM Protect
Auto Latch
W atch-Dog Timer (WDT)
EPROM/Test Mode Disable
Two Programmable 8-Bit Counter/Timers, Each with
6-Bit Programmable Prescaler
WDT/ Power-On Reset (POR)
On-Chip Oscillator that Accepts XTAL, Ceramic
Resonance, LC, RC, or External Clock
Clock-Free WDT Reset
Low-Power Consumption (50 mw typical)
Fast Instruction Pointer (1
µ
s @ 12 MHz)
RAM Bytes (125)
GENERAL DESCRIPTION
Zilog's Z86E04/E08 Microcontrollers (MCU) are One-Time
Programmable (OTP) members of Zilog’s single-chip Z8
®
MCU family that allow easy software development, debug,
prototyping, and small production runs not economically
desirable with masked ROM versions.
For applications demanding powerful I/O capabilities, the
Z86E04/E08's dedicated input and output lines are
grouped into three ports, and are configurable under soft-
ware control to provide timing, status signals, or parallel
I/O.
Two on-chip counter/timers, with a large number of user
selectable modes, offload the system of administering
real-time tasks such as counting/timing and I/O data com-
munications.
Note:
All Signals with an overline, “ ”, are active Low, for
example: B/W (WORD is active Low); B/W (BYTE is active
Low, only).
Power connections follow conventional descriptions be-
low:
Connection Circuit Device
Power
V
CC
V
DD
Ground GND
V
SS
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104
P R E L I M I N A R Y
3
1
Figure 1. Functional Block Diagram
Port 3
Counter/
Timers (2)
Interrupt
Control
T wo Analog
Comparators
Port 2
I/O
(Bit Programmable)
FLAG
Register
Pointer
General-Purpose
Register File
Machine
Timing & Inst.
Control
OTP
Program
Counter
Vcc GND XTAL
Port 0
I/O
Input
ALU
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
4
P R E L I M I N A R Y
DS97Z8X1104
GENERAL DESCRIPTION
(Continued)
Figure 2. EPROM Programming Mode Block Diagram
Address
MUX
EPROM
ROM PROT
Low Noise
AD 10–0
Z8 MCU
PGM
Mode Logic
EPM
P32
D7–0
AD 10–0
AD 10–0
Data
MUX
Z8
Port 2
D7–0
OE
P31
VPP
P33
D7–0
Address
Counter
Clock
P01
Clear
P00
3 bits
PGM
P30
CE
XT1
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104
P R E L I M I N A R Y
5
1
PIN DESCRIPTION
Figure 3. 18-Pin EPROM Mode Configuration
Table 1. 18-Pin DIP Pin Identification
EPROM Programming Mode
Pin # Symbol Function Direction
1–4 D4–D7 Data 4, 5, 6, 7 In/Output
5V
CC
Power Supply
6 NC No Connection
7CE
Chip Enable Input
8OEOutput Enable Input
9 EPM EPROM Prog Mode Input
10 V
PP
Prog Voltage Input
11 Clear Clear Clock Input
12 Clock Address Input
13 PGM Prog Mode Input
14 GND Ground
15–18 D0–D3 Data 0,1, 2, 3 In/Output
D4
D5
D6
D7
VCC
NC
CE
OE
EPM
D3
D2
D1
D0
GND
PGM
CLOCK
CLEAR
VPP
18
1
910
Figure 4. 18-Pin DIP/SOIC Mode Configuration
Table 2. 18-Pin DIP/SOIC Pin Identification
Standard Mode
Pin # Symbol Function Direction
1–4 P24–P27 Port 2, Pins 4,5,6,7 In/Output
5V
CC
Power Supply
6 XTAL2 Crystal Osc. Clock Output
7 XTAL1 Crystal Osc. Clock Input
8 P31 Port 3, Pin 1, AN1 Input
9 P32 Port 3, Pin 2, AN2 Input
10 P33 Port 3, Pin 3, REF Input
11–13 P00–P02 Port 0, Pins 0,1,2 In/Output
14 GND Ground
15–18 P20–P23 Port 2, Pins 0,1,2,3 In/Output
P24
P25
P26
P27
VCC
XTAL2
XTAL1
P31
P32
P23
P22
P21
P20
GND
P02
P01
P00
P33
18
1
910
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
6
P R E L I M I N A R Y
DS97Z8X1104
ABSOLUTE MAXIMUM RATINGS
Stresses greater than those listed under Absolute Maxi-
mum Ratings may cause permanent damage to the de-
vice. This is a stress rating only; functional operation of the
device at any condition above those indicated in the oper-
ational sections of these specifications is not implied. Ex-
posure to absolute maximum rating conditions for an ex-
tended period may affect device reliability. Total power
dissipation should not exceed 462 mW for the package.
Power dissipation is calculated as follows:
Total Power Dissipation = V
DD
x [I
DD
–(sum of I
OH
)]
+ sum of [(V
DD
–V
OH
) x I
OH
]
+ sum of (V
0L
x I
0L
)
Parameter Min Max Units Note
Ambient Temperature under Bias –40 +105 C
Storage Temperature –65 +150 C
Voltage on any Pin with Respect to V
SS
–0.7 +12 V 1
Voltage on V
DD
Pin with Respect to V
SS
–0.3 +7 V
Voltage on Pins 7, 8, 9, 10 with Respect to V
SS
–0.6 V
DD
+1 V 2
Total Power Dissipation 1.65 W
Maximum Allowable Current out of V
SS
300 mA
Maximum Allowable Current into V
DD
220 mA
Maximum Allowable Current into an Input Pin –600 +600 µA3
Maximum Allowable Current into an Open-Drain Pin –600 +600 µA4
Maximum Allowable Output Current Sinked by Any I/O Pin 25 mA
Maximum Allowable Output Current Sourced by Any I/O Pin 25 mA
Total Maximum Output Current Sinked by a Port 60 mA
Total Maximum Output Current Sourced by a Port 45 mA
Notes:
1. This applies to all pins except where otherwise noted. Maximum current into pin must be ± 600 µA.
2. There is no input protection diode from pin to VDD (not applicable to EPROM Mode).
3. This excludes Pin 6 and Pin 7.
4. Device pin is not at an output Low state.
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 7
1
STANDARD TEST CONDITIONS
The characteristics listed below apply for standard test
conditions as noted. All voltages are referenced to
Ground. Positive current flows into the referenced pin (Fig-
ure 5).
CAPACITANCE
TA = 25°C, VCC = GND = 0V, f = 1.0 MHz, unmeasured pins returned to GND.
Figure 5. Test Load Diagram
From Output
Under Test
150 pF
Parameter Min Max
Input capacitance 0 10 pF
Output capacitance 0 20 pF
I/O capacitance 0 25 pF
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
8P R E L I M I N A R Y DS97Z8X1104
DC ELECTRICAL CHARACTERISTICS
Standard Temperature
TA = 0°C to +70°CTypical
Sym Parameter VCC [4] Min Max @ 25°C Units Conditions Notes
VINMAX Max Input Voltage 4.5V 12 V IIn<250 µA 1
5.5V 12 V IIn<250 µA 1
VCH Clock Input High
Voltage 4.5V 0.8 VCC VCC+0.3 2.8 V Driven by External
Clock Generator
5.5V 0.8 VCC VCC+0.3 2.8 V Driven by External
Clock Generator
VCL Clock Input Low
Voltage 4.5V VSS–0.3 0.2 VCC 1.7 V Driven by External
Clock Generator
5.5V VSS–0.3 0.2 VCC 1.7 V Driven by External
Clock Generator
VIH Input High Voltage 4.5V
5.5V 0.7 VCC
0.7 VCC
VCC+0.3
VCC+0.3 2.8
2.8 V
V
VIL Input Low Voltage 4.5V
5.5V VSS–0.3
VSS–0.3 0.2 VCC
0.2 VCC
1.5
1.5 V
V
VOH Output High Voltage 4.5V VCC–0.4 4.8 V IOH = –2.0 mA 5
5.5V VCC–0.4 4.8 V IOH = –2.0 mA 5
4.5V VCC–0.4 4.8 V Low Noise @ IOH = –0.5 mA
5.5V VCC–0.4 4.8 V Low Noise @ IOH = –0.5 mA
VOL1 Output Low Voltage 4.5V 0.8 0.1 V IOL = +4.0 mA 5
5.5V 0.4 0.1 V IOL = +4.0 mA 5
4.5V 0.4 0.1 V Low Noise @ IOL = 1.0 mA
5.5V 0.4 0.1 V Low Noise @ IOL = 1.0 mA
VOL2 Output Low Voltage 4.5V 0.8 0.8 V IOL = +12 mA, 5
5.5V 0.8 0.8 V IOL = +12 mA, 5
VOFFSET Comparator Input
Offset Voltage 4.5V 25.0 10.0 mV
5.5V 25.0 10.0 mV
VLV VCC Low Voltage
Auto Reset 2.2 3.0 2.8 V @ 6 MHz Max.
Int. CLK Freq.
IIL Input Leakage
(Input Bias Current of
Comparator)
4.5V –1.0 1.0 µAV
IN = 0V, VCC
5.5V –1.0 1.0 µAV
IN = 0V, VCC
IOL Output Leakage 4.5V –1.0 1.0 µAV
IN = 0V, VCC
5.5V –1.0 1.0 µAV
IN = 0V, VCC
VICR Comparator Input
Common Mode
Voltage Range
0V
CC
–1.0 V
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 9
1
TA = 0°C to +70°CTypical
Sym Parameter VCC [4] Min Max @ 25°C Units Conditions Notes
ICC Supply Current 4.5V 11.0 6.8 mA All Output and I/O Pins
Floating @ 2 MHz 5,7
5.5V 11.0 6.8 mA All Output and I/O Pins
Floating @ 2 MHz 5,7
4.5V 15.0 8.2 mA All Output and I/O Pins
Floating @ 8 MHz 5,7
5.5V 15.0 8.2 mA All Output and I/O Pins
Floating @ 8 MHz 5,7
4.5V 20.0 12.0 mA All Output and I/O Pins
Floating @ 12 MHz 5,7
5.5V 20.0 12.0 mA All Output and I/O Pins
Floating @ 12 MHz 5,7
ICC1 Standby Current 4.5V 4.0 2.5 mA HALT Mode VIN = 0V,
VCC @ 2 MHz 5,7
5.5V 4.0 2.5 mA HALT Mode VIN = 0V,
VCC @ 2 MHz 5,7
4.5V 5.0 3.0 mA HALT Mode VIN = 0V,
VCC @ 8 MHz 5,7
5.5V 5.0 3.0 mA HALT Mode VIN = 0V,
VCC @ 8 MHz 5,7
4.5V 7.0 4.0 mA HALT Mode VIN = 0V,
VCC @ 12 MHz 5,7
5.5V 7.0 4.0 mA HALT Mode VIN = 0V,
VCC @ 12 MHz 5,7
ICC Supply Current
(Low Noise Mode) 4.5V 11.0 6.8 mA All Output and I/O Pins
Floating @ 1 MHz 7
5.5V 11.0 6.8 mA All Output and I/O Pins
Floating @ 1 MHz 7
4.5V 13.0 7.5 mA All Output and I/O Pins
Floating @ 2 MHz 7
5.5V 13.0 7.5 mA All Output and I/O Pins
Floating @ 2 MHz 7
4.5V 15.0 8.2 mA All Output and I/O Pins
Floating @ 4 MHz 7
5.5V 15.0 8.2 mA All Output and I/O Pins
Floating @ 4 MHz 7
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
10 P R E L I M I N A R Y DS97Z8X1104
DC ELECTRICAL CHARACTERISTICS (Continued)
TA = 0°C to +70°CTypical
Sym Parameter VCC [4] Min Max @ 25°C Units Conditions Notes
ICC1 Standby Current
(Low Noise Mode) 4.5V 4.0 2.5 mA HALT Mode VIN = 0V,
VCC @ 1 MHz 7
5.5V 4.0 2.5 mA HALT Mode VIN = 0V,
VCC @ 1 MHz 7
4.5V 4.5 2.8 mA HALT Mode VIN = 0V,
VCC @ 2 MHz 7
5.5V 4.5 2.8 mA HALT Mode VIN = 0V,
VCC @ 2 MHz 7
4.5V 5.0 3.0 mA HALT Mode VIN = 0V,
VCC @ 4 MHz 7
5.5V 5.0 3.0 mA HALT Mode VIN = 0V,
VCC @ 4 MHz 7
ICC2 Standby Current 4.5V 10.0 1.0 µA STOP Mode VIN = 0V, VCC
WDT is not Running 7,8
5.5V 10.0 1.0 µA STOP Mode VIN = 0V,VCC
WDT is not Running 7,8
IALL Auto Latch Low
Current 4.5V 32.0 16 µA 0V < VIN < VCC
5.5V 32.0 16 µA 0V < VIN < VCC
IALH Auto Latch High
Current 4.5V –16.0 –8.0 µA 0V < VIN < VCC
5.5V –16.0 –8.0 µA 0V < VIN < VCC
Notes:
1. Port 2 and Port 0 only
2. VSS = 0V = GND
3. The device operates down to VLV of the specified frequency for VLV . The minimum operational VCC is determined on the value of
the voltage VLV at the ambient temperature. The VLV increases as the temperature decreases.
4. VCC = 4.5 to 5.5V, typical values measured at VCC = 5.0V.
The VCC voltage specification of 5.5 V guarantees 5.0 V ± 0.5V with typical values measured at VCC = 5.0V.
5. Standard Mode (not Low EMI Mode)
6. Z86E08 only
7. All outputs unloaded and all inputs are at VCC or VSS level.
8. If analog comparator is selected, then the comparator inputs must be at VCC level.
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 11
1
DC ELECTRICAL CHARACTERISTICS
Extended Temperature
TA = –40°C to
+105°C Typical
Sym Parameter VCC [4] Min Max @ 25°C Units Conditions Notes
VINMAX Max Input Voltage 4.5V 12.0 V IIN < 250 µA1
5.5V 12.0 V IIN < 250 µA1
V
CH Clock Input High
Voltage 4.5V 0.8 VCC VCC+0.3 2.8 V Driven by External
Clock Generator
5.5V 0.8 VCC VCC+0.3 2.8 V Driven by External
Clock Generator
VCL Clock Input Low
Voltage 4.5V VSS–0.3 0.2 VCC 1.7 V Driven by External
Clock Generator
5.5V VSS–0.3 0.2 VCC 1.7 V Driven by External
Clock Generator
VIH Input High V oltage 4.5V 0.7 VCC VCC+0.3 2.8 V
5.5V 0.7 VCC VCC+0.3 2.8 V
VIL Input Low Voltage 4.5V VSS–0.3 0.2 VCC 1.5 V
5.5V VSS–0.3 0.2 VCC 1.5 V
VOH Output High Voltage 4.5V VCC–0.4 4.8 V IOH = –2.0 mA 5
5.5V VCC–0.4 4.8 V IOH = –2.0 mA 5
4.5V VCC–0.4 V Low Noise @ IOH = –0.5 mA
5.5V VCC–0.4 V Low Noise @ IOH = –0.5 mA
VOL1 Output Low Voltage 4.5V 0.4 0.1 V IOL = +4.0 mA 5
5.5V 0.4 0.1 V IOL = +4.0 mA 5
4.5V 0.4 0.1 V Low Noise @ IOL = 1.0 mA
5.5V 0.4 0.1 V Low Noise @ IOL = 1.0 mA
VOL2 Output Low Voltage 4.5V 1.0 0.3 V IOL = +12 mA, 5
5.5V 1.0 0.3 V IOL = +12 mA, 5
VOFFSET Comparator Input
Offset Voltage 4.5V 25.0 10.0 mV
5.5V 25.0 10.0 mV
VLV VCC Low Voltage
Auto Reset 1.8 3.8 2.8 V @ 6 MHz Max. Int.
CLK Freq. 3
IIL Input Leakage
(Input Bias Current
of Comparator)
4.5V –1.0 1.0 µAV
IN = 0V, VCC
5.5V –1.0 1.0 µAV
IN = 0V, VCC
IOL Output Leakage 4.5V –1.0 1.0 µAV
IN = 0V, VCC
5.5V –1.0 1.0 µAV
IN = 0V, VCC
VICR Comparator Input
Common Mode
Voltage Range
0 VCC –1.5 V
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
12 P R E L I M I N A R Y DS97Z8X1104
DC ELECTRICAL CHARACTERISTICS (Continued)
ICC Supply Current 4.5V 11.0 6.8 mA All Output and I/O Pins
Floating @ 2 MHz 5,7
5.5V 11.0 6.8 mA All Output and I/O Pins
Floating @ 2 MHz 5,7
4.5V 15.0 8.2 mA All Output and I/O Pins
Floating @ 8 MHz 5,7
5.5V 15.0 8.2 mA All Output and I/O Pins
Floating @ 8 MHz 5,7
4.5V 20.0 12.0 mA All Output and I/O Pins
Floating @ 12 MHz 5,7
5.5V 20.0 12.0 mA All Output and I/O Pins
Floating @ 12 MHz 5,7
ICC1 Standby Current 4.5V 5.0 2.5 mA HALT Mode VIN = 0V,
VCC @ 2 MHz 5,7
5.5V 5.0 2.5 mA HALT Mode VIN = 0V,
VCC @ 2 MHz 5,7
4.5V 5.0 3.0 mA HALT Mode VIN = 0V,
VCC @ 8 MHz 5,7
5.5V 5.0 3.0 mA HALT Mode VIN = 0V,
VCC @ 8 MHz 5,7
4.5V 7.0 4.0 mA HALT Mode VIN = 0V,
VCC @ 12 MHz 5,7
5.5V 7.0 4.0 mA HALT Mode VIN = 0V,
VCC @ 12 MHz 5,7
ICC Supply Current
(Low Noise Mode) 4.5V 11.0 6.8 mA All Output and I/O Pins
Floating @ 1 MHz 7
5.5V 11.0 6.8 mA All Output and I/O Pins
Floating @ 1 MHz 7
4.5V 13.0 7.5 mA All Output and I/O Pins
Floating @ 2 MHz 7
5.5V 13.0 7.5 mA All Output and I/O Pins
Floating @ 2 MHz 7
4.5V 15.0 8.2 mA All Output and I/O Pins
Floating @ 4 MHz 7
5.5V 15.0 8.2 mA All Output and I/O Pins
Floating @ 4 MHz 7
TA = –40°C to
+105°C Typical
Sym Parameter VCC [4] Min Max @ 25°C Units Conditions Notes
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 13
1
TA = –40°C to +105°CTypical
Sym Parameter VCC [4] Min Max @ 25°C Units Conditions Notes
ICC1 Standby Current
(Low Noise Mode) 4.5V 4.0 2.5 mA HALT Mode VIN = 0V,
VCC @ 1 MHz 7
5.5V 4.0 2.5 mA HALT Mode VIN = 0V,
VCC @ 1 MHz 7
4.5V 4.5 2.8 mA HALT Mode VIN = 0V,
VCC @ 2 MHz 7
5.5V 4.5 2.8 mA HALT Mode VIN = 0V,
VCC @ 2 MHz 7
4.5V 5.0 3.0 mA HALT Mode VIN = 0V,
VCC @ 4 MHz 7
5.5V 5.0 3.0 mA HALT Mode VIN = 0V,
VCC @ 4 MHz 7
ICC2 Standby Current 4.5V 20 1.0 µA STOP Mode VIN = 0V, VCC
WDT is not Running 7,8
5.5V 20 1.0 µA STOP Mode VIN = 0V, VCC
WDT is not Running 7,8
IALL Auto Latch Low
Current 4.5V 40 16 µA 0V < VIN < VCC
5.5V 40 16 µA 0V < VIN < VCC
IALH Auto Latch High
Current 4.5V –20.0 –8.0 µA 0V < VIN < VCC
5.5V –20.0 –8.0 µA 0V < VIN < VCC
Notes:
1. Port 2 and Port 0 only
2. VSS = 0V = GND
3. The device operates down to VLV of the specified frequency for VLV . The minimum operational VCC is determined on the value of
the voltage VLV at the ambient temperature. The VLV increases as the temperature decreases.
4. VCC = 4.5V to 5.5V, typical values measured at VCC = 5.0V
5. Standard Mode (not Low EMI Mode)
6. Z86E08 only
7. All outputs unloaded and all inputs are at VCC or VSS level.
8. If analog comparator is selected, then the comparator inputs must be at VCC level.
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
14 P R E L I M I N A R Y DS97Z8X1104
AC ELECTRICAL CHARACTERISTICS
Figure 6. AC Electrical Timing Diagram
Clock
13
4
8
223
6
5
77
9
IRQN
TIN
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 15
1
AC ELECTRICAL CHARACTERISTICS
Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)
Standard Temperature
15 TA= 0 °C to +70 °C
8 MHz 12 MHz
No Symbol Parameter VCC Min Max Min Max Units Notes
1 TpC Input Clock Period 4.5V 125 DC 83 DC ns 1
5.5V 125 DC 83 DC ns 1
2 TrC,TfC Clock Input Rise
and Fall Times 4.5V 25 15 ns 1
5.5V 25 15 ns 1
3 TwC Input Clock Width 4.5V 62 41 ns 1
5.5V 62 41 ns 1
4 TwTinL Timer Input Low Width 4.5V 100 100 ns 1
5.5V 70 70 ns 1
5 TwTinH Timer Input High Width 4.5V 5TpC 5TpC 1
5.5V 5TpC 5TpC 1
6 TpTin Timer Input Period 4.5V 8TpC 8TpC 1
5.5V 8TpC 8TpC 1
7 TrTin,
TtTin Timer Input Rise
and Fall Time 4.5V 100 100 ns 1
5.5V 100 100 ns 1
8 TwIL Int. Request Input
Low Time 4.5V 70 70 ns 1,2
5.5V 70 70 ns 1,2
9 TwIH Int. Request Input
High Time 4.5V 5TpC 5TpC 1,2
5.5V 5TpC 5TpC 1,2
10 Twdt Watch-Dog Timer
Dela y Time for Timeout 4.5V 12 12 ms 1
5.5V 12 12 ms 1
11 Tpor
Power-On Reset Time 4.5V 20 80 20 80 ms 1
5.5V 20 80 20 80 ms 1
Notes:
1. Timing Reference uses 0.7 VCC for a logic 1 and 0.2 VCC for a logic 0.
2. Interrupt request through Port 3 (P33–P31).
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
16 P R E L I M I N A R Y DS97Z8X1104
AC ELECTRICAL CHARACTERISTICS
Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)
Extended Temperature
TA= –40 °C to +105 °C
8 MHz 12 MHz
No Symbol Parameter VCC Min Max Min Max Units Notes
1 TpC Input Clock Period 4.5V 125 DC 83 DC ns 1
5.5V 125 DC 83 DC ns 1
2 TrC,TfC Clock Input Rise
and Fall Times 4.5V 25 15 ns 1
5.5V 25 15 ns 1
3 TwC Input Clock Width 4.5V 62 41 ns 1
5.5V 62 41 ns 1
4 TwTinL Timer Input Low Width 4.5V 70 70 ns 1
5.5V 70 70 ns 1
5 TwTinH Timer Input High Width 4.5V 5TpC 5TpC 1
5.5V 5TpC 5TpC 1
6 TpTin Timer Input Period 4.5V 8TpC 8TpC 1
5.5V 8TpC 8TpC 1
7 TrTin,
TtTin Timer Input Rise
and Fall Time 4.5V 100 100 ns 1
5.5V 100 100 ns 1
8 TwIL Int. Request Input
Low Time 4.5V 70 70 ns 1,2
5.5V 70 70 ns 1,2
9 TwIH Int. Request Input
High Time 4.5V 5TpC 5TpC 1,2
5.5V 5TpC 5TpC 1,2
10 Twdt Watch-Dog Timer
Dela y Time for Timeout 4.5V 10 10 ms 1
5.5V 10 10 ms 1
11 Tpor
Power-On Reset Time 4.5V 12 100 12 100 ms 1
5.5V 12 100 12 100 ms 1
Notes:
1. Timing Reference uses 0.7 VCC for a logic 1 and 0.2 VCC for a logic 0.
2. Interrupt request made through Port 3 (P33–P31).
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 17
1
AC ELECTRICAL CHARACTERISTICS
Low Noise Mode, Standard Temperature
TA= 0 °C to +70 °C
1 MHz 4 MHz
No Symbol Parameter VCC Min Max Min Max Units Notes
1 TPC Input Clock Period 4.5V 1000 DC 250 DC ns 1
5.5V 1000 DC 250 DC ns 1
2TrC
TfC Clock Input Rise
and Fall Times 4.5V 25 25 ns 1
5.5V 25 25 ns 1
3 TwC Input Clock Width 4.5V 500 125 ns 1
5.5V 500 125 ns 1
4. TwTinL Timer Input Low Width 4.5V 70 70 ns 1
5.5V 70 70 ns 1
5 TwTinH Timer Input High Width 4.5V 2.5TpC 2.5TpC 1
5.5V 2.5TpC 2.5TpC 1
6 TpTin Timer Input Period 4.5V 4TpC 4TpC 1
5.5V 4TpC 4TpC 1
7 TrTin,
TtTin Timer Input Rise
and Fall Time 4.5V 100 100 ns 1
5.5V 100 100 ns 1
8 TwIL
Low Time Int. Request Input 4.5V 70 70 ns 1,2
5.5V 70 70 ns 1,2
9 TwIH
High Time Int. Request Input 4.5V 2.5TpC 2.5TpC 1,2
5.5V 2.5TpC 2.5TpC 1,2
10 Twdt W atch-Dog Timer
Dela y Time for Timeout 4.5V 12 12 ms 1
5.5V 12 12 ms 1
Notes:
1. Timing Reference uses 0.7 VCC for a logic 1 and 0.2 VCC for a logic 0.
2. Interrupt request through Port 3 (P33–P31).
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
18 P R E L I M I N A R Y DS97Z8X1104
AC ELECTRICAL CHARACTERISTICS (Continued)
Low Noise Mode, Extended Temperature
TA= –40 °C to +105 °C
1 MHz 4 MHz
No Symbol Parameter VCC Min Max Min Max Units Notes
1 TPC Input Clock Period 4.5V 1000 DC 250 DC ns 1
5.5V 1000 DC 250 DC ns 1
2TrC
TfC Clock Input Rise
and Fall Times 4.5V 25 25 ns 1
5.5V 25 25 ns 1
3 TwC Input Clock Width 4.5V 500 125 ns 1
5.5V 500 125 ns 1
4. TwTinL Timer Input Low Width 4.5V 70 70 ns 1
5.5V 70 70 ns 1
5 TwTinH Timer Input High Width 4.5V 2.5TpC 2.5TpC 1
5.5V 2.5TpC 2.5TpC 1
6 TpTin Timer Input Period 4.5V 4TpC 4TpC 1
5.5V 4TpC 4TpC 1
7 TrTin,
TtTin Timer Input Rise
and Fall Time 4.5V 100 100 ns 1
5.5V 100 100 ns 1
8 TwIL Int. Request Input
Low Time 4.5V 70 70 ns 1,2
5.5V 70 70 ns 1,2
9 TwIH Int. Request Input
High Time 4.5V 2.5TpC 2.5TpC 1,2
5.5V 2.5TpC 2.5TpC 1,2
10 Twdt W atch-Dog Timer
Dela y Time for Timeout 4.5V 10 10 ms 1
5.5V 10 10 ms 1
Notes:
1. Timing Reference uses 0.7 VCC for a logic 1 and 0.2 VCC for a logic 0.
2. Interrupt request through Port 3 (P33–P31).
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 19
1
LOW NOISE VERSION
Low EMI Emission
The Z86E04/E08 can be programmed to operate in a Low
EMI Emission Mode by means of a mask ROM bit option.
Use of this feature results in:
All pre-driver slew rates reduced to 10 ns typical.
Internal SCLK/TCLK operation limited to a maximum of
4 MHz–250 ns cycle time.
Output drivers have resistances of 500 Ohms (typical).
Oscillator divide-by-two circuitry eliminated.
The Low EMI Mode is mask-programmable to be selected
by the customer at the time the ROM code is submitted.
PIN FUNCTIONS
OTP Programming Mode
D7–D0
Data Bus.
Data can be read from, or written to, the
EPROM through this data bus.
VCC
Power Supply.
It is typically 5V during EPROM Read
Mode and 6.4V during the other modes (Program, Pro-
gram Verify, and so on).
CE
Chip Enable
(active Low). This pin is active during
EPROM Read Mode, Program Mode, and Program Verify
Mode.
OE
Output Enable
(active Low). This pin drives the Data
Bus direction. When this pin is Low, the Data Bus is output.
When High, the Data Bus is input.
EPM
EPROM Program Mode.
This pin controls the differ-
ent EPROM Program Modes by applying different
voltages.
VPP
Program Voltage.
This pin supplies the program volt-
age.
Clear
Clear
(active High). This pin resets the internal ad-
dress counter at the High Level.
Clock
Address Clock.
This pin is a clock input. The internal
address counter increases by one with one clock cycle.
PGM
Program Mode
(active Low). A Low level at this pin
programs the data to the EPROM through the Data Bus.
Application Precaution
The production test-mode environment may be enabled
accidentally during normal operation if
excessive noise
surges above VCC occur on the XTAL1 pin.
In addition, processor operation of Z8 OTP devices may be
affected by
excessive noise
surges on the VPP, CE, EPM,
OE pins while the microcontroller is in Standard Mode.
Recommendations for dampening voltage surges in both
test and OTP Mode include the following:
Using a clamping diode to VCC.
Adding a capacitor to the affected pin.
Note: Programming the EPROM/Test Mode Disable
option will prevent accidental entry into EPROM Mode or
Test Mode.
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
20 P R E L I M I N A R Y DS97Z8X1104
PIN FUNCTIONS (Continued)
XTAL1, XTAL2
Crystal In, Crystal Out
(time-based input
and output, respectively). These pins connect a parallel-
resonant crystal, LC, or an external single-phase clock
(8 MHz or 12 MHz max) to the on-chip clock oscillator and
buffer.
Port 0, P02–P00. Port 0 is a 3-bit bidirectional, Schmitt-
triggered CMOS-compatible I/O port. These three I/O lines
can be globally configured under software control to be in-
puts or outputs (Figure 7).
Auto Latch. The Auto Latch puts valid CMOS levels on all
CMOS inputs (except P33, P32, P31) that are not external-
ly driven. A valid CMOS level, rather than a floating node,
reduces excessive supply current flow in the input buffer.
On Power-up and Reset, the Auto Latch will set the ports
to an undetermined state of 0 or 1. Default condition is
Auto Latches enabled.
Figure 7. Port 0 Configuration
OE
Out
In
1.5 2.3 Hysteresis
PAD
Port 0 (I/O)
Z8
Auto Latch Option
R 500 k
V @ 5.0V
CC
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 21
1
Port 2, P27–P20. Port 2 is an 8-bit, bit programmable, bi-
directional, Schmitt-triggered CMOS-compatible I/O port.
These eight I/O lines can be configured under software
control to be inputs or outputs, independently. Bits pro-
grammed as outputs can be globally programmed as ei-
ther push-pull or open-drain (Figure 8).
Figure 8. Port 2 Configuration
Open-Drain
/OE
Out
In
1.5 2.3 Hysteresis
PAD
Port 2 (I/O)
Z8
Auto Latch Option
R 500 k
VCC @ 5.0V
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
22 P R E L I M I N A R Y DS97Z8X1104
PIN FUNCTIONS (Continued)
Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port
with three fixed input (P33–P31) lines. These three input
lines can be configured under software control as digital
Schmitt-trigger inputs or analog inputs.
These three input lines are also used as the interrupt
sources IRQ0–IRQ3, and as the timer input signal TIN (Fig-
ure 9).
Figure 9. Port 3 Configuration
Port 3
Z86E04
and
Z86E08
D1
R247 = P3M
P31 (AN1)
P32 (AN2)
P33 (REF)
cc
DIG.
AN.
+
-
+
-
V
TIN
P31 Data Latch
IRQ2
IRQ3
P32 Data Latch
IRQ0
P33 Data Latch
IRQ1
PAD
PAD
PAD
0 = Digital
1 = Analog
IRQ 0,1,2 = Falling Edge Detection
IRQ3 = Rising Edge Detection
Z8
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 23
1
Comparator Inputs. Two analog comparators are added
to input of Port 3, P31, and P32, for interface flexibility. The
comparators reference voltage P33 (REF) is common to
both comparators.
Typical applications for the on-board comparators; Zero
crossing detection, A/D conversion, voltage scaling, and
threshold detection. In Analog Mode, P33 input functions
serve as a reference voltage to the comparators.
The dual comparator (common inverting terminal) features
a single power supply which discontinues power in STOP
Mode. The common voltage range is 0–4 V when the VCC
is 5.0V; the power supply and common mode rejection ra-
tios are 90 dB and 60 dB, respectively.
Interrupts are generated on either edge of Comparator 2's
output, or on the falling edge of Comparator 1's output.
The comparator output is used for interrupt generation,
Port 3 data inputs, or TIN through P31. Alternatively, the
comparators can be disabled, freeing the reference input
(P33) for use as IRQ1 and/or P33 input.
FUNCTIONAL DESCRIPTION
The following special functions have been incorporated
into the Z8 devices to enhance the standard Z8 core archi-
tecture to provide the user with increased design flexibility.
RESET. This function is accomplished by means of a Pow-
er-On Reset or a Watch-Dog Timer Reset. Upon power-
up, the Power-On Reset circuit waits for TPOR ms, plus 18
clock cycles, then starts program execution at address
000C (Hex) (Figure 10). The Z8 control registers' reset val-
ue is shown in Table 3.
Power-On Reset (POR)
.
A timer circuit clocked by a ded-
icated on-board RC oscillator is used for a POR timer func-
tion. The POR time allows VCC and the oscillator circuit to
stabilize before instruction execution begins. The POR
timer circuit is a one-shot timer triggered by one of the four
following conditions:
Power-bad to power-good status
Stop-Mode Recovery
WDT time-out
WDH time-out
Watch-Dog Timer Reset. The WDT is a retriggerable
one-shot timer that resets the Z8 if it reaches its terminal
count. The WDT is initially enabled by executing the WDT
instruction and is retriggered on subsequent execution of
the WDT instruction. The timer circuit is driven by an on-
board RC oscillator.
Figure 10. Internal Reset Configuration
INT OSC XTAL OSC
POR
(Cold Start)
P27
(Stop Mode)
18 CLK
Reset Filiter
Chip Reset
Delay Line
TPOR msec
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
24 P R E L I M I N A R Y DS97Z8X1104
FUNCTIONAL DESCRIPTION (Continued)
Table 3. Control Registers
Reset Condition
Addr. Reg. D7 D6 D5 D4 D3 D2 D1 D0 Comments
FF SPL 0 0 0 0 0 0 0 0
FD RP 0 0 0 0 0 0 0 0
FC FLAGS U U U U U U U U
FB IMR 0 U U U U U U U
FA IRQ U U 0 0 0 0 0 0 IRQ3 is used for positive edge
detection
F9 IPR U U U U U U U U
F8* P01M U U U 0 U U 0 1
F7* P3M U U U U U U 0 0
F6* P2M 1 1 1 1 1 1 1 1 Inputs after reset
F5 PRE0 U U U U U U U 0
F4 T0 U U U U U U U U
F3 PRE1 U U U U U U 0 0
F2 T1 U U U U U U U U
F1 TMR 0 0 0 0 0 0 0 0
Note: *Registers are not reset after a STOP-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to
be reconfigured as shown in Table 4 and the user must avoid bus contention on the port pins or it may affect device reliability.
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 25
1
Program Memory. The Z86E04/E08 addresses up to
1K/2KB of Internal Program Memory (Figure 11). The first
12 bytes of program memory are reserved for the interrupt
vectors. These locations contain six 16-bit vectors that cor-
respond to the six available interrupts. Bytes 0–1024/2048
are on-chip one-time programmable ROM.
Register File. The Register File consists of three I/O port
registers, 124 general-purpose registers, and 14 control
and status registers R0–R3, R4–R127 and R241–R255,
respectively (Figure 12). General-purpose registers occu-
py the 04H to 7FH address space. I/O ports are mapped
as per the existing CMOS Z8.
Figure 11. Program Memory Map
12
11
10
9
8
7
6
5
4
3
2
1
0
On-Chip
ROM
Location of
First Byte of
Instruction
Executed
After RESET
Interrupt
Vector
(Lower Byte)
Interrupt
Vector
(Upper Byte)
IRQ5
IRQ4
IRQ4
IRQ3
IRQ3
IRQ2
IRQ2
IRQ1
IRQ1
IRQ0
IRQ0
IRQ5
1023/2047
0CH
0BH
0AH
09H
08H
07H
06H
05H
04H
03H
02H
01H
00H
3FH/7FFH
3FFH/7FFH
Identifiers
Figure 12. Register File
SPLStack Pointer (Bits 7-0)
General-Purpose Register
Register Pointer
Program Control Flags
Interrupt Mask Register
Interrupt Request Register
Interrupt Priority Register
Ports 0-1 Mode
Port 3 Mode
Port 2 Mode
T0 Prescaler
Timer/Counter 0
T1 Prescaler
Timer/Counter 1
Timer Mode
Not Implemented
General-Purpose
Registers
Port 3
Port 2
Reserved
Port 0
RP
IMR
IRQ
IPR
P3M
P2M
PRE0
T0
PRE1
T1
TMR
P3
P2
P1
P0
P01M
FLAGS
Location
255 (FFH)
254 (FE)
253 (FD)
252 (FC)
251 (FB)
250 (FA)
249 (F9)
248 (F8)
247 (F7)
246 (F6)
245 (F5)
244 (F4)
243 (F3)
242 (F2)
241 (F1H)
4
3
2
1
0 (00H)
128
127 (7FH)
GPR
Identifiers
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
26 P R E L I M I N A R Y DS97Z8X1104
FUNCTIONAL DESCRIPTION (Continued)
The Z8 instructions can access registers directly or indi-
rectly through an 8-bit address field. This allows short 4-bit
register addressing using the Register Pointer.
In the 4-bit mode, the register file is divided into eight work-
ing register groups, each occupying 16 continuous loca-
tions. The Register Pointer (Figure 13) addresses the
starting location of the active working-register group.
Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255)
used for the internal stack that resides within the 124 gen-
eral-purpose registers.
General-Purpose Registers (GPR). These registers are
undefined after the device is powered up. The registers
keep their last value after any reset, as long as the reset
occurs in the VCC voltage-specified operating range. Note:
Register R254 has been designated as a general-purpose
register and is set to 00 Hex after any reset or Stop-Mode
Recovery.
Counter/Timer. There are two 8-bit programmable
counter/timers (T0 and T1), each driven by its own 6-bit
programmable prescaler. The T1 prescaler is driven by in-
ternal or external clock sources; however, the T0 can be
driven by the internal clock source only (Figure 14).
The 6-bit prescalers divide the input frequency of the clock
source by any integer number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256)
that has been loaded into the counter. When both counter
and prescaler reach the end of count, a timer interrupt re-
quest IRQ4 (T0) or IRQ5 (T1) is generated.
The counter can be programmed to start, stop, restart to
continue, or restart from the initial value. The counters are
also programmed to stop upon reaching zero (Single-Pass
Mode) or to automatically reload the initial value and con-
tinue counting (Modulo-N Continuous Mode).
The counters, but not the prescalers, are read at any time
without disturbing their value or count mode. The clock
source for T1 is user-definable and is either the internal mi-
croprocessor clock divided by four, or an external signal in-
put through Port 3. The Timer Mode register configures the
external timer input (P31) as an external clock, a trigger in-
put that is retriggerable or non-retriggerable, or used as a
gate input for the internal clock.
Figure 13. Register Pointer
The upper nibble of the register file address
provided by the register pointer specifies
the active working-register group.
r7 r6 r5 r4 R253
(Register Pointer)
I/O Ports
Specified Working
Register Group
The lower nibble
of the register
file address
provided by the
instruction points
to the specified
register.
r3 r2 r1 r0
Register Group 1
Register Group 0
R15 to R0
Register Group F
R15 to R4*
R3 to R0
R15 to R0
FF
F0
0F
00
1F
10
2F
20
3F
30
4F
40
5F
50
6F
60
7F
70
*Expanded Register Group (0) is selected in this figure
by handling bits D3 to D0 as "0" in Register R253(RP).
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 27
1
* Note: By passed, if Low EMI Mode is selected.
Figure 14. Counter/Timers Block Diagram
OSC PRE0
Initial Value
Register
T0
Initial Value
Register
T0
Current Value
Register
6-Bit
Down
Counter
8-bit
Down
Counter
÷ 4
6-Bit
Down
Counter
8-Bit
Down
Counter
PRE1
Initial Value
Register
T1
Initial Value
Register
T1
Current Value
Register
÷ 2
Clock
Logic
IRQ4
IRQ5
Internal Data Bus
Write Write Read
Internal Clock
Gated Clock
Triggered Clock
TIN P31
Write Write Read
Internal Data Bus
External Clock
Internal Clock
÷ 4
*
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
28 P R E L I M I N A R Y DS97Z8X1104
FUNCTIONAL DESCRIPTION (Continued)
Interrupts. The Z8 has six interrupts from six different
sources. These interrupts are maskable and prioritized
(Figure 15). The sources are divided as follows: the falling
edge of P31 (AN1), P32 (AN2), P33 (REF), the rising edge
of P32 (AN2), and two counter/timers. The Interrupt Mask
Register globally or individually enables or disables the six
interrupt requests (Table 4).
When more than one interrupt is pending, priorities are re-
solved by a programmable priority encoder that is con-
trolled by the Interrupt Priority register. All Z8 interrupts are
vectored through locations in program memory. When an
Interrupt machine cycle is activated, an Interrupt Request
is granted. This disables all subsequent interrupts, saves
the Program Counter and Status Flags, and then branches
to the program memory vector location reserved for that in-
terrupt. This memory location and the next byte contain the
16-bit starting address of the interrupt service routine for
that particular interrupt request.
To accommodate polled interrupt systems, interrupt inputs
are masked and the interrupt request register is polled to
determine which of the interrupt requests needs service.
Note: User must select any Z86E08 mode in Zilog's C12
ICEBOX emulator. The rising edge interrupt is not sup-
ported on the CCP emulator (a hardware/software
workaround must be employed).
Table 4. Interrupt Types, Sources, and Vectors
Vector
Name Source Location Comments
IRQ0 AN2(P32) 0,1 External (F)Edge
IRQ1 REF(P33) 2,3 External (F)Edge
IRQ2 AN1(P31) 4,5 External (F)Edge
IRQ3 AN2(P32) 6,7 External (R)Edge
IRQ4 T0 8,9 Internal
IRQ5 T1 10,11 Internal
Notes:
F = Falling edge triggered
R = Rising edge triggered
Figure 15. Interrupt Block Diagram
IRQ
IMR
IPR
PRIORITY
LOGIC
6
Global
Interrupt
Enable
Vector Select
Interrupt
Request
IRQ0 - IRQ5
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 29
1
Clock. The Z8 on-chip oscillator has a high-gain, parallel-
resonant amplifier for connection to a crystal, LC, RC, ce-
ramic resonator, or any suitable external clock source
(XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should
be AT cut, up to 12 MHz max., with a series resistance
(RS) of less than or equal to 100 Ohms.
The crystal should be connected across XTAL1 and
XTAL2 using the vendors crystal recommended capacitors
from each pin directly to device ground pin 14 (Figure 16).
Note that the crystal capacitor loads should be connected
to VSS, Pin 14 to reduce Ground noise injection.
Figure 16. Oscillator Configuration
XTAL1
XTAL2
C1
C2
C1
C2
C1
XTAL1
XTAL2
XTAL1
XTAL2
XTAL1
XTAL2
Ceramic Resonator or
Crystal
C1, C2 = 47 pF TYP *
F = 8 MHz
LC RC
@ 5V Vcc (TYP)
C1 = 100 pF
R = 2K
F = 6 MHz
External Clock
LR
* Typical value including pin parasitics
*
*
*
**
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
30 P R E L I M I N A R Y DS97Z8X1104
FUNCTIONAL DESCRIPTION (Continued)
Table 5. Typical Frequency vs. RC Values
VCC = 5.0V @ 25°C
Load Capacitor
Resistor (R) 33 pFd 56 pFd 100 pFd 0.00 1µFd
A(Hz) B(Hz) A(Hz) B(Hz) A(Hz) B(Hz) A(Hz) B(Hz)
1.0M 33K 31K 20K 20K 12K 11K 1.4K 1.4K
560K 56K 52K 34K 32K 20K 19K 2.5K 2.4K
220K 144K 130K 84K 78K 48K 45K 6K 6K
100K 315K 270K 182K 164K 100K 95K 12K 12K
56K 552K 480K 330K 300K 185K 170K 23K 22K
20K 1.4M 1M 884K 740K 500K 450K 65K 61K
10K 2.6M 2M 1.6M 1.3M 980K 820K 130K 123K
5K 4.4M 3M 2.8M 2M 1.7K 1.3M 245K 225K
2K 8M 5M 6M 4M 3.8K 2.7M 600K 536K
1K 12M 7M 8.8M 6M 6.3K 4.2M 1.0M 950K
Notes:
A = STD Mode Frequency.
B = Low EMI Mode Frequency.
Table 6. Typical Frequency vs. RC Values
VCC = 3.3V @ 25°C
Load Capacitor
Resistor (R) 33 pFd 56 pFd 100 pFd 0.00 1µFd
A(Hz) B(Hz) A(Hz) B(Hz) A(Hz) B(Hz) A(Hz) B(Hz)
1.0M 18K 18K 12K 12K 7.4K 7.7K 1K 1K
560K 30K 30K 20K 20K 12K 12K 1.6K 1.6K
220K 70K 70K 47K 47K 30K 30K 4K 4K
100K 150K 148K 97K 96K 60K 60K 8K 8K
56K 268K 250K 176K 170K 100K 100K 15K 15K
20K 690M 600K 463K 416K 286K 266K 40K 40K
10K 1.2M 1M 860K 730K 540K 480K 80K 76K
5K 2M 1.7M 1.5M 1.2M 950K 820K 151K 138K
2K 4.6M 3M 3.3M 2.4M 2.2M 1.6M 360K 316K
1K 7M 4.6M 5M 3.6M 3.6K 2.6M 660K 565K
Notes:
A = STD Mode Frequency.
B = Low EMI Mode Frequency.
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 31
1
HALT Mode. This instruction turns off the internal CPU
clock but not the crystal oscillation. The counter/timers and
external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain ac-
tive. The device is recovered by interrupts, either external-
ly or internally generated. An interrupt request must be ex-
ecuted (enabled) to exit HALT Mode. After the interrupt
service routine, the program continues from the instruction
after the HALT.
Note: On the C12 ICEBOX, the IRQ3 does not wake the
device out of HALT Mode.
STOP Mode. This instruction turns off the internal clock
and external crystal oscillation and reduces the standby
current to 10 µA. The STOP Mode is released by a RESET
through a Stop-Mode Recovery (pin P27). A Low input
condition on P27 releases the STOP Mode. Program exe-
cution begins at location 000C(Hex). However, when P27
is used to release the STOP Mode, the I/O port Mode reg-
isters are not reconfigured to their default power-on condi-
tions. This prevents any I/O, configured as output when the
STOP instruction was executed, from glitching to an un-
known state. To use the P27 release approach with STOP
Mode, use the following instruction:
Note: A low level detected on P27 pin will take the device
out of STOP Mode even if configured as an output.
In order to enter STOP or HALT Mode, it is necessary to
first flush the instruction pipeline to avoid suspending exe-
cution in mid-instruction. To do this, the user executes a
NOP (opcode=FFH) immediately before the appropriate
SLEEP instruction, such as:
Watch-Dog Timer (WDT). The Watch-Dog Timer is en-
abled by instruction WDT. When the WDT is enabled, it
cannot be stopped by the instruction. With the WDT in-
struction, the WDT is refreshed when it is enabled within
every 1 Twdt period; otherwise, the controller resets itself,
The WDT instruction affects the flags accordingly; Z=1,
S=0, V=0.
WDT = 5F (Hex)
Opcode WDT (5FH). The first time Opcode 5FH is execut-
ed, the WDT is enabled and subsequent execution clears
the WDT counter. This must be done at least every TWDT;
otherwise, the WDT times out and generates a reset. The
generated reset is the same as a power-on reset of TPOR,
plus 18 XTAL clock cycles. The software enabled WDT
does not run in STOP Mode.
Opcode WDH (4FH). When this instruction is executed it
enables the WDT during HALT. If not, the WDT stops
when entering HALT. This instruction does not clear the
counters, it just makes it possible to have the WDT running
during HALT Mode. A WDH instruction executed without
executing WDT (5FH) has no effect.
Permanent WDT. Selecting the hardware enabled Perma-
nent WDT option, will automatically enable the WDT upon
exiting reset. The permanent WDT will always run in HALT
Mode and STOP Mode, and it cannot be disabled.
Auto Reset Voltage (VLV). The Z8 has an auto-reset built-
in. The auto-reset circuit resets the Z8 when it detects the
VCC below VLV.
Figure 17 shows the Auto Reset Voltage versus tempera-
ture. If the VCC drops below the VCC operating voltage
range, the Z8 will function down to the VLV unless the inter-
nal clock frequency is higher than the specified maximum
VLV frequency.
LD P2M, #1XXX XXXXB
NOP
STOP X = Dependent on user's application.
FF NOP ; clear the pipeline
6F STOP ; enter STOP Mode
or
FF NOP ; clear the pipeline
7F HALT ; enter HALT Mode
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
32 P R E L I M I N A R Y DS97Z8X1104
FUNCTIONAL DESCRIPTION (Continued)
Figure 17. Typical Auto Reset Voltage
(VLV) vs. Temperature
2.4
2.5
2.6
2.7
2.8
2.9
Vcc
(Volts)
–40°C40°C
Temp
2.3 –20°C0°C20°C60°C80°C100°C
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 33
1
Low EMI Emission
The Z8 can be programmed to operate in a low EMI Emis-
sion (Low Noise) Mode by means of an EPROM program-
mable bit option. Use of this feature results in:
Less than 1 mA consumed during HALT Mode.
All drivers slew rates reduced to 10 ns (typical).
Internal SCLK/TCLK = XTAL operation limited to a
maximum of 4 MHz–250 ns cycle time.
Output drivers have resistances of 500 ohms (typical).
Oscillator divide-by-two circuitry eliminated.
In addition to VDD and GND (VSS), the Z8 changes all its pin
functions in the EPROM Mode. XTAL2 has no function,
XTAL1 functions as CE, P31 functions as OE, P32 func-
tions as EPM, P33 functions as VPP, and P02 functions as
PGM.
ROM Protect. ROM Protect fully protects the Z8 ROM
code from being read externally. When ROM Protect is se-
lected, the instructions LDC and LDCI are supported
(Z86E04/E08 and Z86C04/C08 do not support the instruc-
tions of LDE and LDEI). When the device is programmed
for ROM Protect, the Low Noise feature will not automati-
cally be enabled.
Please note that when using the device in a noisy environ-
ment, it is suggested that the voltages on the EPM and CE
pins be clamped to VCC through a diode to VCC to prevent
accidentally entering the OTP Mode. The VPP requires
both a diode and a 100 pF capacitor.
Auto Latch Disable. Auto Latch Disable option bit when
programmed will globally disable all Auto Latches.
WDT Enable. The WDT Enable option bit, when pro-
grammed, will have the hardware enabled Permanent
WDT enabled after exiting reset and can not be stopped in
Halt or Stop Mode.
EPROM/Test Mode Disable. The EPROM/Test Mode
Disable option bit, when programmed, will disable the
EPROM Mode and the Factory Test Mode. Reading, veri-
fying, and programming the Z8 will be disabled. To fully
verify that this mode is disabled, the device must be power
cycled.
User Modes. Table 7 shows the programming voltage of
each mode.
Table 7. OTP Programming Table
Programming Modes VPP EPM CE OE PGM ADDR DATA VCC*
EPROM READ NU VHVIL VIL VIH ADDR Out 5.0V
PROGRAM VHVIH VIL VIH VIL ADDR In 6.4V
PROGRAM VERIFY VHVIH VIL VIL VIH ADDR Out 6.4V
EPROM PROTECT VHVHVHVIH VIL NU NU 6.4V
LOW NOISE SELECT VHVIH VHVIH VIL NU NU 6.4V
AUTO LATCH DISABLE VHVIH VHVIL VIL NU NU 6.4V
WDT ENABLE VHVIL VHVIH VIL NU NU 6.4V
EPROM/TEST MODE VHVIL VHVIL VIL NU NU 6.4V
Notes:
1. VH =12.75V ± 0.25 VDC .
2. VIH = As per specific Z8 DC specification.
3. VIL= As per specific Z8 DC specification.
4. X = Not used, but must be set to VH or VIH level.
5. NU = Not used, but must be set to either VIH or VIL level.
6. IPP during programming = 40 mA maximum.
7. ICC during programming, verify, or read = 40 mA maximum.
8. * VCC has a tolerance of ±0.25V.
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
34 P R E L I M I N A R Y DS97Z8X1104
FUNCTIONAL DESCRIPTION (Continued)
Internal Address Counter. The address of Z8 is generat-
ed internally with a counter clocked through pin P01
(Clock). Each clock signal increases the address by one
and the “high” level of pin P00 (Clear) will reset the ad-
dress to zero. Figure 18 shows the setup time of the serial
address input.
Programming Waveform. Figures 19, 20, 21 and 22
show the programming waveforms of each mode. Table 8
shows the timing of programming waveforms.
Programming Algorithm. Figure 23 shows the flow chart
of the Z8 programming algorithm.
Table 8. Timing of Programming Waveforms
Parameters Name Min Max Units
1 Address Setup Time 2 µs
2 Data Setup Time 2 µs
3V
PP Setup 2 µs
4V
CC Setup Time 2 µs
5 Chip Enable Setup Time 2 µs
6 Program Pulse Width 0.95 ms
7 Data Hold Time 2 µs
8OE Setup Time 2 µs
9 Data Access Time 188 ns
10 Data Output Float Time 100 ns
11 Overprogram Pulse Width 2.85 ms
12 EPM Setup Time 2 µs
13 PGM Setup Time 2 µs
14 Address to OE Setup Time 2 µs
15 Option Program Pulse Width 78 ms
16 OE Width 250 ns
17 Address Valid to OE Low 125 ns
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 35
1
Figure 18. Z86E04/E08 Address Counter Waveform
P01 = C l oc k
P00 = C l ear
T1
Internal
Address
T5
0 Min
9
Data
Vih
Vil Invalid Valid Invalid Valid
Legend:
T1 Reset Clock Width
T2 Input Clock High
T3 Input Clock Period
T4 Input Clock Low
T 5 C l oc k to Addres s Count er Out D elay
T 6 Ep m /Vpp Set up Ti m e
30 ns Min
100 ns Min
200 ns Min
100 ns Min
15 ns Max
40 µs Min
T6
Vpp/EPM
T3
T4
T2
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
36 P R E L I M I N A R Y DS97Z8X1104
FUNCTIONAL DESCRIPTION (Continued)
Figure 19. Z86E04/E08 Programming Waveform
(EPROM Read)
Data
VIH
VIL Invalid Valid Invalid Valid
VIH
VIL Ad dr ess Sta bl e
Address Ad dr ess Stabl e
12
5
EPM
VH
VIL
5.0V
CE
VIH
VIL
VIH
VIL
VIH
VIL
PGM
VIH
VIL
16 16
13
17
9
VCC
OE
VPP
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 37
1
Figure 20. Z86E04/E08 Programming Waveform
(Program and Verify)
Address
VIH
VIL Address
Stable
Data
VIH
VIL Data
Stable Da ta Out
Valid
1
2109
3
VPP VH
VIH
EPM VIL
4
5
7
VIL
6 8
11
VIH
VIL
VIH
VH
VCC 5.0V
6V
VIH
VIL
Program
Cycle Verify
Cycle
CE
OE
PGM
16
13
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
38 P R E L I M I N A R Y DS97Z8X1104
FUNCTIONAL DESCRIPTION (Continued)
Figure 21. Z86E04/E08 Programming Options Waveform
(EPROM Protect and Low Noise Program)
Address
Data
6V 3
4
5
12
15
15
EPROM Protect Low Noise Program
5.0V
12
13
13
VIH
VH
VIH
VIL
VIH
VIL
VH
VIH
VIL
VIL
VIH
VIL
VIH
VIH
VH
VIH
VCC
VPP
CE
OE
EPM
PGM
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 39
1
Figure 22. Z86E04/E08 Programming Options Waveform
(Auto Latch Disable, Permanent WDT Enable and
EPROM/Test Mode Disable)
Address
Data
6V 3
4
5
12
1515
EPM
Au to La tch W DT
5.0V
12
12 12
15
EPROM/Test
Mode Disabl e
13
13 13
13
VPP
V
CC
VIH
VIH
V
IH
V
IH
VIH
V
IH
VH
V
H
V
IL
VIL
VIL
CE
OE
PGM
V
IH
V
IL
VIL
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
40 P R E L I M I N A R Y DS97Z8X1104
FUNCTIONAL DESCRIPTION (Continued)
Figure 23. Z86E04/E08 Programming Algorithm
Start
N = 0
Program
1 ms Pulse
Increment N
N = 25 ? Yes
No
Verify
One Byte
Pass
Fail
Prog. One Pulse
3xN ms Duration
Verify
Byte Fail
Pass
Increment
Address Last Addr ?
Yes
No
Verify All
Bytes
Device
Failed
Addr =
First Location
Fail
Pass
Device
Passed
CC
V = 6.4V
V = 13.0V
PP
V = V = 5.0V
CC PP
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 41
1
Z8 CONTROL REGISTERS
Figure 24. Timer Mode Register (F1H: Read/Write)
Figure 25. Counter Timer 1 Register (F2H: Read/Write)
Figure 26. Prescaler 1 Register (F3H: Write Only)
D7 D6 D5 D4 D3 D2 D1 D0
0 Disable T0 Count
1 Enable T0 Count
0 No Function
1 Load T0
0 No Function
1 Load T1
0 Disable T1 Count
1 Enable T1 Count
TIN Modes
00 External Clock Input
01 Gate Input
10 Trigger Input
(Non-retriggerable)
11 Trigger Input
(Retriggerable)
Reserved (Must be 0)
R241 TMR
D7 D6 D5 D4 D3 D2 D1 D0
T Initial Value
(When Written)
(Range 1-256 Decimal
01-00 HEX)
T Current Value
(When READ)
1
1
R242 T1
D7 D6 D5 D4 D3 D2 D1 D0
Count Mode
0 = T Single Pass
1 = T Modulo N
1
1
Clock Source
1 = T Internal
0 = T External Timing Input
(T ) Mode
IN
1
1
Prescaler Modulo
(Range: 1-64 Decimal
01-00 HEX)
R243 PRE1
Figure 27. Counter/Timer 0 Register
(F4H: Read/Write)
Figure 28. Prescaler 0 Register (F5H: Write Only)
Figure 29. Port 2 Mode Register (F6H: Write Only)
Figure 30. Port 3 Mode Register (F7H: Write Only)
D7 D6 D5 D4 D3 D2 D1 D0
T Initial Value
(When Written)
(Range: 1-256 Decimal
01-00 HEX)
T Current Value
(When READ)
0
0
R244 T0
D7 D6 D5 D4 D3 D2 D1 D0
Count Mode
0 T0 Single Pass
1 T0 Modulo N
Reserved (Must be 0)
R245 PRE0
Prescaler Modulo
(Range: 1-64 Decimal
01-00 HEX)
D7 D6 D5 D4 D3 D2 D1 D0
P2 - P2 I
/O
De
f
inition
0 Defines Bit as OUTPUT
1 Defines Bit as INPUT
7
0
R246 P2M
D7 D6 D5 D4 D3 D2 D1 D0
R247 P3M
0 Port 2 Open-Drain
1 Port 2 Push-pull
Reserved (Must be 0)
Port 3 Inputs
0 Digital Mode
1 Analog Mode
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
42 P R E L I M I N A R Y DS97Z8X1104
Z8 CONTROL REGISTERS (Continued)
Figure 31. Port 0 and 1 Mode Register
(F8H: Write Only)
Figure 32. Interrupt Priority Register
(F9H: Write Only)
Figure 33. Interrupt Request Register
(FAH: Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0
P02-P00 Mode
00 = Output
01 = Input
Reserved (Must be 1.)
R248 P01M
Reserved (Must be 0.)
D7 D6 D5 D4 D3 D2 D1 D0
Interrupt Group Priority
Reserved = 000
C > A > B = 001
A > B > C = 010
A > C > B = 011
B > C > A = 100
C > B > A = 101
B > A > C = 110
Reserved = 111
IRQ3, IRQ5 Priority (Group A)
0 = IRQ5 > IRQ3
1 = IRQ3 > IRQ5
IRQ0, IRQ2 Priority (Group B)
0 = IRQ2 > IRQ0
1 = IRQ0 > IRQ2
IRQ1, IRQ4 Priority (Group C)
0 = IRQ1 > IRQ4
1 = IRQ4 > IRQ1
Reserved
(
Must be 0.
)
R249 IPR
D7 D6 D5 D4 D3 D2 D1 D0
R250 IRQ
Reserved (Must be 0)
IRQ0 = P32 Input
IRQ1 = P33 Input
IRQ2 = P31 Input
IRQ3 = P32 Input
IRQ4 = T0
IRQ5 = T1
Figure 34. Interrupt Mask Register
(FBH: Read/Write)
Figure 35. Flag Register
(FCH: Read/Write)
Figure 36. Register Pointer
(FDH: Read/Write)
Figure 37. Stack Pointer
(FFH: Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0
Reserved (Must be 0.)
1 Enables IRQ0-IRQ5
(D = IRQ0)
1 Enables Interrupts
0
R251 IMR
D7 D6 D5 D4 D3 D2 D1 D0
User Flag F1
User Flag F2
Half Carry Flag
Decimal Adjust Flag
Overflow Flag
Sign Flag
Zero Flag
Carry Flag
R252 Flags
D7 D6 D5 D4 D3 D2 D1 D0
R253 RP
Expanded Register File
Working Register Pointer
Default After Reset = 00H
D7 D6 D5 D4 D3 D2 D1 D0
Stack Pointer Lowe
r
Byte (SP - SP )
07
R255 SPL
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
DS97Z8X1104 P R E L I M I N A R Y 43
1
PACKAGE INFORMATION
18-Pin DIP Package Diagram
18-Pin SOIC Package Diagram
Z86E04/E08
CMOS Z8 OTP Microcontrollers Zilog
44 P R E L I M I N A R Y DS97Z8X1104
ORDERING INFORMATION
Z86E04 Z86E08
For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.
Codes
Preferred Package
P = Plastic DIP
Longer Lead Time
S = SOIC
Preferred Temperature
S = 0°C to +70°C
E = –40°C to +105°C
Speeds
12 =12 MHz
Environmental
C = Plastic Standard
© 1998 by Zilog, Inc. All rights reserved. No part of this
document may be copied or reproduced in any form or by
any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change
without notice. Devices sold by Zilog, Inc. are covered by
warranty and patent indemnification provisions appearing
in Zilog, Inc. Terms and Conditions of Sale only.
ZILOG, INC. MAKES NO WARRANTY, EXPRESS,
STATUTORY, IMPLIED OR BY DESCRIPTION,
REGARDING THE INFORMATION SET FORTH HEREIN
OR REGARDING THE FREEDOM OF THE DESCRIBED
DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY
PURPOSE.
Zilog, Inc. shall not be responsible for any errors that may
appear in this document. Zilog, Inc. makes no commitment
to update or keep current the information contained in this
document.
Zilog’s products are not authorized for use as critical
components in life support devices or systems unless a
specific written agreement pertaining to such intended use
is executed between the customer and Zilog prior to use.
Life support devices or systems are those which are
intended for surgical implantation into the body, or which
sustains life whose failure to perform, when properly used
in accordance with instructions for use provided in the
labeling, can be reasonably expected to result in
significant injury to the user.
Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
FAX 408 370-8056
Internet: http://www.zilog.com
Standard T emperature
18-Pin DIP 18-Pin SOIC
Z86E0412PSC Z86E0412SSC
Z86E0412PEC Z86E0412SEC
Standard T emperature
18-Pin DIP 18-Pin SOIC
Z86E0812PSC Z86E0812SSC
Z86E0812PEC Z86E0812SEC
Example:
Z 86E04 12 P S C
Environmental Flow
Temperature
Package
Speed
Product Number
Zilog Prefix
is a Z86E04, 12 MHz, DIP, 0°C to +70°C, Plastic Standard Flow