SAM9XE Series Atmel | SMART ARM-based Embedded MCU DATASHEET Description The Atmel(R) | SMART SAM9XE microcontroller series is based on the integration of an ARM926EJ-STM processor with fast ROM, RAM and Flash, and a wide range of peripherals. The embedded Flash memory can be programmed in-system via the JTAG-ICE interface or via a parallel interface on a production programmer prior to mounting. Built-in lock bits, a security bit and MMU protect the firmware from accidental overwrite and preserve its confidentiality. The SAM9XE series embeds an Ethernet MAC, one USB Device Port, and a USB Host Controller. It also integrates several standard peripherals, including six UARTs, SPI, TWI, Timer Counters, Synchronous Serial Controller, ADC and a MultiMedia/SD Card Interface. The SAM9XE system controller includes a reset controller capable of managing the power-on sequence of the microcontroller and the complete system. Correct device operation can be monitored by a built-in brownout detector and a watchdog running off an integrated RC oscillator. The SAM9XE series architecture includes a 6-layer matrix, allowing a maximum internal bandwidth of six 32-bit buses. It also features an External Bus Interface capable of interfacing with a wide range of memory devices. The pinout and ball-out are fully compatible with the Atmel | SMART SAM9260 eMPU with the exception that the pin BMS is replaced by the pin ERASE. SAM9XE Embedded Internal Memories Configuration Device ROM SRAM High-speed Flash SAM9XE128 32 KB 16 KB 128 KB SAM9XE256 32 KB 32 KB 256 KB SAM9XE512 32 KB 32 KB 512 KB Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Features Incorporates the ARM926EJ-S ARM(R) Thumb(R) Processor DSP instruction Extensions, ARM Jazelle(R) Technology for Java(R) Acceleration 8 KB Data Cache, 16 KB Instruction Cache, Write Buffer 200 MIPS at 180 MHz Memory Management Unit EmbeddedICE, Debug Communication Channel Support Additional Embedded Memories One 32 KB Internal ROM, Single-cycle Access at Maximum Matrix Speed One 32 KB (SAM9XE256 and SAM9XE512) or 16 KB (SAM9XE128) Internal SRAM, Single-cycle Access at Maximum Matrix Speed Internal High-speed Flash: 128 KB (SAM9XE128), 256 KB (SAM9XE256) or 512 KB (SAM9XE512) organized in 256, 512 or 1024 pages of 512 bytes respectively 128-bit Wide Access Fast Read Time: 45 ns Page Programming Time: 4 ms, Including Page Auto-erase Full Erase Time: 10 ms 10,000 Write Cycles, 10 Years Data Retention, Page Lock Capabilities, Flash Security Bit Enhanced Embedded Flash Controller (EEFC) Interface of the Flash Block with the 32-bit Internal Bus Increases Performance in ARM and Thumb Mode with 128-bit Wide Memory Interface 2 External Bus Interface (EBI) Supports SDRAM, Static Memory, ECC-enabled NAND Flash and CompactFlash(R) USB 2.0 Full Speed (12 Mbit/s) Device Port On-chip Transceiver, 2688-byte Configurable Integrated DPRAM USB 2.0 Full Speed (12 Mbit/s) Host Single Port in 208-pin PQFP Device and Double Port in 217-ball LFBGA Device Single or Dual On-chip Transceivers Integrated FIFOs and Dedicated DMA Channels Ethernet MAC 10/100 Base-T Media Independent Interface (MII) or Reduced Media Independent Interface (RMII) 128-byte FIFOs and Dedicated DMA Channels for Receive and Transmit Image Sensor Interface (ISI) ITU-R BT. 601/656 External Interface, Programmable Frame Capture Rate 12-bit Data Interface for Support of High Sensibility Sensors SAV and EAV Synchronization, Preview Path with Scaler, YCbCr Format Bus Matrix Six 32-bit-layer Matrix Remap Command Fully-featured System Controller, including Reset Controller (RSTC), Shutdown Controller (SHDWC) 128-bit (4 x 32-bit) General Purpose Backup Registers Clock Generator and Power Management Controller Advanced Interrupt Controller (AIC) and Debug Unit (DBGU) Periodic Interval Timer (PIT), Watchdog Timer (WDT) and Real-time Timer (RTT) Reset Controller (RSTC) Based on a Power-on Reset Cell, Reset Source Identification and Reset Output Control SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Clock Generator (CKGR) Selectable 32768 Hz Low-power Oscillator or Internal Low Power RC Oscillator on Battery Backup Power Supply, Providing a Permanent Slow Clock 3 to 20 MHz On-chip Oscillator, One Up to 240 MHz PLL and One Up to 100 MHz PLL Power Management Controller (PMC) Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities Two Programmable External Clock Signals Advanced Interrupt Controller (AIC) Individually Maskable, Eight-level Priority, Vectored Interrupt Sources Three External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected Debug Unit (DBGU) 2-wire UART and support for Debug Communication Channel, Programmable ICE Access Prevention Mode for General Purpose Two-wire UART Serial Communication Periodic Interval Timer (PIT) 20-bit Interval Timer Plus 12-bit Interval Counter Watchdog Timer (WDT) Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock Real-time Timer (RTT) 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler One 4-channel 10-bit Analog-to-Digital Converter Three 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC) 96 Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os Input Change Interrupt Capability on Each I/O Line Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output Peripheral DMA Controller (PDC) Channels Two-slot Multimedia Card Interface (MCI) SDCard/SDIO and MultiMediaCardTM Compliant Automatic Protocol Control and Fast Automatic Data Transfers with PDC One Synchronous Serial Controllers (SSC) Independent Clock and Frame Sync Signals for Each Receiver and Transmitter IS Analog Interface Support, Time Division Multiplex Support High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer Four Universal Synchronous/Asynchronous Receiver Transmitters (USART) Individual Baud Rate Generator, IrDA(R) Infrared Modulation/Demodulation, Manchester Encoding/Decoding Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support Full Modem Signal Control on USART0 One 2-wire UART Two Master/Slave Serial Peripheral Interface (SPI) 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects Synchronous Communications Two 3-channel 16-bit Timer/Counters (TC) Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel Double PWM Generation, Capture/Waveform Mode, Up/Down Capability High-Drive Capability on Outputs TIOA0, TIOA1, TIOA2 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 3 4 2 Two-wire Interfaces (TWI) Master, Multi-master and Slave Mode Operation General Call Supported in Slave Mode Connection to PDC Channel to Optimize Data Transfers in Master Mode Only IEEE(R) 1149.1 JTAG Boundary Scan on All Digital Pins Required Power Supplies: 1.65V to 1.95V for VDDBU, VDDCORE and VDDPLL 1.65V to 3.6V for VDDIOP1 (Peripheral I/Os) 3.0V to 3.6V for VDDIOP0 and VDDANA (Analog-to-Digital Converter) Programmable 1.65V to 1.95V or 3.0V to 3.6V for VDDIOM (Memory I/Os) Available in 208-pin PQFP and 217-ball LFBGA Green-compliant Packages SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 1. Block Diagram Figure 1-1, "SAM9XE Series Block Diagram," on page 6 shows all the features for the 217-LFBGA package. Some functions are not accessible in the 208-PQFP package and the unavailable pins are highlighted in "Multiplexing on PIO Controller A" on page 40, "Multiplexing on PIO Controller B" on page 41, "Multiplexing on PIO Controller C" on page 42. The USB Host Port B is also not available. Table 1-1 defines all the multiplexed and not multiplexed pins not available in the 208-PQFP package. Table 1-1. Unavailable Signals in 208-pin PQFP Device PIO Peripheral A Peripheral B - HDPB - - HDMB - PA30 SCK2 RXD4 PA31 SCK0 TXD4 PB12 TWD1 ISI_D10 PB13 TWCK1 ISI_D11 PC2 AD2 PCK1 PC3 AD3 SPI1_NPCS3 PC12 IRQ0 NCS7 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 5 I_ M IS CK I_ IS PC I_ K IS DO I_ -I V IS SY SI_ I_ N D7 HS C YN C HD HD PA M A HD PB HD M B IS SE JT AG Transc. FIQ IRQ0-IRQ2 AIC DRXD DTXD PCK0-PCK1 DBGU In-Circuit Emulator PLLA 10/100 Ethernet MAC ARM926EJ-S Processor PDC PLLRCA XIN XOUT JTAG Selection and Boundary Scan System Controller TST NT R TD ST TDI TMO TC S RTK CK ER AS E L SLAVE Filter ICache 16 Kbytes PMC DCache 8 Kbytes MMU FIFO PLLB Transc. Image Sensor Interface USB OHCI DMA DMA FIFO DMA Bus Interface I D 3-20 MHz Main Osc. WDT PIT 6-layer Matrix Backup Section OSCSEL XIN32 XOUT32 RC Oscillator 128-bit GPBR 32 kHz XTAL Osc. RTT PIOA SHDN WKUP SHDWC VDDBU POR VDDCORE POR Flash 128, 256 or 512 Kbytes PIOB PIOC ROM 32 Kbytes Fast SRAM 16 or 32 Kbytes Peripheral Bridge EBI 24-channel Peripheral DMA CompactFlash NAND Flash RSTC BOD NRST APB SDRAM Controller PDC MCI PDC TWI0 TWI1 PDC USART0 USART1 USART2 USART3 USART4 PDC SPI0 SPI1 PDC TC0 TC1 TC2 TC3 TC4 TC5 SSC PDC DPRAM 4-channel 10-bit ADC USB Device Static Memory Controller ECC Controller SPI0_, SPI1_ DD DDM P VR EF DA G N ND A AN A VD AD NP NPCS NPCS3 NPCS2 C 1 SP S0 M CK O TC M SI IS L O TI K0O T TI A0 CL O -T K TC B0 IO 2 L -T A TI K3 IOB2 O TI A3 TC 2 O -T LK B3 IO 5 -T A IO 5 B5 TK TF TD RD RF RK AD 0A AD D3 TR IG Transceiver T CT TWWD RTS0- CK SC S0 CTS RX K0 RTS3 -S TXD0- CK3 D0 RX 3 -T D5 X DSD5 DCR0 D0 R DT I0 R0 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 MASTER ET ETXC K ECXE -E N R ERRS -E XC T ERXE -EC XE K R O ET X0 -E L R - R M X0 ER XD D - X M C ETX 3 V DI 3 F1 O 00 SAM9XE Series Block Diagram M C M DB0 CD A0 MC -M DB CD 3 M A3 CC M D CC B M DA CC K 6 Figure 1-1. D0-D15 A0/NBS0 A1/NBS2/NWR2 A2-A15, A18-A20 A16/BA0 A17/BA1 NCS0 NCS1/SDCS NRD NWR0/NWE NWR1/NBS1 NWR3/NBS3 SDCK, SDCKE RAS, CAS SDWE, SDA10 NANDOE, NANDWE A21/NANDALE A22/NANDCLE D16-D31 NWAIT A23-A24 NCS4/CFCS0 NCS5/CFCS1 A25/CFRNW CFCE1-CFCE2 NCS2, NCS6, NCS7 NCS3/NANDCS 2. Signal Description Table 2-1 gives details on the signal name classified by peripheral. Table 2-1. Signal Name Signal Description List Function Type Active Reference Level Voltage Comments Power Supplies VDDIOM EBI I/O Lines Power Supply Power 1.65V to 1.95V or 3.0V to 3.6V VDDIOP0 Peripherals I/O Lines Power Supply Power 3.0V to 3.6V VDDIOP1 Peripherals I/O Lines Power Supply Power 1.65V to 3.6V VDDBU Backup I/O Lines Power Supply Power 1.65V to 1.95V VDDANA Analog Power Supply Power 3.0V to 3.6V VDDPLL PLL Power Supply Power 1.65V to 1.95V VDDCORE Core Chip and Embedded Memories Power Supply Power 1.65V to 1.95V GND Ground Ground GNDPLL PLL Ground Ground GNDANA Analog Ground Ground GNDBU Backup Ground Ground XIN Main Oscillator Input XOUT Main Oscillator Output XIN32 Slow Clock Oscillator Input Clocks, Oscillators and PLLs Input Output Input XOUT32 Slow Clock Oscillator Output OSCSEL Slow Clock Oscillator Selection Output Input PLLRCA PLL A Filter Input PCK0-PCK1 Programmable Clock Output SHDN Shutdown Control WKUP Wake-up Input VDDBU Accepts between 0V and VDDBU (2) Output Shutdown, Wakeup Logic Output Low Input VDDBU Driven at 0V only VDDBU Accepts between 0V and VDDBU ICE and JTAG NTRST Test Reset Signal Input TCK Test Clock Input Low VDDIOP0 No pull-up resistor, Schmitt trigger TDI Test Data In Input VDDIOP0 No pull-up resistor, Schmitt trigger TDO Test Data Out TMS Test Mode Select Input JTAGSEL JTAG Selection Input VDDBU RTCK Return Test Clock Output VDDIOP0 Output VDDIOP0 Pull-up resistor (100 k) VDDIOP0 VDDIOP0 No pull-up resistor, Schmitt trigger Pull-down resistor (15 k) Flash Memory ERASE Flash and NVM Configuration Bits Erase Command Input High VDDIOP0 Pull-down resistor (15 k) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 7 Table 2-1. Signal Description List (Continued) Signal Name Function Type Active Reference Level Voltage Comments Reset/Test NRST Microcontroller Reset TST Test Mode Select I/O Low Input Open-drain output, Pull-up VDDIOP0 resistor (100 k) Inserted in the Boundary Scan VDDBU Pull-down resistor (15 k) Debug Unit - DBGU DRXD Debug Receive Data Input (2) DTXD Debug Transmit Data Output (2) Advanced Interrupt Controller - AIC IRQ0-IRQ2 External Interrupt Inputs Input (2) FIQ Fast Interrupt Input Input (2) PIO Controller - PIOA / PIOB / PIOC PA0-PA31 Parallel IO Controller A I/O VDDIOP0 Pulled-up input at reset (100 k)(1) PB0-PB31 Parallel IO Controller B I/O VDDIOP0 Pulled-up input at reset (100 k)(1) PC0-PC31 Parallel IO Controller C I/O (2) Pulled-up input at reset (100 k)(1) External Bus Interface - EBI D0-D31 Data Bus A0-A25 Address Bus NWAIT External Wait Signal I/O VDDIOM Pulled-up input at reset Output VDDIOM 0 at reset Input Low VDDIOM Static Memory Controller - SMC NCS0-NCS7 Chip Select Lines Output Low VDDIOM NWR0-NWR3 Write Signal Output Low VDDIOM NRD Read Signal Output Low VDDIOM NWE Write Enable Output Low VDDIOM NBS0-NBS3 Byte Mask Signal Output Low VDDIOM CompactFlash Support CFCE1-CFCE2 CompactFlash Chip Enable Output Low VDDIOM CFOE CompactFlash Output Enable Output Low VDDIOM CFWE CompactFlash Write Enable Output Low VDDIOM CFIOR CompactFlash IO Read Output Low VDDIOM CFIOW CompactFlash IO Write Output Low VDDIOM CFRNW CompactFlash Read Not Write Output CFCS0-CFCS1 CompactFlash Chip Select Lines Output VDDIOM Low VDDIOM NAND Flash Support NANDCS NAND Flash Chip Select Output Low VDDIOM NANDOE NAND Flash Output Enable Output Low VDDIOM NANDWE NAND Flash Write Enable Output Low VDDIOM 8 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 2-1. Signal Description List (Continued) Signal Name Function Type Active Reference Level Voltage Comments SDRAM Controller - SDRAMC SDCK SDRAM Clock Output VDDIOM SDCKE SDRAM Clock Enable Output High VDDIOM SDCS SDRAM Controller Chip Select Output Low VDDIOM BA0-BA1 Bank Select Output SDWE SDRAM Write Enable Output Low VDDIOM RAS - CAS Row and Column Signal Output Low VDDIOM SDA10 SDRAM Address 10 Line Output VDDIOM VDDIOM Multimedia Card Interface - MCI MCCK Multimedia Card Clock Output VDDIOP0 MCCDA Multimedia Card Slot A Command I/O VDDIOP0 MCDA0-MCDA3 Multimedia Card Slot A Data I/O VDDIOP0 MCCDB Multimedia Card Slot B Command I/O VDDIOP0 MCDB0-MCDB3 Multimedia Card Slot B Data I/O VDDIOP0 Universal Synchronous Asynchronous Receiver Transmitter - USARTx SCKx USARTx Serial Clock I/O (2) TXDx USARTx Transmit Data I/O (2) RXDx USARTx Receive Data Input (2) RTSx USARTx Request To Send Output (2) CTSx USARTx Clear To Send Input (2) DTR0 USART0 Data Terminal Ready Output (2) DSR0 USART0 Data Set Ready Input (2) DCD0 USART0 Data Carrier Detect Input (2) RI0 USART0 Ring Indicator Input (2) Synchronous Serial Controller - SSC TD SSC Transmit Data Output (2) RD SSC Receive Data Input (2) TK SSC Transmit Clock I/O (2) RK SSC Receive Clock I/O (2) TF SSC Transmit Frame Sync I/O (2) RF SSC Receive Frame Sync I/O (2) TCLKx TC Channel x External Clock Input TIOAx Timer/Counter - TCx Input (2) TC Channel x I/O Line A I/O (2) TIOBx TC Channel x I/O Line B I/O (2) SPIx_MISO Master In Slave Out I/O (2) SPIx_MOSI Master Out Slave In I/O (2) SPIx_SPCK SPI Serial Clock I/O (2) SPIx_NPCS0 SPI Peripheral Chip Select 0 I/O Low (2) Output Low (2) Serial Peripheral Interface - SPIx SPIx_NPCS1-SPIx_NPCS3 SPI Peripheral Chip Select SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 9 Table 2-1. Signal Description List (Continued) Signal Name Function Type Active Reference Level Voltage Comments Two-wire Interface - TWI TWDx Two-wire Serial Data I/O (2) TWCKx Two-wire Serial Clock I/O (2) HDPA USB Host Port A Data + Analog VDDIOP0 HDMA USB Host Port A Data - Analog VDDIOP0 HDPB USB Host Port B Data + Analog VDDIOP0 HDMB USB Host Port B Data + Analog VDDIOP0 USB Host Port - UHP USB Device Port - UDP DDM USB Device Port Data - Analog VDDIOP0 DDP USB Device Port Data + Analog VDDIOP0 ETXCK Transmit Clock or Reference Clock Input VDDIOP0 MII only, REFCK in RMII ERXCK Receive Clock Input VDDIOP0 MII only ETXEN Transmit Enable ETX0-ETX3 Transmit Data Output VDDIOP0 ETX0-ETX1 only in RMII ETXER Transmit Coding Error Output VDDIOP0 MII only ERXDV Receive Data Valid Input VDDIOP0 RXDV in MII, CRSDV in RMII ERX0-ERX3 Receive Data Input VDDIOP0 ERX0-ERX1 only in RMII Ethernet MAC 10/100 - EMAC Output VDDIOP0 ERXER Receive Error Input VDDIOP0 ECRS Carrier Sense and Data Valid Input VDDIOP0 MII only ECOL Collision Detect Input VDDIOP0 MII only EMDC Management Data Clock EMDIO Management Data Input/Output EF100 Force 100Mbit/sec. Output VDDIOP0 I/O Output VDDIOP0 High VDDIOP0 Image Sensor Interface - ISI ISI_D0-ISI_D11 Image Sensor Data Input VDDIOP1 ISI_MCK Image sensor Reference clock output VDDIOP1 ISI_HSYNC Image Sensor Horizontal Synchro input VDDIOP1 ISI_VSYNC Image Sensor Vertical Synchro input VDDIOP1 ISI_PCK Image Sensor Data clock input VDDIOP1 AD0-AD3 Analog Inputs Analog VDDANA ADVREF Analog Positive Reference Analog VDDANA ADTRG ADC Trigger Input VDDANA Analog-to-Digital Converter - ADC 10 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Digital pulled-up inputs at reset Table 2-1. Signal Name Signal Description List (Continued) Function Type Active Reference Level Voltage Comments Fast Flash Programming Interface - FFPI PGMEN[3:0] Programming Enabling Input PGMNCMD Programming Command Input Low VDDIOP0 PGMRDY Programming Ready Output High VDDIOP0 PGMNOE Programming Read Input Low VDDIOP0 PGMNVALID Data Direction Output Low VDDIOP0 PGMM[3:0] Programming Mode Input VDDIOP0 PGMD[15:0] Programming Data I/O VDDIOP0 Notes: VDDIOP0 1. Programming of this pull-up resistor is performed independently for each I/O line through the PIO Controllers. After reset, all the I/O lines default as inputs with pull-up resistors enabled, except those which are multiplexed with the External Bus Interface signals that require to be enabled as Peripheral at reset. This is explicitly indicated in the column "Reset State" of the peripheral multiplexing tables. 2. Refer to PIO Multiplexing (see Section 9.3 "Peripheral Signals Multiplexing on I/O Lines"). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 11 3. Package and Pinout The SAM9XE devices are available in the following Green-compliant packages: 3.1 208-pin PQFP (0.5 mm pitch) 217-ball LFBGA (0.8 mm ball pitch) 208-pin PQFP Package Outline Figure 3-1 shows the orientation of the 208-pin PQFP package. A detailed mechanical description is given in Section 43. "Mechanical Characteristics". Figure 3-1. 208-pin PQFP Package Outline (Top View) 156 105 157 104 208 53 1 3.2 52 208-pin PQFP Package Pinout Table 3-1. Pinout for 208-pin PQFP Package Pin Signal Name Pin Signal Name Pin 1 PA24 53 GND 105 RAS 157 ADVREF 2 PA25 54 DDM 106 D0 158 PC0 3 PA26 55 DDP 107 D1 159 PC1 4 PA27 56 PC13 108 D2 160 VDDANA 5 VDDIOP0 57 PC11 109 D3 161 PB10 6 GND 58 PC10 110 D4 162 PB11 7 PA28 59 PC14 111 D5 163 PB20 8 PA29 60 PC9 112 D6 164 PB21 9 PB0 61 PC8 113 GND 165 PB22 10 PB1 62 PC4 114 VDDIOM 166 PB23 11 PB2 63 PC6 115 SDCK 167 PB24 12 PB3 64 PC7 116 SDWE 168 PB25 13 VDDIOP0 65 VDDIOM 117 SDCKE 169 VDDIOP1 14 GND 66 GND 118 D7 170 GND 15 PB4 67 PC5 119 D8 171 PB26 16 PB5 68 NCS0 120 D9 172 PB27 12 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Signal Name Pin Signal Name Table 3-1. Pinout for 208-pin PQFP Package (Continued) Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name 17 PB6 69 CFOE/NRD 121 D10 173 GND 18 PB7 70 CFWE/NWE/NWR0 122 D11 174 VDDCORE 19 PB8 71 NANDOE 123 D12 175 PB28 20 PB9 72 NANDWE 124 D13 176 PB29 21 PB14 73 A22 125 D14 177 PB30 22 PB15 74 A21 126 D15 178 PB31 23 PB16 75 A20 127 PC15 179 PA0 24 VDDIOP0 76 A19 128 PC16 180 PA1 25 GND 77 VDDCORE 129 PC17 181 PA2 26 PB17 78 GND 130 PC18 182 PA3 27 PB18 79 A18 131 PC19 183 PA4 28 PB19 80 BA1/A17 132 VDDIOM 184 PA5 29 TDO 81 BA0/A16 133 GND 185 PA6 30 TDI 82 A15 134 PC20 186 PA7 31 TMS 83 A14 135 PC21 187 VDDIOP0 32 VDDIOP0 84 A13 136 PC22 188 GND 33 GND 85 A12 137 PC23 189 PA8 34 TCK 86 A11 138 PC24 190 PA9 35 NTRST 87 A10 139 PC25 191 PA10 36 NRST 88 A9 140 PC26 192 PA11 37 RTCK 89 A8 141 PC27 193 PA12 38 VDDCORE 90 VDDIOM 142 PC28 194 PA13 39 GND 91 GND 143 PC29 195 PA14 40 ERASE 92 A7 144 PC30 196 PA15 41 OSCSEL 93 A6 145 PC31 197 PA16 42 TST 94 A5 146 GND 198 PA17 43 JTAGSEL 95 A4 147 VDDCORE 199 VDDIOP0 44 GNDBU 96 A3 148 VDDPLL 200 GND 45 XOUT32 97 A2 149 XIN 201 PA18 46 XIN32 98 NWR2/NBS2/A1 150 XOUT 202 PA19 47 VDDBU 99 NBS0/A0 151 GNDPLL 203 VDDCORE 48 WKUP 100 SDA10 152 NC 204 GND 49 SHDN 101 CFIOW/NBS3/NWR3 153 GNDPLL 205 PA20 50 HDMA 102 CFIOR/NBS1/NWR1 154 PLLRCA 206 PA21 51 HDPA 103 SDCS/NCS1 155 VDDPLL 207 PA22 52 VDDIOP0 104 CAS 156 GNDANA 208 PA23 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 13 3.3 217-ball LFBGA Package Outline Figure 3-2 shows the orientation of the 217-ball LFBGA package. A detailed mechanical description is given in Section 43. "Mechanical Characteristics". Figure 3-2. 217-ball LFBGA Package Outline (Top View) 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U Ball A1 3.4 217-ball LFBGA Package Pinout Table 3-2. Pinout for 217-ball LFBGA Package Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name A1 CFIOW/NBS3/NWR3 D5 A5 J14 TDO P17 PB5 A2 NBS0/A0 D6 GND J15 PB19 R1 NC A3 NWR2/NBS2/A1 D7 A10 J16 TDI R2 GNDANA A4 A6 D8 GND J17 PB16 R3 PC29 A5 A8 D9 VDDCORE K1 PC24 R4 VDDANA A6 A11 D10 GND K2 PC20 R5 PB12 A7 A13 D11 K3 D15 R6 PB23 A8 BA0/A16 D12 GND K4 PC21 R7 GND A9 A18 D13 DDM K8 GND R8 PB26 A10 A21 D14 HDPB K9 GND R9 PB28 A11 A22 D15 NC K10 GND R10 PA0 A12 CFWE/NWE/NWR0 D16 VDDBU K14 PB4 R11 A13 CFOE/NRD D17 XIN32 K15 PB17 R12 PA5 A14 NCS0 E1 D10 K16 GND R13 PA10 A15 PC5 E2 D5 K17 PB15 R14 PA21 A16 PC6 E3 D3 L1 GND R15 PA23 A17 PC4 E4 D4 L2 PC26 R16 PA24 B1 SDCK E14 HDPA L3 PC25 R17 PA29 B2 CFIOR/NBS1/NWR1 E15 HDMA L4 VDDIOP0 T1 PLLRCA B3 SDCS/NCS1 E16 GNDBU L14 PA28 T2 GNDPLL 14 VDDIOM SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 PA4 Table 3-2. Pinout for 217-ball LFBGA Package (Continued) Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name B4 SDA10 E17 XOUT32 L15 PB9 T3 PC0 B5 A3 F1 D13 L16 PB8 T4 PC1 B6 A7 F2 SDWE L17 PB14 T5 PB10 B7 A12 F3 D6 M1 VDDCORE T6 PB22 B8 A15 F4 GND M2 PC31 T7 GND B9 A20 F14 OSCSEL M3 GND T8 PB29 B10 NANDWE F15 ERASE M4 PC22 T9 PA2 B11 PC7 F16 JTAGSEL M14 PB1 T10 PA6 B12 PC10 F17 TST M15 PB2 T11 PA8 B13 PC13 G1 PC15 M16 PB3 T12 PA11 B14 PC11 G2 D7 M17 PB7 T13 VDDCORE B15 PC14 G3 SDCKE N1 XIN T14 PA20 B16 PC8 G4 VDDIOM N2 VDDPLL T15 GND B17 WKUP G14 GND N3 PC23 T16 PA22 C1 D8 G15 NRST N4 PC27 T17 PA27 C2 D1 G16 RTCK N14 PA31 U1 GNDPLL C3 CAS G17 TMS N15 PA30 U2 ADVREF C4 A2 H1 PC18 N16 PB0 U3 PC2 C5 A4 H2 D14 N17 PB6 U4 PC3 C6 A9 H3 D12 P1 XOUT U5 PB20 C7 A14 H4 D11 P2 VDDPLL U6 PB21 C8 BA1/A17 H8 GND P3 PC30 U7 PB25 C9 A19 H9 GND P4 PC28 U8 PB27 C10 NANDOE H10 GND P5 PB11 U9 PA12 C11 H14 VDDCORE P6 PB13 U10 PA13 C12 PC12 H15 TCK P7 PB24 U11 C13 DDP H16 NTRST P8 VDDIOP1 U12 PA15 C14 HDMB H17 PB18 P9 PB30 U13 PA19 C15 NC J1 PC19 P10 PB31 U14 PA17 C16 VDDIOP0 J2 PC17 P11 PA1 U15 PA16 C17 SHDN J3 VDDIOM P12 PA3 U16 PA18 D1 D9 J4 PC16 P13 PA7 U17 VDDIOP0 D2 D2 J8 GND P14 PA9 D3 RAS J9 GND P15 PA26 D4 D0 J10 GND P16 PA25 PC9 PA14 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 15 4. Power Considerations 4.1 Power Supplies The SAM9XE devices have several types of power supply pins. Some supply pins share common ground (GND) pins whereas others have separate grounds. See Table 4-1. Table 4-1. Pin(s) SAM9XE Power Supply Pins Item(s) powered Range Typical 1.65-1.95 V 1.8V 1.65-1.95 V(1) 1.8V Ground Core, including the processor VDDCORE Embedded memories Peripherals VDDIOM External Bus Interface I/O lines VDDIOP0 Peripheral I/O lines and the USB transceivers 3.0-3.6 V 3.3V VDDIOP1 Peripherals I/O lines involving the Image Sensor Interface 1.65-3.6 V 1.8V 2.5V 3.3V 1.65-1.95 V 1.8V GNDBU 1.65-1.95 V 1.8V GNDPLL 3.0-3.6 V 3.3V GNDANA VDDBU Slow Clock oscillator Part of the System Controller VDDPLL PLL cells main oscillator VDDANA Analog-to-Digital Converter Note: 1. 3.0-3.6 V (1) 3.3V GND Desired voltage range selectable by software The power supplies VDDIOM, VDDIOP0 and VDDIOP1 are identified in the pinout table and their associated I/O lines in the multiplexing tables. These supplies enable the user to power the device differently for interfacing with memories and for interfacing with peripherals. 4.2 Power Sequence Requirements The board design must comply with the power-up guidelines below to guarantee reliable operation of the device. Any deviation from these sequences may prevent the device from booting. 4.2.1 Power-up Sequence VDDCORE and VDDBU are controlled by internal POR (Power-On-Reset) to guarantee that these power sources reach their target values prior to the release of POR. To ensure a working system, VDDIOP0, VDDIOP1, and VDDIOM should be established to power external memories and I/Os before the first access. This can be achieved if VDDIOP0, VDDIOP1, and VDDIOM are powered before VDDCORE. 4.2.2 Power-down Sequence To ensure external memories and I/Os are powered until the last access, switch off VDDIOM, VDDIOP0 and VDDIOP1 power supplies after or at the same time as switching off VDDCORE. No power-up or power-down restrictions apply to VDDBU, VDDPLL and VDDANA. 16 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 5. I/O Line Considerations 5.1 ERASE Pin The ERASE pin is used to re-initialize the Flash content and the NVM bits. It integrates a permanent pull-down resistor of about 15 k, so that it can be left unconnected for normal operations. The ERASE pin is powered by VDDIOP0 rail. This pin is debounced on the RC oscillator or 32768 Hz low-power oscillator to improve the glitch tolerance. Minimum debouncing time is 200 ms. 5.2 I/O Line Drive Levels The PIO lines PA0 to PA31 and PB0 to PB31 and PC0 to PC3 are high-drive current capable. Each of these I/O lines can drive up to 16 mA permanently with a total of 350 mA on all I/O lines. Refer to Section 42.2 "DC Characteristics". 5.3 Shutdown Logic Pins The SHDN pin is a tri-state output only pin, which is driven by the Shutdown Controller. There is no internal pull-up. An external pull-up to VDDBU is needed and its value must be higher than 1 M. The resistor value is calculated according to the regulator enable implementation and the SHDN level. The WKUP pin is an input-only. It can accept voltages only between 0V and VDDBU. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 17 6. Processor and Architecture 6.1 ARM926EJ-S Processor RISC Processor Based on ARM v5TEJ Architecture with Jazelle technology for Java acceleration Two Instruction Sets ARM High-performance 32-bit Instruction Set Thumb High Code Density 16-bit Instruction Set DSP Instruction Extensions 5-Stage Pipeline Architecture: Instruction Fetch (F) Instruction Decode (D) Execute (E) Data Memory (M) Register Write (W) 8 KB Data Cache, 16 KB Instruction Cache Virtually-addressed 4-way Associative Cache Eight words per line Write-through and Write-back Operation Pseudo-random or Round-robin Replacement Write Buffer Main Write Buffer with 16-word Data Buffer and 4-address Buffer DCache Write-back Buffer with 8-word Entries and a Single Address Entry Software Control Drain Standard ARM v4 and v5 Memory Management Unit (MMU) Access Permission for Sections Access Permission for large pages and small pages can be specified separately for each quarter of the page 18 16 embedded domains Bus Interface Unit (BIU) Arbitrates and Schedules AHB Requests Separate Masters for both instruction and data access providing complete Matrix system flexibility Separate Address and Data Buses for both the 32-bit instruction interface and the 32-bit data interface On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit (Words) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 6.2 Bus Matrix 6-layer Matrix, handling requests from 6 masters Programmable Arbitration strategy Fixed-priority Arbitration Round-Robin Arbitration, either with no default master, last accessed default master or fixed default master Burst Management Breaking with Slot Cycle Limit Support Undefined Burst Length Support One Address Decoder provided per Master 6.2.1 Three different slaves may be assigned to each decoded memory area: one for internal ROM boot, one for internal flash boot, one after remap Boot Mode Select Non-volatile Boot Memory can be internal ROM or internal Flash Selection is made by General purpose NVM bit sampled at reset Remap Command Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory (ROM or Flash) Allows Handling of Dynamic Exception Vectors Matrix Masters The Bus Matrix manages six Masters, thus each master can perform an access concurrently with others, depending on whether the slave it accesses is available. Each Master has its own decoder, which can be defined specifically for each master. In order to simplify the addressing, all the masters have the same decodings. Table 6-1. 6.2.2 List of Bus Matrix Masters Master 0 ARM926TM Instruction Master 1 ARM926 Data Master 2 Peripheral DMA Controller Master 3 USB Host Controller Master 4 Image Sensor Controller Master 5 Ethernet MAC Matrix Slaves Each Slave has its own arbiter, thus allowing a different arbitration per Slave to be programmed. Table 6-2. Slave 0 Slave 1 List of Bus Matrix Slaves Internal SRAM Internal ROM USB Host User Interface Slave 2 External Bus Interface Slave 3 Internal Flash Slave 4 Internal Peripherals Slave 5 Reserved SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 19 6.2.3 Masters to Slaves Access All the Masters can normally access all the Slaves. However, some paths do not make sense, such as allowing access from the Ethernet MAC to the internal peripherals. Thus, these paths are forbidden or simply not wired, and shown as "-" in the following table. Table 6-3. Masters to Slaves Access 0 and 1 2 3 4 5 ARM926 Instruction and Data Peripheral DMA Controller ISI Controller Ethernet MAC USB Host Controller Internal SRAM X X X X X Internal ROM X X - - - UHP User Interface X - - - - 2 External Bus Interface X X X X X 3 Internal Flash X - - X - 4 Internal Peripherals X X - - - - Reserved - - - - - Master Slave 0 1 20 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 6.3 Peripheral DMA Controller Acting as one Matrix Master Allows data transfers from/to peripheral to/from any memory space without any intervention of the processor. Next Pointer Support, forbids strong real-time constraints on buffer management. Twenty-four channels Two for each USART Two for the Debug Unit Two for each Serial Synchronous Controller Two for each Serial Peripheral Interface Two for the Two Wire Interface One for Multimedia Card Interface One for Analog-to-Digital Converter The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to High priorities): TWI0 Transmit Channel TWI1 Transmit Channel DBGU Transmit Channel USART4 Transmit Channel USART3 Transmit Channel USART2 Transmit Channel USART1 Transmit Channel USART0 Transmit Channel SPI1 Transmit Channel SPI0 Transmit Channel SSC Transmit Channel TWI0 Receive Channel TWI1 Receive Channel DBGU Receive Channel USART4 Receive Channel USART3 Receive Channel USART2 Receive Channel USART1 Receive Channel USART0 Receive Channel ADC Receive Channel SPI1 Receive Channel SPI0 Receive Channel SSC Receive Channel MCI Transmit/Receive Channel SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21 6.4 Debug and Test Features 22 ARM926 Real-time In-circuit Emulator Two real-time Watchpoint Units Two Independent Registers: Debug Control Register and Debug Status Register Test Access Port Accessible through JTAG Protocol Debug Communications Channel Debug Unit Two-pin UART Debug Communication Channel Interrupt Handling Chip ID Register IEEE1149.1 JTAG Boundary-scan on All Digital Pins SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 7. Memories Figure 7-1. Memory Mapping Address Memory Space Internal Memory Mapping 0x0000 0000 Notes : (1) Can be ROM or Flash depending on GPNVM[3] 0x0000 0000 Boot Memory (1) Internal Memories 256 Mbytes 0x10 0000 ROM 0x0FFF FFFF EBI Chip Select 0 Reserved 256 Mbytes 0x20 0000 Flash 128, 256 or 512 Kbytes 0x28 0000 0x1FFF FFFF 0x2000 0000 0x2FFF FFFF 32 Kbytes 0x10 8000 0x1000 0000 Reserved EBI Chip Select 1/ SDRAMC 256 Mbytes 0x30 0000 SRAM 32 Kbytes 0x30 8000 Reserved 0x3000 0000 0x50 0000 EBI Chip Select 2 UHP 256 Mbytes 0x50 4000 EBI Chip Select 3/ NANDFlash 256 Mbytes 0x0FFF FFFF EBI Chip Select 4/ Compact Flash Slot 0 256 Mbytes EBI Chip Select 5/ Compact Flash Slot 1 256 Mbytes 16 Kbytes 0x3FFF FFFF 0x4000 0000 Reserved 0x4FFF FFFF 0x5000 0000 0x5FFF FFFF 0x6000 0000 0x6FFF FFFF 0x7000 0000 Peripheral Mapping 0xF000 0000 System Controller Mapping Reserved 0xFFFA 0000 EBI Chip Select 6 256 Mbytes 0x7FFF FFFF 0x8000 0000 TCO, TC1, TC2 16 Kbytes UDP 16 Kbytes MCI 16 Kbytes TWI0 16 Kbytes 0xFFFF C000 Reserved 0xFFFA 4000 0xFFFF E800 0xFFFA 8000 EBI Chip Select 7 256 Mbytes 0xFFFA C000 0x8FFF FFFF 0x9000 0000 ECC 512 bytes SDRAMC 512 bytes SMC 512 bytes MATRIX 512 bytes 0xFFFF EA00 0xFFFF EC00 0xFFFB 0000 USART0 16 Kbytes 0xFFFB 4000 0xFFFF EE00 USART1 16 Kbytes 0xFFFB 8000 USART2 16 Kbytes SSC 16 Kbytes ISI 16 Kbytes EMAC 16 Kbytes 0xFFFF F000 0xFFFB C000 AIC 512 bytes 0xFFFF F200 0xFFFC 0000 1,518 Mbytes SPI0 16 Kbytes SPI1 16 Kbytes USART3 16 Kbytes USART4 16 Kbytes 0xFFFF FC00 16 Kbytes 0xFFFF FD00 0xFFFD 8000 TWI1 TC3, TC4, TC5 16 Kbytes 0xFFFF FD20 0xFFFE 0000 ADC 0xFFFF FD30 16 Kbytes 0xFFFF FD50 0xFFFF C000 EEFC 512 bytes PMC 256 bytes RSTC 16 bytes SHDWC 16 bytes RTT 16 bytes PIT 16 bytes WDT 16 bytes Reserved 0xFFFF FD60 SYSC 0xFFFF FFFF 512 bytes 0xFFFF FD40 0xFFFE 4000 Reserved 0xFFFF FFFF PIOC 0xFFFF FD10 0xFFFD C000 256 Mbytes 512 bytes 0xFFFF FA00 0xFFFD 4000 Internal Peripherals 512 bytes 0xFFFF F800 0xFFFD 0000 0xF000 0000 PIOA PIOB 0xFFFC C000 0xEFFF FFFF 512 bytes 0xFFFF F600 0xFFFC 8000 Undefined (Abort) DBGU 0xFFFF F400 0xFFFC 4000 16 Kbytes 0xFFFF FD70 0xFFFF FFFF GPBR 16 bytes Reserved SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 23 A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the Advanced High performance Bus (AHB) for its Master and Slave interfaces with additional features. Decoding breaks up the 4 Gbytes of address space into 16 banks of 256 MB. Banks 1 to 7 are directed to the EBI that associates these banks to the external chip selects EBI_NCS0 to EBI_NCS7. Bank 0 is reserved for the addressing of the internal memories, and a second level of decoding provides 1 MB of internal memory area. Bank 15 is reserved for the peripherals and provides access to the Advanced Peripheral Bus (APB). Other areas are unused and performing an access within them provides an abort to the master requesting such an access. Each Master has its own bus and its own decoder, thus allowing a different memory mapping per Master. However, in order to simplify the mappings, all the masters have a similar address decoding. Regarding Master 0 and Master 1 (ARM926 Instruction and Data), three different Slaves are assigned to the memory space decoded at address 0x0: one for internal boot, one for external boot, one after remap, refer to Table 7-3, "Internal Memory Mapping," on page 28 for details. 7.1 Embedded Memories 7.1.1 SAM9XE128 32 KB ROM Single Cycle Access at full matrix speed 16 KB Fast SRAM 128 KB Embedded Flash 7.1.2 Single Cycle Access at full matrix speed SAM9XE256 32 KB ROM Single Cycle Access at full matrix speed 32 KB Fast SRAM 7.1.3 Single Cycle Access at full matrix speed 256 KB Embedded Flash SAM9XE512 32 KB ROM 32 KB Fast SRAM Single Cycle Access at full matrix speed 7.1.4 Single Cycle Access at full matrix speed 512 KB Embedded Flash ROM Topology The embedded ROM contains the Fast Flash Programming and the SAM-BA(R) boot programs. Each of these two programs is stored on 16 KB Boundary of FFPI and the program executed at address zero depends on the combination of the TST pin and PA0 to PA3 pins. Figure 7-2 shows the contents of the ROM and the program available at address zero. 24 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 7-2. ROM Boot Memory Map 0x0000 0000 0x0000 0000 0x0000 0000 SAM-BA Program SAM-BA Program FFPI Program TST=0 TST=1 PA0=1 PA1=1 PA2=0 PA3=0 FFPI Program 0x0000 7FFF 0x0000 3FFF ROM 0x0000 3FFF 7.1.4.1 Fast Flash Programming Interface The Fast Flash Programming Interface programs the device through a serial JTAG interface or a multiplexed fullyhandshaked parallel port. It allows gang-programming with market-standard industrial programmers. The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands. The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when the TST pin and the PA0 and PA1 pins are all tied high, while PA2 and PA3 are tied low. Table 7-1. Signal Description Signal Name PIO Type Active Level Comments PGMEN0 PA0 Input High Must be connected to VDDIO PGMEN1 PA1 Input High Must be connected to VDDIO PGMEN2 PA2 Input Low Must be connected to GND PGMEN3 PA3 Input Low Must be connected to GND PGMNCMD PA4 Input Low Pulled-up input at reset PGMRDY PA5 Output High Pulled-up input at reset PGMNOE PA6 Input Low Pulled-up input at reset PGMNVALID PA7 Output Low Pulled-up input at reset PGMM[3:0] PA8..PA10 Input Pulled-up input at reset PGMD[15:0] PA12..PA27 Input/Output Pulled-up input at reset 7.1.4.2 SAM-BA Boot Assistant The SAM-BA Boot Assistant is a default Boot Program that provides an easy way to program in situ the on-chip Flash memory. The SAM-BA Boot Assistant supports serial communication through the DBGU or through the USB Device Port. Communication through the DBGU supports a wide range of crystals from 3 to 20 MHz via software autodetection. Communication through the USB Device Port is depends on crystal selected: limited to an 18432 Hz crystal if the internal RC oscillator is selected supports a wide range of crystals from 3 to 20 MHz if the 32768 Hz crystal is selected The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 25 7.1.5 Embedded Flash The Flash is organized in 256/512/1024 pages of 512 bytes directly connected to the 32-bit internal bus. Each page contains 128 words. The Flash contains a 512-byte write buffer allowing the programming of a page. This buffer is write-only as 128 32bit words, and accessible all along the 1 MB address space, so that each word can be written at its final address. The Flash benefits from the integration of a power reset cell and from a brownout detector to prevent code corruption during power supply changes, even in the worst conditions. 7.1.5.1 Enhanced Embedded Flash Controller The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Enhanced Embedded Flash Controller (EEFC) is a slave for the bus matrix and is configurable through its User Interface on the APB bus. It ensures the interface of the Flash block with the 32-bit internal bus. Its 128-bit wide memory interface increases performance, four 32-bit data are read during each access, this multiply the throughput by 4 in case of consecutive data. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic programming of the access parameters of the Flash (number of wait states, timings, etc.) 7.1.5.2 Lock Regions The memory plane of 128, 256 or 512 KB is organized in 8, 16 or 32 locked regions of 32 pages each. Each lock region can be locked independently, so that the software protects the first memory plane against erroneous programming: If a locked-regions erase or program command occurs, the command is aborted and the EEFC could trigger an interrupt. The Lock bits are software programmable through the EEFC User Interface. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region. Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash. 26 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 7-3. Flash First Memory Plane Mapping 0x0020 0000 Locked Region 0 Page 0 Locked Regions Area 128, 256 or 512 Kbytes 256, 512 or 1024 Pages Page 31 Locked Region 7, 15 or 31 0x0021 FFFF or 0x0023 FFFF or 0x0027 FFFF 512 bytes 16 Kbytes 32 bits wide 7.1.5.3 GPNVM Bits The SAM9XE devices feature four GPNVM bits that can be cleared or set respectively through the commands "Clear GPNVM Bit" and "Set GPNVM Bit" of the EEFC User Interface. Table 7-2. General-purpose Non-volatile Memory Bits GPNVMBit[#] Function 0 Security Bit 1 Brownout Detector Enable 2 Brownout Detector Reset Enable 3 Boot Mode Select (BMS) 7.1.5.4 Security Bit The SAM9XE devices feature a security bit, based on a specific GPNVM bit, GPNVMBit[0]. When the security is enabled, access to the Flash, either through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are permitted. As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27 7.1.5.5 Non-volatile Brownout Detector Control Two GPNVM bits are used for controlling the brownout detector (BOD), so that even after a power loss, the brownout detector operations remain in their state. 7.1.6 GPNVMBit[1] is used as a brownout detector enable bit. Setting GPNVMBit[1] enables the BOD, clearing it disables the BOD. Asserting ERASE clears GPNVMBit[1] and thus disables the brownout detector by default. GPNVMBit[2] is used as a brownout reset enable signal for the reset controller. Setting GPNVMBit[2] enables the brownout reset when a brownout is detected, clearing GPNVMBit[2] disables the brownout reset. Asserting ERASE disables the brownout reset by default. Boot Strategies Table 7-3 summarizes the Internal Memory Mapping for each Master, depending on the Remap status and the GPNVMBit[3] state at reset. Table 7-3. Internal Memory Mapping REMAP = 0 Address GPNVMBit[3] clear GPNVMBit[3] set REMAP = 1 0x0000 0000 ROM Flash SRAM The system always boots at address 0x0. To ensure a maximum number of possibilities for boot, the memory layout can be configured with two parameters. REMAP allows the user to lay out the first internal SRAM bank to 0x0 to ease development. This is done by software once the system has booted. Refer to Section 20. "SAM9XE Bus Matrix" for more details. When REMAP = 0, a non-volatile bit stored in Flash memory (GPNVMBit[3]) allows the user to lay out to 0x0, at his convenience, the ROM or the Flash. Refer to Section 19. "Enhanced Embedded Flash Controller (EEFC)" for more details. Note: Memory blocks not affected by these parameters can always be seen at their specified base addresses. See the complete memory map presented in Figure 7-1 on page 23. The SAM9XE Matrix manages a boot memory that depends on the value of GPNVMBit[3] at reset. The internal memory area mapped between address 0x0 and 0x0FFF FFFF is reserved for this purpose. If GPNVMBit[3] is set, the boot memory is the internal Flash memory If GPNVMBit[3] is clear (Flash reset State), the boot memory is the embedded ROM. After a Flash erase, the boot memory is the internal ROM. 7.1.6.1 GPNVMBit[3] = 0, Boot on Embedded ROM The system boots using the Boot Program. Boot on slow clock (On-chip RC oscillator or 32768 Hz low-power oscillator) Auto baud rate detection SAM-BA Boot in case no valid program is detected in external NVM, supporting Serial communication on a DBGU USB Device Port 7.1.6.2 GPNVMBit[3] = 1, Boot on Internal Flash Boot on slow clock (On-chip RC oscillator or 32768 Hz low-power oscillator) The customer-programmed software must perform a complete configuration. 28 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 To speed up the boot sequence when booting at 32 kHz, the user must take the following steps: 1. 7.2 Program the PMC (main oscillator enable or bypass mode) 2. Program and start the PLL 3. Switch the main clock to the new value. External Memories The external memories are accessed through the External Bus Interface. Each Chip Select line has a 256 MB memory area assigned. Refer to the memory map in Figure 7-1 on page 23. 7.2.1 External Bus Interface Integrates three External Memory Controllers: Static Memory Controller SDRAM Controller ECC Controller Additional logic for NAND Flash Full 32-bit External Data Bus Up to 26-bit Address Bus (up to 64 MB linear) Up to 8 chip selects, Configurable Assignment: Static Memory Controller on NCS0 SDRAM Controller or Static Memory Controller on NCS1 Static Memory Controller on NCS2 Static Memory Controller on NCS3, Optional NAND Flash support Static Memory Controller on NCS4-NCS5, Optional CompactFlash support 7.2.2 Static Memory Controller on NCS6-NCS7 Static Memory Controller 8-, 16- or 32-bit Data Bus Multiple Access Modes supported Byte Write or Byte Select Lines Asynchronous read in Page Mode supported (4- up to 32-byte page size) Multiple device adaptability Compliant with LCD Module Control signals programmable setup, pulse and hold time for each Memory Bank Multiple Wait State Management Programmable Wait State Generation External Wait Request Programmable Data Float Time Slow Clock mode supported SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 29 7.2.3 SDRAM Controller Supported devices: Standard and Low Power SDRAM (Mobile SDRAM) Numerous configurations supported 2K, 4K, 8K Row Address Memory Parts SDRAM with two or four Internal Banks SDRAM with 16- or 32-bit Datapath Programming facilities Word, half-word, byte access Automatic page break when Memory Boundary has been reached Multibank Ping-pong Access Timing parameters specified by software Automatic refresh operation, refresh rate is programmable Energy-saving capabilities Self-refresh, power down and deep power down modes supported Error detection 7.2.4 Refresh Error Interrupt SDRAM Power-up Initialization by software CAS Latency of 1, 2 and 3 supported Auto Precharge Command not used Error Correction Code Controller Hardware error correction code generation Supports NAND Flash and SmartMedia devices with 8- or 16-bit datapath Supports NAND Flash and SmartMedia with page sizes of 528,1056, 2112 and 4224 bytes specified by software Supports 1 bit correction for a page of 512, 1024, 2112 and 4096 bytes with 8- or 16-bit datapath Supports 1 bit correction per 512 bytes of data for a page size of 512, 2048 and 4096 bytes with 8-bit datapath Supports 1 bit correction per 256 bytes of data for a page size of 512, 2048 and 4096 bytes with 8-bit datapath 7.2.5 Detection and correction by software I/O Drive Selection The purpose of this control is to adapt the signal to the frequency. Two bits enable the user to select High or Low Drive for memory data/addresses/control signals. Setting the EBI_DRIVE field [17:16] in the EBI Chip Select Assignment Register (EBI_CSA) located in the Chip Configuration User Interface of the Bus Matrix, enables control of the EBI. 30 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 8. System Controller The System Controller is a set of peripherals that allows handling of key elements of the system, such as power, resets, clocks, time, interrupts, watchdog, etc. The System Controller User Interface also embeds the registers that configure the Matrix and a set of registers for the chip configuration. The chip configuration registers configure the EBI chip select assignment and voltage range for external memories. The System Controller's peripherals are all mapped within the highest 16 KB of address space, between addresses 0xFFFF E800 and 0xFFFF FFFF. However, all the registers of System Controller are mapped on the top of the address space. All the registers of the System Controller can be addressed from a single pointer by using the standard ARM instruction set, as the Load/Store instruction have an indexing mode of 4 KB. Figure 8-1 on page 32 shows the System Controller block diagram. Figure 7-1 on page 23 shows the mapping of the User Interfaces of the System Controller peripherals. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 31 8.1 System Controller Block Diagram Figure 8-1. System Controller Block Diagram System Controller VDDCORE Powered irq0-irq2 fiq periph_irq[2..24] efc2_irq pit_irq rtt_irq wdt_irq dbgu_irq pmc_irq rstc_irq ntrst PCK debug MCK periph_nreset dbgu_rxd Debug Unit MCK debug periph_nreset Periodic Interval Timer pit_irq Watchdog Timer wdt_irq gpnvm[2] POR dbgu_txd jtag_nreset MCK periph_nreset Reset Controller periph_nreset proc_nreset backup_nreset security_bit(gpnvm0) flash_poe flash_poe flash_wrdis VDDBU Powered SLCK SLCK backup_nreset Real-time Timer rtt_irq SLCK XIN32 backup_nreset periph_nreset rtt0_alarm PLLRCA USB Host Port periph_irq[20] Slow Clock Osicllator 128-bit General-Purpose Backup Registers SLCK XOUT gpnvm[1..3] periph_clk[20] Shutdown Controller XOUT32 XIN cal UHPCK WKUP OSCSEL Embedded Flash rtt_alarm SHDN RC Oscillator Bus Matrix rstc_irq NRST VDDBU POR Boundary Scan TAP Controller gpnvm[3] bod_rst_en BOD por_ntrst jtag_nreset dbgu_irq wdt_fault WDRPROC flash_wrdis VDDBU ARM926EJ-S proc_nreset cal gpnvm[1] VDDCORE por_ntrst int SLCK debug idle proc_nreset VDDCORE nirq nfiq Advanced Interrupt Controller UDPCK int Main Oscillator MAINCK PLLA PLLACK PLLB Power Management Controller periph_clk[2..27] pck[0-1] periph_clk[10] PCK UDPCK periph_nreset USB Device Port periph_irq[10] UHPCK MCK PLLBCK pmc_irq periph_nreset idle periph_clk[6..24] periph_nreset periph_nreset periph_clk[2..4] dbgu_rxd PA0-PA31 PB0-PB31 PC0-PC31 32 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 PIO Controllers periph_irq[2..4] irq0-irq2 fiq dbgu_txd Embedded Peripherals periph_irq[6..24] in out enable 8.2 Reset Controller Based on two Power-on reset cells One on VDDBU and one on VDDCORE Status of the last reset 8.3 Either general reset (VDDBU rising), wake-up reset (VDDCORE rising), software reset, user reset or watchdog reset Controls the internal resets and the NRST pin output Allows shaping a reset signal for the external devices At reset the NRST pin is an output Brownout Detector and Power-on Reset The SAM9XE devices embed one brownout detection circuit and power-on reset cells. The power-on reset are supplied with and monitor VDDCORE and VDDBU. Signals (flash_poe and flash_wrdis) are provided to the Flash to prevent any code corruption during power-up or power-down sequences or if brownouts occur on the VDDCORE power supply. The power-on reset cell has a limited-accuracy threshold at around 1.5V. Its output remains low during power-up until VDDCORE goes over this voltage level. This signal goes to the reset controller and allows a full reinitialization of the device. The brownout detector monitors the VDDCORE level during operation by comparing it to a fixed trigger level. It secures system operations in the most difficult environments and prevents code corruption in case of brownout on the VDDCORE. When the brownout detector is enabled and VDDCORE decreases to a value below the trigger level (VBOT-), the brownout output is immediately activated. For more details on VBOT, see Table 42-3, "Brownout Detector Characteristics". When VDDCORE increases above the trigger level (VBOT+, defined as VBOT + Vhys), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about 1 s. The VDDCORE threshold voltage has a hysteresis of about 50 mV typical, to ensure spike free brownout detection. The typical value of the brownout detector threshold is 1.55V with an accuracy of 2% and is factory calibrated. The brownout detector is low-power, as it consumes less than 12 A static current. However, it can be deactivated to save its static current. In this case, it consumes less than 1 A. The deactivation is configured through the GPNVMBit[1] of the Flash. Additional information can be found in Section 42. "Electrical Characteristics". 8.4 Shutdown Controller Shutdown and Wake-up logic Software programmable assertion of the SHDN pin Deassertion Programmable on a WKUP pin level change or on alarm SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33 8.5 Clock Generator Embeds a low power 32768 Hz slow clock oscillator and a low-power RC oscillator selectable with OSCSEL signal 8.6 8.8 8.9 Oscillator bypass feature Supports 3 to 20 MHz crystals Embeds 2 PLLs PLL A outputs 80 to 240 MHz clock PLL B outputs 70 MHz to 130 MHz clock Both integrate an input divider to increase output accuracy PLLB embeds its own filter Provides: the Processor Clock PCK the Master Clock MCK, in particular to the Matrix and the memory interfaces the USB Device Clock UDPCK independent peripheral clocks, typically at the frequency of MCK 2 programmable clock outputs: PCK0, PCK1 Five flexible operating modes: Normal Mode, processor and peripherals running at a programmable frequency Idle Mode, processor stopped waiting for an interrupt Slow Clock Mode, processor and peripherals running at low frequency Standby Mode, mix of Idle and Backup Mode, peripheral running at low frequency, processor stopped waiting for an interrupt Backup Mode, Main Power Supplies off, VDDBU powered by a battery Periodic Interval Timer Includes a 20-bit Periodic Counter, with less than 1 s accuracy Includes a 12-bit Interval Overlay Counter Real-time OS or Linux(R)/WindowsCE(R) compliant tick generator Watchdog Timer 16-bit key-protected only-once-Programmable Counter Windowed, prevents the processor to be in a dead-lock on the watchdog access Real-time Timer 34 Embeds the main oscillator Power Management Controller 8.7 Provides the permanent slow clock SLCK to the system Real-time Timer with 32-bit free-running back-up counter Integrates a 16-bit programmable prescaler running on slow clock Alarm Register capable to generate a wake-up of the system through the Shutdown Controller SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 8.10 General-purpose Back-up Registers 8.11 Four 32-bit general-purpose backup registers Advanced Interrupt Controller Controls the interrupt lines (nIRQ and nFIQ) of the ARM Processor Thirty-two individually maskable and vectored interrupt sources Source 0 is reserved for the Fast Interrupt Input (FIQ) Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.) Programmable Edge-triggered or Level-sensitive Internal Sources Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive Three External Sources plus the Fast Interrupt signal 8-level Priority Controller Drives the Normal Interrupt of the processor Handles priority of the interrupt sources 1 to 31 Higher priority interrupts can be served during service of lower priority interrupt Vectoring Optimizes Interrupt Service Routine Branch and Execution One 32-bit Vector Register per interrupt source Interrupt Vector Register reads the corresponding current Interrupt Vector Protect Mode Easy debugging by preventing automatic operations when protect modules are enabled Fast Forcing 8.12 Permits redirecting any normal interrupt source on the Fast Interrupt of the processor Debug Unit Composed of two functions Two-pin UART Debug Communication Channel (DCC) support Two-pin UART Implemented features are 100% compatible with the standard Atmel USART Independent receiver and transmitter with a common programmable Baud Rate Generator Even, Odd, Mark or Space Parity Generation Parity, Framing and Overrun Error Detection Automatic Echo, Local Loopback and Remote Loopback Channel Modes Support for two PDC channels with connection to receiver and transmitter Debug Communication Channel Support Offers visibility of and interrupt trigger from COMMRX and COMMTX signals from the ARM Processor's ICE Interface SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35 8.13 Chip Identification 36 Chip ID: 0x329AA3A0 for the SAM9XE512 0x329A93A0 for the SAM9XE256 0x329973A0 for the SAM9XE128 JTAG ID: 05B1_C03F ARM926 TAP ID: 0x0792603F SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 9. Peripherals 9.1 User Interface The Peripherals are mapped in the upper 256 MB of the address space between the addresses 0xFFFA 0000 and 0xFFFC FFFF. Each User Peripheral is allocated 16 KB of address space. A complete memory map is presented in Figure 7-1 on page 23. 9.2 Peripheral Identifier The SAM9XE devices embed a wide range of peripherals. Table 9-1 defines the Peripheral Identifiers of the SAM9XE devices. A peripheral identifier is required for the control of the peripheral interrupt with the Advanced Interrupt Controller and for the control of the peripheral clock with the Power Management Controller. Table 9-1. Peripheral Identifiers Peripheral ID Peripheral Mnemonic Peripheral Name External Interrupt 0 AIC Advanced Interrupt Controller FIQ 1 SYSC System Controller Interrupt 2 PIOA Parallel I/O Controller A 3 PIOB Parallel I/O Controller B 4 PIOC Parallel I/O Controller C 5 ADC Analog-to-Digital Converter 6 US0 USART 0 7 US1 USART 1 8 US2 USART 2 9 MCI Multimedia Card Interface 10 UDP USB Device Port 11 TWI0 Two Wire Interface 0 12 SPI0 Serial Peripheral Interface 0 13 SPI1 Serial Peripheral Interface1 14 SSC Synchronous Serial Controller 15 - Reserved 16 - Reserved 17 TC0 Timer/Counter 0 18 TC1 Timer/Counter 1 19 TC2 Timer/Counter 2 20 UHP USB Host Port 21 EMAC Ethernet MAC 22 ISI Image Sensor Interface 23 US3 USART 3 24 US4 USART 4 25 TWI1 Two Wire Interface 1 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37 Table 9-1. Peripheral ID Peripheral Mnemonic Peripheral Name 26 TC3 Timer/Counter 3 27 TC4 Timer/Counter 4 28 TC5 Timer/Counter 5 29 AIC Advanced Interrupt Controller IRQ0 30 AIC Advanced Interrupt Controller IRQ1 31 Note: 9.2.1 Peripheral Identifiers (Continued) External Interrupt AIC Advanced Interrupt Controller IRQ2 Setting AIC, SYSC, UHP, ADC and IRQ0-2 bits in the clock set/clear registers of the PMC has no effect. The ADC clock is automatically started for the first conversion. In Sleep Mode the ADC clock is automatically stopped after each conversion. Peripheral Interrupts and Clock Control 9.2.1.1 System Interrupt The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from: SDRAM Controller Debug Unit Periodic Interval Timer Real-time Timer Watchdog Timer Reset Controller Power Management Controller Enhanced Embedded Flash Controller The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used within the Advanced Interrupt Controller. 9.2.1.2 External Interrupts All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to IRQ2, use a dedicated Peripheral ID. However, there is no clock control associated with these peripheral IDs. 38 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 9.3 Peripheral Signals Multiplexing on I/O Lines The SAM9XE devices feature three PIO controllers (PIOA, PIOB, PIOC) which multiplex the I/O lines of the peripheral set. Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral functions, A or B. The multiplexing tables in the following sections define how the I/O lines of peripherals A and B are multiplexed on the PIO Controllers. The two columns "Function" and "Comments" have been inserted in this table for the user's own comments; they may be used to track how pins are defined in an application. Note that some peripheral functions which are output only, might be duplicated within both tables. The column "Reset State" indicates whether the PIO Line resets in I/O mode or in peripheral mode. If I/O is mentioned, the PIO Line resets in input with the pull-up enabled, so that the device is maintained in a static state as soon as the reset is released. As a result, the bit corresponding to the PIO Line in the register PIO_PSR (Peripheral Status Register) resets low. If a signal name is mentioned in the "Reset State" column, the PIO Line is assigned to this function and the corresponding bit in PIO_PSR resets high. This is the case of pins controlling memories, in particular the address lines, which require the pin to be driven as soon as the reset is released. Note that the pull-up resistor is also enabled in this case. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 39 9.3.1 PIO Controller A Multiplexing Table 9-2. Multiplexing on PIO Controller A PIO Controller A I/O Line Peripheral A Peripheral B PA0 SPI0_MISO PA1 SPI0_MOSI PA2 SPI0_SPCK PA3 SPI0_NPCS0 PA4 Application Usage Reset State Power Supply MCDB0 I/O VDDIOP0 MCCDB I/O VDDIOP0 I/O VDDIOP0 MCDB3 I/O VDDIOP0 RTS2 MCDB2 I/O VDDIOP0 PA5 CTS2 MCDB1 I/O VDDIOP0 PA6 MCDA0 I/O VDDIOP0 PA7 MCCDA I/O VDDIOP0 PA8 MCCK I/O VDDIOP0 PA9 MCDA1 I/O VDDIOP0 PA10 MCDA2 ETX2 I/O VDDIOP0 PA11 MCDA3 ETX3 I/O VDDIOP0 PA12 ETX0 I/O VDDIOP0 PA13 ETX1 I/O VDDIOP0 PA14 ERX0 I/O VDDIOP0 PA15 ERX1 I/O VDDIOP0 PA16 ETXEN I/O VDDIOP0 PA17 ERXDV I/O VDDIOP0 PA18 ERXER I/O VDDIOP0 PA19 ETXCK I/O VDDIOP0 PA20 EMDC I/O VDDIOP0 PA21 EMDIO I/O VDDIOP0 PA22 ADTRG ETXER I/O VDDIOP0 PA23 TWD0 ETX2 I/O VDDIOP0 PA24 TWCK0 ETX3 I/O VDDIOP0 PA25 TCLK0 ERX2 I/O VDDIOP0 PA26 TIOA0 ERX3 I/O VDDIOP0 PA27 TIOA1 ERXCK I/O VDDIOP0 PA28 TIOA2 ECRS I/O VDDIOP0 PA29 SCK1 ECOL I/O VDDIOP0 PA30(1) SCK2 RXD4 I/O VDDIOP0 PA31(1) SCK0 TXD4 I/O VDDIOP0 Note: 40 Comments 1. Not available in the 208-lead PQFP package. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Function Comments 9.3.2 PIO Controller B Multiplexing Table 9-3. Multiplexing on PIO Controller B PIO Controller B Application Usage I/O Line Peripheral A Peripheral B PB0 SPI1_MISO TIOA3 PB1 SPI1_MOSI PB2 SPI1_SPCK PB3 SPI1_NPCS0 TIOA5 PB4 TXD0 PB5 RXD0 I/O VDDIOP0 PB6 TXD1 TCLK1 I/O VDDIOP0 PB7 RXD1 TCLK2 I/O VDDIOP0 PB8 TXD2 I/O VDDIOP0 PB9 RXD2 I/O VDDIOP0 PB10 TXD3 ISI_D8 I/O VDDIOP1 PB11 Comments Reset State Power Supply I/O VDDIOP0 TIOB3 I/O VDDIOP0 TIOA4 I/O VDDIOP0 I/O VDDIOP0 I/O VDDIOP0 RXD3 ISI_D9 I/O VDDIOP1 PB12 (1) TWD1 ISI_D10 I/O VDDIOP1 PB13 (1) TWCK1 ISI_D11 I/O VDDIOP1 PB14 DRXD I/O VDDIOP0 PB15 DTXD I/O VDDIOP0 PB16 TK I/O VDDIOP0 TCLK3 PB17 TF TCLK4 I/O VDDIOP0 PB18 TD TIOB4 I/O VDDIOP0 PB19 RD TIOB5 I/O VDDIOP0 PB20 RK ISI_D0 I/O VDDIOP1 PB21 RF ISI_D1 I/O VDDIOP1 PB22 DSR0 ISI_D2 I/O VDDIOP1 PB23 DCD0 ISI_D3 I/O VDDIOP1 PB24 DTR0 ISI_D4 I/O VDDIOP1 PB25 RI0 ISI_D5 I/O VDDIOP1 PB26 RTS0 ISI_D6 I/O VDDIOP1 PB27 CTS0 ISI_D7 I/O VDDIOP1 PB28 RTS1 ISI_PCK I/O VDDIOP1 PB29 CTS1 ISI_VSYNC I/O VDDIOP1 PB30 PCK0 ISI_HSYNC I/O VDDIOP1 PB31 PCK1 ISI_MCK I/O VDDIOP1 Note: Function Comments 1. Not available in the 208-lead PQFP package. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41 9.3.3 PIO Controller C Multiplexing Table 9-4. Multiplexing on PIO Controller C PIO Controller C I/O Line Peripheral A Application Usage Peripheral B Comments Reset State Power Supply PC0 SCK3 AD0 I/O VDDANA PC1 PCK0 AD1 I/O VDDANA PC2(1) PCK1 AD2 I/O VDDANA SPI1_NPCS3 AD3 I/O VDDANA (1) PC3 PC4 A23 SPI1_NPCS2 A23 VDDIOM PC5 A24 SPI1_NPCS1 A24 VDDIOM PC6 TIOB2 CFCE1 I/O VDDIOM PC7 TIOB1 CFCE2 I/O VDDIOM PC8 NCS4/CFCS0 RTS3 I/O VDDIOM PC9 NCS5/CFCS1 TIOB0 I/O VDDIOM PC10 A25/CFRNW CTS3 A25 VDDIOM PC11 NCS2 SPI0_NPCS1 I/O VDDIOM IRQ0 NCS7 I/O VDDIOM (1) PC12 PC13 FIQ NCS6 I/O VDDIOM PC14 NCS3/NANDCS IRQ2 I/O VDDIOM PC15 NWAIT IRQ1 I/O VDDIOM PC16 D16 SPI0_NPCS2 I/O VDDIOM PC17 D17 SPI0_NPCS3 I/O VDDIOM PC18 D18 SPI1_NPCS1 I/O VDDIOM PC19 D19 SPI1_NPCS2 I/O VDDIOM PC20 D20 SPI1_NPCS3 I/O VDDIOM PC21 D21 EF100 I/O VDDIOM PC22 D22 TCLK5 I/O VDDIOM PC23 D23 I/O VDDIOM PC24 D24 I/O VDDIOM PC25 D25 I/O VDDIOM PC26 D26 I/O VDDIOM PC27 D27 I/O VDDIOM PC28 D28 I/O VDDIOM PC29 D29 I/O VDDIOM PC30 D30 I/O VDDIOM PC31 D31 I/O VDDIOM Note: 42 1. Not available in the 208-lead PQFP package. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Function Comments 9.4 Embedded Peripherals 9.4.1 Serial Peripheral Interface 9.4.2 9.4.3 Supports communication with serial external devices Four chip selects with external decoder support allow communication with up to 15 peripherals Serial memories, such as DataFlash and 3-wire EEPROMs Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors External co-processors Master or slave serial peripheral bus interface 8- to 16-bit programmable data length per chip select Programmable phase and polarity per chip select Programmable transfer delays between consecutive transfers and between clock and data per chip select Programmable delay between consecutive transfers Selectable mode fault detection Very fast transfers supported Transfers with baud rates up to MCK The chip select line may be left active to speed up transfers on the same device Two-wire Interface Master, Multi-master and Slave modes supported General call supported in Slave mode Connection to PDC Channel USART Programmable Baud Rate Generator 5- to 9-bit full-duplex synchronous or asynchronous serial communications 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode Parity generation and error detection Framing error detection, overrun error detection MSB- or LSB-first Optional break generation and detection By 8 or by 16 oversampling receiver frequency Hardware handshaking RTS-CTS Receiver time-out and transmitter timeguard Optional Multi-drop Mode with address generation and detection Optional Manchester Encoding RS485 with driver control signal ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards NACK handling, error counter with repetition and iteration limit IrDA modulation and demodulation Communication at up to 115.2 kbps Test Modes Remote Loopback, Local Loopback, Automatic Echo SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 43 9.4.4 9.4.5 Serial Synchronous Controller Provides serial synchronous communication links used in audio and telecommunications applications (with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.) Contains an independent receiver and transmitter and a common clock divider Offers a configurable frame sync and data length Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal Timer Counter Six 16-bit Timer Counter Channels Wide range of functions including: 9.4.6 44 Frequency Measurement Event Counting Interval Measurement Pulse Generation Delay Timing Pulse Width Modulation Up/down Capabilities Each channel is user-configurable and contains: Three external clock inputs Five internal clock inputs Two multi-purpose input/output signals Two global registers that act on all three TC Channels Multimedia Card Interface One double-channel Multimedia Card Interface Compatibility with MultiMedia Card Specification Version 2.2 Compatibility with SD Memory Card Specification Version 1.0 Compatibility with SDIO Specification Version V1.0. Cards clock rate up to Master Clock divided by 2 Embedded power management to slow down clock rate when not used MCI has two slot, each supporting 9.4.7 One slot for one MultiMediaCard bus (up to 30 cards) or One SD Memory Card Support for stream, block and multi-block data read and write USB Host Port Compliance with Open HCI Rev 1.0 Specification Compliance with USB V2.0 Full-speed and Low-speed Specification Supports both Low-Speed 1.5 Mbps and Full-speed 12 Mbps devices Root hub integrated with two downstream USB ports in the 217-LFBGA package Two embedded USB transceivers Supports power management Operates as a master on the Matrix SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 9.4.8 USB Device Port USB V2.0 full-speed compliant, 12 Mbits per second Embedded USB V2.0 full-speed transceiver Embedded 2,688-byte dual-port RAM for endpoints Suspend/Resume logic Ping-pong mode (two memory banks) for isochronous and bulk endpoints Eight general-purpose endpoints 9.4.9 Endpoint 0 and 3: 64 bytes, no ping-pong mode Endpoint 1, 2, 6, 7: 64 bytes, ping-pong mode Endpoint 4 and 5: 512 bytes, ping-pong mode Embedded pad pull-up Ethernet 10/100 MAC Compatibility with IEEE Standard 802.3 10 and 100 Mbits per second data throughput capability Full- and half-duplex operations MII or RMII interface to the physical layer Register Interface to address, data, status and control registers DMA Interface, operating as a master on the Memory Controller Interrupt generation to signal receive and transmit completion 128-byte transmit and 128-byte receive FIFOs Automatic pad and CRC generation on transmitted frames Address checking logic to recognize four 48-bit addresses Supports promiscuous mode where all valid frames are copied to memory Supports physical layer management through MDIO interface 9.4.10 Image Sensor Interface ITU-R BT. 601/656 8-bit mode external interface support Support for ITU-R BT.656-4 SAV and EAV synchronization Vertical and horizontal resolutions up to 2048 x 2048 Preview Path up to 640*480 Support for packed data formatting for YCbCr 4:2:2 formats Preview scaler to generate smaller size image 9.4.11 Analog-to-Digital Converter 4-channel ADC 10-bit 312K samples/sec. Successive Approximation Register ADC -2/+2 LSB Integral Non Linearity, -1/+1 LSB Differential Non Linearity Individual enable and disable of each channel External voltage reference for better accuracy on low voltage inputs Multiple trigger source - Hardware or software trigger - External trigger pin - Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger Sleep Mode and conversion sequencer - Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels Four analog inputs shared with digital signals SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 45 10. ARM926EJ-S Processor 10.1 Overview The ARM926EJ-S processor is a member of the ARM9TM family of general-purpose microprocessors. The ARM926EJ-S implements ARM architecture version 5TEJ and is targeted at multi-tasking applications where full memory management, high performance, low die size and low power are all important features. The ARM926EJ-S processor supports the 32-bit ARM and 16-bit Thumb instruction sets, enabling the user to trade off between high performance and high code density. It also supports 8-bit Java instruction set and includes features for efficient execution of Java bytecode, providing a Java performance similar to a JIT (Just-In-Time compilers), for the next generation of Java-powered wireless and embedded devices. It includes an enhanced multiplier design for improved DSP performance. The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S provides a complete high performance processor subsystem, including: an ARM9EJ-S integer core a Memory Management Unit (MMU) separate instruction and data AMBA AHB bus interfaces separate instruction and data TCM interfaces Table 10-1. 46 Reference Document Table Owner-Reference Denomination ARM Ltd. - DD10198B ARM926EJS Technical Reference Manual ARM Ltd. - DD10222B ARM9EJ-S Technical Reference Manual SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 10.2 Block Diagram Figure 10-1. ARM926EJ-S Internal Functional Block Diagram CP15 System Configuration Coprocessor External Coprocessors ETM9 External Coprocessor Interface Trace Port Interface Write Data ARM9EJ-S Processor Core Instruction Fetches Read Data Data Address Instruction Address MMU DTCM Interface Data TLB Instruction TLB ITCM Interface Data TCM Instruction TCM Instruction Address Data Address Data Cache AHB Interface and Write Buffer Instruction Cache AMBA AHB SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 47 10.3 ARM9EJ-S Processor 10.3.1 ARM9EJ-S Operating States The ARM9EJ-S processor can operate in three different states, each with a specific instruction set: ARM state: 32-bit, word-aligned ARM instructions. Thumb state: 16-bit, halfword-aligned Thumb instructions. Jazelle state: variable length, byte-aligned Jazelle instructions. In Jazelle state, all instruction Fetches are in words. 10.3.2 Switching State The operating state of the ARM9EJ-S core can be switched between: ARM state and Thumb state using the BX and BLX instructions, and loads to the PC ARM state and Jazelle state using the BXJ instruction All exceptions are entered, handled and exited in ARM state. If an exception occurs in Thumb or Jazelle states, the processor reverts to ARM state. The transition back to Thumb or Jazelle states occurs automatically on return from the exception handler. 10.3.3 Instruction Pipelines The ARM9EJ-S core uses two kinds of pipelines to increase the speed of the flow of instructions to the processor. A five-stage (five clock cycles) pipeline is used for ARM and Thumb states. It consists of Fetch, Decode, Execute, Memory and Writeback stages. A six-stage (six clock cycles) pipeline is used for Jazelle state It consists of Fetch, Jazelle/Decode (two clock cycles), Execute, Memory and Writeback stages. 10.3.4 Memory Access The ARM9EJ-S core supports byte (8-bit), half-word (16-bit) and word (32-bit) access. Words must be aligned to four-byte boundaries, half-words must be aligned to two-byte boundaries and bytes can be placed on any byte boundary. Because of the nature of the pipelines, it is possible for a value to be required for use before it has been placed in the register bank by the actions of an earlier instruction. The ARM9EJ-S control logic automatically detects these cases and stalls the core or forward data. 10.3.5 Jazelle Technology The Jazelle technology enables direct and efficient execution of Java byte codes on ARM processors, providing high performance for the next generation of Java-powered wireless and embedded devices. The new Java feature of ARM9EJ-S can be described as a hardware emulation of a JVM (Java Virtual Machine). Java mode will appear as another state: instead of executing ARM or Thumb instructions, it executes Java byte codes. The Java byte code decoder logic implemented in ARM9EJ-S decodes 95% of executed byte codes and turns them into ARM instructions without any overhead, while less frequently used byte codes are broken down into optimized sequences of ARM instructions. The hardware/software split is invisible to the programmer, invisible to the application and invisible to the operating system. All existing ARM registers are re-used in Jazelle state and all registers then have particular functions in this mode. Minimum interrupt latency is maintained across both ARM state and Java state. Since byte codes execution can be restarted, an interrupt automatically triggers the core to switch from Java state to ARM state for the execution of the interrupt handler. This means that no special provision has to be made for handling interrupts while executing byte codes, whether in hardware or in software. 48 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 10.3.6 ARM9EJ-S Operating Modes In all states, there are seven operation modes: User mode is the usual ARM program execution state. It is used for executing most application programs Fast Interrupt (FIQ) mode is used for handling fast interrupts. It is suitable for high-speed data transfer or channel process Interrupt (IRQ) mode is used for general-purpose interrupt handling Supervisor mode is a protected mode for the operating system Abort mode is entered after a data or instruction prefetch abort System mode is a privileged user mode for the operating system Undefined mode is entered when an undefined instruction exception occurs Mode changes may be made under software control, or may be brought about by external interrupts or exception processing. Most application programs execute in User Mode. The non-user modes, known as privileged modes, are entered in order to service interrupts or exceptions or to access protected resources. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 49 10.3.7 ARM9EJ-S Registers The ARM9EJ-S core has a total of 37 registers: 31 general-purpose 32-bit registers Six 32-bit status registers Table 10-2 shows all the registers in all modes. Table 10-2. ARM9TDMI Modes and Registers Layout User and System Mode Supervisor Mode Abort Mode Undefined Mode Interrupt Mode Fast Interrupt Mode R0 R0 R0 R0 R0 R0 R1 R1 R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R3 R3 R3 R3 R3 R3 R4 R4 R4 R4 R4 R4 R5 R5 R5 R5 R5 R5 R6 R6 R6 R6 R6 R6 R7 R7 R7 R7 R7 R7 R8 R8 R8 R8 R8 R8_FIQ R9 R9 R9 R9 R9 R9_FIQ R10 R10 R10 R10 R10 R10_FIQ R11 R11 R11 R11 R11 R11_FIQ R12 R12 R12 R12 R12 R12_FIQ R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ PC PC PC PC PC PC CPSR CPSR CPSR CPSR CPSR CPSR SPSR_SVC SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ Mode-specific banked registers The ARM state register set contains 16 directly-accessible registers, r0 to r15, and an additional register, the Current Program Status Register (CPSR). Registers r0 to r13 are general-purpose registers used to hold either data or address values. Register r14 is used as a Link register that holds a value (return address) of r15 when BL or BLX is executed. Register r15 is used as a program counter (PC), whereas the Current Program Status Register (CPSR) contains condition code flags and the current mode bits. In privileged modes (FIQ, Supervisor, Abort, IRQ, Undefined), mode-specific banked registers (r8 to r14 in FIQ mode or r13 to r14 in the other modes) become available. The corresponding banked registers r14_fiq, r14_svc, r14_abt, r14_irq, r14_und are similarly used to hold the values (return address for each mode) of r15 (PC) when interrupts and exceptions arise, or when BL or BLX instructions are executed within interrupt or exception routines. There is another register called Saved Program Status Register (SPSR) that becomes available in privileged modes instead of CPSR. This register contains condition code flags and the current mode bits saved as a result of the exception that caused entry to the current (privileged) mode. 50 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 In all modes and due to a software agreement, register r13 is used as stack pointer. The use and the function of all the registers described above should obey ARM Procedure Call Standard (APCS) which defines: constraints on the use of registers stack conventions argument passing and result return For more details, refer to ARM Software Development Kit. The Thumb state register set is a subset of the ARM state set. The programmer has direct access to: Eight general-purpose registers r0-r7 Stack pointer, SP Link register, LR (ARM r14) PC CPSR There are banked registers SPs, LRs and SPSRs for each privileged mode (for more details see the ARM9EJ-S Technical Reference Manual, revision r1p2 page 2-12). 10.3.7.1 Status Registers The ARM9EJ-S core contains one CPSR, and five SPSRs for exception handlers to use. The program status registers: hold information about the most recently performed ALU operation control the enabling and disabling of interrupts set the processor operation mode Figure 10-2. Status Register Format 3130292827 24 N Z C V Q J 7 6 5 Reserved Jazelle state bit Reserved Sticky Overflow Overflow Carry/Borrow/Extend Zero Negative/Less than I F T 0 Mode Mode bits Thumb state bit FIQ disable IRQ disable Figure 10-2 shows the status register format, where: N: Negative, Z: Zero, C: Carry, and V: Overflow are the four ALU flags The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic instructions like QADD, QDADD, QSUB, QDSUB, SMLAxy, and SMLAWy needed to achieve DSP operations. The Q flag is sticky in that, when set by an instruction, it remains set until explicitly cleared by an MSR instruction writing to the CPSR. Instructions cannot execute conditionally on the status of the Q flag. The J bit in the CPSR indicates when the ARM9EJ-S core is in Jazelle state, where: J = 0: The processor is in ARM or Thumb state, depending on the T bit J = 1: The processor is in Jazelle state. Mode: five bits to encode the current processor mode SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 51 10.3.7.2 Exceptions 10.3.7.3 Exception Types and Priorities The ARM9EJ-S supports five types of exceptions. Each type drives the ARM9EJ-S in a privileged mode. The types of exceptions are: Fast interrupt (FIQ) Normal interrupt (IRQ) Data and Prefetched aborts (Abort) Undefined instruction (Undefined) Software interrupt and Reset (Supervisor) When an exception occurs, the banked version of R14 and the SPSR for the exception mode are used to save the state. More than one exception can happen at a time, therefore the ARM9EJ-S takes the arisen exceptions according to the following priority order: Reset (highest priority) Data Abort FIQ IRQ Prefetch Abort BKPT, Undefined instruction, and Software Interrupt (SWI) (Lowest priority) The BKPT, or Undefined instruction, and SWI exceptions are mutually exclusive. Note that there is one exception in the priority scheme: when FIQs are enabled and a Data Abort occurs at the same time as an FIQ, the ARM9EJ-S core enters the Data Abort handler, and proceeds immediately to FIQ vector. A normal return from the FIQ causes the Data Abort handler to resume execution. Data Aborts must have higher priority than FIQs to ensure that the transfer error does not escape detection. 10.3.7.4 Exception Modes and Handling Exceptions arise whenever the normal flow of a program must be halted temporarily, for example, to service an interrupt from a peripheral. When handling an ARM exception, the ARM9EJ-S core performs the following operations: 1. Preserves the address of the next instruction in the appropriate Link Register that corresponds to the new mode that has been entered. When the exception entry is from: ARM and Jazelle states, the ARM9EJ-S copies the address of the next instruction into LR (current PC(r15) + 4 or PC + 8 depending on the exception). Thumb state, the ARM9EJ-S writes the value of the PC into LR, offset by a value (current PC + 2, PC + 4 or PC + 8 depending on the exception) that causes the program to resume from the correct place on return. 2. Copies the CPSR into the appropriate SPSR. 3. Forces the CPSR mode bits to a value that depends on the exception. 4. Forces the PC to fetch the next instruction from the relevant exception vector. The register r13 is also banked across exception modes to provide each exception handler with private stack pointer. The ARM9EJ-S can also set the interrupt disable flags to prevent otherwise unmanageable nesting of exceptions. When an exception has completed, the exception handler must move both the return value in the banked LR minus an offset to the PC and the SPSR to the CPSR. The offset value varies according to the type of exception. This action restores both PC and the CPSR. 52 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 The fast interrupt mode has seven private registers r8 to r14 (banked registers) to reduce or remove the requirement for register saving which minimizes the overhead of context switching. The Prefetch Abort is one of the aborts that indicates that the current memory access cannot be completed. When a Prefetch Abort occurs, the ARM9EJ-S marks the prefetched instruction as invalid, but does not take the exception until the instruction reaches the Execute stage in the pipeline. If the instruction is not executed, for example because a branch occurs while it is in the pipeline, the abort does not take place. The breakpoint (BKPT) instruction is a new feature of ARM9EJ-S that is destined to solve the problem of the Prefetch Abort. A breakpoint instruction operates as though the instruction caused a Prefetch Abort. A breakpoint instruction does not cause the ARM9EJ-S to take the Prefetch Abort exception until the instruction reaches the Execute stage of the pipeline. If the instruction is not executed, for example because a branch occurs while it is in the pipeline, the breakpoint does not take place. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 53 10.3.8 ARM Instruction Set Overview The ARM instruction set is divided into: Branch instructions Data processing instructions Status register transfer instructions Load and Store instructions Coprocessor instructions Exception-generating instructions ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition code field (bits[31:28]). For further details, see the ARM Technical Reference Manual referenced in Table 10-1 on page 46. Table 10-3 gives the ARM instruction mnemonic list. Table 10-3. Mnemonic Operation Mnemonic Operation MOV Move MVN Move Not ADD Add ADC Add with Carry SUB Subtract SBC Subtract with Carry RSB Reverse Subtract RSC Reverse Subtract with Carry CMP Compare CMN Compare Negated TST Test TEQ Test Equivalence AND Logical AND BIC Bit Clear EOR Logical Exclusive OR ORR Logical (inclusive) OR MUL Multiply MLA Multiply Accumulate SMULL Sign Long Multiply UMULL Unsigned Long Multiply SMLAL Signed Long Multiply Accumulate UMLAL Unsigned Long Multiply Accumulate MSR B BX LDR Move to Status Register Branch MRS BL Move From Status Register Branch and Link Branch and Exchange SWI Software Interrupt Load Word STR Store Word LDRSH Load Signed Halfword LDRSB Load Signed Byte LDRH Load Half Word STRH Store Half Word LDRB Load Byte STRB Store Byte LDRBT 54 ARM Instruction Mnemonic List Load Register Byte with Translation STRBT Store Register Byte with Translation LDRT Load Register with Translation STRT Store Register with Translation LDM Load Multiple STM Store Multiple SWP Swap Word MCR Move To Coprocessor MRC Move From Coprocessor LDC Load To Coprocessor STC Store From Coprocessor CDP Coprocessor Data Processing SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 SWPB Swap Byte 10.3.9 New ARM Instruction Set Table 10-4. Mnemonic BXJ New ARM Instruction Mnemonic List Operation Mnemonic Operation Branch and exchange to Java MRRC Move double from coprocessor Branch, Link and exchange MCR2 Alternative move of ARM reg to coprocessor SMLAxy Signed Multiply Accumulate 16 * 16 bit MCRR Move double to coprocessor SMLAL Signed Multiply Accumulate Long CDP2 Alternative Coprocessor Data Processing SMLAWy Signed Multiply Accumulate 32 * 16 bit BKPT Breakpoint SMULxy Signed Multiply 16 * 16 bit PLD SMULWy Signed Multiply 32 * 16 bit STRD Store Double Saturated Add STC2 Alternative Store from Coprocessor Saturated Add with Double LDRD Load Double Saturated subtract LDC2 Alternative Load to Coprocessor BLX (1) QADD QDADD QSUB QDSUB Note: Saturated Subtract with double CLZ Soft Preload, Memory prepare to load from address Count Leading Zeroes 1. A Thumb BLX contains two consecutive Thumb instructions, and takes four cycles. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 55 10.3.10 Thumb Instruction Set Overview The Thumb instruction set is a re-encoded subset of the ARM instruction set. The Thumb instruction set is divided into: Branch instructions Data processing instructions Load and Store instructions Load and Store multiple instructions Exception-generating instruction For further details, see the ARM Technical Reference Manual referenced in Table 10-1 on page 46. Table 10-5 gives the Thumb instruction mnemonic list. Table 10-5. Mnemonic Operation Mnemonic Operation MOV Move MVN Move Not ADD Add ADC Add with Carry SUB Subtract SBC Subtract with Carry CMP Compare CMN Compare Negated TST Test NEG Negate AND Logical AND BIC Bit Clear EOR Logical Exclusive OR ORR Logical (inclusive) OR LSL Logical Shift Left LSR Logical Shift Right ASR Arithmetic Shift Right ROR Rotate Right MUL Multiply BLX Branch, Link, and Exchange B Branch BL BX LDR Branch and Link Branch and Exchange SWI Software Interrupt Load Word STR Store Word LDRH Load Half Word STRH Store Half Word LDRB Load Byte STRB Store Byte LDRSH Load Signed Halfword LDRSB Load Signed Byte LDMIA Load Multiple STMIA Store Multiple PUSH Push Register to stack POP Pop Register from stack Conditional Branch BKPT Breakpoint BCC 56 Thumb Instruction Mnemonic List SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 10.4 CP15 Coprocessor Coprocessor 15, or System Control Coprocessor CP15, is used to configure and control all the items in the list below: ARM9EJ-S Caches (ICache, DCache and write buffer) TCM MMU Other system options To control these features, CP15 provides 16 additional registers. See Table 10-6. Table 10-6. CP15 Registers Register Read/Write (1) Read/Unpredictable 0 ID Code 0 Cache type(1) Read/Unpredictable 0 (1) TCM status Read/Unpredictable 1 Control Read/write 2 Translation Table Base Read/write 3 Domain Access Control Read/write 4 Reserved None 5 Notes: Name Data fault Status (1) Read/write (1) 5 Instruction fault status Read/write 6 Fault Address Read/write 7 Cache Operations Read/Write 8 TLB operations Unpredictable/Write (2) Read/write 9 cache lockdown 9 TCM region Read/write 10 TLB lockdown Read/write 11 Reserved None 12 Reserved None 13 FCSE PID(1) Read/write 13 (1) Context ID Read/Write 14 Reserved None 15 Test configuration Read/Write 1. 2. Register locations 0,5, and 13 each provide access to more than one register. The register accessed depends on the value of the opcode_2 field. Register location 9 provides access to more than one register. The register accessed depends on the value of the CRm field. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 57 10.4.1 CP15 Registers Access CP15 registers can only be accessed in privileged mode by: MCR (Move to Coprocessor from ARM Register) instruction is used to write an ARM register to CP15. MRC (Move to ARM Register from Coprocessor) instruction is used to read the value of CP15 to an ARM register. Other instructions like CDP, LDC, STC can cause an undefined instruction exception. The assembler code for these instructions is: MCR/MRC{cond} p15, opcode_1, Rd, CRn, CRm, opcode_2. The MCR, MRC instructions bit pattern is shown below: 31 30 29 28 cond 23 22 21 opcode_1 15 20 13 12 Rd 6 26 25 24 1 1 1 0 19 18 17 16 L 14 7 27 5 opcode_2 4 CRn 11 10 9 8 1 1 1 1 3 2 1 0 1 CRm * CRm[3:0]: Specified Coprocessor Action Determines specific coprocessor action. Its value is dependent on the CP15 register used. For details, refer to CP15 specific register behavior. * opcode_2[7:5] Determines specific coprocessor operation code. By default, set to 0. * Rd[15:12]: ARM Register Defines the ARM register whose value is transferred to the coprocessor. If R15 is chosen, the result is unpredictable. * CRn[19:16]: Coprocessor Register Determines the destination coprocessor register. * L: Instruction Bit 0: MCR instruction 1: MRC instruction * opcode_1[23:20]: Coprocessor Code Defines the coprocessor specific code. Value is c15 for CP15. * cond [31:28]: Condition For more details, see Chapter 2 in ARM926EJ-S TRM. 58 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 10.5 Memory Management Unit (MMU) The ARM926EJ-S processor implements an enhanced ARM architecture v5 MMU to provide virtual memory features required by operating systems like Symbian(R) OS, WindowsCE, and Linux. These virtual memory features are memory access permission controls and virtual to physical address translations. The Virtual Address generated by the CPU core is converted to a Modified Virtual Address (MVA) by the FCSE (Fast Context Switch Extension) using the value in CP15 register13. The MMU translates modified virtual addresses to physical addresses by using a single, two-level page table set stored in physical memory. Each entry in the set contains the access permissions and the physical address that correspond to the virtual address. The first level translation tables contain 4096 entries indexed by bits [31:20] of the MVA. These entries contain a pointer to either a 1 MB section of physical memory along with attribute information (access permissions, domain, etc.) or an entry in the second level translation tables; coarse table and fine table. The second level translation tables contain two subtables, coarse table and fine table. An entry in the coarse table contains a pointer to both large pages and small pages along with access permissions. An entry in the fine table contains a pointer to large, small and tiny pages. Table 10-7 shows the different attributes of each page in the physical memory. Table 10-7. Mapping Details Mapping Name Mapping Size Access Permission By Subpage Size Section 1 Mbyte Section - Large Page 64 Kbytes 4 separated subpages 16 Kbytes Small Page 4 Kbytes 4 separated subpages 1 Kbyte Tiny Page 1 Kbyte Tiny Page - The MMU consists of: Access control logic Translation Look-aside Buffer (TLB) Translation table walk hardware 10.5.1 Access Control Logic The access control logic controls access information for every entry in the translation table. The access control logic checks two pieces of access information: domain and access permissions. The domain is the primary access control mechanism for a memory region; there are 16 of them. It defines the conditions necessary for an access to proceed. The domain determines whether the access permissions are used to qualify the access or whether they should be ignored. The second access control mechanism is access permissions that are defined for sections and for large, small and tiny pages. Sections and tiny pages have a single set of access permissions whereas large and small pages can be associated with 4 sets of access permissions, one for each subpage (quarter of a page). 10.5.2 Translation Look-aside Buffer (TLB) The Translation Look-aside Buffer (TLB) caches translated entries and thus avoids going through the translation process every time. When the TLB contains an entry for the MVA (Modified Virtual Address), the access control logic determines if the access is permitted and outputs the appropriate physical address corresponding to the MVA. If access is not permitted, the MMU signals the CPU core to abort. If the TLB does not contain an entry for the MVA, the translation table walk hardware is invoked to retrieve the translation information from the translation table in physical memory. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 59 10.5.3 Translation Table Walk Hardware The translation table walk hardware is a logic that traverses the translation tables located in physical memory, gets the physical address and access permissions and updates the TLB. The number of stages in the hardware table walking is one or two depending whether the address is marked as a section-mapped access or a page-mapped access. There are three sizes of page-mapped accesses and one size of section-mapped access. Page-mapped accesses are for large pages, small pages and tiny pages. The translation process always begins with a level one fetch. A section-mapped access requires only a level one fetch, but a page-mapped access requires an additional level two fetch. For further details on the MMU, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual. 10.5.4 MMU Faults The MMU generates an abort on the following types of faults: Alignment faults (for data accesses only) Translation faults Domain faults Permission faults The access control mechanism of the MMU detects the conditions that produce these faults. If the fault is a result of memory access, the MMU aborts the access and signals the fault to the CPU core.The MMU retains status and address information about faults generated by the data accesses in the data fault status register and fault address register. It also retains the status of faults generated by instruction fetches in the instruction fault status register. The fault status register (register 5 in CP15) indicates the cause of a data or prefetch abort, and the domain number of the aborted access when it happens. The fault address register (register 6 in CP15) holds the MVA associated with the access that caused the Data Abort. For further details on MMU faults, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual. 60 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 10.6 Caches and Write Buffer The ARM926EJ-S contains a 16-Kbyte Instruction Cache (ICache), a 8-Kbyte Data Cache (DCache), and a write buffer. Although the ICache and DCache share common features, each still has some specific mechanisms. The caches (ICache and DCache) are four-way set associative, addressed, indexed and tagged using the Modified Virtual Address (MVA), with a cache line length of eight words with two dirty bits for the DCache. The ICache and DCache provide mechanisms for cache lockdown, cache pollution control, and line replacement. A new feature is now supported by ARM926EJ-S caches called allocate on read-miss commonly known as wrapping. This feature enables the caches to perform critical word first cache refilling. This means that when a request for a word causes a read-miss, the cache performs an AHB access. Instead of loading the whole line (eight words), the cache loads the critical word first, so the processor can reach it quickly, and then the remaining words, no matter where the word is located in the line. The caches and the write buffer are controlled by the CP15 register 1 (Control), CP15 register 7 (cache operations) and CP15 register 9 (cache lockdown). 10.6.1 Instruction Cache (ICache) The ICache caches fetched instructions to be executed by the processor. The ICache can be enabled by writing 1 to I bit of the CP15 Register 1 and disabled by writing 0 to this same bit. When the MMU is enabled, all instruction fetches are subject to translation and permission checks. If the MMU is disabled, all instructions fetches are cachable, no protection checks are made and the physical address is flatmapped to the modified virtual address. With the MVA use disabled, context switching incurs ICache cleaning and/or invalidating. When the ICache is disabled, all instruction fetches appear on external memory (AHB) (see Tables 4-1 and 4-2 in page 4-4 in ARM926EJ-S TRM). On reset, the ICache entries are invalidated and the ICache is disabled. For best performance, ICache should be enabled as soon as possible after reset. 10.6.2 Data Cache (DCache) and Write Buffer ARM926EJ-S includes a DCache and a write buffer to reduce the effect of main memory bandwidth and latency on data access performance. The operations of DCache and write buffer are closely connected. 10.6.2.1 DCache The DCache needs the MMU to be enabled. All data accesses are subject to MMU permission and translation checks. Data accesses that are aborted by the MMU do not cause linefills or data accesses to appear on the AMBA ASB interface. If the MMU is disabled, all data accesses are noncachable, nonbufferable, with no protection checks, and appear on the AHB bus. All addresses are flat-mapped, VA = MVA = PA, which incurs DCache cleaning and/or invalidating every time a context switch occurs. The DCache stores the Physical Address Tag (PA Tag) from which every line was loaded and uses it when writing modified lines back to external memory. This means that the MMU is not involved in write-back operations. Each line (8 words) in the DCache has two dirty bits, one for the first four words and the other one for the second four words. These bits, if set, mark the associated half-lines as dirty. If the cache line is replaced due to a linefill or a cache clean operation, the dirty bits are used to decide whether all, half or none is written back to memory. DCache can be enabled or disabled by writing either 1 or 0 to bit C in register 1 of CP15 (see Tables 4-3 and 4-4 on page 4-5 in ARM926EJ-S TRM). The DCache supports write-through and write-back cache operations, selected by memory region using the C and B bits in the MMU translation tables. The DCache contains an eight data word entry, single address entry write-back buffer used to hold write-back data for cache line eviction or cleaning of dirty cache lines. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 61 The Write Buffer can hold up to 16 words of data and four separate addresses. DCache and Write Buffer operations are closely connected as their configuration is set in each section by the page descriptor in the MMU translation table. 10.6.2.2 Write Buffer The ARM926EJ-S contains a write buffer that has a 16-word data buffer and a four- address buffer. The write buffer is used for all writes to a bufferable region, write-through region and write-back region. It also allows to avoid stalling the processor when writes to external memory are performed. When a store occurs, data is written to the write buffer at core speed (high speed). The write buffer then completes the store to external memory at bus speed (typically slower than the core speed). During this time, the ARM9EJ-S processor can preform other tasks. DCache and Write Buffer support write-back and write-through memory regions, controlled by C and B bits in each section and page descriptor within the MMU translation tables. 10.6.2.3 Write-though Operation When a cache write hit occurs, the DCache line is updated. The updated data is then written to the write buffer which transfers it to external memory. When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in the write buffer which transfers it to external memory. 10.6.2.4 Write-back Operation When a cache write hit occurs, the cache line or half line is marked as dirty, meaning that its contents are not upto-date with those in the external memory. When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in the write buffer which transfers it to external memory. 62 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 10.7 Bus Interface Unit The ARM926EJ-S features a Bus Interface Unit (BIU) that arbitrates and schedules AHB requests. The BIU implements a multi-layer AHB, based on the AHB-Lite protocol, that enables parallel access paths between multiple AHB masters and slaves in a system. This is achieved by using a more complex interconnection matrix and gives the benefit of increased overall bus bandwidth, and a more flexible system architecture. The multi-master bus architecture has a number of benefits: It allows the development of multi-master systems with an increased bus bandwidth and a flexible architecture. Each AHB layer becomes simple because it only has one master, so no arbitration or master-to-slave muxing is required. AHB layers, implementing AHB-Lite protocol, do not have to support request and grant, nor do they have to support retry and split transactions. The arbitration becomes effective when more than one master wants to access the same slave simultaneously. 10.7.1 Supported Transfers The ARM926EJ-S processor performs all AHB accesses as single word, bursts of four words, or bursts of eight words. Any ARM9EJ-S core request that is not 1, 4, 8 words in size is split into packets of these sizes. Note that the Atmel bus is AHB-Lite protocol compliant, hence it does not support split and retry requests. Table 10-8 gives an overview of the supported transfers and different kinds of transactions they are used for. Table 10-8. HBurst[2:0] Supported Transfers Description Operation Single transfer of word, half word, or byte: Single Single transfer data write (NCNB, NCB, WT, or WB that has missed in DCache) data read (NCNB or NCB) NC instruction fetch (prefetched and non-prefetched) page table walk read Incr4 Four-word incrementing burst Half-line cache write-back, Instruction prefetch, if enabled. Four-word burst NCNB, NCB, WT, or WB write. Incr8 Eight-word incrementing burst Full-line cache write-back, eight-word burst NCNB, NCB, WT, or WB write. Wrap8 Eight-word wrapping burst Cache linefill 10.7.2 Thumb Instruction Fetches All instructions fetches, regardless of the state of ARM9EJ-S core, are made as 32-bit accesses on the AHB. If the ARM9EJ-S is in Thumb state, then two instructions can be fetched at a time. 10.7.3 Address Alignment The ARM926EJ-S BIU performs address alignment checking and aligns AHB addresses to the necessary boundary. 16-bit accesses are aligned to halfword boundaries, and 32-bit accesses are aligned to word boundaries. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 63 11. SAM9XE Debug and Test 11.1 Overview The SAM9XE features a number of complementary debug and test capabilities. A common JTAG/ICE (In-Circuit Emulator) port is used for standard debugging functions, such as downloading code and single-stepping through programs. The Debug Unit provides a two-pin UART that can be used to upload an application into internal SRAM. It manages the interrupt handling of the internal COMMTX and COMMRX signals that trace the activity of the Debug Communication Channel. A set of dedicated debug and test input/output pins gives direct access to these capabilities from a PC-based test environment. 64 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Block Diagram Figure 11-1. Debug and Test Block Diagram TMS TCK TDI NTRST ICE/JTAG TAP Boundary Port JTAGSEL TDO RTCK POR Reset and Test ARM9EJ-S TST ICE-RT ARM926EJ-S PDC DBGU PIO 11.2 DTXD DRXD TAP: Test Access Port SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 65 11.3 Application Examples 11.3.1 Debug Environment Figure 11-2 shows a complete debug environment example. The ICE/JTAG interface is used for standard debugging functions, such as downloading code and single-stepping through the program. A software debugger running on a personal computer provides the user interface for configuring a Trace Port interface utilizing the ICE/JTAG interface. Figure 11-2. Application Debug and Trace Environment Example Host Debugger PC ICE/JTAG Interface ICE/JTAG Connector SAM9XE RS232 Connector SAM9XE-based Application Board 66 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Terminal 11.3.2 Test Environment Figure 11-3 shows a test environment example. Test vectors are sent and interpreted by the tester. In this example, the "board in test" is designed using a number of JTAG-compliant devices. These devices can be connected to form a single scan chain. Figure 11-3. Application Test Environment Example Test Adaptor Tester JTAG Interface ICE/JTAG Connector Chip n SAM9XE Chip 2 Chip 1 SAM9XE-based Application Board In Test 11.4 Debug and Test Pin Description Table 11-1. Pin Name Debug and Test Pin List Function Type Active Level Input/Output Low Input High Low Reset/Test NRST Microcontroller Reset TST Test Mode Select ICE and JTAG NTRST Test Reset Signal Input TCK Test Clock Input TDI Test Data In Input TDO Test Data Out TMS Test Mode Select RTCK Returned Test Clock JTAGSEL JTAG Selection Output Input Output Input Debug Unit DRXD Debug Receive Data Input DTXD Debug Transmit Data Output SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 67 11.5 JTAG Port Pins TMS, TDI and TCK are Schmitt trigger inputs and have no pull-up resistors. TDO and RTCK are outputs, driven at up to VDDIOP0, and have no pull-up resistors. The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level (tied to VDDBU). It integrates a permanent pull-down resistor of about 15 k to GNDBU, so that it can be left unconnected for normal operations. All the JTAG signals are supplied with VDDIOP0. 68 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 11.6 Functional Description 11.6.1 Test Pin One dedicated pin, TST, is used to define the device operating mode. The user must make sure that this pin is tied at low level to ensure normal operating conditions. Other values associated with this pin are reserved for manufacturing test. 11.6.2 Embedded In-circuit Emulator The ARM9EJ-S Embedded In-Circuit Emulator-RT is supported via the ICE/JTAG port. It is connected to a host computer via an ICE interface. Debug support is implemented using an ARM9EJ-S core embedded within the ARM926EJ-S. The internal state of the ARM926EJ-S is examined through an ICE/JTAG port which allows instructions to be serially inserted into the pipeline of the core without using the external data bus. Therefore, when in debug state, a store-multiple (STM) can be inserted into the instruction pipeline. This exports the contents of the ARM9EJ-S registers. This data can be serially shifted out without affecting the rest of the system. There are two scan chains inside the ARM9EJ-S processor which support testing, debugging, and programming of the Embedded ICE-RT. The scan chains are controlled by the ICE/JTAG port. Embedded ICE mode is selected when JTAGSEL is low. It is not possible to switch directly between ICE and JTAG operations. A chip reset must be performed after JTAGSEL is changed. For further details on the Embedded In-Circuit-Emulator-RT, see the ARM document: ARM9EJ-S Technical Reference Manual (DDI 0222A). 11.6.3 Debug Unit The Debug Unit provides a two-pin (DXRD and TXRD) USART that can be used for several debug and trace purposes and offers an ideal means for in-situ programming solutions and debug monitor communication. Moreover, the association with two peripheral data controller channels permits packet handling of these tasks with processor time reduced to a minimum. The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX signals that come from the ICE and that trace the activity of the Debug Communication Channel.The Debug Unit allows blockage of access to the system through the ICE interface. A specific register, the Debug Unit Chip ID Register, gives information about the product version and its internal configuration. The SAM9XE Debug Unit Chip ID value is 0x0198 03A0 on 32-bit width. For further details on the Debug Unit, see Section 29. "Debug Unit (DBGU)". 11.6.4 IEEE 1149.1 JTAG Boundary Scan IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology. IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE, EXTEST and BYPASS functions are implemented. In ICE debug mode, the ARM processor responds with a non-JTAG chip ID that identifies the processor to the ICE system. This is not IEEE 1149.1 JTAG-compliant. It is not possible to switch directly between JTAG and ICE operations. A chip reset must be performed after JTAGSEL is changed. A Boundary-scan Descriptor Language (BSDL) file is provided to set up test. 11.6.4.1 JTAG Boundary-scan Register The Boundary-scan Register (BSR) contains 484 bits that correspond to active pins and associated control signals. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 69 Each SAM9XE input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects the direction of the pad. Table 11-2. SAM9XE JTAG Boundary Scan Register Bit Number Pin Name Pin Type A0 IN/OUT A1 IN/OUT A10 IN/OUT A11 IN/OUT A12 IN/OUT A13 IN/OUT A14 IN/OUT A15 IN/OUT A16 IN/OUT A17 IN/OUT A18 IN/OUT A19 IN/OUT A2 IN/OUT A20 IN/OUT A21 IN/OUT A22 IN/OUT A3 IN/OUT A4 IN/OUT 307 306 305 304 303 302 301 300 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 70 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Associated BSR Cells CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT Table 11-2. SAM9XE JTAG Boundary Scan Register (Continued) Bit Number 271 270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 234 233 Pin Name Pin Type A5 IN/OUT A6 IN/OUT A7 IN/OUT A8 IN/OUT A9 IN/OUT BMS INPUT CAS IN/OUT D0 IN/OUT D1 IN/OUT D10 IN/OUT D11 IN/OUT D12 IN/OUT D13 IN/OUT D14 IN/OUT D15 IN/OUT D2 IN/OUT D3 IN/OUT D4 IN/OUT D5 IN/OUT D6 IN/OUT Associated BSR Cells CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT INPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 71 Table 11-2. SAM9XE JTAG Boundary Scan Register (Continued) Bit Number Pin Name Pin Type D7 IN/OUT D8 IN/OUT D9 IN/OUT NANDOE IN/OUT NANDWE IN/OUT NCS0 IN/OUT NCS1 IN/OUT NRD IN/OUT NRST IN/OUT NWR0 IN/OUT NWR1 IN/OUT NWR3 IN/OUT OSCSEL INPUT PA0 IN/OUT PA1 IN/OUT PA10 IN/OUT PA11 IN/OUT PA12 IN/OUT PA13 IN/OUT PA14 IN/OUT 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 72 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Associated BSR Cells CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT INPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT Table 11-2. SAM9XE JTAG Boundary Scan Register (Continued) Bit Number 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 Pin Name Pin Type PA15 IN/OUT PA16 IN/OUT PA17 IN/OUT PA18 IN/OUT PA19 IN/OUT PA2 IN/OUT PA20 IN/OUT PA21 IN/OUT PA22 IN/OUT PA23 IN/OUT PA24 IN/OUT PA25 IN/OUT PA26 IN/OUT PA27 IN/OUT PA28 IN/OUT PA29 IN/OUT PA3 IN/OUT 159 internal 158 internal 157 internal 156 internal 155 154 PA4 IN/OUT Associated BSR Cells CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 73 Table 11-2. SAM9XE JTAG Boundary Scan Register (Continued) Bit Number Pin Name Pin Type PA5 IN/OUT PA6 IN/OUT PA7 IN/OUT PA8 IN/OUT PA9 IN/OUT PB0 IN/OUT PB1 IN/OUT PB10 IN/OUT PB11 IN/OUT 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 internal 134 internal 133 internal 132 internal 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 74 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 PB14 IN/OUT PB15 IN/OUT PB16 IN/OUT PB17 IN/OUT PB18 IN/OUT PB19 IN/OUT PB2 IN/OUT PB20 IN/OUT PB21 IN/OUT Associated BSR Cells CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT Table 11-2. SAM9XE JTAG Boundary Scan Register (Continued) Bit Number 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 Pin Name Pin Type PB22 IN/OUT PB23 IN/OUT PB24 IN/OUT PB25 IN/OUT PB26 IN/OUT PB27 IN/OUT PB28 IN/OUT PB29 IN/OUT PB3 IN/OUT PB30 IN/OUT PB31 IN/OUT PB4 IN/OUT PB5 IN/OUT PB6 IN/OUT PB7 IN/OUT PB8 IN/OUT PB9 IN/OUT PC0 IN/OUT PC1 IN/OUT PC10 IN/OUT Associated BSR Cells CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 75 Table 11-2. SAM9XE JTAG Boundary Scan Register (Continued) Bit Number Pin Name Pin Type PC11 IN/OUT 73 72 71 internal 70 internal 69 68 67 66 65 64 63 62 61 60 59 58 57 56 IN/OUT PC14 IN/OUT PC15 IN/OUT PC16 IN/OUT PC17 IN/OUT PC18 IN/OUT PC19 IN/OUT 55 internal 54 internal 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 76 PC13 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 PC20 IN/OUT PC21 IN/OUT PC22 IN/OUT PC23 IN/OUT PC24 IN/OUT PC25 IN/OUT PC26 IN/OUT PC27 IN/OUT PC28 IN/OUT PC29 IN/OUT Associated BSR Cells CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT Table 11-2. SAM9XE JTAG Boundary Scan Register (Continued) Bit Number Pin Name Pin Type 33 internal 32 internal 31 Associated BSR Cells CONTROL PC30 IN/OUT PC31 IN/OUT PC4 IN/OUT PC5 IN/OUT PC6 IN/OUT PC7 IN/OUT PC8 IN/OUT PC9 IN/OUT RAS IN/OUT RTCK OUT SDA10 IN/OUT SDCK IN/OUT SDCKE IN/OUT SDWE IN/OUT SHDN OUT 01 TST INPUT INPUT 00 WKUP INPUT INPUT 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL INPUT/OUTPUT CONTROL OUTPUT SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 77 11.6.5 JID Code Register Access: Read-only 31 30 29 28 27 VERSION 23 22 26 25 24 PART NUMBER 21 20 19 18 17 16 10 9 8 PART NUMBER 15 14 13 12 11 PART NUMBER 7 6 MANUFACTURER IDENTITY 5 4 MANUFACTURER IDENTITY * VERSION[31:28]: Product Version Number Set to 0x0. * PART NUMBER[27:12]: Product Part Number Product part Number is 0x5B13 * MANUFACTURER IDENTITY[11:1] Set to 0x01F. Bit[0] Required by IEEE Std. 1149.1. Set to 0x1. JTAG ID Code value is 0x05B1_303F. 78 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 3 2 1 0 1 12. SAM9XE Boot Program 12.1 Overview The Boot Program integrates different programs permitting download and/or upload into the different memories of the product. First, it initializes the Debug Unit serial port (DBGU) and the USB Device Port. SAM-BA Boot is then executed. It waits for transactions either on the USB device, or on the DBGU serial port. 12.2 Flow Diagram The Boot Program implements the algorithm in Figure 12-1. Figure 12-1. Boot Program Algorithm Flow Diagram Start Internal RC Oscillator Yes Main Oscillator Bypass No No Large Crystal Table Reduced Crystal Table Yes Input Frequency Table No USB Enumeration Successful ? Yes Run SAM-BA Boot No Character(s) received on DBGU ? SAM-BA Boot Yes Run SAM-BA Boot SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 79 12.3 Device Initialization Initialization follows the steps described below: 1. FIQ Initialization 2. Stack setup for ARM supervisor mode 3. External Clock Detection 4. Switch Master Clock on Main Oscillator 5. C variable initialization 6. Main oscillator frequency detection if no external clock detected 7. PLL setup: PLLB is initialized to generate a 48 MHz clock necessary to use the USB Device. A register located in the Power Management Controller (PMC) determines the frequency of the main oscillator and thus the correct factor for the PLLB. a. If Internal RC Oscillator is used (OSCSEL = 0) and Main Oscillator is active, Table 12-1 defines the crystals supported by the Boot Program when using the internal RC oscillator. Table 12-1. Reduced Crystal Table (MHz) OSCSEL = 0 3.0 6.0 18.432 Other Boot on DBGU Yes Yes Yes Yes Boot on USB Yes Yes Yes No Note: Any other crystal can be used but it prevents using the USB. b. If Internal RC Oscillator is used (OSCSEL = 0) and Main Oscillator is bypassed, Table 12-2 defines the frequencies supported by the Boot Program when bypassing main oscillator. Table 12-2. Input Frequencies Supported by Software Auto-detection (MHz) OSCSEL = 0 1.0 2.0 6.0 12.0 25.0 50.0 Other Boot on DBGU Yes Yes Yes Yes Yes Yes Yes Boot on USB Yes Yes Yes Yes Yes Yes No Note: Any other input frequency can be used but it prevents using the USB. c. If an external 32768 Hz Oscillator is used (OSCSEL = 1) (OSCSEL = 1 and Bypass mode), Table 123 defines the crystals supported by the Boot Program. Table 12-3. Large Crystal Table (MHz) OSCSEL = 1 3.0 3.2768 3.6864 3.84 4.0 4.433619 4.9152 5.0 5.24288 6.0 6.144 6.4 6.5536 7.159090 7.3728 7.864320 8.0 9.8304 10.0 11.05920 12.0 12.288 13.56 14.31818 14.7456 16.0 16.367667 17.734470 18.432 20.0 Note: Booting on USB or on DBGU is possible with any of these crystals. 8. Initialization of the DBGU serial port (115200 bauds, 8, N, 1) only if OSCSEL = 1 9. Enable the user reset 10. Jump to SAM-BA Boot sequence 11. Disable the Watchdog 12. Initialization of the USB Device Port 80 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 12-2. Clocks and DBGU Configurations Start No Internal RC Oscillator? (OSCSEL = 0) Yes Scan Large Crystal Table Scan Reduced Crystal Table MCK = PLLB/2 UDPCK = PLLB/2 MCK = Mosc UDPCK = PLLB/2 "ROMBoot>" displayed on DBGU DBGU not configured No End No (USB) Autobaudrate ? Yes (DBGU) MCK = Mosc UDPCK = PLLB/2 MCK = PLLB UDPCK = xxxx DBGU not configured DBGU configured End End SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 81 12.4 SAM-BA Boot The SAM-BA boot principle is to: Wait for USB Device enumeration. In parallel, wait for character(s) received on the DBGU if MCK is configured to 48 MHz (OSCSEL = 1). Figure 12-3. If not, the auto baud rate sequence is executed in parallel (see Figure 12-3). Auto Baud Rate Flow Diagram Device Setup Character '0x80' received ? No 1st measurement Yes Character '0x80' received ? No 2nd measurement No Test Communication Yes Character '#' received ? Yes Send Character '>' UART operational Run SAM-BA Boot Once the communication interface is identified, the application runs in an infinite loop waiting for different commands as in Table 12-4 on page 83. 82 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 12-4. Commands Available through the SAM-BA Boot Command Action Argument(s) Example O write a byte Address, Value# O200001,CA# o read a byte Address,# o200001,# H write a half word Address, Value# H200002,CAFE# h read a half word Address,# h200002,# W write a word Address, Value# W200000,CAFEDECA# w read a word Address,# w200000,# S send a file Address,# S200000,# R receive a file Address, NbOfBytes# R200000,1234# G go Address# G200200# V display version No argument V# Write commands: Writes a byte (O), a halfword (H) or a word (W) to the target. Address: Address in hexadecimal. Value: Byte, halfword or word to write in hexadecimal. Output: `>'. Read commands: Reads a byte (o), a halfword (h) or a word (w) from the target. Output: The byte, halfword or word read in hexadecimal following by `>' Address: Address in hexadecimal Output: `>'. There is a time-out on this command which is reached when the prompt `>' appears before the end of the command execution. Receive a file (R): Receives data into a file from a specified address Address: Address in hexadecimal NbOfBytes: Number of bytes in hexadecimal to receive Address: Address in hexadecimal Send a file (S): Sends a file to a specified address Note: Output: `>' Go (G): Jumps to a specified address and execute the code Address: Address to jump in hexadecimal Output: `>' Get Version (V): Returns the SAM-BA boot version Output: `>' 12.4.1 DBGU Serial Port Communication is performed through the DBGU serial port initialized to 115200 baud, 8, n, 1. The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this protocol can be used to send the application file to the target. The size of the binary file to send depends on the SRAM size embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size because the Xmodem protocol requires some SRAM memory to work. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 83 12.4.2 Xmodem Protocol The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-character CRC-16 to guarantee detection of a maximum bit error. Xmodem protocol with CRC is accurate provided both sender and receiver report successful transmission. Each block of the transfer looks like: <255-blk #><--128 data bytes--> in which: = 01 hex = binary number, starts at 01, increments by 1, and wraps 0FFH to 00H (not to 01) <255-blk #> = 1's complement of the blk#. = 2 bytes CRC16 Figure 12-4 shows a transmission using this protocol. Figure 12-4. Xmodem Transfer Example Host Device C SOH 01 FE Data[128] CRC CRC ACK SOH 02 FD Data[128] CRC CRC ACK SOH 03 FC Data[100] CRC CRC ACK EOT ACK 12.4.3 USB Device Port A 48 MHz USB clock is necessary to use the USB Device port. It has been programmed earlier in the device initialization procedure with PLLB configuration. The device uses the USB communication device class (CDC) drivers to take advantage of the installed PC RS-232 software to talk over the USB. The CDC class is implemented in all releases of Windows (R) , beginning with Windows 98SE. The CDC document, available at www.usb.org, describes a way to implement devices such as ISDN modems and virtual COM ports. The Vendor ID is Atmel's vendor ID 0x03EB. The product ID is 0x6124. These references are used by the host operating system to mount the correct driver. On Windows systems, the INF files contain the correspondence between vendor ID and product ID. Atmel provides an INF example to see the device as a new serial port and also provides another custom driver used by the SAM-BA application: atm6124.sys. 84 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 12.4.3.1 Enumeration Process The USB protocol is a master/slave protocol. This is the host that starts the enumeration sending requests to the device through the control endpoint. The device handles standard requests as defined in the USB Specification. Table 12-5. Handled Standard Requests Request Definition GET_DESCRIPTOR Returns the current device configuration value. SET_ADDRESS Sets the device address for all future device access. SET_CONFIGURATION Sets the device configuration. GET_CONFIGURATION Returns the current device configuration value. GET_STATUS Returns status for the specified recipient. SET_FEATURE Used to set or enable a specific feature. CLEAR_FEATURE Used to clear or disable a specific feature. The device also handles some class requests defined in the CDC class. Table 12-6. Handled Class Requests Request Definition SET_LINE_CODING Configures DTE rate, stop bits, parity and number of character bits. GET_LINE_CODING Requests current DTE rate, stop bits, parity and number of character bits. SET_CONTROL_LINE_STATE RS-232 signal used to tell the DCE device the DTE device is now present. Unhandled requests are STALLed. 12.4.3.2 Communication Endpoints There are two communication endpoints and endpoint 0 is used for the enumeration process. Endpoint 1 is a 64byte Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-BA Boot commands are sent by the host through the endpoint 1. If required, the message is split by the host into several data payloads by the host driver. If the command requires a response, the host can send IN transactions to pick up the response. 12.4.4 In-Application Programming (IAP) Feature The IAP feature is a function located in ROM that can be called by any software application. When called, this function sends the desired FLASH command to the EEFC and waits for the FLASH to be ready (looping while the FRDY bit is not set in the MC_FSR). Since this function is executed from ROM, this allows FLASH programming (like sector write) to be done by code running in FLASH. The IAP function entry point is retrieved by reading the SWI vector in ROM (0x100008). This function takes one argument in parameter: the command to be sent to the EEFC. This function returns the value of the MC_FSR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 85 IAP software code example: (unsigned int) (*IAP_Function)(unsigned long); void main (void) { unsigned long FlashSectorNum = 200; unsigned long flash_cmd = 0; unsigned long flash_status = 0; /* Initialize the function pointer (retrieve function address from SWI vector) */ IAP_Function = ((unsigned long) (*)(unsigned long)) 0x100008; /* Send your data to the sector */ /* build the command to send to EFC */ flash_cmd = (0x5A << 24) | (FlashSectorNum << 8) | AT91C_MC_FCMD_EWP; /* Call the IAP function with appropriate command */ flash_status = IAP_Function (flash_cmd); } 12.5 Hardware and Software Constraints USB requirements: Crystal or Input Frequencies supported by Software Auto-detection. See Table 12-1, Table 12-2 and Table 12-3 on page 80 for more information. Table 12-7 contains a list of pins that are driven during the boot program execution. These pins are driven during the boot sequence. Table 12-7. 86 Pins Driven during Boot Program Execution Peripheral Pin PIO Line DBGU DRXD PIOB14 DBGU DTXD PIOB15 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 13. Fast Flash Programming Interface (FFPI) 13.1 Description The Fast Flash Programming Interface provides two solutions - parallel or serial - for high-volume programming using a standard gang programmer. The parallel interface is fully handshaked and the device is considered to be a standard EEPROM. Additionally, the parallel protocol offers an optimized access to all the embedded Flash functionalities. The serial interface uses the standard IEEE 1149.1 JTAG protocol. It offers an optimized access to all the embedded Flash functionalities. Although the Fast Flash Programming Mode is a dedicated mode for high volume programming, this mode not designed for in-situ programming. 13.2 Parallel Fast Flash Programming 13.2.1 Device Configuration In Fast Flash Programming Mode, the device is in a specific test mode. Only a certain set of pins is significant. Other pins must be left unconnected. Figure 13-1. Parallel Programming Interface VDDBU VDDIO VDDIO GND GND NCMD RDY PGMNCMD PGMRDY NOE PGMNOE NVALID Table 13-1. Signal Name TST PGMEN0 PGMEN1 PGMEN2 PGMEN3 VDDCORE VDDIO VDDPLL GND PGMNVALID MODE[3:0] PGMM[3:0] DATA[15:0] PGMD[15:0] 0 - 50MHz XIN Signal Description List Function Type Active Level Comments Power VDDBU Backup Power Supply VDDIO I/O Lines Power Supply Power VDDCORE Core Power Supply Power VDDPLL PLL Power Supply Power GND Ground Ground SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 87 Table 13-1. Signal Description List (Continued) Signal Name Function Type Active Level Comments Clocks Main Clock Input. XIN This input can be tied to GND. In this case, the device is clocked by the internal RC oscillator. Input 32 kHz to 50 MHz Test TST Test Mode Select Input High Must be connected to VDDBU PGMEN0 Test Mode Select Input High Must be connected to VDDIO PGMEN1 Test Mode Select Input High Must be connected to VDDIO PGMEN2 Test Mode Select Input Low Must be connected to GND PGMEN3 Test Mode Select Input Low Must be connected to GND Input Low Pulled-up input at reset Output High Pulled-up input at reset Input Low Pulled-up input at reset Output Low Pulled-up input at reset PIO PGMNCMD Valid command available 0: Device is busy PGMRDY 1: Device is ready for a new command PGMNOE Output Enable (active high) 0: DATA[15:0] is in input mode PGMNVALID 1: DATA[15:0] is in output mode PGMM[3:0] Specifies DATA type (See Table 13-2) PGMD[15:0] Bi-directional data bus Input Pulled-up input at reset Input/Output Pulled-up input at reset 13.2.2 Signal Names Depending on the MODE settings, DATA is latched in different internal registers. Table 13-2. Mode Coding MODE[3:0] Symbol Data 0000 CMDE Command Register 0001 ADDR0 Address Register LSBs 0010 ADDR1 0011 ADDR2 0100 ADDR3 Address Register MSBs 0101 DATA Data Register Default IDLE No register When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored in the command register. 88 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 13-3. Command Bit Coding DATA[15:0] Symbol Command Executed 0x0011 READ Read Flash 0x0012 WP Write Page Flash 0x0022 WPL Write Page and Lock Flash 0x0032 EWP Erase Page and Write Page 0x0042 EWPL Erase Page and Write Page then Lock 0x0013 EA Erase All 0x0014 SLB Set Lock Bit 0x0024 CLB Clear Lock Bit 0x0015 GLB Get Lock Bit 0x0034 SGPB Set General Purpose NVM bit 0x0044 CGPB Clear General Purpose NVM bit 0x0025 GGPB Get General Purpose NVM bit 0x0054 SSE Set Security Bit 0x0035 GSE Get Security Bit 0x001F WRAM Write Memory 0x001E GVE Get Version 13.2.3 Entering Programming Mode The following algorithm puts the device in Parallel Programming Mode: Apply GND, VDDIO, VDDCORE and VDDPLL. Apply XIN clock within TPOR_RESET if an external clock is available. Wait for TPOR_RESET Start a read or write handshaking. Note: After reset, the device is clocked by the internal RC oscillator. Before clearing RDY signal, if an external clock ( > 32 kHz) is connected to XIN, then the device switches on the external clock. Else, XIN input is not considered. A higher frequency on XIN speeds up the programmer handshake. 13.2.4 Programmer Handshaking An handshake is defined for read and write operations. When the device is ready to start a new operation (RDY signal set), the programmer starts the handshake by clearing the NCMD signal. The handshaking is achieved once NCMD signal is high and RDY is high. 13.2.4.1 Write Handshaking For details on the write handshaking sequence, refer to Figure 13-2 and Table 13-4. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 89 Figure 13-2. Parallel Programming Timing, Write Sequence NCMD 2 4 3 RDY 5 NOE NVALID DATA[15:0] 1 MODE[3:0] Table 13-4. Write Handshake Step Programmer Action Device Action Data I/O 1 Sets MODE and DATA signals Waits for NCMD low Input 2 Clears NCMD signal Latches MODE and DATA Input 3 Waits for RDY low Clears RDY signal Input 4 Releases MODE and DATA signals Executes command and polls NCMD high Input 5 Sets NCMD signal Executes command and polls NCMD high Input 6 Waits for RDY high Sets RDY Input 13.2.4.2 Read Handshaking For details on the read handshaking sequence, refer to Figure 13-3 and Table 13-5. Figure 13-3. Parallel Programming Timing, Read Sequence NCMD 12 2 3 RDY 13 NOE 9 5 NVALID 6 4 Adress IN DATA[15:0] 1 MODE[3:0] 90 11 7 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 ADDR Z 8 Data OUT 10 X IN Table 13-5. Read Handshake Step Programmer Action Device Action DATA I/O 1 Sets MODE and DATA signals Waits for NCMD low Input 2 Clears NCMD signal Latch MODE and DATA Input 3 Waits for RDY low Clears RDY signal Input 4 Sets DATA signal in tristate Waits for NOE Low Input 5 Clears NOE signal 6 Waits for NVALID low 7 Tristate Sets DATA bus in output mode and outputs the flash contents. Output Clears NVALID signal Output Waits for NOE high Output 8 Reads value on DATA Bus 9 Sets NOE signal 10 Waits for NVALID high Sets DATA bus in input mode X 11 Sets DATA in output mode Sets NVALID signal Input 12 Sets NCMD signal Waits for NCMD high Input 13 Waits for RDY high Sets RDY signal Input Output 13.2.5 Device Operations Several commands on the Flash memory are available. These commands are summarized in Table 13-3 on page 89. Each command is driven by the programmer through the parallel interface running several read/write handshaking sequences. When a new command is executed, the previous one is automatically achieved. Thus, chaining a read command after a write automatically flushes the load buffer in the Flash. 13.2.5.1 Flash Read Command This command is used to read the contents of the Flash memory. The read command can start at any valid address in the memory plane and is optimized for consecutive reads. Read handshaking can be chained; an internal address buffer is automatically increased. Table 13-6. Read Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE READ 2 Write handshaking ADDR0 Memory Address LSB 3 Write handshaking ADDR1 Memory Address 4 Read handshaking DATA *Memory Address++ 5 Read handshaking DATA *Memory Address++ ... ... ... ... n Write handshaking ADDR0 Memory Address LSB n+1 Write handshaking ADDR1 Memory Address n+2 Read handshaking DATA *Memory Address++ n+3 Read handshaking DATA *Memory Address++ ... ... ... ... SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 91 13.2.5.2 Flash Write Command This command is used to write the Flash contents. The Flash memory plane is organized into several pages. Data to be written are stored in a load buffer that corresponds to a Flash memory page. The load buffer is automatically flushed to the Flash: before access to any page other than the current one when a new command is validated (MODE = CMDE) The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an internal address buffer is automatically increased Table 13-8. Write Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE WP or WPL or EWP or EWPL 2 Write handshaking ADDR0 Memory Address LSB 3 Write handshaking ADDR1 Memory Address 4 Write handshaking DATA *Memory Address++ 5 Write handshaking DATA *Memory Address++ ... ... ... ... n Write handshaking ADDR0 Memory Address LSB n+1 Write handshaking ADDR1 Memory Address n+2 Write handshaking DATA *Memory Address++ n+3 Write handshaking DATA *Memory Address++ ... ... ... ... The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command. However, the lock bit is automatically set at the end of the Flash write operation. As a lock region is composed of several pages, the programmer writes to the first pages of the lock region using Flash write commands and writes to the last page of the lock region using a Flash write and lock command. The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command. However, before programming the load buffer, the page is erased. The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL commands. 13.2.5.3 Flash Full Erase Command This command is used to erase the Flash memory planes. All lock regions must be unlocked before the Full Erase command by using the CLB command. Otherwise, the erase command is aborted and no page is erased. Table 13-9. Full Erase Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE EA 2 Write handshaking DATA 0 13.2.5.4 Flash Lock Commands Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set Lock command (SLB). With this command, several lock bits can be activated. A Bit Mask is provided as argument to the command. When bit 0 of the bit mask is set, then the first lock bit is activated. 92 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 In the same way, the Clear Lock command (CLB) is used to clear lock bits. All the lock bits are also cleared by the EA command. Table 13-10. Set and Clear Lock Bit Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE SLB or CLB 2 Write handshaking DATA Bit Mask Lock bits can be read using Get Lock Bit command (GLB). The nth lock bit is active when the bit n of the bit mask is set.. Table 13-11. Get Lock Bit Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE GLB 2 Read handshaking DATA Lock Bit Mask Status 0 = Lock bit is cleared 1 = Lock bit is set 13.2.5.5 Flash General-purpose NVM Commands General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB). This command also activates GP NVM bits. A bit mask is provided as argument to the command. When bit 0 of the bit mask is set, then the first GP NVM bit is activated. In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM bits. All the generalpurpose NVM bits are also cleared by the EA command. The general-purpose NVM bit is deactivated when the corresponding bit in the pattern value is set to 1. Table 13-12. Set/Clear GP NVM Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE SGPB or CGPB 2 Write handshaking DATA GP NVM bit pattern value General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The nth GP NVM bit is active when bit n of the bit mask is set.. Table 13-13. Get GP NVM Bit Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE GGPB GP NVM Bit Mask Status 2 Read handshaking DATA 0 = GP NVM bit is cleared 1 = GP NVM bit is set 13.2.5.6 Flash Security Bit Command A security bit can be set using the Set Security Bit command (SSE). Once the security bit is active, the Fast Flash programming is disabled. No other command can be run. An event on the Erase pin can erase the security bit once the contents of the Flash have been erased. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 93 Table 13-14. Set Security Bit Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE SSE 2 Write handshaking DATA 0 Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the Flash. In order to erase the Flash, the user must perform the following: Power-off the chip Power-on the chip with TST = 0 Assert Erase during a period of more than 220 ms Power-off the chip Then it is possible to return to FFPI mode and check that Flash is erased. 13.2.5.7 Memory Write Command This command is used to perform a write access to any memory location. The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking can be chained; an internal address buffer is automatically increased Table 13-15. Write Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE WRAM 2 Write handshaking ADDR0 Memory Address LSB 3 Write handshaking ADDR1 Memory Address 4 Write handshaking DATA *Memory Address++ 5 Write handshaking DATA *Memory Address++ ... ... ... ... n Write handshaking ADDR0 Memory Address LSB n+1 Write handshaking ADDR1 Memory Address n+2 Write handshaking DATA *Memory Address++ n+3 Write handshaking DATA *Memory Address++ ... ... ... ... 13.2.5.8 Get Version Command The Get Version (GVE) command retrieves the version of the FFPI interface. Table 13-16. 94 Get Version Command Step Handshake Sequence MODE[3:0] DATA[15:0] 1 Write handshaking CMDE GVE 2 Write handshaking DATA Version SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 13.3 Serial Fast Flash Programming The Serial Fast Flash programming interface is based on IEEE Std. 1149.1 "Standard Test Access Port and Boundary-Scan Architecture". Refer to this standard for an explanation of terms used in this section and for a description of the TAP controller states. In this mode, data read/written from/to the embedded Flash of the device are transmitted through the JTAG interface of the device. 13.3.1 Device Configuration In Serial Fast Flash Programming Mode, the device is in a specific test mode. Only a distinct set of pins is significant. Other pins must be left unconnected. Figure 13-4. Serial Programming VDDBU VDDIO VDDIO GND GND TDI TST PGMEN0 PGMEN1 PGMEN2 PGMEN3 VDDCORE VDDIO VDDPLL TDO TMS GND TCK 0-50MHz XIN SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 95 Table 13-17. Signal Name Signal Description List Function Type Active Level Comments Power VDDBU Backup Power Supply Power VDDIO I/O Lines Power Supply Power VDDCORE Core Power Supply Power VDDPLL PLL Power Supply Power GND Ground Ground Clocks Main Clock Input This input can be tied to GND. In this case, the device is clocked by the internal RC oscillator. XIN Input 32 kHz to 50 MHz Test TST Test Mode Select Input High Must be connected to VDDBU PGMEN0 Test Mode Select Input High Must be connected to VDDIO PGMEN1 Test Mode Select Input High Must be connected to VDDIO PGMEN2 Test Mode Select Input Low Must be connected to GND PGMEN3 Test Mode Select Input Low Must be connected to GND JTAG TCK JTAG TCK Input - Pulled-up input at reset TDI JTAG Test Data In Input - Pulled-up input at reset TDO JTAG Test Data Out Output - TMS JTAG Test Mode Select Input - Pulled-up input at reset 13.3.2 Entering Serial Programming Mode The following algorithm puts the device in Serial Programming Mode: Apply GND, VDDIO, VDDCORE and VDDPLL. Apply XIN clock within TPOR_RESET + 32(TSCLK) if an external clock is available. Wait for TPOR_RESET. Reset the TAP controller clocking 5 TCK pulses with TMS set. Shift 0x2 into the IR register (IR is 4 bits long, LSB first) without going through the Run-Test-Idle state. Shift 0x2 into the DR register (DR is 4 bits long, LSB first) without going through the Run-Test-Idle state. Shift 0xC into the IR register (IR is 4 bits long, LSB first) without going through the Run-Test-Idle state. Note: 96 After reset, the device is clocked by the internal RC oscillator. Before clearing RDY signal, if an external clock ( > 32 kHz) is connected to XIN, then the device will switch on the external clock. Else, XIN input is not considered. An higher frequency on XIN speeds up the programmer handshake. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 13-18. Reset TAP Controller and Go to Select-DR-Scan TDI TMS TAP Controller State X 1 X 1 X 1 X 1 X 1 Test-Logic Reset X 0 Run-Test/Idle Xt 1 Select-DR-Scan 13.3.3 Read/Write Handshake The read/write handshake is done by carrying out read/write operations on two registers of the device that are accessible through the JTAG: Debug Comms Control Register: DCCR Debug Comms Data Register: DCDR Access to these registers is done through the TAP 38-bit DR register comprising a 32-bit data field, a 5-bit address field and a read/write bit. The data to be written is scanned into the 32-bit data field with the address of the register to the 5-bit address field and 1 to the read/write bit. A register is read by scanning its address into the address field and 0 into the read/write bit, going through the UPDATE-DR TAP state, then scanning out the data. Refer to the ARM7TDMI reference manuel for more information on Comm channel operations. Figure 13-5. TAP 8-bit DR Register TDI r/w 4 Address 0 31 5 Address Decoder 0 Data TDO 32 Debug Comms Control Register Debug Comms Data Register A read or write takes place when the TAP controller enters UPDATE-DR state. Refer to the IEEE 1149.1 for more details on JTAG operations. The address of the Debug Comms Control Register is 0x04. The address of the Debug Comms Data Register is 0x05. The Debug Comms Control Register is read-only and allows synchronized handshaking between the processor and the debugger. Bit 1 (W): Denotes whether the programmer can read a data through the Debug Comms Data Register. If the device is busy W = 0, then the programmer must poll until W = 1. Bit 0 (R): Denotes whether the programmer can send data from the Debug Comms Data Register. If R = 1, data previously placed there through the scan chain has not been collected by the device and so the programmer must wait. The write handshake is done by polling the Debug Comms Control Register until the R bit is cleared. Once cleared, data can be written to the Debug Comms Data Register. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 97 The read handshake is done by polling the Debug Comms Control Register until the W bit is set. Once set, data can be read in the Debug Comms Data Register. 13.3.4 Device Operations Several commands on the Flash memory are available. These commands are summarized in Table 13-3 on page 89. Commands are run by the programmer through the serial interface that is reading and writing the Debug Comms Registers. 13.3.4.1 Flash Read Command This command is used to read the Flash contents. The memory map is accessible through this command. Memory is seen as an array of words (32-bit wide). The read command can start at any valid address in the memory plane. This address must be word-aligned. The address is automatically incremented. Table 13-19. Read Command Read/Write DR Data Write (Number of Words to Read) << 16 | READ Write Address Read Memory [address] Read Memory [address+4] ... ... Read Memory [address+(Number of Words to Read - 1)* 4] 13.3.4.2 Flash Write Command This command is used to write the Flash contents. The address transmitted must be a valid Flash address in the memory plane. The Flash memory plane is organized into several pages. Data to be written is stored in a load buffer that corresponds to a Flash memory page. The load buffer is automatically flushed to the Flash: before access to any page than the current one at the end of the number of words transmitted The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an internal address buffer is automatically increased. Table 13-20. Write Command Read/Write DR Data Write (Number of Words to Write) << 16 | (WP or WPL or EWP or EWPL) Write Address Write Memory [address] Write Memory [address+4] Write Memory [address+8] Write Memory [address+(Number of Words to Write - 1)* 4] Flash Write Page and Lock command (WPL) is equivalent to the Flash Write Command. However, the lock bit is automatically set at the end of the Flash write operation. As a lock region is composed of several pages, the programmer writes to the first pages of the lock region using Flash write commands and writes to the last page of the lock region using a Flash write and lock command. 98 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Flash Erase Page and Write command (EWP) is equivalent to the Flash Write Command. However, before programming the load buffer, the page is erased. Flash Erase Page and Write the Lock command (EWPL) combines EWP and WPL commands. 13.3.4.3 Flash Full Erase Command This command is used to erase the Flash memory planes. All lock bits must be deactivated before using the Full Erase command. This can be done by using the CLB command. Table 13-21. Full Erase Command Read/Write DR Data Write EA 13.3.4.4 Flash Lock Commands Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set Lock command (SLB). With this command, several lock bits can be activated at the same time. Bit 0 of Bit Mask corresponds to the first lock bit and so on. In the same way, the Clear Lock command (CLB) is used to clear lock bits. All the lock bits can also be cleared by the EA command. Table 13-22. Set and Clear Lock Bit Command Read/Write DR Data Write SLB or CLB Write Bit Mask Lock bits can be read using Get Lock Bit command (GLB). When a bit set in the Bit Mask is returned, then the corresponding lock bit is active. Table 13-23. Get Lock Bit Command Read/Write DR Data Write GLB Read Bit Mask 13.3.4.5 Flash General-purpose NVM Commands General-purpose NVM bits (GP NVM) can be set with the Set GPNVM command (SGPB). Using this command, several GP NVM bits can be activated at the same time. Bit 0 of Bit Mask corresponds to the first GPNVM bit and so on. In the same way, the Clear GPNVM command (CGPB) is used to clear GP NVM bits. All the general-purpose NVM bits are also cleared by the EA command. Table 13-24. Set and Clear General-purpose NVM Bit Command Read/Write DR Data Write SGPB or CGPB Write Bit Mask SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 99 GP NVM bits can be read using Get GPNVM Bit command (GGPB). When a bit set in the Bit Mask is returned, then the corresponding GPNVM bit is set. Table 13-25. Get General-purpose NVM Bit Command Read/Write DR Data Write GGPB Read Bit Mask 13.3.4.6 Flash Security Bit Command Security bits can be set using Set Security Bit command (SSE). Once the security bit is active, the Fast Flash programming is disabled. No other command can be run. Only an event on the Erase pin can erase the security bit once the contents of the Flash have been erased. Table 13-26. Set Security Bit Command Read/Write DR Data Write SSE Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the Flash. In order to erase the Flash, the user must perform the following: Power-off the chip Power-on the chip with TST = 0 Assert Erase during a period of more than 220 ms Power-off the chip Then it is possible to return to FFPI mode and check that Flash is erased. 13.3.4.7 Memory Write Command This command is used to perform a write access to any memory location. The Memory Write command (WRAM) is optimized for consecutive writes. An internal address buffer is automatically increased. 100 Table 13-27. Write Command Read/Write DR Data Write (Number of Words to Write) << 16 | (WRAM) Write Address Write Memory [address] Write Memory [address+4] Write Memory [address+8] Write Memory [address+(Number of Words to Write - 1)* 4] SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 13.3.4.8 Get Version Command The Get Version (GVE) command retrieves the version of the FFPI interface. Table 13-28. Get Version Command Read/Write DR Data Write GVE Read Version SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 101 14. Reset Controller (RSTC) 14.1 Description The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the system without any external components. It reports which reset occurred last. The Reset Controller also drives independently or simultaneously the external reset and the peripheral and processor resets. A brownout detection is also available to prevent the processor from falling into an unpredictable state. 14.2 Block Diagram Figure 14-1. Reset Controller Block Diagram Reset Controller bod_rst_en Brownout Manager brown_out bod_reset Main Supply POR Backup Supply POR Reset State Manager Startup Counter user_reset NRST proc_nreset NRST Manager nrst_out periph_nreset exter_nreset backup_neset WDRPROC wd_fault SLCK 102 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 rstc_irq 14.3 Functional Description 14.3.1 Reset Controller Overview The Reset Controller is made up of an NRST Manager, a Brownout Manager, a Startup Counter and a Reset State Manager. It runs at Slow Clock and generates the following reset signals: proc_nreset: Processor reset line. It also resets the Watchdog Timer. backup_nreset: Affects all the peripherals powered by VDDBU. periph_nreset: Affects the whole set of embedded peripherals. nrst_out: Drives the NRST pin. These reset signals are asserted by the Reset Controller, either on external events or on software action. The Reset State Manager controls the generation of reset signals and provides a signal to the NRST Manager when an assertion of the NRST pin is required. The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device resets. The startup counter waits for the complete crystal oscillator startup. The wait delay is given by the crystal oscillator startup time maximum value that can be found in the section Crystal Oscillator Characteristics in the Electrical Characteristics section of the product datasheet. The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Controller, is powered with VDDBU, so that its configuration is saved as long as VDDBU is on. 14.3.2 NRST Manager The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State Manager. Figure 14-2 shows the block diagram of the NRST Manager. Figure 14-2. NRST Manager RSTC_MR URSTIEN RSTC_SR URSTS NRSTL rstc_irq RSTC_MR URSTEN Other interrupt sources user_reset NRST RSTC_MR ERSTL nrst_out External Reset Timer exter_nreset SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 103 14.3.2.1 NRST Signal or Interrupt The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low, a User Reset is reported to the Reset State Manager. However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger. The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR. As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only when RSTC_SR is read. The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1. 14.3.2.2 NRST External Reset Control The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this occurs, the "nrst_out" signal is driven low by the NRST Manager for a time programmed by the field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET_LENGTH, lasts 2(ERSTL+1) Slow Clock cycles. This gives the approximate duration of an assertion between 60 s and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST pulse. This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that the NRST line is driven low for a time compliant with potential external devices connected on the system reset. As the field is within RSTC_MR, which is backed-up, this field can be used to shape the system power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator. 14.3.3 Brownout Manager Brownout detection prevents the processor from falling into an unpredictable state if the power supply drops below a certain level. When VDDCORE drops below the brownout threshold, the brownout manager requests a brownout reset by asserting the bod_reset signal. The programmer can disable the brownout reset by setting low the bod_rst_en input signal, i.e., by locking the corresponding general-purpose NVM bit in the Flash. When the brownout reset is disabled, no reset is performed. Instead, the brownout detection is reported in the bit BODSTS of RSTC_SR. BODSTS is set and clears only when RSTC_SR is read. The bit BODSTS can trigger an interrupt if the bit BODIEN is set in the RSTC_MR. At factory, the brownout reset is disabled. Figure 14-3. Brownout Manager bod_rst_en bod_reset RSTC_MR BODIEN RSTC_SR brown_out BODSTS rstc_irq Other interrupt sources 104 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 14.3.4 Reset States The Reset State Manager handles the different reset sources and generates the internal reset signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The update of the field RSTTYP is performed when the processor reset is released. 14.3.4.1 General Reset A general reset occurs when VDDBU and VDDCORE are powered on. The backup supply POR cell output rises and is filtered with a Startup Counter, which operates at Slow Clock. The purpose of this counter is to make sure the Slow Clock oscillator is stable before starting up the device. The length of startup time is hardcoded to comply with the Slow Clock Oscillator startup time. After this time, the processor clock is released at Slow Clock and all the other signals remain valid for 3 cycles for proper processor and logic reset. Then, all the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset. As the RSTC_MR is reset, the NRST line rises 2 cycles after the backup_nreset, as ERSTL defaults at value 0x0. When VDDBU is detected low by the Backup Supply POR Cell, all resets signals are immediately asserted, even if the Main Supply POR Cell does not report a Main Supply shutdown. VDDBU only activates the backup_nreset signal. The backup_nreset must be released so that any other reset can be generated by VDDCORE (Main Supply POR output). Figure 14-4 shows how the General Reset affects the reset signals. Figure 14-4. General Reset State SLCK Any Freq. MCK Backup Supply POR output Startup Time Main Supply POR output backup_nreset Processor Startup = 3 cycles proc_nreset RSTTYP XXX 0x0 = General Reset XXX periph_nreset NRST (nrst_out) BMS Sampling EXTERNAL RESET LENGTH = 2 cycles SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 105 14.3.4.2 Wake-up Reset The Wake-up Reset occurs when the Main Supply is down. When the Main Supply POR output is active, all the reset signals are asserted except backup_nreset. When the Main Supply powers up, the POR output is resynchronized on Slow Clock. The processor clock is then re-enabled during 3 Slow Clock cycles, depending on the requirements of the ARM processor. At the end of this delay, the processor and other reset signals rise. The field RSTTYP in RSTC_SR is updated to report a Wake-up Reset. The "nrst_out" remains asserted for EXTERNAL_RESET_LENGTH cycles. As RSTC_MR is backed-up, the programmed number of cycles is applicable. When the Main Supply is detected falling, the reset signals are immediately asserted. This transition is synchronous with the output of the Main Supply POR. Figure 14-5. Wake-up State SLCK Any Freq. MCK Main Supply POR output backup_nreset Resynch. 2 cycles proc_nreset RSTTYP Processor Startup = 3 cycles XXX periph_nreset NRST (nrst_out) EXTERNAL RESET LENGTH = 4 cycles (ERSTL = 1) 106 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 0x1 = WakeUp Reset XXX 14.3.4.3 User Reset The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in RSTC_MR is at 1. The NRST input signal is resynchronized with SLCK to insure proper behavior of the system. The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset and the Peripheral Reset are asserted. The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle processor startup. The processor clock is re-enabled as soon as NRST is confirmed high. When the processor reset signal is released, the RSTTYP field of the Status Register (RSTC_SR) is loaded with the value 0x4, indicating a User Reset. The NRST Manager guarantees that the NRST line is asserted for EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. However, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low externally, the internal reset lines remain asserted until NRST actually rises. Figure 14-6. User Reset State SLCK MCK Any Freq. NRST Resynch. 2 cycles Resynch. 2 cycles Processor Startup = 3 cycles proc_nreset RSTTYP Any XXX 0x4 = User Reset periph_nreset NRST (nrst_out) >= EXTERNAL RESET LENGTH SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 107 14.3.4.4 Brownout Reset When the brown_out/bod_reset signal is asserted, the Reset State Manager immediately enters the Brownout Reset. In this state, the processor, the peripheral and the external reset lines are asserted. The Brownout Reset is left 3 Slow Clock cycles after the rising edge of brown_out/bod_reset after a two-cycle resynchronization. An external reset is also triggered. When the processor reset is released, the field RSTTYP in RSTC_SR is loaded with the value 0x5, thus indicating that the last reset is a Brownout Reset. Figure 14-7. Brownout Reset State SLCK MCK Any Freq. brown_out or bod_reset Resynch. 2 cycles Processor Startup = 3 cycles proc_nreset RSTTYP Any XXX 0x5 = Brownout Reset periph_nreset NRST (nrst_out) EXTERNAL RESET LENGTH 8 cycles (ERSTL=2) 108 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 14.3.4.5 Software Reset The Reset Controller offers several commands used to assert the different reset signals. These commands are performed by writing the Control Register (RSTC_CR) with the following bits at 1: PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer. PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory system, and, in particular, the Remap Command. The Peripheral Reset is generally used for debug purposes. Except for Debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and PROCRST set both at 1 simultaneously.) EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field ERSTL in the Mode Register (RSTC_MR). The software reset is entered if at least one of these bits is set by the software. All these commands can be performed independently or simultaneously. The software reset lasts 3 Slow Clock cycles. The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master Clock (MCK). They are released when the software reset is left, i.e., synchronously to SLCK. If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset. If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in RSTTYP. As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left. No other software reset can be performed while the SRCMP bit is set, and writing any value in RSTC_CR has no effect. Figure 14-8. Software Reset SLCK MCK Any Freq. Write RSTC_CR Resynch. 1 cycle Processor Startup = 3 cycles proc_nreset if PROCRST=1 RSTTYP Any XXX 0x3 = Software Reset periph_nreset if PERRST=1 NRST (nrst_out) if EXTRST=1 EXTERNAL RESET LENGTH 8 cycles (ERSTL=2) SRCMP in RSTC_SR SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 109 14.3.4.6 Watchdog Reset The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock cycles. When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in WDT_MR: If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also asserted, depending on the programming of the field ERSTL. However, the resulting low level on NRST does not result in a User Reset state. If WDRPROC = 1, only the processor reset is asserted. The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog Reset, and the Watchdog is enabled by default and with a period set to a maximum. When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset controller. Figure 14-9. Watchdog Reset SLCK MCK Any Freq. wd_fault Processor Startup = 3 cycles proc_nreset RSTTYP Any XXX 0x2 = Watchdog Reset periph_nreset Only if WDRPROC = 0 NRST (nrst_out) EXTERNAL RESET LENGTH 8 cycles (ERSTL=2) 14.3.5 Reset State Priorities The Reset State Manager manages the following priorities between the different reset sources, given in descending order: 110 Backup Reset Wake-up Reset Brownout Reset Watchdog Reset Software Reset User Reset SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Particular cases are listed below: When in User Reset: A watchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal. A software reset is impossible, since the processor reset is being activated. When in Software Reset: A watchdog event has priority over the current state. The NRST has no effect. When in Watchdog Reset: The processor reset is active and so a Software Reset cannot be programmed. A User Reset cannot be entered. 14.3.6 Reset Controller Status Register The Reset Controller status register (RSTC_SR) provides several status fields: RSTTYP field: This field gives the type of the last reset, as explained in previous sections. SRCMP bit: This field indicates that a Software Reset Command is in progress and that no further software reset should be performed until the end of the current one. This bit is automatically cleared at the end of the current software reset. NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on each MCK rising edge. URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR. This transition is also detected on the Master Clock (MCK) rising edge (see Figure 14-10). If the User Reset is disabled (URSTEN = 0) and if the interruption is enabled by the URSTIEN bit in the RSTC_MR, the URSTS bit triggers an interrupt. Reading the RSTC_SR status register resets the URSTS bit and clears the interrupt. BODSTS bit: This bit indicates a brownout detection when the brownout reset is disabled (bod_rst_en = 0). It triggers an interrupt if the bit BODIEN in the RSTC_MR enables the interrupt. Reading the RSTC_SR resets the BODSTS bit and clears the interrupt. Figure 14-10. Reset Controller Status and Interrupt MCK read RSTC_SR Peripheral Access 2 cycle resynchronization 2 cycle resynchronization NRST NRSTL URSTS rstc_irq if (URSTEN = 0) and (URSTIEN = 1) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 111 14.4 Reset Controller (RSTC) User Interface Table 14-1. Register Mapping Offset Register Name 0x00 Control Register 0x04 0x08 Note: 112 Access Reset Back-up Reset RSTC_CR Write-only - - Status Register RSTC_SR Read-only 0x0000_0001 0x0000_0000 Mode Register RSTC_MR Read/Write - 0x0000_0000 1. The reset value of RSTC_SR either reports a General Reset or a Wake-up Reset depending on last rising power supply. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 14.4.1 Reset Controller Control Register Name: RSTC_CR Address: 0xFFFFFD00 Access: Write-only 31 30 29 28 27 26 25 24 KEY 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 8 - 7 - 6 - 5 - 4 - 3 EXTRST 2 PERRST 1 - 0 PROCRST * PROCRST: Processor Reset 0: No effect. 1: If KEY is correct, resets the processor. * PERRST: Peripheral Reset 0: No effect. 1: If KEY is correct, resets the peripherals. * EXTRST: External Reset 0: No effect. 1: If KEY is correct, asserts the NRST pin. * KEY: Password Should be written at value 0xA5. Writing any other value in this field aborts the write operation. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 113 14.4.2 Reset Controller Status Register Name: RSTC_SR Address: 0xFFFFFD04 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 SRCMP 16 NRSTL 15 - 14 - 13 - 12 - 11 - 10 9 RSTTYP 8 7 - 6 - 5 - 4 - 3 - 2 - 1 -BODSTS 0 URSTS * URSTS: User Reset Status 0: No high-to-low edge on NRST happened since the last read of RSTC_SR. 1: At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR. * BODSTS: Brownout Detection Status 0: No brownout high-to-low transition happened since the last read of RSTC_SR. 1: A brownout high-to-low transition has been detected since the last read of RSTC_SR. * RSTTYP: Reset Type Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field. RSTTYP Reset Type Comments 0 0 0 General Reset Both VDDCORE and VDDBU rising 0 0 1 Wake Up Reset VDDCORE rising 0 1 0 Watchdog Reset Watchdog fault occurred 0 1 1 Software Reset Processor reset required by the software 1 0 0 User Reset NRST pin detected low 1 0 1 Brownout Reset Brownout reset occurred * NRSTL: NRST Pin Level Registers the NRST Pin Level at Master Clock (MCK). * SRCMP: Software Reset Command in Progress 0: No software command is being performed by the reset controller. The reset controller is ready for a software command. 1: A software reset command is being performed by the reset controller. The reset controller is busy. 114 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 14.4.3 Reset Controller Mode Register Name: RSTC_MR Address: 0xFFFFFD08 Access: Read/Write 31 30 29 28 27 26 25 24 17 - 16 BODIEN 9 8 1 - 0 URSTEN KEY 23 - 22 - 21 - 20 - 19 - 18 - 15 - 14 - 13 - 12 - 11 10 7 - 6 - 5 4 URSTIEN 3 - ERSTL 2 - * URSTEN: User Reset Enable 0: The detection of a low level on the pin NRST does not generate a User Reset. 1: The detection of a low level on the pin NRST triggers a User Reset. * URSTIEN: User Reset Interrupt Enable 0: USRTS bit in RSTC_SR at 1 has no effect on rstc_irq. 1: USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0. * BODIEN: Brownout Detection Interrupt Enable 0: BODSTS bit in RSTC_SR at 1 has no effect on rstc_irq. 1: BODSTS bit in RSTC_SR at 1 asserts rstc_irq. * ERSTL: External Reset Length This field defines the external reset length. The external reset is asserted during a time of 2(ERSTL+1) Slow Clock cycles. This allows assertion duration to be programmed between 60 s and 2 seconds. * KEY: Password Should be written at value 0xA5. Writing any other value in this field aborts the write operation. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 115 15. Real-time Timer (RTT) 15.1 Description The Real-time Timer is built around a 32-bit counter and used to count elapsed seconds. It generates a periodic interrupt and/or triggers an alarm on a programmed value. 15.2 Block Diagram Figure 15-1. Real-time Timer RTT_MR RTTRST RTT_MR RTPRES RTT_MR SLCK RTTINCIEN reload 16-bit Divider set 0 RTT_MR RTTRST RTT_SR 1 RTTINC reset 0 rtt_int 32-bit Counter read RTT_SR RTT_MR ALMIEN RTT_VR reset CRTV RTT_SR ALMS set rtt_alarm = RTT_AR 15.3 ALMV Functional Description The Real-time Timer is used to count elapsed seconds. It is built around a 32-bit counter fed by Slow Clock divided by a programmable 16-bit value. The value can be programmed in the field RTPRES of the Real-time Mode Register (RTT_MR). Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz signal (if the Slow Clock is 32768 Hz). The 32-bit counter can count up to 232 seconds, corresponding to more than 136 years, then roll over to 0. The Real-time Timer can also be used as a free-running timer with a lower time-base. The best accuracy is achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but may result in losing status events because the status register is cleared two Slow Clock cycles after read. Thus if the RTT is configured to trigger an interrupt, the interrupt occurs during 2 Slow Clock cycles after reading RTT_SR. To prevent several executions of the interrupt handler, the interrupt must be disabled in the interrupt handler and re-enabled when the status register is clear. 116 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time Value Register). As this value can be updated asynchronously from the Master Clock, it is advisable to read this register twice at the same value to improve accuracy of the returned value. The current value of the counter is compared with the value written in the alarm register RTT_AR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in RTT_SR is set. The alarm register is set to its maximum value, corresponding to 0xFFFF_FFFF, after a reset. The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit can be used to start a periodic interrupt, the period being one second when the RTPRES is programmed with 0x8000 and Slow Clock equal to 32768 Hz. Reading the RTT_SR status register resets the RTTINC and ALMS fields. Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter. Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK): 1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2 slow clock cycles after the write of the RTTRST bit in the RTT_MR. 2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the RTT_SR (Status Register). Figure 15-2. RTT Counting APB cycle APB cycle MCK RTPRES - 1 Prescaler 0 RTT 0 ... ALMV-1 ALMV ALMV+1 ALMV+2 ALMV+3 RTTINC (RTT_SR) ALMS (RTT_SR) APB Interface read RTT_SR SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 117 15.4 Real-time Timer (RTT) User Interface Table 15-1. Register Mapping Offset Register Name Access Reset 0x00 Mode Register RTT_MR Read/Write 0x0000_8000 0x04 Alarm Register RTT_AR Read/Write 0xFFFF_FFFF 0x08 Value Register RTT_VR Read-only 0x0000_0000 0x0C Status Register RTT_SR Read-only 0x0000_0000 118 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 15.4.1 Real-time Timer Mode Register Name: RTT_MR Address: 0xFFFFFD20 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 RTTRST 17 RTTINCIEN 16 ALMIEN 15 14 13 12 11 10 9 8 3 2 1 0 RTPRES 7 6 5 4 RTPRES * RTPRES: Real-time Timer Prescaler Value Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows: RTPRES = 0: The prescaler period is equal to 216. RTPRES 0: The prescaler period is equal to RTPRES. * ALMIEN: Alarm Interrupt Enable 0: The bit ALMS in RTT_SR has no effect on interrupt. 1: The bit ALMS in RTT_SR asserts interrupt. * RTTINCIEN: Real-time Timer Increment Interrupt Enable 0: The bit RTTINC in RTT_SR has no effect on interrupt. 1: The bit RTTINC in RTT_SR asserts interrupt. * RTTRST: Real-time Timer Restart 1: Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 119 15.4.2 Real-time Timer Alarm Register Name: RTT_AR Address: 0xFFFFFD24 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 ALMV 23 22 21 20 ALMV 15 14 13 12 ALMV 7 6 5 4 ALMV * ALMV: Alarm Value Defines the alarm value (ALMV+1) compared with the Real-time Timer. 120 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 15.4.3 Real-time Timer Value Register Name: RTT_VR Address: 0xFFFFFD28 Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 CRTV 23 22 21 20 CRTV 15 14 13 12 CRTV 7 6 5 4 CRTV * CRTV: Current Real-time Value Returns the current value of the Real-time Timer. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 121 15.4.4 Real-time Timer Status Register Name: RTT_SR Address: 0xFFFFFD2C Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 RTTINC 0 ALMS * ALMS: Real-time Alarm Status 0: The Real-time Alarm has not occurred since the last read of RTT_SR. 1: The Real-time Alarm occurred since the last read of RTT_SR. * RTTINC: Real-time Timer Increment 0: The Real-time Timer has not been incremented since the last read of the RTT_SR. 1: The Real-time Timer has been incremented since the last read of the RTT_SR. 122 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 16. Periodic Interval Timer (PIT) 16.1 Description The Periodic Interval Timer (PIT) provides the operating system's scheduler interrupt. It is designed to offer maximum accuracy and efficient management, even for systems with long response time. 16.2 Block Diagram Figure 16-1. Periodic Interval Timer PIT_MR PIV =? PIT_MR PITIEN set 0 PIT_SR PITS pit_irq reset 0 MCK Prescaler 0 0 1 12-bit Adder 1 read PIT_PIVR 20-bit Counter MCK/16 CPIV PIT_PIVR CPIV PIT_PIIR PICNT PICNT SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 123 16.3 Functional Description The Periodic Interval Timer aims at providing periodic interrupts for use by operating systems. The PIT provides a programmable overflow counter and a reset-on-read feature. It is built around two counters: a 20-bit CPIV counter and a 12-bit PICNT counter. Both counters work at Master Clock /16. The first 20-bit CPIV counter increments from 0 up to a programmable overflow value set in the field PIV of the Mode Register (PIT_MR). When the counter CPIV reaches this value, it resets to 0 and increments the Periodic Interval Counter, PICNT. The status bit PITS in the Status Register (PIT_SR) rises and triggers an interrupt, provided the interrupt is enabled (PITIEN in PIT_MR). Writing a new PIV value in PIT_MR does not reset/restart the counters. When CPIV and PICNT values are obtained by reading the Periodic Interval Value Register (PIT_PIVR), the overflow counter (PICNT) is reset and the PITS is cleared, thus acknowledging the interrupt. The value of PICNT gives the number of periodic intervals elapsed since the last read of PIT_PIVR. When CPIV and PICNT values are obtained by reading the Periodic Interval Image Register (PIT_PIIR), there is no effect on the counters CPIV and PICNT, nor on the bit PITS. For example, a profiler can read PIT_PIIR without clearing any pending interrupt, whereas a timer interrupt clears the interrupt by reading PIT_PIVR. The PIT may be enabled/disabled using the PITEN bit in the PIT_MR (disabled on reset). The PITEN bit only becomes effective when the CPIV value is 0. Figure 16-2 illustrates the PIT counting. After the PIT Enable bit is reset (PITEN= 0), the CPIV goes on counting until the PIV value is reached, and is then reset. PIT restarts counting, only if the PITEN is set again. The PIT is stopped when the core enters debug state. Figure 16-2. Enabling/Disabling PIT with PITEN APB cycle APB cycle MCK 15 restarts MCK Prescaler MCK Prescaler 0 PITEN CPIV 0 1 PICNT PIV - 1 0 PIV 1 PITS (PIT_SR) APB Interface read PIT_PIVR 124 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 1 0 0 16.4 Periodic Interval Timer (PIT) User Interface Table 16-1. Register Mapping Offset Register Name Access Reset 0x00 Mode Register PIT_MR Read/Write 0x000F_FFFF 0x04 Status Register PIT_SR Read-only 0x0000_0000 0x08 Periodic Interval Value Register PIT_PIVR Read-only 0x0000_0000 0x0C Periodic Interval Image Register PIT_PIIR Read-only 0x0000_0000 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 125 16.4.1 Periodic Interval Timer Mode Register Name: PIT_MR Address: 0xFFFFFD30 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 PITIEN 24 PITEN 23 - 22 - 21 - 20 - 19 18 17 16 15 14 13 12 PIV 11 10 9 8 3 2 1 0 PIV 7 6 5 4 PIV * PIV: Periodic Interval Value Defines the value compared with the primary 20-bit counter of the Periodic Interval Timer (CPIV). The period is equal to (PIV + 1). * PITEN: Period Interval Timer Enabled 0: The Periodic Interval Timer is disabled when the PIV value is reached. 1: The Periodic Interval Timer is enabled. * PITIEN: Periodic Interval Timer Interrupt Enable 0: The bit PITS in PIT_SR has no effect on interrupt. 1: The bit PITS in PIT_SR asserts interrupt. 126 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 16.4.2 Periodic Interval Timer Status Register Name: PIT_SR Address: 0xFFFFFD34 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 PITS * PITS: Periodic Interval Timer Status 0: The Periodic Interval timer has not reached PIV since the last read of PIT_PIVR. 1: The Periodic Interval timer has reached PIV since the last read of PIT_PIVR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 127 16.4.3 Periodic Interval Timer Value Register Name: PIT_PIVR Address: 0xFFFFFD38 Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 PICNT 23 22 21 20 PICNT 15 14 CPIV 13 12 11 10 9 8 3 2 1 0 CPIV 7 6 5 4 CPIV Reading this register clears PITS in PIT_SR. * CPIV: Current Periodic Interval Value Returns the current value of the periodic interval timer. * PICNT: Periodic Interval Counter Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR. 128 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 16.4.4 Periodic Interval Timer Image Register Name: PIT_PIIR Address: 0xFFFFFD3C Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 PICNT 23 22 21 20 PICNT 15 14 CPIV 13 12 11 10 9 8 3 2 1 0 CPIV 7 6 5 4 CPIV * CPIV: Current Periodic Interval Value Returns the current value of the periodic interval timer. * PICNT: Periodic Interval Counter Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 129 17. Watch Dog Timer (WDT) 17.1 Description The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in debug mode or idle mode. 17.2 Block Diagram Figure 17-1. Watchdog Timer Block Diagram write WDT_MR WDT_MR WDV WDT_CR WDRSTT reload 1 0 12-bit Down Counter WDT_MR WDD reload Current Value 1/128 SLCK <= WDD WDT_MR WDRSTEN = 0 wdt_fault (to Reset Controller) set set read WDT_SR or reset 130 WDERR reset SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 WDUNF reset wdt_int WDFIEN WDT_MR 17.3 Functional Description The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset. The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow Clock of 32.768 kHz). After a Processor Reset, the value of WDV is 0xFFF, corresponding to the maximum value of the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must reprogram it to meet the maximum Watchdog period the application requires. The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset resets it. Writing the WDT_MR reloads the timer with the newly programmed mode parameters. In normal operation, the user reloads the Watchdog at regular intervals before the timer underflow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow Clock 128 divider is reset and restarted. The WDT_CR is write-protected. As a result, writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur, the "wdt_fault" signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register (WDT_SR). To prevent a software deadlock that continuously triggers the Watchdog, the reload of the Watchdog must occur while the Watchdog counter is within a window between 0 and WDD, WDD is defined in the WatchDog Mode Register WDT_MR. Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the WDT_SR and the "wdt_fault" signal to the Reset Controller is asserted. Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not generate an error. This is the default configuration on reset (the WDD and WDV values are equal). The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit WDFIEN is set in the mode register. The signal "wdt_fault" to the reset controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the Reset Controller documentation. In this case, the processor and the Watchdog Timer are reset, and the WDERR and WDUNF flags are reset. If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the "wdt_fault" signal to the reset controller is deasserted. Writing the WDT_MR reloads and restarts the down counter. While the processor is in debug state or in idle mode, the counter may be stopped depending on the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 131 Figure 17-2. Watchdog Behavior Watchdog Error Watchdog Underflow if WDRSTEN is 1 FFF if WDRSTEN is 0 Normal behavior WDV Forbidden Window WDD Permitted Window 0 Watchdog Fault 132 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 WDT_CR = WDRSTT 17.4 Watchdog Timer (WDT) User Interface Table 17-1. Register Mapping Offset Register Name Access Reset 0x00 Control Register WDT_CR Write-only - 0x04 Mode Register WDT_MR Read-write Once 0x3FFF_2FFF 0x08 Status Register WDT_SR Read-only 0x0000_0000 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 133 17.4.1 Watchdog Timer Control Register Name: WDT_CR Address: 0xFFFFFD40 Access: Write-only 31 30 29 28 27 26 25 24 KEY 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 WDRSTT * WDRSTT: Watchdog Restart 0: No effect. 1: Restarts the Watchdog. * KEY: Password Should be written at value 0xA5. Writing any other value in this field aborts the write operation. 134 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 17.4.2 Watchdog Timer Mode Register Name: WDT_MR Address: 0xFFFFFD44 Access: Read-write Once 31 23 30 29 WDIDLEHLT 28 WDDBGHLT 27 21 20 19 11 22 26 25 24 18 17 16 10 9 8 1 0 WDD WDD 15 WDDIS 14 13 12 WDRPROC WDRSTEN WDFIEN 7 6 5 4 WDV 3 2 WDV * WDV: Watchdog Counter Value Defines the value loaded in the 12-bit Watchdog Counter. * WDFIEN: Watchdog Fault Interrupt Enable 0: A Watchdog fault (underflow or error) has no effect on interrupt. 1: A Watchdog fault (underflow or error) asserts interrupt. * WDRSTEN: Watchdog Reset Enable 0: A Watchdog fault (underflow or error) has no effect on the resets. 1: A Watchdog fault (underflow or error) triggers a Watchdog reset. * WDRPROC: Watchdog Reset Processor 0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets. 1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset. * WDD: Watchdog Delta Value Defines the permitted range for reloading the Watchdog Timer. If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer. If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error. * WDDBGHLT: Watchdog Debug Halt 0: The Watchdog runs when the processor is in debug state. 1: The Watchdog stops when the processor is in debug state. * WDIDLEHLT: Watchdog Idle Halt 0: The Watchdog runs when the system is in idle mode. 1: The Watchdog stops when the system is in idle state. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 135 * WDDIS: Watchdog Disable 0: Enables the Watchdog Timer. 1: Disables the Watchdog Timer. 136 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 17.4.3 Watchdog Timer Status Register Name: WDT_SR Address: 0xFFFFFD48 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 WDERR 0 WDUNF * WDUNF: Watchdog Underflow 0: No Watchdog underflow occurred since the last read of WDT_SR. 1: At least one Watchdog underflow occurred since the last read of WDT_SR. * WDERR: Watchdog Error 0: No Watchdog error occurred since the last read of WDT_SR. 1: At least one Watchdog error occurred since the last read of WDT_SR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 137 18. Shutdown Controller (SHDWC) 18.1 Description The Shutdown Controller controls the power supplies VDDIO and VDDCORE and the wake-up detection on debounced input lines. 18.2 Block Diagram Figure 18-1. Shutdown Controller Block Diagram SLCK Shutdown Controller read SHDW_SR SHDW_MR CPTWK0 reset WAKEUP0 WKMODE0 SHDW_SR set WKUP0 read SHDW_SR Wake-up reset RTTWKEN SHDW_MR RTT Alarm RTTWK SHDW_SR set SHDW_CR SHDW 18.3 Shutdown I/O Lines Description Table 18-1. 18.4 SHDN Shutdown Output Controller I/O Lines Description Name Description Type WKUP0 Wake-up 0 input Input SHDN Shutdown output Output Product Dependencies 18.4.1 Power Management The Shutdown Controller is continuously clocked by Slow Clock. The Power Management Controller has no effect on the behavior of the Shutdown Controller. 138 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 18.5 Functional Description The Shutdown Controller manages the main power supply. To do so, it is supplied with VDDBU and manages wake-up input pins and one output pin, SHDN. A typical application connects the pin SHDN to the shutdown input of the DC/DC Converter providing the main power supplies of the system, and especially VDDCORE and/or VDDIO. The wake-up inputs (WKUP0) connect to any push-buttons or signal that wake up the system. The software is able to control the pin SHDN by writing the Shutdown Control Register (SHDW_CR) with the bit SHDW at 1. The shutdown is taken into account only 2 slow clock cycles after the write of SHDW_CR. This register is password-protected and so the value written should contain the correct key for the command to be taken into account. As a result, the system should be powered down. A level change on WKUP0 is used as wake-up. Wake-up is configured in the Shutdown Mode Register (SHDW_MR). The transition detector can be programmed to detect either a positive or negative transition or any level change on WKUP0. The detection can also be disabled. Programming is performed by defining WKMODE0. Moreover, a debouncing circuit can be programmed for WKUP0. The debouncing circuit filters pulses on WKUP0 shorter than the programmed number of 16 SLCK cycles in CPTWK0 of the SHDW_MR. If the programmed level change is detected on a pin, a counter starts. When the counter reaches the value programmed in the corresponding field, CPTWK0, the SHDN pin is released. If a new input change is detected before the counter reaches the corresponding value, the counter is stopped and cleared. WAKEUP0 of the Status Register (SHDW_SR) reports the detection of the programmed events on WKUP0 with a reset after the read of SHDW_SR. The Shutdown Controller can be programmed so as to activate the wake-up using the RTT alarm (the detection of the rising edge of the RTT alarm is synchronized with SLCK). This is done by writing the SHDW_MR using the RTTWKEN fields. When enabled, the detection of the RTT alarm is reported in the RTTWK bit of the SHDW_SR Status register. It is reset after the read of SHDW_SR. When using the RTT alarm to wake up the system, the user must ensure that the RTT alarm status flag is cleared before shutting down the system. Otherwise, no rising edge of the status flag may be detected and the wake-up fails. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 139 18.6 Shutdown Controller (SHDWC) User Interface Table 18-2. Register Mapping Offset Register Name Access Reset 0x00 Shutdown Control Register SHDW_CR Write-only - 0x04 Shutdown Mode Register SHDW_MR Read/Write 0x0000_0003 0x08 Shutdown Status Register SHDW_SR Read-only 0x0000_0000 140 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 18.6.1 Shutdown Control Register Name: SHDW_CR Address: 0xFFFFFD10 Access: Write-only 31 30 29 28 27 26 25 24 KEY 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 SHDW * SHDW: Shutdown Command 0: No effect. 1: If KEY is correct, asserts the SHDN pin. * KEY: Password Should be written at value 0xA5. Writing any other value in this field aborts the write operation. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 141 18.6.2 Shutdown Mode Register Name: SHDW_MR Address: 0xFFFFFD14 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 RTTWKEN 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 - 2 - 1 CPTWK0 0 WKMODE0 * WKMODE0: Wake-up Mode 0 WKMODE[1:0] Wake-up Input Transition Selection 0 0 None. No detection is performed on the wake-up input 0 1 Low to high level 1 0 High to low level 1 1 Both levels change * CPTWK0: Counter on Wake-up 0 Defines the number of 16 Slow Clock cycles, the level detection on the corresponding input pin shall last before the wakeup event occurs. Because of the internal synchronization of WKUP0, the SHDN pin is released (CPTWK x 16 + 1) Slow Clock cycles after the event on WKUP. * RTTWKEN: Real-time Timer Wake-up Enable 0: The RTT Alarm signal has no effect on the Shutdown Controller. 1: The RTT Alarm signal forces the de-assertion of the SHDN pin. 142 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 18.6.3 Shutdown Status Register Name: SHDW_SR Address: 0xFFFFFD18 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 RTTWK 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 WAKEUP0 * WAKEUP0: Wake-up 0 Status 0: No wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR. 1: At least one wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR. * RTTWK: Real-time Timer Wake-up 0: No wake-up alarm from the RTT occurred since the last read of SHDW_SR. 1: At least one wake-up alarm from the RTT occurred since the last read of SHDW_SR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 143 19. Enhanced Embedded Flash Controller (EEFC) 19.1 Description The Enhanced Embedded Flash Controller (EEFC) ensures the interface of the Flash block with the 32-bit internal bus. Its 128-bit wide memory interface increases performance. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic. 19.2 Product Dependencies 19.2.1 Power Management The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Management Controller has no effect on its behavior. 19.2.2 Interrupt Sources The Enhanced Embedded Flash Controller (EEFC) interrupt line is connected to the System Controller internal source of the Advanced Interrupt Controller. Using the Enhanced Embedded Flash Controller (EEFC) interrupt requires the AIC to be programmed first. The EEFC interrupt is generated only on FRDY bit rising. To know the Flash status, EEFC Flash Status Register should be read each time a system interrupt (SYSIRQ, periph ID = 0) occurs. 144 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 19.3 Functional Description 19.3.1 Embedded Flash Organization The embedded Flash interfaces directly with the 32-bit internal bus. The embedded Flash is composed of: One memory plane organized in several pages of the same size. Two 128-bit read buffers used for code read optimization. One 128-bit read buffer used for data read optimization. One write buffer that manages page programming. The write buffer size is equal to the page size. This buffer is write-only and accessible all along the 1 MB address space, so that each word can be written to its final address. Several lock bits used to protect write/erase operation on several pages (lock region). A lock bit is associated with a lock region composed of several pages in the memory plane. Several bits that may be set and cleared through the Enhanced Embedded Flash Controller (EEFC) interface, called General Purpose Non-volatile Memory bits (GPNVM bits). The embedded Flash size, the page size, the lock regions organization and GPNVM bits definition are described in the product definition section. The Enhanced Embedded Flash Controller (EEFC) returns a descriptor of the Flash controlled after a get descriptor command issued by the application (see "Getting Embedded Flash Descriptor" on page 149). Figure 19-1. Embedded Flash Organization Memory Plane Start Address Page 0 Lock Region 0 Lock Bit 0 Page (m-1) Lock Region 1 Lock Region (n-1) Start Address + Flash size -1 Lock Bit 1 Lock Bit (n-1) Page (n*m-1) 19.3.2 Read Operations An optimized controller manages embedded Flash reads, thus increasing performance when the processor is running in ARM and Thumb mode by means of the 128-bit wide memory interface. The Flash memory is accessible through 8-, 16- and 32-bit reads. As the Flash block size is smaller than the address space reserved for the internal memory area, the embedded Flash wraps around the address space and appears to be repeated within it. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 145 The read operations can be performed with or without wait states. Wait states must be programmed in the field FWS (Flash Read Wait State) in the Flash Mode Register (EEFC_FMR). Defining FWS to be 0 enables the singlecycle access of the embedded Flash. Refer to the Electrical Characteristics for more details. 19.3.2.1 Code Read Optimization A system of 2 x 128-bit buffers is added in order to optimize sequential Code Fetch. Note: Figure 19-2. Immediate consecutive code read accesses are not mandatory to benefit from this optimization. Code Read Optimization in ARM Mode for FWS = 0 Master Clock ARM Request (32-bit) @Byte 0 Flash Access Buffer 0 (128bits) @Byte 8 Bytes 0-15 Bytes 16-31 @Byte 20 @Byte 16 Bytes 0-15 Bytes 0-3 @Byte 32 Bytes 32-47 XXX XXX @Byte 28 @Byte 24 Bytes 32-47 XXX Buffer 1 (128bits) Data To ARM @Byte 12 @Byte 4 Bytes 16-31 Bytes 4-7 Bytes 8-11 Bytes 16-19 Bytes 12-15 Bytes 20-23 Bytes 24-27 Bytes 28-31 Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access. Figure 19-3. Code Read Optimization in ARM Mode for FWS = 3 Master Clock ARM Request (32-bit) @4 @Byte 0 Flash Access Buffer 0 (128bits) @20 @12 @16 @24 @28 @32 @36 @40 Bytes 32-47 Bytes 16-31 Bytes 0-15 @48 @52 Bytes 32-47 Bytes 16-31 XXX XXX @44 Bytes 48-63 Bytes 0-15 XXX Buffer 1 (128bits) Data To ARM @8 0-3 4-7 8-11 12-15 16-19 20-23 24-27 28-31 32-35 36-39 40-43 44-47 48-51 Note: When FWS is included between 1 and 3, in case of sequential reads, the first access takes (FWS+1) cycles, the other ones only 1 cycle. 146 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 19-4. Code Read Optimization in ARM Mode for FWS = 4 Master Clock ARM Request (32-bit) @8 @4 @Byte 0 Flash Access Bytes 0-15 Buffer 0 (128bits) @24 @20 @12 @16 Bytes 48-63 Bytes 32-47 Bytes 0-15 Buffer 1 (128bits) Bytes 16-31 XXX Data To ARM @36 @40 Bytes 32-47 Bytes 16-31 XXX @28 @32 XXX 0-3 4-7 8-11 12-15 16-19 20-23 24-27 28-31 32-35 36-39 Note: When FWS is included between 4 and 10, in case of sequential reads, the first access takes (FWS+1) cycles, each first access of the 128-bit read (FWS-2) cycles, and the others only 1 cycle. 19.3.2.2 Data Read Optimization The organization of the Flash in 128 bits is associated with two 128-bit prefetch buffers and one 128-bit data read buffer, thus providing maximum system performance. This buffer is added in order to start access at the following data during the second read. This speeds up sequential data reads if, for example, FWS is equal to 1 (see Figure 19-5). Note: Figure 19-5. No consecutive data read accesses are mandatory to benefit from this optimization. Data Read Optimization in ARM Mode for FWS = 1 Master Clock ARM Request (32-bit) @4 @Byte 0 Flash Access Buffer (128bits) Data To ARM XXX @8 @ 12 @ 16 @ 24 @ 28 4-7 8-11 12-15 @ 36 Bytes 32-47 Bytes 0-15 XXX Bytes 0-3 @ 32 Bytes 16-31 Bytes 0-15 XXX @ 20 Bytes 16-31 16-19 20-23 24-27 28-31 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 32-35 147 19.3.3 Flash Commands The Enhanced Embedded Flash Controller (EEFC) offers a set of commands such as programming the memory Flash, locking and unlocking lock regions, consecutive programming and locking and full Flash erasing, etc. Commands and read operations can be performed in parallel only on different memory planes. Code can be fetched from one memory plane while a write or an erase operation is performed on another. Table 19-1. Set of Commands Command Value Mnemonic Get Flash Descriptor 0x0 GETD Write page 0x1 WP Write page and lock 0x2 WPL Erase page and write page 0x3 EWP Erase page and write page then lock 0x4 EWPL Erase all 0x5 EA Set Lock Bit 0x8 SLB Clear Lock Bit 0x9 CLB Get Lock Bit 0xA GLB Set GPNVM Bit 0xB SGPB Clear GPNVM Bit 0xC CGPB Get GPNVM Bit 0xD GGPB In order to perform one of these commands, the Flash Command Register (EEFC_FCR) has to be written with the correct command using the field FCMD. As soon as the EEFC_FCR is written, the FRDY flag and the field FVALUE in the EEFC_FRR are automatically cleared. Once the current command is achieved, then the FRDY flag is automatically set. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the interrupt line of the System Controller is activated. All the commands are protected by the same keyword, which has to be written in the 8 highest bits of the EEFC_FCR. Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid command has no effect on the whole memory plane, but the FCMDE flag is set in the EEFC_FSR. This flag is automatically cleared by a read access to the EEFC_FSR. When the current command writes or erases a page in a locked region, the command has no effect on the whole memory plane, but the FLOCKE flag is set in the EEFC_FSR. This flag is automatically cleared by a read access to the EEFC_FSR. 148 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 19-6. Command State Chart Read Status: MC_FSR No Check if FRDY flag Set Yes Write FCMD and PAGENB in Flash Command Register Read Status: MC_FSR No Check if FRDY flag Set Yes Check if FLOCKE flag Set Yes Locking region violation No Check if FCMDE flag Set Yes Bad keyword violation No Command Successfull 19.3.3.1 Getting Embedded Flash Descriptor This command allows the system to learn about the Flash organization. The system can take full advantage of this information. For instance, a device could be replaced by one with more Flash capacity, and so the software is able to adapt itself to the new configuration. To get the embedded Flash descriptor, the application writes the GETD command in the EEFC_FCR. The first word of the descriptor can be read by the software application in the EEFC_FRR as soon as the FRDY flag in the EEFC_FSR rises. The next reads of the EEFC_FRR provide the following word of the descriptor. If extra read operations to the EEFC_FRR are done after the last word of the descriptor has been returned, then the EEFC_FRR value is 0 until the next valid command. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 149 Table 19-2. Flash Descriptor Definition Symbol Word Index Description FL_ID 0 Flash Interface Description FL_SIZE 1 Flash size in bytes FL_PAGE_SIZE 2 Page size in bytes FL_NB_PLANE 3 Number of planes. FL_PLANE[0] 4 Number of bytes in the first plane. FL_PLANE[FL_NB_PLANE-1] 4 + FL_NB_PLANE - 1 Number of bytes in the last plane. FL_NB_LOCK 4 + FL_NB_PLANE Number of lock bits. A bit is associated with a lock region. A lock bit is used to prevent write or erase operations in the lock region. FL_LOCK[0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region. ... ... 19.3.3.2 Write Commands Several commands can be used to program the Flash. Flash technology requires that an erase is done before programming. The full memory plane can be erased at the same time, or several pages can be erased at the same time (refer to "Erase Commands" on page 151). Also, a page erase can be automatically done before a page write using EWP or EWPL commands. After programming, the page (the whole lock region) can be locked to prevent miscellaneous write or erase sequences. The lock bit can be automatically set after page programming using WPL or EWPL commands. Data to be written are stored in an internal latch buffer. The size of the latch buffer corresponds to the page size. The latch buffer wraps around within the internal memory area address space and is repeated as many times as the number of pages within this address space. Note: Writing of 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption. Write operations are performed in a number of wait states equal to the number of wait states for read operations. Data are written to the latch buffer before the programming command is written to the Flash Command Register EEFC_FCR. The sequence is as follows: Write the full page, at any page address, within the internal memory area address space. Programming starts as soon as the page number and the programming command are written to the Flash Command Register. The FRDY bit in the Flash Programming Status Register (EEFC_FSR) is automatically cleared. When programming is completed, the bit FRDY in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the interrupt line of the System Controller is activated. Two errors can be detected in the EEFC_FSR after a programming sequence: a Command Error: a bad keyword has been written in the EEFC_FCR. a Lock Error: the page to be programmed belongs to a locked region. A command must be previously run to unlock the corresponding region. By using the WP command, a page can be programmed in several steps if it has been erased before (see Figure 19-7). 150 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 19-7. Example of Partial Page Programming 32-bit wide 32-bit wide X words X words FF FF FF FF FF FF FF FF FF FF X words FF FF FF FF FF X words FF FF FF FF FF FF FF FF FF FF FF FF CA FE CA FE CA CA FE FE CA FE CA FE FF FF ... FF FF FF FF FF FF FF DE CA DE CA ... DE CA DE CA DE CA DE CA FF FF ... FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ... FF FF FF FF FF CA FE FF FF CA FE CA FE FF FF ... FF FF FF FF FF FF FF FF FF FF FF FF ... FF FF FF FF FF FF FF FF FF FF ... Step 1. Erase All Flash So Page Y erased 32-bit wide ... ... FF ... FF FF FF CA FE CA CA FE FE FF FF ... Step 2. Programming of the second part of Page Y FF FF ... FF FF FF FF FF FF FF Step 3. Programming of the third part of Page Y The Partial Programming mode works only with 32-bit (or higher) boundaries. It can not be used with boundaries lower than 32 bits (one or two bytes, for example). 19.3.3.3 Erase Commands Erase commands are allowed only on unlocked regions. The erase sequence is: Erase starts as soon as one of the erase commands and the FARG field are written in the Flash Command Register. When the programming completes, the FRDY bit in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the interrupt line of the System Controller is activated. Two errors can be detected in the EEFC_FSR after a programming sequence: a Command Error: a bad keyword has been written in the EEFC_FCR. a Lock Error: at least one page to be erased belongs to a locked region. The erase command has been refused, no page has been erased. A command must be previously run to unlock the corresponding region. 19.3.3.4 Lock Bit Protection Lock bits are associated with several pages in the embedded Flash memory plane. This defines lock regions in the embedded Flash memory plane. They prevent writing/erasing protected pages. The lock sequence is: The Set Lock command (SLB) and a page number to be protected are written in the Flash Command Register. When the locking completes, the bit FRDY in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the interrupt line of the System Controller is activated. If the lock bit number is greater than the total number of lock bits, then the command has no effect. The result of the SLB command can be checked running a GLB (Get Lock Bit) command. One error can be detected in the EEFC_FSR after a programming sequence: a Command Error: a bad keyword has been written in the EEFC_FCR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 151 It is possible to clear lock bits previously set. Then the locked region can be erased or programmed. The unlock sequence is: The Clear Lock command (CLB) and a page number to be unprotected are written in the Flash Command Register. When the unlock completes, the bit FRDY in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the interrupt line of the System Controller is activated. If the lock bit number is greater than the total number of lock bits, then the command has no effect. One error can be detected in the EEFC_FSR after a programming sequence: a Command Error: a bad keyword has been written in the EEFC_FCR. The status of lock bits can be returned by the Enhanced Embedded Flash Controller (EEFC). The Get Lock Bit status sequence is: The Get Lock Bit command (GLB) is written in the Flash Command Register. FARG field is meaningless. When the command completes, the bit FRDY in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the interrupt line of the System Controller is activated. Lock bits can be read by the software application in the EEFC_FRR. The first word read corresponds to the 32 first lock bits, next reads providing the next 32 lock bits as long as it is meaningful. Extra reads to the EEFC_FRR return 0. For example, if the third bit of the first word read in the EEFC_FRR is set, then the third lock region is locked. One error can be detected in the EEFC_FSR after a programming sequence: Note: a Command Error: a bad keyword has been written in the EEFC_FCR. Access to the Flash in read is permitted when a set, clear or get lock bit command is performed. 19.3.3.5 GPNVM Bit GPNVM bits do not interfere with the embedded Flash memory plane. Refer to the product definition section for information on the GPNVM Bit Action. The set GPNVM bit sequence is: Start the Set GPNVM Bit command (SGPB) by writing the Flash Command Register with the SGPB command and the number of the GPNVM bit to be set. When the GPVNM bit is set, the bit FRDY in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt was enabled by setting the bit FRDY in EEFC_FMR, the interrupt line of the System Controller is activated. If the GPNVM bit number is greater than the total number of GPNVM bits, then the command has no effect. The result of the SGPB command can be checked by running a GGPB (Get GPNVM Bit) command. One error can be detected in the EEFC_FSR after a programming sequence: A Command Error: a bad keyword has been written in the EEFC_FCR. It is possible to clear GPNVM bits previously set. The clear GPNVM bit sequence is: Start the Clear GPNVM Bit command (CGPB) by writing the Flash Command Register with CGPB and the number of the GPNVM bit to be cleared. When the clear completes, the bit FRDY in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the interrupt line of the System Controller is activated. If the GPNVM bit number is greater than the total number of GPNVM bits, then the command has no effect. One error can be detected in the EEFC_FSR after a programming sequence: 152 A Command Error: a bad keyword has been written in the EEFC_FCR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 The status of GPNVM bits can be returned by the Enhanced Embedded Flash Controller (EEFC). The sequence is: Start the Get GPNVM bit command by writing the Flash Command Register with GGPB. The FARG field is meaningless. When the command completes, the bit FRDY in the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the interrupt line of the System Controller is activated. GPNVM bits can be read by the software application in the EEFC_FRR. The first word read corresponds to the 32 first GPNVM bits, following reads provide the next 32 GPNVM bits as long as it is meaningful. Extra reads to the EEFC_FRR return 0. For example, if the third bit of the first word read in the EEFC_FRR is set, then the third GPNVM bit is active. One error can be detected in the EEFC_FSR after a programming sequence: Note: a Command Error: a bad keyword has been written in the EEFC_FCR. Access to the Flash in read is permitted when a set, clear or get GPNVM bit command is performed. 19.3.3.6 Security Bit Protection When the security is enabled, access to the Flash, either through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash. The security bit is GPNVM0. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are permitted. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 153 19.4 Enhanced Embedded Flash Controller (EEFC) User Interface The User Interface of the Enhanced Embedded Flash Controller (EEFC) is integrated within the System Controller with base address 0xFFFF FA00. Table 19-3. Offset 154 Register Mapping Register Name Access Reset State 0x00 EEFC Flash Mode Register EEFC_FMR Read/Write 0x0 0x04 EEFC Flash Command Register EEFC_FCR Write-only - 0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x00000001 0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0 0x10 Reserved - - - SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 19.4.1 EEFC Flash Mode Register Name: EEFC_FMR Address: 0xFFFFFA00 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - FWS 7 6 5 4 3 2 1 0 - - - - - - - FRDY * FRDY: Ready Interrupt Enable 0: Flash Ready does not generate an interrupt. 1: Flash Ready (to accept a new command) generates an interrupt. * FWS: Flash Wait State This field defines the number of wait states for read and write operations: Number of cycles for Read/Write operations = FWS+1 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 155 19.4.2 EEFC Flash Command Register Name: EEFC_FCR Address: 0xFFFFFA04 Access: Write-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 FKEY 23 22 21 20 FARG 15 14 13 12 FARG 7 6 5 4 FCMD * FCMD: Flash Command This field defines the flash commands. Refer to "Flash Commands" on page 148. * FARG: Flash Command Argument Erase command For erase all command, this field is meaningless. Programming command FARG defines the page number to be programmed. Lock command FARG defines the page number to be locked. GPNVM command FARG defines the GPNVM number. Get commands Field is meaningless. * FKEY: Flash Writing Protection Key This field should be written with the value 0x5A to enable the command defined by the bits of the register. If the field is written with a different value, the write is not performed and no action is started. 156 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 19.4.3 EEFC Flash Status Register Name: EEFC_FSR Address: 0xFFFFFA08 Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - - - - - FLOCKE FCMDE FRDY * FRDY: Flash Ready Status 0: The Enhanced Embedded Flash Controller (EEFC) is busy. 1: The Enhanced Embedded Flash Controller (EEFC) is ready to start a new command. When it is set, this flags triggers an interrupt if the FRDY flag is set in the EEFC_FMR. This flag is automatically cleared when the Enhanced Embedded Flash Controller (EEFC) is busy. * FCMDE: Flash Command Error Status 0: No invalid commands and no bad keywords were written in the Flash Mode Register EEFC_FMR. 1: An invalid command and/or a bad keyword was/were written in the Flash Mode Register EEFC_FMR. This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written. * FLOCKE: Flash Lock Error Status 0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR. 1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR. This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 157 19.4.4 EEFC Flash Result Register Name: EEFC_FRR Address: 0xFFFFFA0C Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 FVALUE 23 22 21 20 FVALUE 15 14 13 12 FVALUE 7 6 5 4 FVALUE * FVALUE: Flash Result Value The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, then the next resulting value is accessible at the next register read. 158 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 20. SAM9XE Bus Matrix 20.1 Description Bus Matrix implements a multi-layer AHB, based on AHB-Lite protocol, that enables parallel access paths between multiple AHB masters and slaves in a system, which increases the overall bandwidth. Bus Matrix interconnects 6 AHB Masters to 5 AHB Slaves. The normal latency to connect a master to a slave is one cycle except for the default master of the accessed slave which is connected directly (zero cycle latency). The Bus Matrix user interface is compliant with ARM Advance Peripheral Bus and provides a Chip Configuration User Interface with Registers that allow the Bus Matrix to support application specific features. 20.2 Memory Mapping Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each AHB Master several memory mappings. In fact, depending on the product, each memory area may be assigned to several slaves. Booting at the same address while using different AHB slaves (i.e., external RAM, internal ROM or internal Flash, etc.) becomes possible. The Bus Matrix user interface provides Master Remap Control Register (MATRIX_MRCR) that allows to perform remap action for every master independently. 20.3 Special Bus Granting Techniques The Bus Matrix provides some speculative bus granting techniques in order to anticipate access requests from some masters. This mechanism allows to reduce latency at first accesses of a burst or single transfer. The bus granting mechanism allows to set a default master for every slave. At the end of the current access, if no other request is pending, the slave remains connected to its associated default master. A slave can be associated with three kinds of default masters: no default master, last access master and fixed default master. 20.3.1 No Default Master At the end of the current access, if no other request is pending, the slave is disconnected from all masters. No Default Master suits low power mode. 20.3.2 Last Access Master At the end of the current access, if no other request is pending, the slave remains connected to the last master that performed an access request. 20.3.3 Fixed Default Master At the end of the current access, if no other request is pending, the slave connects to itsfixed default master. Unlike last access master, the fixed master doesn't change unless the user modifies it by a software action (field FIXED_DEFMSTR of the related MATRIX_SCFG). To change from one kind of default master to another, the Bus Matrix user interface provides the Slave Configuration Registers, one for each slave, that allow to set a default master for each slave. The Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field allows to choose the default master type (no default, last access master, fixed default master) whereas the 4-bit FIXED_DEFMSTR field allows to choose a fixed default master provided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user interface description. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 159 20.4 Arbitration The Bus Matrix provides an arbitration mechanism that allows to reduce latency when conflict cases occur, basically when two or more masters try to access the same slave at the same time. One arbiter per AHB slave is provided, allowing to arbitrate each slave differently. The Bus Matrix provides to the user the possibility to choose between two arbitration types, and this for each slave: 1. Round-Robin Arbitration (the default) 2. Fixed Priority Arbitration This choice is given through the field ARBT of the Slave Configuration Registers (MATRIX_SCFG). Each algorithm may be complemented by selecting a default master configuration for each slave. When a re-arbitration has to be done, it is realized only under some specific conditions detailed in the following paragraph. 20.4.1 Arbitration Rules Each arbiter has the ability to arbitrate between two or more different master's requests. In order to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitration may only take place during the following cycles: 1. Idle Cycles: when a slave is not connected to any master or is connected to a master which is not currently accessing it. 2. Single Cycles: when a slave is currently doing a single access. 3. End of Burst Cycles: when the current cycle is the last cycle of a burst transfer. For defined length burst, predicted end of burst match the size of the transfer but is managed differently for undefined length burst (See Section 20.4.1.1 "Undefined Length Burst Arbitration"). 4. Slot Cycle Limit: when the slot cycle counter has reach the limit value indicating that the current master access is too long and must be broken (see Section 20.4.1.2 "Slot Cycle Limit Arbitration"). 20.4.1.1 Undefined Length Burst Arbitration In order to avoid too long slave handling during undefined length bursts (INCR), the Bus Matrix provides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end of burst is used as for defined length burst transfer, which is selected between the following: 1. Infinite: no predicted end of burst is generated and therefore INCR burst transfer will never be broken. 2. Four beat bursts: predicted end of burst is generated at the end of each four beat boundary inside INCR transfer. 3. Eight beat bursts: predicted end of burst is generated at the end of each eight beat boundary inside INCR transfer. 4. Sixteen beat bursts: predicted end of burst is generated at the end of each sixteen beat boundary inside INCR transfer. This selection can be done through the field ULBT of the Master Configuration Registers (MATRIX_MCFG). 20.4.1.2 Slot Cycle Limit Arbitration The Bus Matrix contains specific logic to break too long accesses such as very long bursts on a very slow slave (e.g. an external low speed memory). At the beginning of the burst access, a counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave Configuration Register (MATRIX_SCFG) and decreased at each clock cycle. When the counter reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or word transfer. 160 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 20.4.2 Round-Robin Arbitration This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to the same slave in a round-robin manner. If two or more master's requests arise at the same time, the master with the lowest number is first serviced then the others are serviced in a round-robin manner. There are three round-robin algorithms implemented: Round-Robin arbitration without default master Round-Robin arbitration with last access master Round-Robin arbitration with fixed default master 20.4.2.1 Round-Robin Arbitration without Default Master This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch requests from different masters to the same slave in a pure round-robin manner. At the end of the current access, if no other request is pending, the slave is disconnected from all masters. This configuration incurs one latency cycle for the first access of a burst. Arbitration without default master can be used for masters that perform significant bursts. 20.4.2.2 Round-Robin Arbitration with Last Access Master This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to remove the one latency cycle for the last master that accessed the slave. At the end of the current transfer, if no other master request is pending, the slave remains connected to the last master that performs the access. Other non privileged masters will still get one latency cycle if they want to access the same slave. This technique can be used for masters that mainly perform single accesses. 20.4.2.3 Round-Robin Arbitration with Fixed Default Master This is another biased round-robin algorithm, it allows the Bus Matrix arbiters to remove the one latency cycle for the fixed default master per slave. At the end of the current access, the slave remains connected to its fixed default master. Requests attempted by this fixed default master do not cause any latency whereas other non privileged masters get one latency cycle. This technique can be used for masters that mainly perform single accesses. 20.4.3 Fixed Priority Arbitration This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to the same slave by using the fixed priority defined by the user. If two or more master's requests are active at the same time, the master with the highest priority number is serviced first. If two or more master's requests with the same priority are active at the same time, the master with the highest number is serviced first. For each slave, the priority of each master may be defined through the Priority Registers for Slaves (MATRIX_PRAS and MATRIX_PRBS). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 161 20.5 Bus Matrix (MATRIX) User Interface Table 20-1. Register Mapping Offset Register Name Access Reset 0x0000 Master Configuration Register 0 MATRIX_MCFG0 Read/Write 0x00000000 0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read/Write 0x00000000 0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read/Write 0x00000000 0x000C Master Configuration Register 3 MATRIX_MCFG3 Read/Write 0x00000000 0x0010 Master Configuration Register 4 MATRIX_MCFG4 Read/Write 0x00000000 0x0014 Master Configuration Register 5 MATRIX_MCFG5 Read/Write 0x00000000 Reserved - - - 0x0040 Slave Configuration Register 0 MATRIX_SCFG0 Read/Write 0x00010010 0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read/Write 0x00050010 0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read/Write 0x00000010 0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read/Write 0x00000010 0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read/Write 0x00000010 Reserved - - - 0x0080 Priority Register A for Slave 0 MATRIX_PRAS0 Read/Write 0x00000000 0x0084 Reserved - - - 0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read/Write 0x00000000 0x008C Reserved - - - 0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read/Write 0x00000000 0x0094 Reserved - - - 0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read/Write 0x00000000 0x009C Reserved - - - 0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read/Write 0x00000000 Reserved - - - Master Remap Control Register MATRIX_MRCR Read/Write 0x00000000 Reserved - - - 0x0018-0x003C 0x0054-0x007C 0x00A8-0x00FC 0x0100 0x0104-0x010C 162 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 20.5.1 Bus Matrix Master Configuration Registers Name: MATRIX_MCFG0...MATRIX_MCFG5 Address: 0xFFFFEE00 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 2 1 0 7 6 5 4 3 - - - - - ULBT * ULBT: Undefined Length Burst Type 0: Infinite Length Burst No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken. 1: Single Access The undefined length burst is treated as a succession of single access allowing rearbitration at each beat of the INCR burst. 2: Four Beat Burst The undefined length burst is split into 4-beat burst allowing rearbitration at each 4-beat burst end. 3: Eight Beat Burst The undefined length burst is split into 8-beat burst allowing rearbitration at each 8-beat burst end. 4: Sixteen Beat Burst The undefined length burst is split into 16-beat burst allowing rearbitration at each 16-beat burst end. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 163 20.5.2 Bus Matrix Slave Configuration Registers Name: MATRIX_SCFG0...MATRIX_SCFG4 Address: 0xFFFFEE40 Access: Read/Write 31 30 29 28 27 26 - - - - - - 23 22 21 20 19 18 - FIXED_DEFMSTR 25 24 ARBT 17 16 DEFMSTR_TYPE 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 SLOT_CYCLE * SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst When the SLOT_CYCLE limit is reach for a burst it may be broken by another master trying to access this slave. This limit has been placed to avoid locking very slow slave by when very long burst are used. This limit should not be very small though. Unreasonable small value will break every burst and Bus Matrix will spend its time to arbitrate without performing any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE. * DEFMASTR_TYPE: Default Master Type 0: No Default Master At the end of current slave access, if no other master request is pending, the slave is disconnected from all masters. This results in having a one cycle latency for the first access of a burst transfer or for a single access. 1: Last Default Master At the end of current slave access, if no other master request is pending, the slave stay connected with the last master having accessed it. This results in not having the one cycle latency when the last master re-tries access on the slave again. 2: Fixed Default Master At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master which number has been written in the FIXED_DEFMSTR field. This results in not having the one cycle latency when the fixed master re-tries access on the slave again. * FIXED_DEFMSTR: Fixed Default Master This is the number of the Default Master for this slave. Only used if DEFMASTR_TYPE is 2. Specifying the number of a master which is not connected to the selected slave is equivalent to setting DEFMASTR_TYPE to 0. * ARBT: Arbitration Type 0: Round-Robin Arbitration 1: Fixed Priority Arbitration 2: Reserved 3: Reserved 164 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 20.5.3 Bus Matrix Priority Registers For Slaves Name: MATRIX_PRS0...MATRIX_PRS4 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 - - - - 15 14 11 10 - - - - 7 6 - - M5PR 13 12 M3PR 5 4 M1PR 3 2 - - 16 M4PR 9 8 M2PR 1 0 M0PR * MxPR: Master x Priority Fixed priority of Master x for access to the selected slave. The higher the number, the higher the priority. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 165 20.5.4 Bus Matrix Master Remap Control Register Name: MATRIX_MRCR Address: 0xFFFFEF00 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - - - - - - RCB1 RCB0 * RCBx: Remap Command Bit for AHB Master x 0: Disable remapped address decoding for the selected Master 1: Enable remapped address decoding for the selected Master 166 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 20.6 Chip Configuration User Interface Table 20-2. Chip Configuration User Interface Offset Register Name 0x0110-0x0118 Reserved - EBI Chip Select Assignment Register EBI_CSA Reserved - 0x011C 0x0130-0x01FC Access Reset Value - - Read/Write 0x00010000 - - SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 167 20.6.1 EBI Chip Select Assignment Register Name: EBI_CSA Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - EBI_DBPUC 16 EBI_DRIVE 7 6 5 4 3 2 1 0 - - EBI_CS5A EBI_CS4A EBI_CS3A - EBI_CS1A - * EBI_CS1A: EBI Chip Select 1 Assignment 0: EBI Chip Select 1 is assigned to the Static Memory Controller. 1: EBI Chip Select 1 is assigned to the SDRAM Controller. * EBI_CS3A: EBI Chip Select 3 Assignment 0: EBI Chip Select 3 is only assigned to the Static Memory Controller and EBI_NCS3 behaves as defined by the SMC. 1: EBI Chip Select 3 is assigned to the Static Memory Controller and the SmartMedia Logic is activated. * EBI_CS4A: EBI Chip Select 4 Assignment 0: EBI Chip Select 4 is only assigned to the Static Memory Controller and EBI_NCS4 behaves as defined by the SMC. 1: EBI Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic (first slot) is activated. * EBI_CS5A: EBI Chip Select 5 Assignment 0: EBI Chip Select 5 is only assigned to the Static Memory Controller and EBI_NCS5 behaves as defined by the SMC. 1: EBI Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic (second slot) is activated. * EBI_DBPUC: EBI Data Bus Pull-Up Configuration 0: EBI D0-D15 Data Bus bits are internally pulled-up to the VDDIOM0 power supply. 1: EBI D0-D15 Data Bus bits are not internally pulled-up. * EBI_DRIVE EBI I/O Drive Configuration Used to avoid overshoots and to give the best performance according to bus load and external memories. Value 168 Drive Configuration Conditions 00 Optimized for 1.8V powered memories with Low Drive Maximum load capacitance 20 pF 01 Optimized for 3.3V powered memories with Low Drive Maximum load capacitance 27 pF 10 Optimized for 1.8V powered memories with High Drive Maximum load capacitance 40 pF 11 Optimized for 3.3V powered memories with High Drive Maximum load capacitance 55 pF SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21. SAM9XE External Bus Interface 21.1 Description The External Bus Interface (EBI) is designed to ensure the successful data transfer between several external devices and the embedded memory controller of an ARM-based device. The Static Memory, SDRAM and ECC controllers are all featured external memory controllers on the EBI. These external memory controllers are capable of handling several types of external memory and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and SDRAM. The EBI also supports the CompactFlash and the NAND Flash protocols via integrated circuitry that greatly reduces the requirements for external components. Furthermore, the EBI handles data transfers with up to six external devices, each assigned to six address spaces defined by the embedded Memory Controller. Data transfers are performed through a 16-bit or 32-bit data bus, an address bus of up to 26 bits, up to eight chip select lines (NCS[7:0]) and several control pins that are generally multiplexed between the different external memory controllers. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 169 21.2 Block Diagram 21.2.1 External Bus Interface Figure 21-1 shows the organization of the External Bus Interface. Figure 21-1. Organization of the External Bus Interface External Bus Interface Bus Matrix D[15:0] AHB SDRAM Controller A0/NBS0 A1/NWR2/NBS2 A[15:2], A[22:18] A16/BA0 MUX Logic Static Memory Controller A17/BA1 NCS0 NCS1/SDCS NRD/NOE/CFOE NWR0/NWE/CFWE NWR1/NBS1/CFIOR NWR3/NBS3/CFIOW SDCK CompactFlash Logic SDCKE RAS CAS NAND Flash Logic SDWE SDA10 NANDOE NANDWE ECC Controller D[31:16] PIO A[25:23] CFRNW/A25 Address Decoders Chip Select Assignor NCS4/CFCS0 NCS5/CFCS1 NCS2/NCS6/NCS7 NWAIT User Interface CFCE1 CFCE2 NCS3/NANDCS APB 170 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21.3 I/O Lines Description Table 21-1. EBI I/O Lines Description Name Function Type Active Level EBI EBI_D0-EBI_D31 Data Bus I/O EBI_A0-EBI_A25 Address Bus EBI_NWAIT External Wait Signal Output Input Low SMC EBI_NCS0-EBI_NCS7 Chip Select Lines Output Low EBI_NWR0-EBI_NWR3 Write Signals Output Low EBI_NOE Output Enable Output Low EBI_NRD Read Signal Output Low EBI_NWE Write Enable Output Low EBI_NBS0-EBI_NBS3 Byte Mask Signals Output Low EBI for CompactFlash Support EBI_CFCE1-EBI_CFCE2 CompactFlash Chip Enable Output Low EBI_CFOE CompactFlash Output Enable Output Low EBI_CFWE CompactFlash Write Enable Output Low EBI_CFIOR CompactFlash I/O Read Signal Output Low EBI_CFIOW CompactFlash I/O Write Signal Output Low EBI_CFRNW CompactFlash Read Not Write Signal Output EBI_CFCS0-EBI_CFCS1 CompactFlash Chip Select Lines Output Low EBI for NAND Flash Support EBI_NANDCS NAND Flash Chip Select Line Output Low EBI_NANDOE NAND Flash Output Enable Output Low EBI_NANDWE NAND Flash Write Enable Output Low SDRAM Controller EBI_SDCK SDRAM Clock Output EBI_SDCKE SDRAM Clock Enable Output High EBI_SDCS SDRAM Controller Chip Select Line Output Low EBI_BA0-EBI_BA1 Bank Select Output EBI_SDWE SDRAM Write Enable Output Low EBI_RAS - EBI_CAS Row and Column Signal Output Low EBI_NWR0-EBI_NWR3 Write Signals Output Low EBI_NBS0-EBI_NBS3 Byte Mask Signals Output Low EBI_SDA10 SDRAM Address 10 Line Output The connection of some signals through the MUX logic is not direct and depends on the memory controller currently being used. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 171 Table 21-2 details the connections between the two memory controllers and the EBI pins. Table 21-2. 172 EBI Pins and Memory Controllers I/O Lines Connections EBIx Pins SDRAMC I/O Lines SMC I/O Lines EBI_NWR1/NBS1/CFIOR NBS1 NWR1/NUB EBI_A0/NBS0 Not Supported SMC_A0/NLB EBI_A1/NBS2/NWR2 Not Supported SMC_A1 EBI_A[11:2] SDRAMC_A[9:0] SMC_A[11:2] EBI_SDA10 SDRAMC_A10 Not Supported EBI_A12 Not Supported SMC_A12 EBI_A[14:13] SDRAMC_A[12:11] SMC_A[14:13] EBI_A[22:15] Not Supported SMC_A[22:15] EBI_A[25:23] Not Supported SMC_A[25:23] EBI_D[31:0] D[31:0] D[31:0] SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21.4 Application Example 21.4.1 Hardware Interface Table 21-3 details the connections to be applied between the EBI pins and the external devices for each memory controller. Table 21-3. EBI Pins and External Static Devices Connections Pins of the SMC Interfaced Device 8-bit Static Device 2 x 8-bit Static Devices 16-bit Static Device 4 x 8-bit Static Devices 2 x 16-bit Static Devices 32-bit Static Device D0-D7 D0-D7 D0-D7 D0-D7 D0-D7 D0-D7 D0-D7 D8-D15 - D8-D15 D8-D15 D8-D15 D8-15 D8-15 D16-D23 - - - D16-D23 D16-D23 D16-D23 D24-D31 - - - D24-D31 D24-D31 D24-D31 Signals: EBI_ (3) NLB BE0(5) A0/NBS0 A0 - NLB - A1/NWR2/NBS2 A1 A0 A0 WE(2) NLB(4) BE2(5) A2-A22 A[2:22] A[1:21] A[1:21] A[0:20] A[0:20] A[0:20] A23-A25 A[23:25] A[22:24] A[22:24] A[21:23] A[21:23] A[21:23] NCS0 CS CS CS CS CS CS NCS1/SDCS CS CS CS CS CS CS NCS2 CS CS CS CS CS CS NCS3/NANDCS CS CS CS CS CS CS NCS4/CFCS0 CS CS CS CS CS CS NCS5/CFCS1 CS CS CS CS CS CS NCS6 CS CS CS CS CS CS NCS7 CS CS CS CS CS CS NRD/CFOE OE OE OE OE OE OE WE WE NWR0/NWE WE (1) WE NWR1/NBS1 - WE NWR3/NBS3 - - Notes: 1. 2. 3. 4. 5. (1) WE NUB - (2) WE WE (2) WE(2) (3) BE1(5) NUB(4) BE3(5) NUB NWR1 enables upper byte writes. NWR0 enables lower byte writes. NWRx enables corresponding byte x writes. (x = 0, 1, 2 or 3) NBS0 and NBS1 enable respectively lower and upper bytes of the lower 16-bit word. NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word. BEx: Byte x Enable (x = 0, 1, 2 or 3) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 173 Table 21-4. EBI Pins and External Devices Connections Pins of the Interfaced Device SDRAM Controller Static Memory Controller CompactFlash True IDE Mode (EBI only) NAND Flash Signals: EBI_ SDRAM CompactFlash (EBI only) D0-D7 D0-D7 D0-D7 D0-D7 I/O0-I/O7 D8-D15 D8-D15 D8-15 D8-15 I/O8-I/O15 D16-D31 D16-D31 - - - A0/NBS0 DQM0 A0 A0 - A1/NWR2/NBS2 DQM2 A1 A1 - A2-A10 A[0:8] A[2:10] A[2:10] - A11 A9 - - - SDA10 A10 - - - - - - - A[11:12] - - - - - - - A16/BA0 BA0 - - - A17/BA1 BA1 - - - A18-A20 - - - - A21 - - - ALE A22 - REG REG CLE A23-A24 - - A12 A13-A14 A15 - - (1) A25 - NCS0 - - - - CS - - - NCS2 - - - - NCS3/NANDCS - - NCS1/SDCS NCS4/CFCS0 - CFRNW (1) CFRNW - CFCS0 (1) CFCS1 (1) - - CFCS0 (1) - CFCS1 (1) - NCS5/CFCS1 - NCS6 - - - - NCS7 - - - - NANDOE - - - RE NANDWE - - - WE NRD/CFOE - OE - - NWR0/NWE/CFWE - WE WE - NWR1/NBS1/CFIOR DQM1 IOR IOR - NWR3/NBS3/CFIOW DQM3 IOW IOW - - CE1 CS0 - CFCE1 174 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 21-4. EBI Pins and External Devices Connections (Continued) Pins of the Interfaced Device SDRAM Controller Static Memory Controller SDRAM CompactFlash (EBI only) CompactFlash True IDE Mode (EBI only) NAND Flash CFCE2 - CE2 CS1 - SDCK CLK - - - SDCKE CKE - - - RAS RAS - - - CAS CAS - - - SDWE WE - - - NWAIT Signals: EBI_ - WAIT WAIT - (2) - CD1 or CD2 CD1 or CD2 - (2) - - - CE Pxx Pxx (2) Pxx Notes: - - - RDY 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer between the EBI data bus and the CompactFlash slot. 2. Any PIO line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 175 21.4.2 Connection Examples Figure 21-2 shows an example of connections between the EBI and external devices. Figure 21-2. EBI Connections to Memory Devices EBI D0-D31 RAS CAS SDCK SDCKE SDWE A0/NBS0 NWR1/NBS1 A1/NWR2/NBS2 NWR3/NBS3 NRD/NOE NWR0/NWE D0-D7 2M x 8 SDRAM D8-D15 D0-D7 CS CLK CKE SDWE WE RAS CAS DQM NBS0 A0-A9, A11 A10 BA0 BA1 2M x 8 SDRAM D0-D7 CS CLK CKE SDWE WE RAS CAS DQM NBS1 A2-A11, A13 SDA10 A16/BA0 A17/BA1 A0-A9, A11 A10 BA0 BA1 A2-A11, A13 SDA10 A16/BA0 A17/BA1 SDA10 A2-A15 A16/BA0 A17/BA1 A18-A25 D16-D23 NCS0 NCS1/SDCS NCS2 NCS3 NCS4 NCS5 D0-D7 CS CLK CKE SDWE WE RAS CAS DQM 2M x 8 SDRAM A0-A9, A11 A10 BA0 BA1 D24-D31 2M x 8 SDRAM D0-D7 CS CLK CKE SDWE WE RAS CAS DQM NBS3 A2-A11, A13 SDA10 A16/BA0 A17/BA1 A0-A9, A11 A10 BA0 BA1 A2-A11, A13 SDA10 A16/BA0 A17/BA1 NBS2 128K x 8 SRAM D0-D7 NRD/NOE A0/NWR0/NBS0 21.5 D0-D7 A0-A16 128K x 8 SRAM A1-A17 D8-D15 D0-D7 CS CS OE WE OE WE NRD/NOE NWR1/NBS1 A0-A16 A1-A17 Product Dependencies 21.5.1 I/O Lines The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines. The programmer must first program the PIO controller to assign the External Bus Interface pins to their peripheral function. If I/O lines of the External Bus Interface are not used by the application, they can be used for other purposes by the PIO Controller. 176 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21.6 Functional Description The EBI transfers data between the internal AHB Bus (handled by the Bus Matrix) and the external memories or peripheral devices. It controls the waveforms and the parameters of the external address, data and control buses and is composed of the following elements: the Static Memory Controller (SMC) the SDRAM Controller (SDRAMC) the ECC Controller (ECC) a chip select assignment feature that assigns an AHB address space to the external devices a multiplex controller circuit that shares the pins between the different Memory Controllers programmable CompactFlash support logic programmable NAND Flash support logic 21.6.1 Bus Multiplexing The EBI offers a complete set of control signals that share the 32-bit data lines, the address lines of up to 26 bits and the control signals through a multiplex logic operating in function of the memory area requests. Multiplexing is specifically organized in order to guarantee the maintenance of the address and output control lines at a stable state while no external access is being performed. Multiplexing is also designed to respect the data float times defined in the Memory Controllers. Furthermore, refresh cycles of the SDRAM are executed independently by the SDRAM Controller without delaying the other external Memory Controller accesses. 21.6.2 Pull-up Control The EBI Chip Select Assignment Register (EBI_CSA) in Section 20.6 "Chip Configuration User Interface" permits enabling of on-chip pull-up resistors on the data bus lines not multiplexed with the PIO Controller lines. The pull-up resistors are enabled after reset. Setting the EBI_CSA.EBI_DBPUC bit disables the pull-up resistors on the lines D0-D15. Enabling the pull-up resistor on the lines D16-D31 can be performed by programming the appropriate PIO controller. 21.6.3 Static Memory Controller For information on the Static Memory Controller, refer to Section 22. "Static Memory Controller (SMC)". 21.6.4 SDRAM Controller For information on the SDRAM Controller, refer to Section 23. "SDRAM Controller (SDRAMC)". 21.6.5 ECC Controller For information on the ECC Controller, refer to Section 24. "Error Correction Code Controller (ECC)". 21.6.6 CompactFlash Support The External Bus Interface integrates circuitry that interfaces to CompactFlash devices. The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 and/or NCS5 address space. Programming the EBI_CS4A and/or EBI_CS5A bit of the EBI_CSA register to the appropriate value enables this logic. For details on this register, refer to Section 20. "SAM9XE Bus Matrix". Access to an external CompactFlash device is then made by accessing the address space reserved to NCS4 and/or NCS5 (i.e., between 0x5000 0000 and 0x5FFF FFFF for NCS4 and between 0x6000 0000 and 0x6FFF FFFF for NCS5). All CompactFlash modes (Attribute Memory, Common Memory, I/O and True IDE) are supported but the signals _IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode) are not handled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 177 21.6.6.1 I/O Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode Within the NCS4 and/or NCS5 address space, the current transfer address is used to distinguish I/O mode, common memory mode, attribute memory mode and True IDE mode. The different modes are accessed through a specific memory mapping as illustrated on Figure 21-3. A[23:21] bits of the transfer address are used to select the desired mode as described in Table 21-5. Figure 21-3. CompactFlash Memory Mapping True IDE Alternate Mode Space Offset 0x00E0 0000 True IDE Mode Space Offset 0x00C0 0000 CF Address Space I/O Mode Space Offset 0x0080 0000 Common Memory Mode Space Offset 0x0040 0000 Attribute Memory Mode Space Offset 0x0000 0000 Note: The A22 pin is used to drive the REG signal of the CompactFlash Device (except in True IDE mode). Table 21-5. CompactFlash Mode Selection A[23:21] Mode Base Address 000 Attribute Memory 010 Common Memory 100 I/O Mode 110 True IDE Mode 111 Alternate True IDE Mode 21.6.6.2 CFCE1 and CFCE2 Signals To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit data bus. The odd byte access on the D[7:0] bus is only possible when the SMC is configured to drive 8-bit memory devices on the corresponding NCS pin (NCS4 or NCS5). The DBW field in the SMC MODE Register corresponding to the NCS4 and/or NCS5 address space must be configured as shown in Table 21-6 to enable the required access type. NBS1 and NBS0 are the byte selection signals from SMC and are available when the SMC is set in Byte Select mode on the corresponding Chip Select. The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For details on these waveforms and timings, refer to Section 22. "Static Memory Controller (SMC)". 178 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 21-6. CFCE1 and CFCE2 Truth Table Mode CFCE2 CFCE1 DBW Comment SMC Access Mode NBS1 NBS0 16 bits Access to Even Byte on D[7:0] Byte Select NBS1 NBS0 16 bits 1 0 8 bits NBS1 NBS0 16 bits 1 0 8 bits Task File 1 0 8 bits Data Register 1 0 16 bits 0 1 Don't Care Access to Even Byte on D[7:0] 0 1 8 bits Access to Odd Byte on D[7:0] 1 1 - Attribute Memory Access to Even Byte on D[7:0] Access to Odd Byte on D[15:8] Common Memory Byte Select Access to Odd Byte on D[7:0] Access to Even Byte on D[7:0] Access to Odd Byte on D[15:8] I/O Mode Byte Select Access to Odd Byte on D[7:0] True IDE Mode Access to Even Byte on D[7:0] Access to Odd Byte on D[7:0] Access to Even Byte on D[7:0] Access to Odd Byte on D[15:8] Byte Select Alternate True IDE Mode Control Register Alternate Status Read Drive Address Standby Mode or Address Space is not assigned to CF - Don't Care - 21.6.6.3 Read/Write Signals In I/O mode and True IDE mode, the CompactFlash logic drives the read and write command signals of the SMC on CFIOR and CFIOW signals, while the CFOE and CFWE signals are deactivated. Likewise, in common memory mode and attribute memory mode, the SMC signals are driven on the CFOE and CFWE signals, while the CFIOR and CFIOW are deactivated. Figure 21-4 demonstrates a schematic representation of this logic. Attribute memory mode, common memory mode and I/O mode are supported by setting the address setup and hold time on the NCS4 (and/or NCS5) chip select to the appropriate values. Figure 21-4. CompactFlash Read/Write Control Signals External Bus Interface SMC CompactFlash Logic A23 1 1 0 1 0 0 1 1 CFOE CFWE A22 NRD_NOE NWR0_NWE 0 1 1 1 CFIOR CFIOW SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 179 Table 21-7. CompactFlash Mode Selection Mode Base Address CFOE CFWE CFIOR CFIOW NRD NWR0_NWE 1 1 I/O Mode 1 1 NRD NWR0_NWE True IDE Mode 0 1 NRD NWR0_NWE Attribute Memory Common Memory 21.6.6.4 Multiplexing of CompactFlash Signals on EBI Pins Table 21-8 and Table 21-9 illustrate the multiplexing of the CompactFlash logic signals with other EBI signals on the EBI pins. The EBI pins in Table 21-8 are strictly dedicated to the CompactFlash interface as soon as the EBI_CS4A and/or EBI_CS5A bit(s) in the EBI_CSA register is/are set. These pins must not be used to drive any other memory devices. The EBI pins in Table 21-9 remain shared between all memory areas when the corresponding CompactFlash interface is enabled (EBI_CS4A = 1 and/or EBI_CS5A = 1). Table 21-8. Dedicated CompactFlash Interface Multiplexing CompactFlash Signals Pins CS4A = 1 NCS4/CFCS0 CFCS0 NCS5/CFCS1 Table 21-9. CS5A = 1 EBI Signals CS4A = 0 CS5A = 0 NCS4 CFCS1 NCS5 Shared CompactFlash Interface Multiplexing Access to CompactFlash Device Access to Other EBI Devices Pins CompactFlash Signals EBI Signals NRD/CFOE CFOE NRD NWR0/NWE/CFWE CFWE NWR0/NWE NWR1/NBS1/CFIOR CFIOR NWR1/NBS1 NWR3/NBS3/CFIOW CFIOW NWR3/NBS3 A25/CFRNW CFRNW A25 180 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21.6.6.5 Application Example Figure 21-5 illustrates an example of a CompactFlash application. CFCS0 and CFRNW signals are not directly connected to the CompactFlash slot 0, but do control the direction and the output enable of the buffers between the EBI and the CompactFlash Device. The timing of the CFCS0 signal is identical to the NCS4 signal. Moreover, the CFRNW signal remains valid throughout the transfer, as does the address bus. The CompactFlash _WAIT signal is connected to the NWAIT input of the Static Memory Controller. For details on these waveforms and timings, refer to Section 22. "Static Memory Controller (SMC)". Figure 21-5. CompactFlash Application Example EBI CompactFlash Connector D[15:0] D[15:0] DIR /OE A25/CFRNW NCS4/CFCS0 _CD1 CD (PIO) _CD2 /OE A[10:0] A[10:0] A22/REG _REG NOE/CFOE _OE NWE/CFWE _WE NWR1/CFIOR _IORD NWR3/CFIOW _IOWR CFCE1 _CE1 CFCE2 _CE2 NWAIT _WAIT SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 181 21.6.7 NAND Flash Support External Bus Interface integrate circuitry that interfaces to NAND Flash devices. 21.6.7.1 External Bus Interface The NAND Flash logic is driven by the Static Memory Controller on the NCS3 address space. Programming the EBI_CS3A field in the EBI_CSA register to the appropriate value enables the NAND Flash logic. For details on this register, refer to Section 20. "SAM9XE Bus Matrix". Access to an external NAND Flash device is then made by accessing the address space reserved to NCS3 (i.e., between 0x4000 0000 and 0x4FFF FFFF). The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE and NANDWE signals when the NCS3 signal is active. NANDOE and NANDWE are invalidated as soon as the transfer address fails to lie in the NCS3 address space. See Figure 21-6 for more information. For details on the waveforms, refer to Section 22. "Static Memory Controller (SMC)". Figure 21-6. NAND Flash Signal Multiplexing on EBI Pins SMC NAND Flash Logic NCSx NRD_NOE NANDOE NANDWE NANDOE NANDWE NWR0_NWE 21.6.7.2 NAND Flash Signals The address latch enable and command latch enable signals on the NAND Flash device are driven by address bits A22 and A21 of the EBI address bus. The user should note that any bit on the EBI address bus can also be used for this purpose. The command, address or data words on the data bus of the NAND Flash device are distinguished by using their address within the NCSx address space. The chip enable (CE) signal of the device and the ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains asserted even when NCSx is not selected, preventing the device from returning to standby mode. 182 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 21-7. NAND Flash Application Example D[7:0] AD[7:0] A[22:21] ALE CLE NCSx/NANDCS Not Connected EBI NAND Flash NANDOE NOE NANDWE Note: NWE PIO CE PIO R/B The External Bus Interface is also able to support 16-bit devices. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 183 21.7 Implementation Examples The following hardware configurations are given for illustration only. The user should refer to the memory manufacturer web site to check device availability. 21.7.1 16-bit SDRAM Figure 21-8. Hardware Configuration - 16-bit SDRAM D[0..15] A[0..14] U1 (Not used A12) A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A13 SDA10 BA0 BA1 23 24 25 26 29 30 31 32 33 34 22 35 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 20 21 BA0 BA1 36 40 A12 N.C SDCKE 37 CKE SDA10 BA0 BA1 A14 SDCKE SDCK A0 CFIOR_NBS1_NWR1 CAS RAS SDWE SDCS_NCS1 SDCK 38 CLK 1%6 1%6 15 39 DQML DQMH CAS RAS 17 18 CAS RAS SDWE 16 19 WE CS DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 2 4 5 7 8 10 11 13 42 44 45 47 48 50 51 53 VDD VDD VDD VDDQ VDDQ VDDQ VDDQ 1 14 27 3 9 43 49 VSS VSS VSS VSSQ VSSQ VSSQ VSSQ 28 41 54 6 12 46 52 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 3V3 C1 C2 C3 C4 C5 C6 C7 100NF 100NF 100NF 100NF 100NF 100NF 100NF 21.7.1.1 Software Configuration - 16-bit SDRAM The following configuration has to be performed: Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip Select Assignment Register located in the bus matrix memory space. Initialize the SDRAM Controller depending on the SDRAM device and system bus frequency. The Data Bus Width is to be programmed to 16 bits. The SDRAM initialization sequence is described in Section 23.4.1 "SDRAM Device Initialization". 184 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21.7.2 32-bit SDRAM Figure 21-9. Hardware Configuration - 32-bit SDRAM D[0..31] A[0..14] (Not used A12) U1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A13 SDA10 BA0 BA1 SDA10 BA0 BA1 A14 SDCKE SDCK A0 CFIOR_NBS1_NWR1 CAS RAS SDWE 23 24 25 26 29 30 31 32 33 34 22 35 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 20 21 BA0 BA1 36 40 A12 N.C SDCKE 37 CKE SDCK 38 CLK 1%6 1%6 15 39 DQML DQMH CAS RAS 17 18 CAS RAS SDWE 16 19 WE CS U2 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 2 4 5 7 8 10 11 13 42 44 45 47 48 50 51 53 VDD VDD VDD VDDQ VDDQ VDDQ VDDQ 1 14 27 3 9 43 49 VSS VSS VSS VSSQ VSSQ VSSQ VSSQ D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 3V3 28 41 54 6 12 46 52 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 23 24 25 26 29 30 31 32 33 34 22 35 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 20 21 BA0 BA1 36 40 A12 N.C SDCKE 37 CKE SDA10 A13 BA0 BA1 A14 C1 C2 C3 C4 C5 C6 C7 100NF 100NF 100NF 100NF 100NF 100NF 100NF A1 CFIOW_NBS3_NWR3 SDCK 38 CLK 1%6 1%6 15 39 DQML DQMH CAS RAS 17 18 CAS RAS SDWE 16 19 WE CS DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 2 4 5 7 8 10 11 13 42 44 45 47 48 50 51 53 VDD VDD VDD VDDQ VDDQ VDDQ VDDQ 1 14 27 3 9 43 49 VSS VSS VSS VSSQ VSSQ VSSQ VSSQ 28 41 54 6 12 46 52 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 3V3 C8 C9 C10 C11 C12 C13 C14 100NF 100NF 100NF 100NF 100NF 100NF 100NF SDCS_NCS1 21.7.2.1 Software Configuration - 32-bit SDRAM The following configuration has to be performed: Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip Select Assignment Register located in the bus matrix memory space. Initialize the SDRAM Controller depending on the SDRAM device and system bus frequency. The Data Bus Width is to be programmed to 32 bits. The data lines D[16..31] are multiplexed with PIO lines and thus the dedicated PIOs must be programmed in peripheral mode in the PIO controller. The SDRAM initialization sequence is described in Section 23.4.1 "SDRAM Device Initialization". SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 185 21.7.3 8-bit NAND Flash Figure 21-10. Hardware Configuration - 8-bit NAND Flash D[0..7] U1 CLE ALE NANDOE NANDWE (ANY PIO) (ANY PIO) R1 3V3 R2 10K 16 17 8 18 9 CLE ALE RE WE CE 7 R/B 19 WP 1 2 3 4 5 6 10 11 14 15 20 21 22 23 24 25 26 N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C 10K I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 29 30 31 32 41 42 43 44 N.C N.C N.C N.C N.C N.C PRE N.C N.C N.C N.C N.C 48 47 46 45 40 39 38 35 34 33 28 27 VCC VCC 37 12 VSS VSS 36 13 D0 D1 D2 D3 D4 D5 D6 D7 3V3 C2 100NF C1 100NF 21.7.3.1 Software Configuration - 8-bit NAND Flash The following configuration has to be performed: 186 Assign the EBI CS3 to the NAND Flash by setting the bit EBI_CS3A in the EBI Chip Select Assignment Register located in the bus matrix memory space Reserve A21 / A22 for ALE / CLE functions. Address and Command Latches are controlled respectively by setting to 1 the address bit A21 and A22 during accesses. Configure a PIO line as an input to manage the Ready/Busy signal. Configure Static Memory Controller CS3 Setup, Pulse, Cycle and Mode accordingly to NAND Flash timings, the data bus width and the system bus frequency. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21.7.4 16-bit NAND Flash Figure 21-11. Hardware Configuration - 16-bit NAND Flash D[0..15] U1 CLE ALE NANDOE NANDWE (ANY PIO) (ANY PIO) R1 3V3 R2 10K 16 17 8 18 9 CLE ALE RE WE CE 7 R/B 19 WP 1 2 3 4 5 6 10 11 14 15 20 21 22 23 24 34 35 N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C N.C 10K I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15 26 28 30 32 40 42 44 46 27 29 31 33 41 43 45 47 N.C PRE N.C 39 38 36 VCC VCC 37 12 VSS VSS VSS 48 25 13 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 3V3 C2 100NF C1 100NF 21.7.4.1 Software Configuration - 16-bit NAND Flash The software configuration is the same as for an 8-bit NAND Flash except the data bus width programmed in the SMC MODE Register. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 187 21.7.5 NOR Flash on NCS0 Figure 21-12. Hardware Configuration - NOR Flash on NCS0 D[0..15] A[1..22] U1 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 NRST NWE 3V3 NCS0 NRD 25 24 23 22 21 20 19 18 8 7 6 5 4 3 2 1 48 17 16 15 10 9 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 12 11 14 13 26 28 RESET WE WP VPP CE OE DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 29 31 33 35 38 40 42 44 30 32 34 36 39 41 43 45 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 3V3 VCCQ 47 VCC 37 VSS VSS 46 27 C2 100NF C1 100NF 21.7.5.1 Software Configuration - NOR Flash on NCS0 The default configuration for the Static Memory Controller, byte select mode, 16-bit data bus, Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory at slow clock. For another configuration, configure the Static Memory Controller CS0 Setup, Pulse, Cycle and Mode depending on Flash timings and system bus frequency. 188 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21.7.6 Compact Flash Figure 21-13. Hardware Configuration - Compact Flash MEMORY & I/O MODE D[0..15] MN1A D15 D14 D13 D12 D11 D10 D9 D8 A2 A1 B2 B1 C2 C1 D2 D1 1B1 1B2 1B3 1B4 1B5 1B6 1B7 1B8 A3 A4 1DIR 1OE A5 A6 B5 B6 C5 C6 D5 D6 CF_D15 CF_D14 CF_D13 CF_D12 CF_D11 CF_D10 CF_D9 CF_D8 E5 E6 F5 F6 G5 G6 H5 H6 CF_D7 CF_D6 CF_D5 CF_D4 CF_D3 CF_D2 CF_D1 CF_D0 74ALVCH32245 MN1B D7 D6 D5 D4 D3 D2 D1 D0 A25/CFRNW 4 CFCSx (CFCS0 or CFCS1) 6 5 E2 E1 F2 F1 G2 G1 H2 H1 2B1 2B2 2B3 2B4 2B5 2B6 2B7 2B8 H3 H4 2DIR 2OE 2A1 2A2 2A3 2A4 2A5 2A6 2A7 2A8 3V3 R1 MN2A 47K SN74ALVC32 74ALVCH32245 MN2B SN74ALVC32 R2 47K CD2 1 3 (ANY PIO) CD1 2 &$5''(7(&7 CF_D15 CF_D14 CF_D13 CF_D12 CF_D11 CF_D10 CF_D9 CF_D8 CF_D7 CF_D6 CF_D5 CF_D4 CF_D3 CF_D2 CF_D1 CF_D0 31 30 29 28 27 49 48 47 6 5 4 3 2 23 22 21 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CD2 CD1 25 26 CD2# CD1# CF_A10 CF_A9 CF_A8 CF_A7 CF_A6 CF_A5 CF_A4 CF_A3 CF_A2 CF_A1 CF_A0 8 10 11 12 14 15 16 17 18 19 20 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 REG 44 REG# WE OE IOWR IORD 36 9 35 34 WE# OE# IOWR# IORD# MN1C A[0..10] A10 A9 A8 A7 A6 A5 A4 A3 J5 J6 K5 K6 L5 L6 M5 M6 J3 J4 3V3 3A1 3A2 3A3 3A4 3A5 3A6 3A7 3A8 3B1 3B2 3B3 3B4 3B5 3B6 3B7 3B8 J2 J1 K2 K1 L2 L1 M2 M1 CF_A10 CF_A9 CF_A8 CF_A7 CF_A6 CF_A5 CF_A4 CF_A3 CE2 CE1 3DIR 3OE 74ALVCH32245 MN1D A2 A1 A0 N5 N6 P5 P6 R5 R6 T6 T5 A22/REG CFWE CFOE CFIOW CFIOR T3 T4 4A1 4A2 4A3 4A4 4A5 4A6 4A7 4A8 3V3 J1 1A1 1A2 1A3 1A4 1A5 1A6 1A7 1A8 4B1 4B2 4B3 4B4 4B5 4B6 4B7 4B8 N2 N1 P2 P1 R2 R1 T1 T2 CF_A2 CF_A1 CF_A0 REG WE OE IOWR IORD VCC 38 VCC 13 GND GND 50 1 CSEL# 39 INPACK# 43 BVD2 BVD1 45 46 32 7 CE2# CE1# 24 WP WAIT# 42 WAIT# VS2# VS1# 40 33 RESET 41 RESET RDY/BSY 37 C1 100NF C2 100NF RDY/BSY N7E50-7516VY-20 4DIR 4OE 1 74ALVCH32245 2 CFCE1 5 10 4 CFCE2 CFRST 9 (ANY PIO) CFIRQ 11 13 (ANY PIO) MN3A SN74ALVC125 3 CE2 MN3B SN74ALVC125 6 CE1 MN3C SN74ALVC125 RESET 8 MN3D R3 SN74ALVC125 10K RDY/BSY 12 3V3 MN4 3V3 NWAIT 5 VCC 1 4 2 GND R4 10K WAIT# 3V3 3 SN74LVC1G125-Q1 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 189 21.7.6.1 Software Configuration - Compact Flash The following configuration has to be performed: 190 Assign the EBI CS4 and/or EBI_CS5 to the CompactFlash Slot 0 or/and Slot 1 by setting the bit EBI_CS4A or/and EBI_CS5A in the EBI Chip Select Assignment Register located in the bus matrix memory space. The address line A23 is to select I/O (A23 = 1) or Memory mode (A23 = 0) and the address line A22 for REG function. A23, CFRNW, CFS0, CFCS1, CFCE1 and CFCE2 signals are multiplexed with PIO lines and thus the dedicated PIOs must be programmed in peripheral mode in the PIO controller. Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and CARD DETECT functions respectively. Configure SMC CS4 and/or SMC_CS5 (for Slot 0 or 1) Setup, Pulse, Cycle and Mode according to Compact Flash timings and system bus frequency. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 21.7.7 Compact Flash True IDE Figure 21-14. Hardware Configuration - Compact Flash True IDE TRUE IDE MODE D[0..15] MN1A D15 D14 D13 D12 D11 D10 D9 D8 A2 A1 B2 B1 C2 C1 D2 D1 A3 A4 1B1 1B2 1B3 1B4 1B5 1B6 1B7 1B8 A5 A6 B5 B6 C5 C6 D5 D6 CF_D15 CF_D14 CF_D13 CF_D12 CF_D11 CF_D10 CF_D9 CF_D8 E5 E6 F5 F6 G5 G6 H5 H6 CF_D7 CF_D6 CF_D5 CF_D4 CF_D3 CF_D2 CF_D1 CF_D0 1DIR 1OE 74ALVCH32245 MN1B D7 D6 D5 D4 D3 D2 D1 D0 A25/CFRNW CFCSx (CFCS0 or CFCS1) 4 6 5 E2 E1 F2 F1 G2 G1 H2 H1 2B1 2B2 2B3 2B4 2B5 2B6 2B7 2B8 H3 H4 2DIR 2OE 2A1 2A2 2A3 2A4 2A5 2A6 2A7 2A8 3V3 R1 MN2A 47K SN74ALVC32 74ALVCH32245 MN2B SN74ALVC32 CD2 1 CD1 2 &$5''(7(&7 J5 J6 K5 K6 L5 L6 M5 M6 3A1 3A2 3A3 3A4 3A5 3A6 3A7 3A8 J3 J4 3DIR 3OE 3V3 3B1 3B2 3B3 3B4 3B5 3B6 3B7 3B8 J2 J1 K2 K1 L2 L1 M2 M1 CF_A10 CF_A9 CF_A8 CF_A7 CF_A6 CF_A5 CF_A4 CF_A3 N5 N6 P5 P6 R5 R6 T6 T5 A22/REG CFWE CFOE CFIOW CFIOR T3 T4 4A1 4A2 4A3 4A4 4A5 4A6 4A7 4A8 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CD2 CD1 25 26 CD2# CD1# CF_A2 CF_A1 CF_A0 8 10 11 12 14 15 16 17 18 19 20 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 44 REG# 36 9 35 34 WE# ATA SEL# IOWR# IORD# IOWR IORD CE2 CE1 74ALVCH32245 MN1D A2 A1 A0 31 30 29 28 27 49 48 47 6 5 4 3 2 23 22 21 3V3 MN1C A10 A9 A8 A7 A6 A5 A4 A3 CF_D15 CF_D14 CF_D13 CF_D12 CF_D11 CF_D10 CF_D9 CF_D8 CF_D7 CF_D6 CF_D5 CF_D4 CF_D3 CF_D2 CF_D1 CF_D0 R2 47K 3 (ANY PIO) A[0..10] 3V3 J1 1A1 1A2 1A3 1A4 1A5 1A6 1A7 1A8 4B1 4B2 4B3 4B4 4B5 4B6 4B7 4B8 N2 N1 P2 P1 R2 R1 T1 T2 CF_A2 CF_A1 CF_A0 REG WE OE IOWR IORD 32 7 CS1# CS0# 24 IOIS16# IORDY 42 IORDY RESET# 41 VCC 38 VCC 13 GND GND 50 1 CSEL# 39 INPACK# 43 DASP# PDIAG# 45 46 VS2# VS1# 40 33 INTRQ 37 RESET# C1 100NF C2 100NF INTRQ N7E50-7516VY-20 4DIR 4OE 1 74ALVCH32245 2 CFCE1 5 10 4 CFCE2 CFRST 9 (ANY PIO) CFIRQ 11 13 (ANY PIO) MN3A SN74ALVC125 3 CE2 MN3B SN74ALVC125 6 CE1 MN3C SN74ALVC125 RESET# 8 MN3D SN74ALVC125 INTRQ 12 R3 10K 3V3 MN4 3V3 NWAIT 5 VCC 1 4 2 GND R4 10K IORDY 3V3 3 SN74LVC1G125-Q1 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 191 21.7.7.1 Software Configuration - Compact Flash True IDE The following configuration has to be performed: 192 Assign the EBI CS4 and/or EBI_CS5 to the CompactFlash Slot 0 or/and Slot 1 by setting the bit EBI_CS4A or/and EBI_CS5A in the EBI Chip Select Assignment Register located in the bus matrix memory space. The address line A21 is to select Alternate True IDE (A21 = 1) or True IDE (A21 = 0) modes. CFRNW, CFS0, CFCS1, CFCE1 and CFCE2 signals are multiplexed with PIO lines and thus the dedicated PIOs must be programmed in peripheral mode in the PIO controller. Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and CARD DETECT functions respectively. Configure SMC CS4 and/or SMC_CS5 (for Slot 0 or 1) Setup, Pulse, Cycle and Mode according to Compact Flash timings and system bus frequency. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22. Static Memory Controller (SMC) 22.1 Description The Static Memory Controller (SMC) generates the signals that control the access to the external memory devices or peripheral devices. It has 8 Chip Selects and a 26-bit address bus. The 32-bit data bus can be configured to interface with 8-, 16-, or 32-bit external devices. Separate read and write control signals allow for direct memory and peripheral interfacing. Read and write signal waveforms are fully parametrizable. The SMC can manage wait requests from external devices to extend the current access. The SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC supports asynchronous burst read in page mode access for page size up to 32 bytes. 22.2 I/O Lines Description Table 22-1. I/O Line Description Name Description Type Active Level NCS[7:0] Static Memory Controller Chip Select Lines Output Low NRD Read Signal Output Low NWR0/NWE Write 0/Write Enable Signal Output Low A0/NBS0 Address Bit 0/Byte 0 Select Signal Output Low NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low A1/NWR2/NBS2 Address Bit 1/Write 2/Byte 2 Select Signal Output Low NWR3/NBS3 Write 3/Byte 3 Select Signal Output Low A[25:2] Address Bus Output D[31:0] Data Bus NWAIT External Wait Signal 22.3 I/O Input Low Multiplexed Signals Table 22-2. Static Memory Controller (SMC) Multiplexed Signals Multiplexed Signals Related Function NWR0 NWE Byte-write or byte-select access, see "Byte Write or Byte Select Access" on page 195 A0 NBS0 8-bit or 16-/32-bit data bus, see "Data Bus Width" on page 195 NWR1 NBS1 Byte-write or byte-select access see "Byte Write or Byte Select Access" on page 195 A1 NWR2 NWR3 NBS3 NBS2 8-/16-bit or 32-bit data bus, see "Data Bus Width" on page 195. Byte-write or byte-select access, see "Byte Write or Byte Select Access" on page 195 Byte-write or byte-select access see "Byte Write or Byte Select Access" on page 195 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 193 22.4 Application Example 22.4.1 Hardware Interface Figure 22-1. SMC Connections to Static Memory Devices D0-D31 A0/NBS0 NWR0/NWE NWR1/NBS1 A1/NWR2/NBS2 NWR3/NBS3 D0 - D7 128K x 8 SRAM D8-D15 D0 - D7 CS NWR0/NWE A2 - A25 A2 - A18 A0 - A16 NRD OE NWR1/NBS1 WE 128K x 8 SRAM D16 - D23 D24-D31 D0 - D7 A0 - A16 NRD Static Memory Controller 22.5 A2 - A18 OE WE 128K x 8 SRAM D0-D7 CS CS A1/NWR2/NBS2 D0-D7 CS A0 - A16 NRD NCS0 NCS1 NCS2 NCS3 NCS4 NCS5 NCS6 NCS7 128K x 8 SRAM A2 - A18 A2 - A18 A0 - A16 NRD OE WE OE NWR3/NBS3 WE Product Dependencies 22.5.1 I/O Lines The pins used for interfacing the Static Memory Controller may be multiplexed with the PIO lines. The programmer must first program the PIO controller to assign the Static Memory Controller pins to their peripheral function. If I/O Lines of the SMC are not used by the application, they can be used for other purposes by the PIO Controller. 194 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22.6 External Memory Mapping The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address up to 64 MB of memory. If the physical memory device connected on one chip select is smaller than 64 MB, it wraps around and appears to be repeated within this space. The SMC correctly handles any valid access to the memory device within the page (see Figure 22-2). A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory, A[25:2] is used for 32-bit memory. Figure 22-2. Memory Connections for Eight External Devices NCS[0] - NCS[7] NCS7 NRD SMC NCS6 NWE NCS5 A[25:0] NCS4 D[31:0] NCS3 NCS2 NCS1 NCS0 Memory Enable Memory Enable Memory Enable Memory Enable Memory Enable Memory Enable Memory Enable Memory Enable Output Enable Write Enable A[25:0] 8 or 16 or 32 22.7 D[31:0] or D[15:0] or D[7:0] Connection to External Devices 22.7.1 Data Bus Width A data bus width of 8, 16, or 32 bits can be selected for each chip select. This option is controlled by the field DBW in SMC_MODE (Mode Register) for the corresponding chip select. Figure 22-3 shows how to connect a 512K x 8-bit memory on NCS2. Figure 22-4 shows how to connect a 512K x 16-bit memory on NCS2. Figure 22-5 shows two 16-bit memories connected as a single 32-bit memory 22.7.2 Byte Write or Byte Select Access Each chip select with a 16-bit or 32-bit data bus can operate with one of two different types of write access: byte write or byte select access. This is controlled by the BAT field of the SMC_MODE register for the corresponding chip select. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 195 Figure 22-3. Memory Connection for an 8-bit Data Bus D[7:0] D[7:0] A[18:2] A[18:2] SMC A0 A0 A1 A1 NWE Write Enable NRD Output Enable NCS[2] Figure 22-4. Memory Connection for a 16-bit Data Bus D[15:0] D[15:0] A[19:2] A[18:1] A1 SMC NBS0 Low Byte Enable High Byte Enable NWE Write Enable NRD Output Enable Memory Enable Memory Connection for a 32-bit Data Bus D[31:16] SMC SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 D[31:16] D[15:0] D[15:0] A[20:2] A[18:0] NBS0 Byte 0 Enable NBS1 Byte 1 Enable NBS2 Byte 2 Enable NBS3 Byte 3 Enable NWE Write Enable NRD Output Enable NCS[2] 196 A[0] NBS1 NCS[2] Figure 22-5. Memory Enable Memory Enable 22.7.2.1 Byte Write Access Byte write access supports one byte write signal per byte of the data bus and a single read signal. Note that the SMC does not allow boot in Byte Write Access mode. For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byte0 (lower byte) and byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided. Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory. For 32-bit devices: NWR0, NWR1, NWR2 and NWR3, are the write signals of byte0 (lower byte), byte1, byte2 and byte 3 (upper byte) respectively. One single read signal (NRD) is provided. Byte Write Access is used to connect 4 x 8-bit devices as a 32-bit memory. Byte Write option is illustrated on Figure 22-6. 22.7.2.2 Byte Select Access In this mode, read/write operations can be enabled/disabled at a byte level. One byte-select line per byte of the data bus is provided. One NRD and one NWE signal control read and write. For 16-bit devices: the SMC provides NBS0 and NBS1 selection signals for respectively byte0 (lower byte) and byte1 (upper byte) of a 16-bit bus. Byte Select Access is used to connect one 16-bit device. For 32-bit devices: NBS0, NBS1, NBS2 and NBS3, are the selection signals of byte0 (lower byte), byte1, byte2 and byte 3 (upper byte) respectively. Byte Select Access is used to connect two 16-bit devices. Figure 22-7 shows how to connect two 16-bit devices on a 32-bit data bus in Byte Select Access mode, on NCS3 (BAT = Byte Select Access). Figure 22-6. Connection of 2 x 8-bit Devices on a 16-bit Bus: Byte Write Option D[7:0] D[7:0] D[15:8] A[24:2] SMC A1 NWR0 A[23:1] A[0] Write Enable NWR1 NRD NCS[3] Read Enable Memory Enable D[15:8] A[23:1] A[0] Write Enable Read Enable Memory Enable SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 197 22.7.2.3 Signal Multiplexing Depending on the BAT, only the write signals or the byte select signals are used. To save IOs at the external bus interface, control signals at the SMC interface are multiplexed. Table 22-3 shows signal multiplexing depending on the data bus width and the byte access type. For 32-bit devices, bits A0 and A1 are unused. For 16-bit devices, bit A0 of address is unused. When Byte Select Option is selected, NWR1 to NWR3 are unused. When Byte Write option is selected, NBS0 to NBS3 are unused. Figure 22-7. Connection of 2x16-bit Data Bus on a 32-bit Data Bus (Byte Select Option) D[15:0] D[15:0] D[31:16] A[25:2] SMC A[23:0] NWE Write Enable NBS0 Low Byte Enable NBS1 High Byte Enable NBS2 NBS3 Read Enable NRD Memory Enable NCS[3] D[31:16] A[23:0] Write Enable Low Byte Enable High Byte Enable Read Enable Memory Enable Table 22-3. SMC Multiplexed Signal Translation Signal Name Device Type 32-bit Bus 16-bit Bus 8-bit Bus 1 x 32-bit 2 x 16-bit 4 x 8-bit 1 x 16-bit 2 x 8-bit Byte Select Byte Select Byte Write Byte Select Byte Write NBS0_A0 NBS0 NBS0 NWE_NWR0 NWE NWE NWR0 NWE NWR0 NBS1_NWR1 NBS1 NBS1 NWR1 NBS1 NWR1 NBS2_NWR2_A1 NBS2 NBS2 NWR2 A1 A1 NBS3_NWR3 NBS3 NBS3 NWR3 Byte Access Type (BAT) 198 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 NBS0 1 x 8-bit A0 NWE A1 22.8 Standard Read and Write Protocols In the following sections, the byte access type is not considered. Byte select lines (NBS0 to NBS3) always have the same timing as the A address bus. NWE represents either the NWE signal in byte select access type or one of the byte write lines (NWR0 to NWR3) in byte write access type. NWR0 to NWR3 have the same timings and protocol as NWE. In the same way, NCS represents one of the NCS[0..7] chip select lines. 22.8.1 Read Waveforms The read cycle is shown on Figure 22-8. The read cycle starts with the address setting on the memory address bus, i.e.: {A[25:2], A1, A0} for 8-bit devices {A[25:2], A1} for 16-bit devices A[25:2] for 32-bit devices. Figure 22-8. Standard Read Cycle MCK A[25:2] NBS0,NBS1, NBS2,NBS3, A0, A1 NRD NCS D[31:0] NRD_SETUP NCS_RD_SETUP NRD_PULSE NCS_RD_PULSE NRD_HOLD NCS_RD_HOLD NRD_CYCLE 22.8.1.1 NRD Waveform The NRD signal is characterized by a setup timing, a pulse width and a hold timing. 1. NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD falling edge; 2. NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD rising edge; 3. NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD rising edge. 22.8.1.2 NCS Waveform Similarly, the NCS signal can be divided into a setup time, pulse length and hold time: 1. NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before the NCS falling edge. 2. NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and NCS rising edge; 3. NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the NCS rising edge. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 199 22.8.1.3 Read Cycle The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where address is set on the address bus to the point where address may change. The total read cycle time is equal to: NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD = NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD All NRD and NCS timings are defined separately for each chip select as an integer number of Master Clock cycles. To ensure that the NRD and NCS timings are coherent, user must define the total read cycle instead of the hold timing. NRD_CYCLE implicitly defines the NRD hold time and NCS hold time as: NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE 22.8.1.4 Null Delay Setup and Hold If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain active continuously in case of consecutive read cycles in the same memory (see Figure 22-9). Figure 22-9. No Setup, No Hold On NRD and NCS Read Signals MCK A[25:2] NBS0,NBS1, NBS2,NBS3, A0, A1 NRD NCS D[31:0] NRD_PULSE NCS_RD_PULSE NRD_CYCLE NRD_PULSE NCS_RD_PULSE NRD_CYCLE NRD_PULSE NCS_RD_PULSE NRD_CYCLE 22.8.1.5 Null Pulse Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable behavior. 200 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22.8.2 Read Mode As NCS and NRD waveforms are defined independently of one other, the SMC needs to know when the read data is available on the data bus. The SMC does not compare NCS and NRD timings to know which signal rises first. The READ_MODE parameter in the SMC_MODE register of the corresponding chip select indicates which signal of NRD and NCS controls the read operation. 22.8.2.1 Read is Controlled by NRD (READ_MODE = 1): Figure 22-10 shows the waveforms of a read operation of a typical asynchronous RAM. The read data is available tPACC after the falling edge of NRD, and turns to `Z' after the rising edge of NRD. In this case, the READ_MODE must be set to 1 (read is controlled by NRD), to indicate that data is available with the rising edge of NRD. The SMC samples the read data internally on the rising edge of Master Clock that generates the rising edge of NRD, whatever the programmed waveform of NCS may be. Figure 22-10. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD MCK A[25:2] NBS0,NBS1, NBS2,NBS3, A0, A1 NRD NCS tPACC D[31:0] Data Sampling SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 201 22.8.2.2 Read is Controlled by NCS (READ_MODE = 0) Figure 22-11 shows the typical read cycle of an LCD module. The read data is valid tPACC after the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data must be sampled when NCS is raised. In that case, the READ_MODE must be set to 0 (read is controlled by NCS): the SMC internally samples the data on the rising edge of Master Clock that generates the rising edge of NCS, whatever the programmed waveform of NRD may be. Figure 22-11. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS MCK A[25:2] NBS0,NBS1, NBS2,NBS3, A0, A1 NRD NCS tPACC D[31:0] Data Sampling 202 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22.8.3 Write Waveforms The write protocol is similar to the read protocol. It is depicted in Figure 22-12. The write cycle starts with the address setting on the memory address bus. 22.8.3.1 NWE Waveforms The NWE signal is characterized by a setup timing, a pulse width and a hold timing. 1. NWE_SETUP: the NWE setup time is defined as the setup of address and data before the NWE falling edge; 2. NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE rising edge; 3. NWE_HOLD: The NWE hold time is defined as the hold time of address and data after the NWE rising edge. The NWE waveforms apply to all byte-write lines in Byte Write access mode: NWR0 to NWR3. 22.8.3.2 NCS Waveforms The NCS signal waveforms in write operation are not the same that those applied in read operations, but are separately defined: 1. NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before the NCS falling edge. 2. NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and NCS rising edge; 3. NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the NCS rising edge. Figure 22-12. Write Cycle MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 NWE NCS NWE_SETUP NCS_WR_SETUP NWE_PULSE NCS_WR_PULSE NWE_HOLD NCS_WR_HOLD NWE_CYCLE 22.8.3.3 Write Cycle The write_cycle time is defined as the total duration of the write cycle, that is, from the time where address is set on the address bus to the point where address may change. The total write cycle time is equal to: NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD = NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 203 All NWE and NCS (write) timings are defined separately for each chip select as an integer number of Master Clock cycles. To ensure that the NWE and NCS timings are coherent, the user must define the total write cycle instead of the hold timing. This implicitly defines the NWE hold time and NCS (write) hold times as: NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE 22.8.3.4 Null Delay Setup and Hold If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active continuously in case of consecutive write cycles in the same memory (see Figure 22-13). However, for devices that perform write operations on the rising edge of NWE or NCS, such as SRAM, either a setup or a hold must be programmed. Figure 22-13. Null Setup and Hold Values of NCS and NWE in Write Cycle MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 NWE, NWR0, NWR1, NWR2, NWR3 NCS D[31:0] NWE_PULSE NWE_PULSE NWE_PULSE NCS_WR_PULSE NCS_WR_PULSE NCS_WR_PULSE NWE_CYCLE NWE_CYCLE NWE_CYCLE 22.8.3.5 Null Pulse Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable behavior. 22.8.4 Write Mode The WRITE_MODE parameter in the SMC_MODE register of the corresponding chip select indicates which signal controls the write operation. 204 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22.8.4.1 Write is Controlled by NWE (WRITE_MODE = 1): Figure 22-14 shows the waveforms of a write operation with WRITE_MODE set to 1. The data is put on the bus during the pulse and hold steps of the NWE signal. The internal data buffers are turned out after the NWE_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NCS. Figure 22-14. WRITE_MODE = 1. The write operation is controlled by NWE MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 NWE, NWR0, NWR1, NWR2, NWR3 NCS D[31:0] 22.8.4.2 Write is Controlled by NCS (WRITE_MODE = 0) Figure 22-15 shows the waveforms of a write operation with WRITE_MODE set to 0. The data is put on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are turned out after the NCS_WR_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NWE. Figure 22-15. WRITE_MODE = 0. The write operation is controlled by NCS MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 NWE, NWR0, NWR1, NWR2, NWR3 NCS D[31:0] SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 205 22.8.5 Coding Timing Parameters All timing parameters are defined for one chip select and are grouped together in one SMC_REGISTER according to their type. The SMC_SETUP register groups the definition of all setup parameters: NRD_SETUP, NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP The SMC_PULSE register groups the definition of all pulse parameters: NRD_PULSE, NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE The SMC_CYCLE register groups the definition of all cycle parameters: NRD_CYCLE, NWE_CYCLE Table 22-4 shows how the timing parameters are coded and their permitted range. Table 22-4. Coding and Range of Timing Parameters Permitted Range Coded Value Number of Bits Effective Value Coded Value Effective Value setup [5:0] 6 128 x setup[5] + setup[4:0] 0 31 0 128+31 pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0 63 0 256+63 cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0 127 0 512+127 0 256+127 0 768+127 22.8.6 Reset Values of Timing Parameters Table 22-8, "Register Mapping," gives the default value of timing parameters at reset. 22.8.7 Usage Restriction The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpredictable behavior of the SMC. For read operations: Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the memory interface because of the propagation delay of theses signals through external logic and pads. If positive setup and hold values must be verified, then it is strictly recommended to program non-null values so as to cover possible skews between address, NCS and NRD signals. For write operations: If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address, byte select lines, and NCS signal after the rising edge of NWE. This is true for WRITE_MODE = 1 only. See "Early Read Wait State" on page 207. For read and write operations: a null value for pulse parameters is forbidden and may lead to unpredictable behavior. In read and write cycles, the setup and hold time parameters are defined in reference to the address bus. For external devices that require setup and hold time between NCS and NRD signals (read), or between NCS and NWE signals (write), these setup and hold times must be converted into setup and hold times in reference to the address bus. 206 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22.9 Automatic Wait States Under certain circumstances, the SMC automatically inserts idle cycles between accesses to avoid bus contention or operation conflict. 22.9.1 Chip Select Wait States The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle cycle ensures that there is no bus contention between the de-activation of one device and the activation of the next one. During chip select wait state, all control lines are turned inactive: NBS0 to NBS3, NWR0 to NWR3, NCS[0..7], NRD lines are all set to 1. Figure 22-16 illustrates a chip select wait state between access on Chip Select 0 and Chip Select 2. Figure 22-16. Chip Select Wait State between a Read Access on NCS0 and a Write Access on NCS2 MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 NRD NWE NCS0 NCS2 NRD_CYCLE NWE_CYCLE D[31:0] Read to Write Chip Select Wait State Wait State 22.9.2 Early Read Wait State In some cases, the SMC inserts a wait state cycle between a write access and a read access to allow time for the write cycle to end before the subsequent read cycle begins. This wait state is not generated in addition to a chip select wait state. The early read cycle thus only occurs between a write and read access to the same memory device (same chip select). An early read wait state is automatically inserted if at least one of the following conditions is valid: if the write controlling signal has no hold time and the read controlling signal has no setup time (Figure 2217). in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS signal and the NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure 22-18). The write operation must end with a NCS rising edge. Without an Early Read Wait State, the write operation could not complete properly. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 207 in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD = 0), the feedback of the write control signal is used to control address, data, chip select and byte select lines. If the external write control signal is not inactivated as expected due to load capacitances, an Early Read Wait State is inserted and address, data and control signals are maintained one more cycle. See Figure 22-19. Figure 22-17. Early Read Wait State: Write with No Hold Followed by Read with No Setup MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 NWE NRD no hold no setup D[31:0] write cycle Early Read wait state read cycle Figure 22-18. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read with No NCS Setup MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 NCS NRD no hold no setup D[31:0] write cycle (WRITE_MODE = 0) 208 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Early Read wait state read cycle (READ_MODE = 0 or READ_MODE = 1) Figure 22-19. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with one Set-up Cycle MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 internal write controlling signal external write controlling signal (NWE) no hold read setup = 1 NRD D[31:0] write cycle (WRITE_MODE = 1) Early Read wait state read cycle (READ_MODE = 0 or READ_MODE = 1) 22.9.3 Reload User Configuration Wait State The user may change any of the configuration parameters by writing the SMC user interface. When detecting that a new user configuration has been written in the user interface, the SMC inserts a wait state before starting the next access. The so called "Reload User Configuration Wait State" is used by the SMC to load the new set of parameters to apply to next accesses. The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If accesses before and after re-programming the user interface are made to different devices (Chip Selects), then one single Chip Select Wait State is applied. On the other hand, if accesses before and after writing the user interface are made to the same device, a Reload Configuration Wait State is inserted, even if the change does not concern the current Chip Select. 22.9.3.1 User Procedure To insert a Reload Configuration Wait State, the SMC detects a write access to any SMC_MODE register of the user interface. If the user only modifies timing registers (SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in the user interface, he must validate the modification by writing the SMC_MODE, even if no change was made on the mode parameters. The user must not change the configuration parameters of an SMC Chip Select (Setup, Pulse, Cycle, Mode) if accesses are performed on this CS during the modification. Any change of the Chip Select parameters, while fetching the code from a memory connected on this CS, may lead to unpredictable behavior. The instructions used to modify the parameters of an SMC Chip Select can be executed from the internal RAM or from a memory connected to another CS. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 209 22.9.3.2 Slow Clock Mode Transition A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or exited, after the end of the current transfer (see "Slow Clock Mode" on page 220). 22.9.4 Read to Write Wait State Due to an internal mechanism, a wait cycle is always inserted between consecutive read and write SMC accesses. This wait cycle is referred to as a read to write wait state in this document. This wait cycle is applied in addition to chip select and reload user configuration wait states when they are to be inserted. See Figure 22-16 on page 207. 22.10 Data Float Wait States Some memory devices are slow to release the external bus. For such devices, it is necessary to add wait states (data float wait states) after a read access: before starting a read access to a different external memory before starting a write access to the same device or to a different external one. The Data Float Output Time (tDF) for each external memory device is programmed in the TDF_CYCLES field of the SMC_MODE register for the corresponding chip select. The value of TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the external device releases the bus, and represents the time allowed for the data output to go to high impedance after the memory is disabled. Data float wait states do not delay internal memory accesses. Hence, a single access to an external memory with long tDF will not slow down the execution of a program from internal memory. The data float wait states management depends on the READ_MODE and the TDF_MODE fields of the SMC_MODE register for the corresponding chip select. 22.10.1 READ_MODE Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turning off the tri-state buffers of the external memory device. The Data Float Period then begins after the rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles. When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives the number of MCK cycles during which the data bus remains busy after the rising edge of NCS. Figure 22-20 illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1), assuming a data float period of 2 cycles (TDF_CYCLES = 2). Figure 22-21 shows the read operation when controlled by NCS (READ_MODE = 0) and the TDF_CYCLES parameter equals 3. 210 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 22-20. TDF Period in NRD Controlled Read Access (TDF = 2) MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 NRD NCS tpacc D[31:0] TDF = 2 clock cycles NRD controlled read operation Figure 22-21. TDF Period in NCS Controlled Read Operation (TDF = 3) MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 NRD NCS tpacc D[31:0] TDF = 3 clock cycles NCS controlled read operation SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 211 22.10.2 TDF Optimization Enabled (TDF_MODE = 1) When the TDF_MODE of the SMC_MODE register is set to 1 (TDF optimization is enabled), the SMC takes advantage of the setup period of the next access to optimize the number of wait states cycle to insert. Figure 22-22 shows a read access controlled by NRD, followed by a write access controlled by NWE, on Chip Select 0. Chip Select 0 has been programmed with: NRD_HOLD = 4; READ_MODE = 1 (NRD controlled) NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled) TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled). Figure 22-22. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins MCK A[25:2] NRD NRD_HOLD= 4 NWE NWE_SETUP= 3 NCS0 TDF_CYCLES = 6 D[31:0] read access on NCS0 (NRD controlled) Read to Write Wait State write access on NCS0 (NWE controlled) 22.10.3 TDF Optimization Disabled (TDF_MODE = 0) When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that the data float period is ended when the second access begins. If the hold period of the read1 controlling signal overlaps the data float period, no additional tdf wait states will be inserted. Figure 22-23, Figure 22-24 and Figure 22-25 illustrate the cases: read access followed by a read access on another chip select, read access followed by a write access on another chip select, read access followed by a write access on the same chip select, with no TDF optimization. 212 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 22-23. TDF Optimization Disabled (TDF Mode = 0). TDF wait states between 2 read accesses on different chip selects MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 read1 controlling signal (NRD) read1 hold = 1 read2 controlling signal (NRD) read2 setup = 1 TDF_CYCLES = 6 D[31:0] 5 TDF WAIT STATES read 2 cycle TDF_MODE = 0 (optimization disabled) read1 cycle TDF_CYCLES = 6 Chip Select Wait State Figure 22-24. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 read1 controlling signal (NRD) read1 hold = 1 write2 controlling signal (NWE) write2 setup = 1 TDF_CYCLES = 4 D[31:0] 2 TDF WAIT STATES read1 cycle TDF_CYCLES = 4 Read to Write Chip Select Wait State Wait State write2 cycle TDF_MODE = 0 (optimization disabled) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 213 Figure 22-25. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0, A1 read1 controlling signal (NRD) write2 setup = 1 read1 hold = 1 write2 controlling signal (NWE) TDF_CYCLES = 5 D[31:0] 4 TDF WAIT STATES read1 cycle TDF_CYCLES = 5 Read to Write Wait State write2 cycle TDF_MODE = 0 (optimization disabled) 22.11 External Wait Any access can be extended by an external device using the NWAIT input signal of the SMC. The EXNW_MODE field of the SMC_MODE register on the corresponding chip select must be set to either to "10" (frozen mode) or "11" (ready mode). When the EXNW_MODE is set to "00" (disabled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT signal delays the read or write operation in regards to the read or write controlling signal, depending on the read and write modes of the corresponding chip select. 22.11.1 Restriction When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be used in Page Mode ("Asynchronous Page Mode" on page 222), or in Slow Clock Mode ("Slow Clock Mode" on page 220). The NWAIT signal is assumed to be a response of the external device to the read/write request of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write controlling signal. The assertion of the NWAIT signal outside the expected period has no impact on SMC behavior. 214 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22.11.2 Frozen Mode When the external device asserts the NWAIT signal (active low), and after internal synchronization of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC completes the access, resuming the access from the point where it was stopped. See Figure 22-26. This mode must be selected when the external device uses the NWAIT signal to delay the access and to freeze the SMC. The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure 22-27. Figure 22-26. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10) MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 FROZEN STATE 4 3 2 1 1 1 1 0 3 2 2 2 2 1 NWE 6 5 4 0 NCS D[31:0] NWAIT internally synchronized NWAIT signal Write cycle EXNW_MODE = 10 (Frozen) WRITE_MODE = 1 (NWE_controlled) NWE_PULSE = 5 NCS_WR_PULSE = 7 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 215 Figure 22-27. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10) MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 NCS FROZEN STATE 4 1 3 2 2 2 1 0 2 1 0 2 1 0 0 NRD 5 5 5 4 3 NWAIT internally synchronized NWAIT signal Read cycle EXNW_MODE = 10 (Frozen) READ_MODE = 0 (NCS_controlled) NRD_PULSE = 2, NRD_HOLD = 6 NCS_RD_PULSE =5, NCS_RD_HOLD =3 216 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Assertion is ignored 22.11.3 Ready Mode In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins the access by down counting the setup and pulse counters of the read/write controlling signal. In the last cycle of the pulse phase, the resynchronized NWAIT signal is examined. If asserted, the SMC suspends the access as shown in Figure 22-28 and Figure 22-29. After deassertion, the access is completed: the hold step of the access is performed. This mode must be selected when the external device uses deassertion of the NWAIT signal to indicate its ability to complete the read or write operation. If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the pulse of the controlling read/write signal, it has no impact on the access length as shown in Figure 22-29. Figure 22-28. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11) MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 Wait STATE 4 3 2 1 0 0 0 3 2 1 1 1 NWE 6 5 4 0 NCS D[31:0] NWAIT internally synchronized NWAIT signal Write cycle EXNW_MODE = 11 (Ready mode) WRITE_MODE = 1 (NWE_controlled) NWE_PULSE = 5 NCS_WR_PULSE = 7 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 217 Figure 22-29. NWAIT Assertion in Read Access: Ready Mode (EXNW_MODE = 11) MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 Wait STATE 6 5 4 3 2 1 0 0 6 5 4 3 2 1 1 NCS NRD 0 NWAIT internally synchronized NWAIT signal Read cycle EXNW_MODE = 11(Ready mode) READ_MODE = 0 (NCS_controlled) Assertion is ignored Assertion is ignored NRD_PULSE = 7 NCS_RD_PULSE =7 218 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22.11.4 NWAIT Latency and Read/Write Timings There may be a latency between the assertion of the read/write controlling signal and the assertion of the NWAIT signal by the device. The programmed pulse length of the read/write controlling signal must be at least equal to this latency plus the 2 cycles of resynchronization + 1 cycle. Otherwise, the SMC may enter the hold state of the access without detecting the NWAIT signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated on Figure 22-30. When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the read and write controlling signal of at least: minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle Figure 22-30. NWAIT Latency MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 WAIT STATE 4 3 2 1 0 0 0 NRD minimal pulse length NWAIT intenally synchronized NWAIT signal NWAIT latency 2 cycle resynchronization Read cycle EXNW_MODE = 10 or 11 READ_MODE = 1 (NRD_controlled) NRD_PULSE = 5 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 219 22.12 Slow Clock Mode The SMC is able to automatically apply a set of "slow clock mode" read/write waveforms when an internal signal driven by the Power Management Controller is asserted because MCK has been turned to a very slow clock rate (typically 32kHz clock rate). In this mode, the user-programmed waveforms are ignored and the slow clock mode waveforms are applied. This mode is provided so as to avoid reprogramming the User Interface with appropriate waveforms at very slow clock rate. When activated, the slow mode is active on all chip selects. 22.12.1 Slow Clock Mode Waveforms Figure 22-31 illustrates the read and write operations in slow clock mode. They are valid on all chip selects. Table 22-5 indicates the value of read and write parameters in slow clock mode. Figure 22-31. Read/write Cycles in Slow Clock Mode MCK MCK A[25:2] A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 NBS0, NBS1, NBS2, NBS3, A0,A1 1 NWE NRD 1 1 1 1 NCS NCS NRD_CYCLE = 2 NWE_CYCLE = 3 SLOW CLOCK MODE WRITE Table 22-5. SLOW CLOCK MODE READ Read and Write Timing Parameters in Slow Clock Mode Read Parameters Duration (cycles) Write Parameters Duration (cycles) NRD_SETUP 1 NWE_SETUP 1 NRD_PULSE 1 NWE_PULSE 1 NCS_RD_SETUP 0 NCS_WR_SETUP 0 NCS_RD_PULSE 2 NCS_WR_PULSE 3 NRD_CYCLE 2 NWE_CYCLE 3 22.12.2 Switching from (to) Slow Clock Mode to (from) Normal Mode When switching from slow clock mode to the normal mode, the current slow clock mode transfer is completed at high clock rate, with the set of slow clock mode parameters.See Figure 22-32. The external device may not be fast enough to support such timings. Figure 22-33 illustrates the recommended procedure to properly switch from one mode to the other. 220 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 22-32. Clock Rate Transition Occurs while the SMC is Performing a Write Operation Slow Clock Mode internal signal from PMC MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 NWE 1 1 1 1 1 1 3 2 2 NCS NWE_CYCLE = 3 NWE_CYCLE = 7 SLOW CLOCK MODE WRITE SLOW CLOCK MODE WRITE This write cycle finishes with the slow clock mode set of parameters after the clock rate transition NORMAL MODE WRITE Slow clock mode transition is detected: Reload Configuration Wait State Figure 22-33. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow Clock Mode Slow Clock Mode internal signal from PMC MCK A[25:2] NBS0, NBS1, NBS2, NBS3, A0,A1 NWE 1 1 1 2 3 2 NCS SLOW CLOCK MODE WRITE IDLE STATE NORMAL MODE WRITE Reload Configuration Wait State SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 221 22.13 Asynchronous Page Mode The SMC supports asynchronous burst reads in page mode, providing that the page mode is enabled in the SMC_MODE register (PMEN field). The page size must be configured in the SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes. The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the address of the page in memory, the LSB of address define the address of the data in the page as detailed in Table 22-6. With page mode memory devices, the first access to one page (tpa) takes longer than the subsequent accesses to the page (tsa) as shown in Figure 22-34. When in page mode, the SMC enables the user to define different read timings for the first access within one page, and next accesses within the page. Table 22-6. Page Address and Data Address within a Page Page Size Page Address(1) Data Address in the Page(2) 4 bytes A[25:2] A[1:0] 8 bytes A[25:3] A[2:0] 16 bytes A[25:4] A[3:0] 32 bytes A[25:5] A[4:0] Notes: 1. 2. A denotes the address bus of the memory device For 16-bit devices, the bit 0 of address is ignored. For 32-bit devices, bits [1:0] are ignored. 22.13.1 Protocol and Timings in Page Mode Figure 22-34 shows the NRD and NCS timings in page mode access. Figure 22-34. Page Mode Read Protocol (Address MSB and LSB are defined in Table 22-6) MCK A[MSB] A[LSB] NRD tpa NCS tsa tsa D[31:0] NCS_RD_PULSE NRD_PULSE NRD_PULSE The NRD and NCS signals are held low during all read transfers, whatever the programmed values of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS timings are identical. The pulse length of the first access to the page is defined with the NCS_RD_PULSE field of the SMC_PULSE register. The pulse length of subsequent accesses within the page are defined using the NRD_PULSE parameter. 222 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 In page mode, the programming of the read timings is described in Table 22-7: Table 22-7. Programming of Read Timings in Page Mode Parameter Value Definition READ_MODE `x' No impact NCS_RD_SETUP `x' No impact NCS_RD_PULSE tpa Access time of first access to the page NRD_SETUP `x' No impact NRD_PULSE tsa Access time of subsequent accesses in the page NRD_CYCLE `x' No impact The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE timings as page access timing (tpa) and the NRD_PULSE for accesses to the page (tsa), even if the programmed value for tpa is shorter than the programmed value for tsa. 22.13.2 Byte Access Type in Page Mode The Byte Access Type configuration remains active in page mode. For 16-bit or 32-bit page mode devices that require byte selection signals, configure the BAT field of the SMC_REGISTER to 0 (byte select access type). 22.13.3 Page Mode Restriction The page mode is not compatible with the use of the NWAIT signal. Using the page mode and the NWAIT signal may lead to unpredictable behavior. 22.13.4 Sequential and Non-sequential Accesses If the chip select and the MSB of addresses as defined in Table 22-6 are identical, then the current access lies in the same page as the previous one, and no page break occurs. Using this information, all data within the same page, sequential or not sequential, are accessed with a minimum access time (tsa). Figure 22-35 illustrates access to an 8-bit memory device in page mode, with 8-byte pages. Access to D1 causes a page access with a long access time (tpa). Accesses to D3 and D7, though they are not sequential accesses, only require a short access time (tsa). If the MSB of addresses are different, the SMC performs the access of a new page. In the same way, if the chip select is different from the previous access, a page break occurs. If two sequential accesses are made to the page mode memory, but separated by an other internal or external peripheral access, a page break occurs on the second access because the chip select of the device was deasserted between both accesses. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 223 Figure 22-35. Access to Non-sequential Data within the Same Page MCK Page address A[25:3] A[2], A1, A0 A1 A3 A7 NRD NCS D[7:0] D1 NCS_RD_PULSE 224 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 D3 NRD_PULSE D7 NRD_PULSE 22.14 Static Memory Controller (SMC) User Interface The SMC is programmed using the registers listed in Table 22-8. For each chip select, a set of 4 registers is used to program the parameters of the external device connected on it. In Table 22-8, "CS_number" denotes the chip select number. 16 bytes (0x10) are required per chip select. The user must complete writing the configuration by writing any one of the SMC_MODE registers. Table 22-8. Register Mapping Offset Register Name Access Reset 0x10 x CS_number + 0x00 SMC Setup Register SMC_SETUP Read/Write 0x00000000 0x10 x CS_number + 0x04 SMC Pulse Register SMC_PULSE Read/Write 0x01010101 0x10 x CS_number + 0x08 SMC Cycle Register SMC_CYCLE Read/Write 0x00030003 0x10 x CS_number + 0x0C SMC Mode Register SMC_MODE Read/Write 0x10001000 0xEC-0xFC Reserved - - - SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 225 22.14.1 SMC Setup Register Name: SMC_SETUP[0..7] Address: 0xFFFFEC00 [0], 0xFFFFEC10 [1], 0xFFFFEC20 [2], 0xFFFFEC30 [3], 0xFFFFEC40 [4], 0xFFFFEC50 [5], 0xFFFFEC60 [6], 0xFFFFEC70 [7] Access: Read/Write 31 30 - - 23 22 - - 15 14 - - 7 6 - - 29 28 27 26 25 24 18 17 16 10 9 8 1 0 NCS_RD_SETUP 21 20 19 NRD_SETUP 13 12 11 NCS_WR_SETUP 5 4 3 2 NWE_SETUP * NWE_SETUP: NWE Setup Length The NWE signal setup length is defined as: NWE setup length = (128* NWE_SETUP[5] + NWE_SETUP[4:0]) clock cycles * NCS_WR_SETUP: NCS Setup Length in WRITE Access In write access, the NCS signal setup length is defined as: NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUP[4:0]) clock cycles * NRD_SETUP: NRD Setup Length The NRD signal setup length is defined in clock cycles as: NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles * NCS_RD_SETUP: NCS Setup Length in READ Access In read access, the NCS signal setup length is defined as: NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles 226 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22.14.2 SMC Pulse Register Name: SMC_PULSE[0..7] Address: 0xFFFFEC04 [0], 0xFFFFEC14 [1], 0xFFFFEC24 [2], 0xFFFFEC34 [3], 0xFFFFEC44 [4], 0xFFFFEC54 [5], 0xFFFFEC64 [6], 0xFFFFEC74 [7] Access: Read/Write 31 30 29 28 - 23 27 22 21 20 19 - 15 25 24 18 17 16 10 9 8 2 1 0 NRD_PULSE 14 13 12 - 7 26 NCS_RD_PULSE 11 NCS_WR_PULSE 6 5 4 - 3 NWE_PULSE * NWE_PULSE: NWE Pulse Length The NWE signal pulse length is defined as: NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles The NWE pulse length must be at least 1 clock cycle. * NCS_WR_PULSE: NCS Pulse Length in WRITE Access In write access, the NCS signal pulse length is defined as: NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles The NCS pulse length must be at least 1 clock cycle. * NRD_PULSE: NRD Pulse Length In standard read access, the NRD signal pulse length is defined in clock cycles as: NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles The NRD pulse length must be at least 1 clock cycle. In page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page. * NCS_RD_PULSE: NCS Pulse Length in READ Access In standard read access, the NCS signal pulse length is defined as: NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles The NCS pulse length must be at least 1 clock cycle. In page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 227 22.14.3 SMC Cycle Register Name: SMC_CYCLE[0..7] Address: 0xFFFFEC08 [0], 0xFFFFEC18 [1], 0xFFFFEC28 [2], 0xFFFFEC38 [3], 0xFFFFEC48 [4], 0xFFFFEC58 [5], 0xFFFFEC68 [6], 0xFFFFEC78 [7] Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - NRD_CYCLE 23 22 21 20 19 18 17 16 NRD_CYCLE 15 14 13 12 11 10 9 8 - - - - - - - NWE_CYCLE 7 6 5 4 3 2 1 0 NWE_CYCLE * NWE_CYCLE: Total Write Cycle Length The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse and hold steps of the NWE and NCS signals. It is defined as: Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles * NRD_CYCLE: Total Read Cycle Length The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse and hold steps of the NRD and NCS signals. It is defined as: Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles 228 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 22.14.4 SMC MODE Register Name: SMC_MODE[0..7] Address: 0xFFFFEC0C [0], 0xFFFFEC1C [1], 0xFFFFEC2C [2], 0xFFFFEC3C [3], 0xFFFFEC4C [4], 0xFFFFEC5C [5], 0xFFFFEC6C [6], 0xFFFFEC7C [7] Access: Read/Write 31 30 - - 23 22 21 20 - - - TDF_MODE 15 14 13 - - 7 6 - - 29 28 PS 12 DBW 5 4 EXNW_MODE 27 26 25 24 - - - PMEN 19 18 17 16 TDF_CYCLES 11 10 9 8 - - - BAT 1 0 3 2 - - WRITE_MODE READ_MODE * READ_MODE: 1: The read operation is controlled by the NRD signal. - If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD. - If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD. 0: The read operation is controlled by the NCS signal. - If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS. - If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS. * WRITE_MODE 1: The write operation is controlled by the NWE signal. - If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE. 0: The write operation is controlled by the NCS signal. - If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS. * EXNW_MODE: NWAIT Mode The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be programmed for the read and write controlling signal. EXNW_MODE NWAIT Mode 0 0 Disabled 0 1 Reserved 1 0 Frozen Mode 1 1 Ready Mode * Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select. * Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write cycle is resumed from the point where it was stopped. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 229 * Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until NWAIT returns high. * BAT: Byte Access Type This field is used only if DBW defines a 16- or 32-bit data bus. * 1: Byte write access type: - Write operation is controlled using NCS, NWR0, NWR1, NWR2, NWR3. - Read operation is controlled using NCS and NRD. * 0: Byte select access type: - Write operation is controlled using NCS, NWE, NBS0, NBS1, NBS2 and NBS3 - Read operation is controlled using NCS, NRD, NBS0, NBS1, NBS2 and NBS3 * DBW: Data Bus Width DBW Data Bus Width 0 0 8-bit bus 0 1 16-bit bus 1 0 32-bit bus 1 1 Reserved * TDF_CYCLES: Data Float Time This field gives the integer number of clock cycles required by the external device to release the data after the rising edge of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can be set. * TDF_MODE: TDF Optimization 1: TDF optimization is enabled. - The number of TDF wait states is optimized using the setup period of the next read/write access. 0: TDF optimization is disabled. - The number of TDF wait states is inserted before the next access begins. * PMEN: Page Mode Enabled 1: Asynchronous burst read in page mode is applied on the corresponding chip select. 0: Standard read is applied. * PS: Page Size If page mode is enabled, this field indicates the size of the page in bytes. PS Page Size 0 0 4-byte page 0 1 8-byte page 1 0 16-byte page 1 1 32-byte page 230 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 23. SDRAM Controller (SDRAMC) 23.1 Description The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges from 2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit), half-word (16-bit) and word (32-bit) accesses. The SDRAM Controller supports a read or write burst length of one location. It keeps track of the active row in each bank, thus maximizing SDRAM performance, e.g., the application may be placed in one bank and data in the other banks. So as to optimize performance, it is advisable to avoid accessing different rows in the same bank. The SDRAM controller supports a CAS latency of 1, 2 or 3 and optimizes the read access depending on the frequency. The different modes available - self-refresh, power-down and deep power-down modes - minimize power consumption on the SDRAM device. 23.2 I/O Lines Description Table 23-1. I/O Line Description Name Description Type Active Level SDCK SDRAM Clock Output SDCKE SDRAM Clock Enable Output High SDCS SDRAM Controller Chip Select Output Low BA[1:0] Bank Select Signals Output RAS Row Signal Output Low CAS Column Signal Output Low SDWE SDRAM Write Enable Output Low NBS[3:0] Data Mask Enable Signals Output Low SDRAMC_A[12:0] Address Bus Output D[31:0] Data Bus I/O SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 231 23.3 Application Example 23.3.1 Software Interface The SDRAM address space is organized into banks, rows, and columns. The SDRAM controller allows mapping different memory types according to the values set in the SDRAMC configuration register. The SDRAM Controller's function is to make the SDRAM device access protocol transparent to the user. Table 232 to Table 23-7 illustrate the SDRAM device memory mapping seen by the user in correlation with the device structure. Various configurations are illustrated. 23.3.1.1 32-bit Memory Data Bus Width Table 23-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns CPU Address Line 27 26 25 24 23 22 21 20 19 18 17 16 Bk[1:0] 14 13 12 11 10 9 8 7 Row[10:0] Bk[1:0] Bk[1:0] 6 5 4 3 2 Column[7:0] Row[10:0] 0 M[1:0] Column[9:0] Row[10:0] 1 M[1:0] Column[8:0] Row[10:0] Bk[1:0] Table 23-3. 15 M[1:0] Column[10:0] M[1:0] SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns CPU Address Line 27 26 25 24 23 22 21 20 19 18 17 Bk[1:0] 15 14 13 12 11 10 9 8 7 Row[11:0] Bk[1:0] 5 4 3 2 0 M[1:0] Column[9:0] Row[11:0] 1 M[1:0] Column[8:0] Row[11:0] Bk[1:0] 6 Column[7:0] Row[11:0] Bk[1:0] Table 23-4. 16 M[1:0] Column[10:0] M[1:0] SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns CPU Address Line 27 26 25 24 23 22 21 20 19 18 17 Bk[1:0] Bk[1:0] Notes: 232 15 Row[12:0] Bk[1:0] Bk[1:0] 16 Row[12:0] Row[12:0] Row[12:0] 1. M[1:0] is the byte address inside a 32-bit word. 3. Bk[1] = BA1, Bk[0] = BA0. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 14 13 12 11 10 9 8 7 6 5 Column[7:0] Column[8:0] Column[9:0] Column[10:0] 4 3 2 1 0 M[1:0] M[1:0] M[1:0] M[1:0] 23.3.1.2 16-bit Memory Data Bus Width Table 23-5. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns CPU Address Line 27 26 25 24 23 22 21 20 19 18 17 16 15 Bk[1:0] 13 12 11 10 9 8 7 6 Row[10:0] Bk[1:0] 4 3 2 1 M0 M0 Column[9:0] Row[10:0] 0 M0 Column[8:0] Row[10:0] Bk[1:0] 5 Column[7:0] Row[10:0] Bk[1:0] Table 23-6. 14 M0 Column[10:0] SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns CPU Address Line 27 26 25 24 23 22 21 20 19 18 17 16 Bk[1:0] 14 13 12 11 10 9 8 7 6 Row[11:0] Bk[1:0] 4 3 2 1 M0 M0 Column[9:0] Row[11:0] 0 M0 Column[8:0] Row[11:0] Bk[1:0] 5 Column[7:0] Row[11:0] Bk[1:0] Table 23-7. 15 M0 Column[10:0] SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns CPU Address Line 27 26 25 24 23 22 21 20 19 18 17 16 Bk[1:0] Bk[1:0] Bk[1:0] Bk[1:0] Notes: 15 14 Row[12:0] Row[12:0] Row[12:0] Row[12:0] 13 12 11 10 9 8 7 6 5 4 3 2 Column[7:0] Column[8:0] Column[9:0] Column[10:0] 1 0 M0 M0 M0 M0 1. M0 is the byte address inside a 16-bit half-word. 4. Bk[1] = BA1, Bk[0] = BA0. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 233 23.4 Product Dependencies 23.4.1 SDRAM Device Initialization The initialization sequence is generated by software. The SDRAM devices are initialized by the following sequence: 1. SDRAM features must be set in the configuration register: asynchronous timings (TRC, TRAS, etc.), number of columns, rows, CAS latency, and the data bus width. 2. For mobile SDRAM, temperature-compensated self refresh (TCSR), drive strength (DS) and partial array self refresh (PASR) must be set in the Low Power Register. 3. The SDRAM memory type must be set in the Memory Device Register. 4. A minimum pause of 200 s is provided to precede any signal toggle. 5. (1) A NOP command is issued to the SDRAM devices. The application must set Mode to 1 in the Mode Register and perform a write access to any SDRAM address. 6. An All Banks Precharge command is issued to the SDRAM devices. The application must set Mode to 2 in the Mode Register and perform a write access to any SDRAM address. 7. Eight auto-refresh (CBR) cycles are provided. The application must set the Mode to 4 in the Mode Register and perform a write access to any SDRAM location eight times. 8. A Mode Register set (MRS) cycle is issued to program the parameters of the SDRAM devices, in particular CAS latency and burst length. The application must set Mode to 3 in the Mode Register and perform a write access to the SDRAM. The write address must be chosen so that BA[1:0] are set to 0. For example, with a 16-bit 128 MB SDRAM (12 rows, 9 columns, 4 banks) bank address, the SDRAM write access should be done at the address 0x20000000. 9. For mobile SDRAM initialization, an Extended Mode Register set (EMRS) cycle is issued to program the SDRAM parameters (TCSR, PASR, DS). The application must set Mode to 5 in the Mode Register and perform a write access to the SDRAM. The write address must be chosen so that BA[1] or BA[0] are set to 1. For example, with a 16-bit 128 MB SDRAM, (12 rows, 9 columns, 4 banks) bank address the SDRAM write access should be done at the address 0x20800000 or 0x20400000. 10. The application must go into Normal Mode, setting Mode to 0 in the Mode Register and performing a write access at any location in the SDRAM. 11. Write the refresh rate into the count field in the SDRAMC Refresh Timer register. (Refresh rate = delay between refresh cycles). The SDRAM device requires a refresh every 15.625 s or 7.81 s. With a 100 MHz frequency, the Refresh Timer Counter Register must be set with the value 1562(15.652 s x 100 MHz) or 781(7.81 s x 100 MHz). After initialization, the SDRAM devices are fully functional. Note: 234 1. It is strongly recommended to respect the instructions stated in Step 5 of the initialization process in order to be certain that the subsequent commands issued by the SDRAMC will be taken into account. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 23-1. SDRAM Device Initialization Sequence SDCKE tRP tRC tMRD SDCK SDRAMC_A[9:0] A10 SDRAMC_A[12:11] SDCS RAS CAS SDWE NBS Inputs Stable for 200 sec Precharge All Banks 1st Auto-refresh 8th Auto-refresh MRS Command Valid Command 23.4.2 I/O Lines The pins used for interfacing the SDRAM Controller may be multiplexed with the PIO lines. The programmer must first program the PIO controller to assign the SDRAM Controller pins to their peripheral function. If I/O lines of the SDRAM Controller are not used by the application, they can be used for other purposes by the PIO Controller. 23.4.3 Interrupt The SDRAM Controller interrupt (Refresh Error notification) is connected to the Memory Controller. This interrupt may be ORed with other System Peripheral interrupt lines and is finally provided as the System Interrupt Source (Source 1) to the AIC (Advanced Interrupt Controller). Using the SDRAM Controller interrupt requires the AIC to be programmed first. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 235 23.5 Functional Description 23.5.1 SDRAM Controller Write Cycle The SDRAM Controller allows burst access or single access. In both cases, the SDRAM controller keeps track of the active row in each bank, thus maximizing performance. To initiate a burst access, the SDRAM Controller uses the transfer type signal provided by the master requesting the access. If the next access is a sequential write access, writing to the SDRAM device is carried out. If the next access is a write-sequential access, but the current access is to a boundary page, or if the next access is in another row, then the SDRAM Controller generates a precharge command, activates the new row and initiates a write command. To comply with SDRAM timing parameters, additional clock cycles are inserted between precharge/active (tRP) commands and active/write (tRCD) commands. For definition of these timing parameters, refer to the "SDRAMC Configuration Register" on page 246. This is described in Figure 23-2 below. Figure 23-2. Write Burst, 32-bit SDRAM Access tRCD = 3 SDCS SDCK SDRAMC_A[12:0] Row n col a col b col c col d col e col f col g col h col i col j col k col l Dnb Dnc Dnd Dne Dnf Dng Dnh Dni Dnj Dnk Dnl RAS CAS SDWE D[31:0] Dna 23.5.2 SDRAM Controller Read Cycle The SDRAM Controller allows burst access, incremental burst of unspecified length or single access. In all cases, the SDRAM Controller keeps track of the active row in each bank, thus maximizing performance of the SDRAM. If row and bank addresses do not match the previous row/bank address, then the SDRAM controller automatically generates a precharge command, activates the new row and starts the read command. To comply with the SDRAM timing parameters, additional clock cycles on SDCK are inserted between precharge and active commands (tRP) and between active and read command (tRCD). These two parameters are set in the configuration register of the SDRAM Controller. After a read command, additional wait states are generated to comply with the CAS latency (1, 2 or 3 clock delays specified in the configuration register). For a single access or an incremented burst of unspecified length, the SDRAM Controller anticipates the next access. While the last value of the column is returned by the SDRAM Controller on the bus, the SDRAM Controller anticipates the read to the next column and thus anticipates the CAS latency. This reduces the effect of the CAS latency on the internal bus. 236 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads to the best performance. If the burst is broken (border, busy mode, etc.), the next access is handled as an incrementing burst of unspecified length. Figure 23-3. Read Burst, 32-bit SDRAM Access tRCD = 3 CAS = 2 SDCS SDCK SDRAMC_A[12:0] Row n col a col b col c col d col e col f RAS CAS SDWE D[31:0] (Input) Dna Dnb Dnc Dnd Dne Dnf SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 237 23.5.3 Border Management When the memory row boundary has been reached, an automatic page break is inserted. In this case, the SDRAM controller generates a precharge command, activates the new row and initiates a read or write command. To comply with SDRAM timing parameters, an additional clock cycle is inserted between the precharge/active (tRP) command and the active/read (tRCD) command. This is described in Figure 23-4 below. Figure 23-4. Read Burst with Boundary Row Access TRP = 3 TRCD = 3 CAS = 2 SDCS SDCK Row n SDRAMC_A[12:0] col a col b col c col d Row m col a col b col c col d col e RAS CAS SDWE D[31:0] 238 Dna Dnb Dnc SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Dnd Dma Dmb Dmc Dmd Dme 23.5.4 SDRAM Controller Refresh Cycles An auto-refresh command is used to refresh the SDRAM device. Refresh addresses are generated internally by the SDRAM device and incremented after each auto-refresh automatically. The SDRAM Controller generates these auto-refresh commands periodically. An internal timer is loaded with the value in the register SDRAMC_TR that indicates the number of clock cycles between refresh cycles. A refresh error interrupt is generated when the previous auto-refresh command did not perform. It is acknowledged by reading the Interrupt Status Register (SDRAMC_ISR). When the SDRAM Controller initiates a refresh of the SDRAM device, internal memory accesses are not delayed. However, if the CPU tries to access the SDRAM, the slave indicates that the device is busy and the master is held by a wait signal. See Figure 23-5. Figure 23-5. Refresh Cycle Followed by a Read Access tRP = 3 tRC = 8 tRCD = 3 CAS = 2 SDCS SDCK Row n SDRAMC_A[12:0] Row m col c col d col a RAS CAS SDWE D[31:0] (input) Dnb Dnc Dma Dnd 23.5.5 Power Management Three low-power modes are available: Self-refresh Mode: The SDRAM executes its own Auto-refresh cycle without control of the SDRAM Controller. Current drained by the SDRAM is very low. Power-down Mode: Auto-refresh cycles are controlled by the SDRAM Controller. Between auto-refresh cycles, the SDRAM is in power-down. Current drained in Power-down mode is higher than in Self-refresh Mode. Deep Power-down Mode: (available only with mobile SDRAM) The SDRAM contents are lost, but the SDRAM does not drain any current. The SDRAM Controller activates one low-power mode as soon as the SDRAM device is not selected. It is possible to delay the entry in self-refresh and power-down mode after the last access by programming a timeout value in the Low Power Register. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 239 23.5.5.1 Self-refresh Mode This mode is selected by programming the LPCB field to 1 in the SDRAMC Low Power Register. In self-refresh mode, the SDRAM device retains data without external clocking and provides its own internal clocking, thus performing its own auto-refresh cycles. All the inputs to the SDRAM device become "don't care" except SDCKE, which remains low. As soon as the SDRAM device is selected, the SDRAM Controller provides a sequence of commands and exits self-refresh mode. Some low-power SDRAMs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter or all banks of the SDRAM array. This feature reduces the self-refresh current. To configure this feature, Temperature Compensated Self Refresh (TCSR), Partial Array Self Refresh (PASR) and Drive Strength (DS) parameters must be set in the Low Power Register and transmitted to the low-power SDRAM during initialization. The SDRAM device must remain in self-refresh mode for a minimum period of tRAS and may remain in self-refresh mode for an indefinite period. This is described in Figure 23-6. Figure 23-6. Self-refresh Mode Behavior Self Refresh Mode TXSR = 3 SRCB = 1 Write SDRAMC_SRR Row SDRAMC_A[12:0] SDCK SDCKE SDCS RAS CAS SDWE Access Request to the SDRAM Controller 240 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 23.5.5.2 Low-power Mode This mode is selected by programming the LPCB field to 2 in the SDRAMC Low Power Register. Power consumption is greater than in self-refresh mode. All the input and output buffers of the SDRAM device are deactivated except SDCKE, which remains low. In contrast to self-refresh mode, the SDRAM device cannot remain in low-power mode longer than the refresh period (64 ms for a whole device refresh operation). As no autorefresh operations are performed by the SDRAM itself, the SDRAM Controller carries out the refresh operation. The exit procedure is faster than in self-refresh mode. This is described in Figure 23-7. Figure 23-7. Low-power Mode Behavior TRCD = 3 CAS = 2 Low Power Mode SDCS SDCK SDRAMC_A[12:0] Row n col a col b col c col d col e col f RAS CAS SDCKE D[31:0] (input) Dna Dnb Dnc Dnd Dne Dnf SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 241 23.5.5.3 Deep Power-down Mode This mode is selected by programming the LPCB field to 3 in the SDRAMC Low Power Register. When this mode is activated, all internal voltage generators inside the SDRAM are stopped and all data is lost. When this mode is enabled, the application must not access to the SDRAM until a new initialization sequence is done (See "SDRAM Device Initialization" on page 234). This is described in Figure 23-8. Figure 23-8. Deep Power-down Mode Behavior tRP = 3 SDCS SDCK Row n SDRAMC_A[12:0] col c col d RAS CAS SDWE CKE D[31:0] (input) 242 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Dnb Dnc Dnd 23.6 SDRAM Controller (SDRAMC) User Interface Table 23-8. Offset Register Mapping Register Name Access Reset 0x00 SDRAMC Mode Register SDRAMC_MR Read/Write 0x00000000 0x04 SDRAMC Refresh Timer Register SDRAMC_TR Read/Write 0x00000000 0x08 SDRAMC Configuration Register SDRAMC_CR Read/Write 0x852372C0 0x10 SDRAMC Low Power Register SDRAMC_LPR Read/Write 0x0 0x14 SDRAMC Interrupt Enable Register SDRAMC_IER Write-only - 0x18 SDRAMC Interrupt Disable Register SDRAMC_IDR Write-only - 0x1C SDRAMC Interrupt Mask Register SDRAMC_IMR Read-only 0x0 0x20 SDRAMC Interrupt Status Register SDRAMC_ISR Read-only 0x0 0x24 SDRAMC Memory Device Register SDRAMC_MDR Read/Write 0x0 Reserved - - - 0x28-0xFC SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 243 23.6.1 SDRAMC Mode Register Name: SDRAMC_MR Address: 0xFFFFEA00 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 1 0 MODE * MODE: SDRAMC Command Mode This field defines the command issued by the SDRAM Controller when the SDRAM device is accessed. MODE Description 0 0 0 Normal mode. Any access to the SDRAM is decoded normally. To activate this mode, command must be followed by a write to the SDRAM. 0 0 1 The SDRAM Controller issues a NOP command when the SDRAM device is accessed regardless of the cycle. To activate this mode, command must be followed by a write to the SDRAM. 0 1 0 The SDRAM Controller issues an "All Banks Precharge" command when the SDRAM device is accessed regardless of the cycle. To activate this mode, command must be followed by a write to the SDRAM. 0 1 1 The SDRAM Controller issues a "Load Mode Register" command when the SDRAM device is accessed regardless of the cycle. To activate this mode, command must be followed by a write to the SDRAM. 1 0 0 The SDRAM Controller issues an "Auto-Refresh" Command when the SDRAM device is accessed regardless of the cycle. Previously, an "All Banks Precharge" command must be issued. To activate this mode, command must be followed by a write to the SDRAM. 1 0 1 The SDRAM Controller issues an "Extended Load Mode Register" command when the SDRAM device is accessed regardless of the cycle. To activate this mode, the "Extended Load Mode Register" command must be followed by a write to the SDRAM. The write in the SDRAM must be done in the appropriate bank; most lowpower SDRAM devices use the bank 1. 1 1 0 Deep power-down mode. Enters deep power-down mode. 244 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 23.6.2 SDRAMC Refresh Timer Register Name: SDRAMC_TR Address: 0xFFFFEA04 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 10 9 8 7 6 5 4 1 0 COUNT 3 2 COUNT * COUNT: SDRAMC Refresh Timer Count This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh burst is initiated. The value to be loaded depends on the SDRAMC clock frequency (MCK: Master Clock), the refresh rate of the SDRAM device and the refresh burst length where 15.6 s per row is a typical value for a burst of length one. To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is issued and no refresh of the SDRAM device is carried out. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 245 23.6.3 SDRAMC Configuration Register Name: SDRAMC_CR Address: 0xFFFFEA08 Access: Read/Write 31 30 29 28 27 26 TXSR 23 22 21 20 19 18 TRCD 15 14 13 6 12 11 10 17 16 9 8 TWR 5 CAS 4 NB 3 2 NR * NC: Number of Column Bits Reset value is 8 column bits. NC Column Bits 0 0 8 0 1 9 1 0 10 1 1 11 * NR: Number of Row Bits Reset value is 11 row bits. NR Row Bits 0 0 11 0 1 12 1 0 13 1 1 Reserved * NB: Number of Banks Reset value is two banks. 246 24 TRP TRC 7 DBW 25 TRAS NB Number of Banks 0 2 1 4 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 1 0 NC * CAS: CAS Latency Reset value is two cycles. In the SDRAMC, only a CAS latency of one, two and three cycles are managed. CAS CAS Latency (Cycles) 0 0 Reserved 0 1 1 1 0 2 1 1 3 * DBW: Data Bus Width Reset value is 16 bits 0: Data bus width is 32 bits. 1: Data bus width is 16 bits. * TWR: Write Recovery Delay Reset value is two cycles. This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15. * TRC: Row Cycle Delay Reset value is seven cycles. This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is between 0 and 15. * TRP: Row Precharge Delay Reset value is three cycles. This field defines the delay between a Precharge Command and another Command in number of cycles. Number of cycles is between 0 and 15. * TRCD: Row to Column Delay Reset value is two cycles. This field defines the delay between an Activate Command and a Read/Write Command in number of cycles. Number of cycles is between 0 and 15. * TRAS: Active to Precharge Delay Reset value is five cycles. This field defines the delay between an Activate Command and a Precharge Command in number of cycles. Number of cycles is between 0 and 15. * TXSR: Exit Self Refresh to Active Delay Reset value is eight cycles. This field defines the delay between SCKE set high and an Activate Command in number of cycles. Number of cycles is between 0 and 15. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 247 23.6.4 SDRAMC Low Power Register Name: SDRAMC_LPR Address: 0xFFFFEA10 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 12 11 10 9 7 - 6 5 PASR TIMEOUT DS 4 3 - 8 TCSR 2 - 1 0 LPCB * LPCB: Low-power Configuration Bits 00 Low Power Feature is inhibited: no Power-down, Self-refresh or Deep Power-down command is issued to the SDRAM device. 01 The SDRAM Controller issues a Self-refresh command to the SDRAM device, the SDCLK clock is deactivated and the SDCKE signal is set low. The SDRAM device leaves the Self Refresh Mode when accessed and enters it after the access. 10 The SDRAM Controller issues a Power-down Command to the SDRAM device after each access, the SDCKE signal is set to low. The SDRAM device leaves the Power-down Mode when accessed and enters it after the access. 11 The SDRAM Controller issues a Deep Power-down command to the SDRAM device. This mode is unique to low-power SDRAM. * PASR: Partial Array Self-refresh (only for low-power SDRAM) PASR parameter is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks of the SDRAM array are enabled. Disabled banks are not refreshed in self-refresh mode. This parameter must be set according to the SDRAM device specification. * TCSR: Temperature Compensated Self-Refresh (only for low-power SDRAM) TCSR parameter is transmitted to the SDRAM during initialization to set the refresh interval during self-refresh mode depending on the temperature of the low-power SDRAM. This parameter must be set according to the SDRAM device specification. * DS: Drive Strength (only for low-power SDRAM) DS parameter is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parameter must be set according to the SDRAM device specification. * TIMEOUT: Time to define when low-power mode is enabled 00 The SDRAM controller activates the SDRAM low-power mode immediately after the end of the last transfer. 01 The SDRAM controller activates the SDRAM low-power mode 64 clock cycles after the end of the last transfer. 10 The SDRAM controller activates the SDRAM low-power mode 128 clock cycles after the end of the last transfer. 11 Reserved. 248 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 23.6.5 SDRAMC Interrupt Enable Register Name: SDRAMC_IER Address: 0xFFFFEA14 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 RES * RES: Refresh Error Status 0: No effect. 1: Enables the refresh error interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 249 23.6.6 SDRAMC Interrupt Disable Register Name: SDRAMC_IDR Address: 0xFFFFEA18 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 RES * RES: Refresh Error Status 0: No effect. 1: Disables the refresh error interrupt. 250 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 23.6.7 SDRAMC Interrupt Mask Register Name: SDRAMC_IMR Address: 0xFFFFEA1C Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 RES * RES: Refresh Error Status 0: The refresh error interrupt is disabled. 1: The refresh error interrupt is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 251 23.6.8 SDRAMC Interrupt Status Register Name: SDRAMC_ISR Address: 0xFFFFEA20 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 RES * RES: Refresh Error Status 0: No refresh error has been detected since the register was last read. 1: A refresh error has been detected since the register was last read. 252 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 23.6.9 SDRAMC Memory Device Register Name: SDRAMC_MDR Address: 0xFFFFEA24 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 MD * MD: Memory Device Type 00 SDRAM 01 Low-power SDRAM 10 Reserved 11 Reserved SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 253 24. Error Correction Code Controller (ECC) 24.1 Description NAND Flash/SmartMedia devices contain by default invalid blocks which have one or more invalid bits. Over the NAND Flash/SmartMedia lifetime, additional invalid blocks may occur which can be detected/corrected by ECC code. The ECC Controller is a mechanism that encodes data in a manner that makes possible the identification and correction of certain errors in data. The ECC controller is capable of single bit error correction and 2-bit random detection. When NAND Flash/SmartMedia have more than 2 bits of errors, the data cannot be corrected. The ECC user interface is compliant with the ARM Advanced Peripheral Bus (APB rev2). 24.2 Block Diagram Figure 24-1. Block Diagram NAND Flash Static Memory Controller SmartMedia Logic ECC Controller Ctrl/ECC Algorithm User Interface APB 254 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.3 Functional Description A page in NAND Flash and SmartMedia memories contains an area for main data and an additional area used for redundancy (ECC). The page is organized in 8-bit or 16-bit words. The page size corresponds to the number of words in the main area plus the number of words in the extra area used for redundancy. Over time, some memory locations may fail to program or erase properly. In order to ensure that data is stored properly over the life of the NAND Flash device, NAND Flash providers recommend to utilize either 1 ECC per 256 bytes of data, 1 ECC per 512 bytes of data or 1 ECC for all of the page. The only configurations required for ECC are the NAND Flash or the SmartMedia page size (528/2112/4224) and the type of correction wanted (1 ECC for all the page/1 ECC per 256 bytes of data /1 ECC per 512 bytes of data). Page size is configured setting the PAGESIZE field in the ECC Mode Register (ECC_MR). Type of correction is configured setting the TYPCORRECT field in the ECC Mode Register (ECC_MR). ECC is automatically computed as soon as a read (00h)/write (80h) command to the NAND Flash or the SmartMedia is detected. Read and write access must start at a page boundary. ECC results are available as soon as the counter reaches the end of the main area. Values in the ECC Parity Registers (ECC_PR0 to ECC_PR15) are then valid and locked until a new start condition occurs (read/write command followed by address cycles). 24.3.1 Write Access Once the Flash memory page is written, the computed ECC codes are available in the ECC Parity (ECC_PR0 to ECC_PR15) registers. The ECC code values must be written by the software application in the extra area used for redundancy. The number of write accesses in the extra area is a function of the value of the type of correction field. For example, for 1 ECC per 256 bytes of data for a page of 512 bytes, only the values of ECC_PR0 and ECC_PR1 must be written by the software application. Other registers are meaningless. 24.3.2 Read Access After reading the whole data in the main area, the application must perform read accesses to the extra area where ECC code has been previously stored. Error detection is automatically performed by the ECC controller. Please note that it is mandatory to read consecutively the entire main area and the locations where Parity and NParity values have been previously stored to let the ECC controller perform error detection. The application can check the ECC Status Registers (ECC_SR1/ECC_SR2) for any detected errors. It is up to the application to correct any detected error. ECC computation can detect four different circumstances: No error: XOR between the ECC computation and the ECC code stored at the end of the NAND Flash or SmartMedia page is equal to 0. No error flags in the ECC Status Registers (ECC_SR1/ECC_SR2). Recoverable error: Only the RECERR flags in the ECC Status registers (ECC_SR1/ECC_SR2) are set. The corrupted word offset in the read page is defined by the WORDADDR field in the ECC Parity Registers (ECC_PR0 to ECC_PR15). The corrupted bit position in the concerned word is defined in the BITADDR field in the ECC Parity Registers (ECC_PR0 to ECC_PR15). ECC error: The ECCERR flag in the ECC Status Registers (ECC_SR1/ECC_SR2) are set. An error has been detected in the ECC code stored in the Flash memory. The position of the corrupted bit can be found by the application performing an XOR between the Parity and the NParity contained in the ECC code stored in the Flash memory. Non correctable error: The MULERR flag in the ECC Status Registers (ECC_SR1/ECC_SR2) are set. Several unrecoverable errors have been detected in the Flash memory page. ECC Status Registers, ECC Parity Registers are cleared when a read/write command is detected or a software reset is performed. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 255 For Single-bit Error Correction and Double-bit Error Detection (SEC-DED) hsiao code is used. 24-bit ECC is generated in order to perform one bit correction per 256 or 512 bytes for pages of 512/2048/4096 8-bit words. 32bit ECC is generated in order to perform one bit correction per 512/1024/2048/4096 8- or 16-bit words.They are generated according to the schemes shown in Figure 24-2 and Figure 24-3. Figure 24-2. Parity Generation Bit6for 512/1024/2048/4096 Bit5 Bit4 Bit2 Words Bit3 8-bit Bit1 1st byte 2nd byte 3rd byte 4 th byte (page size -3 )th byte (page size -2 )th byte (page size -1 )th byte Page size th byte Bit0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 P8' Bit7 Bit7 Bit6 Bit6 Bit5 Bit5 Bit4 Bit4 Bit3 Bit3 Bit2 Bit2 Bit1 Bit1 Bit0 Bit0 P8 Bit7 Bit7 Bit6 Bit6 Bit5 Bit5 Bit4 Bit4 Bit3 Bit3 Bit2 Bit2 Bit1 Bit1 Bit0 Bit0 P8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 P8 P8' P1 P1' P1 P1 P1' P1 P1' P2 P1' P2' P4 P2 P8' P8' P16 = 512 = 1024 = 2048 = 4096 P16' P4' for i =0 to n begin for (j = 0 to page_size_byte) begin if(j[i] ==1) P[2i+3]=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+) bit2(+)bit1(+)bit0(+)P[2i+3] else P[2i+3]'=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+) bit2(+)bit1(+)bit0(+)P[2i+3]' end end 256 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 P32 PX' P16 P2' Px = 2048 Px = 4096 Px = 8192 Px = 16384 PX P16' P1=bit7(+)bit5(+)bit3(+)bit1(+)P1 P2=bit7(+)bit6(+)bit3(+)bit2(+)P2 P4=bit7(+)bit6(+)bit5(+)bit4(+)P4 P1'=bit6(+)bit4(+)bit2(+)bit0(+)P1' P2' bit5( )bit4( )bit1( )bit0( )P2' To calculate P8' to PX' and P8 to PX, apply the algorithm that follows. Page size = 2n Page size Page size Page size Page size P32 (Page size -3 )th word (Page size -2 )th word (Page size -1 )th word Page size th word 4th word (+) Parity Generation for 512/1024/2048/4096 16-bit Words 1st word 2nd word 3rd word Figure 24-3. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 257 To calculate P8' to PX' and P8 to PX, apply the algorithm that follows. Page size = 2n for i =0 to n begin for (j = 0 to page_size_word) begin if(j[i] ==1) P[2i+3]= bit15(+)bit14(+)bit13(+)bit12(+) bit11(+)bit10(+)bit9(+)bit8(+) bit7(+)bit6(+)bit5(+)bit4(+)bit3(+) bit2(+)bit1(+)bit0(+)P[2n+3] else P[2i+3]'=bit15(+)bit14(+)bit13(+)bit12(+) bit11(+)bit10(+)bit9(+)bit8(+) bit7(+)bit6(+)bit5(+)bit4(+)bit3(+) bit2(+)bit1(+)bit0(+)P[2i+3]' end end 258 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.4 Error Correction Code Controller (ECC) User Interface Table 24-1. Register Mapping Offset Register Name Access Reset 0x00 ECC Control Register ECC_CTRL Write-only - 0x04 ECC Mode Register ECC_MD Read/Write 0x0 0x08 ECC Status Register 1 ECC_SR1 Read-only 0x0 0x0C ECC Parity Register 0 ECC_PR0 Read-only 0x0 0x10 ECC Parity Register 1 ECC_PR1 Read-only 0x0 0x14 ECC Status Register 2 ECC_SR2 Read-only 0x0 0x18 ECC Parity 2 ECC_PR2 Read-only 0x0 0x1C ECC Parity 3 ECC_PR3 Read-only 0x0 0x20 ECC Parity 4 ECC_PR4 Read-only 0x0 0x24 ECC Parity 5 ECC_PR5 Read-only 0x0 0x28 ECC Parity 6 ECC_PR6 Read-only 0x0 0x2C ECC Parity 7 ECC_PR7 Read-only 0x0 0x30 ECC Parity 8 ECC_PR8 Read-only 0x0 0x34 ECC Parity 9 ECC_PR9 Read-only 0x0 0x38 ECC Parity 10 ECC_PR10 Read-only 0x0 0x3C ECC Parity 11 ECC_PR11 Read-only 0x0 0x40 ECC Parity 12 ECC_PR12 Read-only 0x0 0x44 ECC Parity 13 ECC_PR13 Read-only 0x0 0x48 ECC Parity 14 ECC_PR14 Read-only 0x0 0x4C ECC Parity 15 ECC_PR15 Read-only 0x0 Reserved - - - 0x14-0xFC SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 259 24.4.1 ECC Control Register Name: ECC_CR Access: Write-only 31 - 23 - 15 - 7 - 30 - 22 - 14 - 6 - 29 - 21 - 13 - 5 - * RST: RESET Parity Provides reset to current ECC by software. 1: Reset ECC Parity registers 0: No effect * SRST: Soft Reset Provides soft reset to ECC block 1: Resets all registers. 0: No effect. 260 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28 - 20 - 12 - 4 - 27 - 19 - 11 - 3 - 26 - 18 - 10 - 2 - 25 - 17 - 9 - 1 SRST 24 - 16 - 8 - 0 RST 24.4.2 ECC Mode Register Name: ECC_MR Access: Read/Write 31 - 23 - 15 - 7 - 30 - 22 - 14 - 6 - 29 - 21 - 13 - 5 28 - 20 - 12 - 4 TYPCORREC 27 - 19 - 11 - 3 - 26 - 18 - 10 - 2 - 25 - 17 - 9 - 1 24 - 16 - 8 - 0 PAGESIZE * PAGESIZE: Page Size This field defines the page size of the NAND Flash device. Page Size Description 00 528 words 01 1056 words 10 2112 words 11 4224 words A word has a value of 8 bits or 16 bits, depending on the NAND Flash or SmartMedia memory organization. * TYPECORREC: Type of Correction 00: 1 bit correction for a page size of 512/1024/2048/4096 bytes. 01: 1 bit correction for 256 bytes of data for a page size of 512/2048/4096 bytes. 10: 1 bit correction for 512 bytes of data for a page size of 512/2048/4096 bytes. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 261 24.4.3 ECC Status Register 1 Name: ECC_SR1 Address: 0xFFFFE808 Access: Read-only 31 - 23 - 15 - 7 - 30 MULERR7 22 MULERR5 14 MULERR3 6 MULERR1 29 ECCERR7 21 ECCERR5 13 ECCERR3 5 ECCERR1 28 RECERR7 20 RECERR5 12 RECERR3 4 RECERR1 27 - 19 - 11 - 3 - 26 MULERR6 18 MULERR4 10 MULERR2 2 MULERR0 25 ECCERR6 17 ECCERR4 9 ECCERR2 1 ECCERR0 24 RECERR6 16 RECERR4 8 RECERR2 0 RECERR0 * RECERR0: Recoverable Error 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected. * ECCERR0: ECC Error 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. If TYPECORRECT = 0, read both ECC Parity 0 and ECC Parity 1 registers, the error occurred at the location which contains a 1 in the least significant 16 bits; else read ECC Parity 0 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR0: Multiple Error 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR1: Recoverable Error in the page between the 256th and the 511th bytes or the 512th and the 1023rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected. * ECCERR1: ECC Error in the page between the 256th and the 511th bytes or the 512th and the 1023rd bytes Fixed to 0 if TYPECORREC = 0 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 1 register, the error occurred at the location which contains a 1 in the least significant 24 bits. 262 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * MULERR1: Multiple Error in the page between the 256th and the 511th bytes or the 512th and the 1023rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR2: Recoverable Error in the page between the 512th and the 767th bytes or the 1024th and the 1535th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise, multiple uncorrected errors were detected. * ECCERR2: ECC Error in the page between the 512th and the 767th bytes or the 1024th and the 1535th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 2 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR2: Multiple Error in the page between the 512th and the 767th bytes or the 1024th and the 1535th bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR3: Recoverable Error in the page between the 768th and the 1023rd bytes or the 1536th and the 2047th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected. * ECCERR3: ECC Error in the page between the 768th and the 1023rd bytes or the 1536th and the 2047th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 3 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR3: Multiple Error in the page between the 768th and the 1023rd bytes or the 1536th and the 2047th bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 263 * RECERR4: Recoverable Error in the page between the 1024th and the 1279th bytes or the 2048th and the 2559th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected. * ECCERR4: ECC Error in the page between the 1024th and the 1279th bytes or the 2048th and the 2559th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 4 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR4: Multiple Error in the page between the 1024th and the 1279th bytes or the 2048th and the 2559th bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR5: Recoverable Error in the page between the 1280th and the 1535th bytes or the 2560th and the 3071st bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected * ECCERR5: ECC Error in the page between the 1280th and the 1535th bytes or the 2560th and the 3071st bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 5 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR5: Multiple Error in the page between the 1280th and the 1535th bytes or the 2560th and the 3071st bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR6: Recoverable Error in the page between the 1536th and the 1791st bytes or the 3072nd and the 3583rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected. 264 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * ECCERR6: ECC Error in the page between the 1536th and the 1791st bytes or the 3072nd and the 3583rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 6 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR6: Multiple Error in the page between the 1536th and the 1791st bytes or the 3072nd and the 3583rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR7: Recoverable Error in the page between the 1792nd and the 2047th bytes or the 3584th and the 4095th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise, multiple uncorrected errors were detected. * ECCERR7: ECC Error in the page between the 1792nd and the 2047th bytes or the 3584th and the 4095th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 7 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR7: Multiple Error in the page between the 1792nd and the 2047th bytes or the 3584th and the 4095th bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 265 24.4.4 ECC Status Register 2 Name: ECC_SR2 Address: 0xFFFFE814 Access: Read-only 31 - 23 - 15 - 7 - 30 MULERR15 22 MULERR13 14 MULERR11 6 MULERR9 29 ECCERR15 21 ECCERR13 13 ECCERR11 5 ECCERR9 28 RECERR15 20 RECERR13 12 RECERR11 4 RECERR9 27 - 19 - 11 - 3 - 26 MULERR14 18 MULERR12 10 MULERR10 2 MULERR8 25 ECCERR14 17 ECCERR12 9 ECCERR10 1 ECCERR8 24 RECERR14 16 RECERR12 8 RECERR10 0 RECERR8 * RECERR8: Recoverable Error in the page between the 2048th and the 2303rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected * ECCERR8: ECC Error in the page between the 2048th and the 2303rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 8 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR8: Multiple Error in the page between the 2048th and the 2303rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR9: Recoverable Error in the page between the 2304th and the 2559th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected. * ECCERR9: ECC Error in the page between the 2304th and the 2559th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 9 register, the error occurred at the location which contains a 1 in the least significant 24 bits. 266 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * MULERR9: Multiple Error in the page between the 2304th and the 2559th bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR10: Recoverable Error in the page between the 2560th and the 2815th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise, multiple uncorrected errors were detected. * ECCERR10: ECC Error in the page between the 2560th and the 2815th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 10 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR10: Multiple Error in the page between the 2560th and the 2815th bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR11: Recoverable Error in the page between the 2816th and the 3071st bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise, multiple uncorrected errors were detected. * ECCERR11: ECC Error in the page between the 2816th and the 3071st bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 11 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR11: Multiple Error in the page between the 2816th and the 3071st bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR12: Recoverable Error in the page between the 3072nd and the 3327th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 267 * ECCERR12: ECC Error in the page between the 3072nd and the 3327th bytes Fixed to 0 if TYPECORREC = 0 0: No Errors Detected 1: A single bit error occurred in the ECC bytes. Read ECC Parity 12 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR12: Multiple Error in the page between the 3072nd and the 3327th bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR13: Recoverable Error in the page between the 3328th and the 3583rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were detected. * ECCERR13: ECC Error in the page between the 3328th and the 3583rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 13 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR13: Multiple Error in the page between the 3328th and the 3583rd bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. * RECERR14: Recoverable Error in the page between the 3584th and the 3839th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise, multiple uncorrected errors were detected. * ECCERR14: ECC Error in the page between the 3584th and the 3839th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 14 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR14: Multiple Error in the page between the 3584th and the 3839th bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. 268 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * RECERR15: Recoverable Error in the page between the 3840th and the 4095th bytes Fixed to 0 if TYPECORREC = 0. 0: No Errors Detected. 1: Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise, multiple uncorrected errors were detected * ECCERR15: ECC Error in the page between the 3840th and the 4095th bytes Fixed to 0 if TYPECORREC = 0 0: No Errors Detected. 1: A single bit error occurred in the ECC bytes. Read ECC Parity 15 register, the error occurred at the location which contains a 1 in the least significant 24 bits. * MULERR15: Multiple Error in the page between the 3840th and the 4095th bytes Fixed to 0 if TYPECORREC = 0. 0: No Multiple Errors Detected. 1: Multiple Errors Detected. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 269 24.5 Registers for 1 ECC for a page of 512/1024/2048/4096 bytes 24.5.1 ECC Parity Register 0 Name: ECC_PR0 Address: 0xFFFFE80C Access: Read-only 31 - 23 - 15 30 - 22 - 14 29 - 21 - 13 28 - 20 - 12 7 6 5 4 27 - 19 - 11 26 - 18 - 10 3 2 25 - 17 - 9 24 - 16 - 8 1 0 WORDADDR WORDADDR BITADDR Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR: Bit Address During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR: Word Address During a page read, this value contains the word address (8-bit or 16-bit word depending on the memory plane organization) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. 270 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.5.2 ECC Parity Register 1 Name: ECC_PR1 Address: 0xFFFFE810 Access: Read-only 31 - 23 - 15 30 - 22 - 14 29 - 21 - 13 28 - 20 - 12 7 6 5 4 27 - 19 - 11 26 - 18 - 10 25 - 17 - 9 24 - 16 - 8 3 2 1 0 NPARITY NPARITY * NPARITY: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 271 24.6 Registers for 1 ECC per 512 bytes for a page of 512/2048/4096 bytes, 8-bit word 24.6.1 ECC Parity Register 0 Name: ECC_PR0 Address: 0xFFFFE80C Access: Read-only 31 - 23 30 - 22 29 - 21 28 - 20 27 - 19 26 - 18 25 - 17 24 - 16 15 14 13 12 11 10 9 8 7 6 5 WORDADDR0 4 3 2 1 BITADDR0 0 NPARITY0 NPARITY0 WORDADD0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR0: corrupted Bit Address in the page between the first byte and the 511th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR0: corrupted Word Address in the page between the first byte and the 511th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY0: Parity N 272 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.6.2 ECC Parity Register 1 Name: ECC_PR1 Address: 0xFFFFE810 Access: Read-only 31 - 23 30 - 22 29 - 21 28 - 20 27 - 19 26 - 18 11 10 25 - 17 24 - 16 9 8 1 BITADDR1 0 NPARITY1 15 14 13 12 NPARITY1 7 6 5 WORDADDR1 WORDADD1 4 3 2 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR1: corrupted Bit Address in the page between the 512th and the 1023rd bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR1: corrupted Word Address in the page between the 512th and the 1023rd bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY1: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 273 24.6.3 ECC Parity Register 2 Name: ECC_PR2 Address: 0xFFFFE818 Access: Read-only 31 - 23 30 - 22 29 - 21 28 - 20 27 - 19 26 - 18 11 10 25 - 17 24 - 16 9 8 1 BITADDR2 0 NPARITY2 15 14 13 12 NPARITY2 7 6 5 WORDADDR2 WORDADD2 4 3 2 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR2: corrupted Bit Address in the page between the 1023rd and the 1535th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR2: corrupted Word Address in the page in the page between the 1023rd and the 1535th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY2: Parity N 274 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.6.4 ECC Parity Register 3 Name: ECC_PR3 Address: 0xFFFFE81C Access: Read-only 31 - 23 30 - 22 29 - 21 28 - 20 27 - 19 26 - 18 11 10 25 - 17 24 - 16 9 8 1 BITADDR3 0 NPARITY3 15 14 13 12 NPARITY3 7 6 5 WORDADDR3 WORDADD3 4 3 2 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR3: corrupted Bit Address in the page between the1536th and the 2047th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR3 corrupted Word Address in the page between the 1536th and the 2047th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY3: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 275 24.6.5 ECC Parity Register 4 Name: ECC_PR4 Address: 0xFFFFE820 Access: Read-only 31 - 23 30 - 22 29 - 21 28 - 20 27 - 19 26 - 18 11 10 25 - 17 24 - 16 9 8 1 BITADDR4 0 NPARITY4 15 14 13 12 NPARITY4 7 6 5 WORDADDR4 WORDADD4 4 3 2 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR4: corrupted Bit Address in the page between the 2048th and the 2559th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR4: corrupted Word Address in the page between the 2048th and the 2559th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY4: Parity N 276 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.6.6 ECC Parity Register 5 Name: ECC_PR5 Address: 0xFFFFE824 Access: Read-only 31 - 23 30 - 22 29 - 21 28 - 20 27 - 19 26 - 18 11 10 25 - 17 24 - 16 9 8 1 BITADDR5 0 NPARITY5 15 14 13 12 NPARITY5 7 6 5 WORDADDR5 WORDADD5 4 3 2 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR5: corrupted Bit Address in the page between the 2560th and the 3071st bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR5: corrupted Word Address in the page between the 2560th and the 3071st bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY5: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 277 24.6.7 ECC Parity Register 6 Name: ECC_PR6 Address: 0xFFFFE828 Access: Read-only 31 - 23 30 - 22 29 - 21 28 - 20 27 - 19 26 - 18 11 10 25 - 17 24 - 16 9 8 1 BITADDR6 0 NPARITY6 15 14 13 12 NPARITY6 7 6 5 WORDADDR6 WORDADD6 4 3 2 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR6: corrupted Bit Address in the page between the 3072nd and the 3583rd bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR6: corrupted Word Address in the page between the 3072nd and the 3583rd bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY6: Parity N 278 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.6.8 ECC Parity Register 7 Name: ECC_PR7 Address: 0xFFFFE82C Access: Read-only 31 - 23 30 - 22 29 - 21 28 - 20 27 - 19 26 - 18 11 10 25 - 17 24 - 16 9 8 1 BITADDR7 0 NPARITY7 15 14 13 12 NPARITY7 7 6 5 WORDADDR7 WORDADD7 4 3 2 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR7: corrupted Bit Address in the page between the 3584h and the 4095th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR7: corrupted Word Address in the page between the 3584th and the 4095th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY7: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 279 24.7 Registers for 1 ECC per 256 bytes for a page of 512/2048/4096 bytes, 8-bit word 24.7.1 ECC Parity Register 0 Name: ECC_PR0 Address: 0xFFFFE80C Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 14 13 12 7 6 5 WORDADDR0 4 NPARITY0 27 - 19 NPARITY0 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADD0 1 BITADDR0 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR0: corrupted Bit Address in the page between the first byte and the 255th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR0: corrupted Word Address in the page between the first byte and the 255th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY0: Parity N 280 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.7.2 ECC Parity Register 1 Name: ECC_PR1 Address: 0xFFFFE810 Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR1 4 14 NPARITY1 7 6 27 - 19 NPARITY1 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADD1 1 BITADDR1 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area * BITADDR1: corrupted Bit Address in the page between the 256th and the 511th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR1: corrupted Word Address in the page between the 256th and the 511th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY1: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 281 24.7.3 ECC Parity Register 2 Name: ECC_PR2 Address: 0xFFFFE818 Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR2 4 14 NPARITY2 7 6 27 - 19 NPARITY2 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADD2 1 BITADDR2 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR2: corrupted Bit Address in the page between the 512th and the 767th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR2: corrupted Word Address in the page between the 512th and the 767th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY2: Parity N 282 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.7.4 ECC Parity Register 3 Name: ECC_PR3 Address: 0xFFFFE81C Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR3 4 14 NPARITY3 7 6 27 - 19 NPARITY3 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADD3 1 BITADDR3 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR3: corrupted Bit Address in the page between the 768th and the 1023rd bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR3: corrupted Word Address in the page between the 768th and the 1023rd bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless * NPARITY3: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 283 24.7.5 ECC Parity Register 4 Name: ECC_PR4 Address: 0xFFFFE820 Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR4 4 14 NPARITY4 7 6 27 - 19 NPARITY4 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADD4 1 BITADDR4 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area * BITADDR4: corrupted bit address in the page between the 1024th and the 1279th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR4: corrupted word address in the page between the 1024th and the 1279th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY4: Parity N 284 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.7.6 ECC Parity Register 5 Name: ECC_PR5 Address: 0xFFFFE824 Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR5 4 14 NPARITY5 7 6 27 - 19 NPARITY5 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADD5 1 BITADDR5 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR5: corrupted Bit Address in the page between the 1280th and the 1535th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR5: corrupted Word Address in the page between the 1280th and the 1535th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY5: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 285 24.7.7 ECC Parity Register 6 Name: ECC_PR6 Address: 0xFFFFE828 Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR6 4 14 NPARITY6 7 6 27 - 19 NPARITY6 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR6 1 BITADDR6 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR6: corrupted bit address in the page between the 1536th and the1791st bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR6: corrupted word address in the page between the 1536th and the1791st bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY6: Parity N 286 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.7.8 ECC Parity Register 7 Name: ECC_PR7 Address: 0xFFFFE82C Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR7 4 14 NPARITY7 7 6 27 - 19 NPARITY7 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR7 1 BITADDR7 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR7: corrupted Bit Address in the page between the 1792nd and the 2047th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR7: corrupted Word Address in the page between the 1792nd and the 2047th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY7: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 287 24.7.9 ECC Parity Register 8 Name: ECC_PR8 Address: 0xFFFFE830 Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR8 4 14 NPARITY8 7 6 27 - 19 NPARITY8 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR8 1 BITADDR8 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR8: corrupted Bit Address in the page between the 2048th and the2303rd bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR8: corrupted Word Address in the page between the 2048th and the 2303rd bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY8: Parity N. 288 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.7.10 ECC Parity Register 9 Name: ECC_PR9 Address: 0xFFFFE834 Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR9 4 14 NPARITY9 7 6 27 - 19 NPARITY9 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR9 1 BITADDR9 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR9: corrupted bit address in the page between the 2304th and the 2559th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR9: corrupted word address in the page between the 2304th and the 2559th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless * NPARITY9: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 289 24.7.11 ECC Parity Register 10 Name: ECC_PR10 Address: 0xFFFFE838 Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR10 4 14 NPARITY10 7 6 27 - 19 NPARITY10 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR10 1 BITADDR10 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR10: corrupted Bit Address in the page between the 2560th and the2815th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR10: corrupted Word Address in the page between the 2560th and the 2815th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY10: Parity N 290 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.7.12 ECC Parity Register 11 Name: ECC_PR11 Address: 0xFFFFE83C Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR11 4 14 NPARITY11 7 6 27 - 19 NPARITY11 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR11 1 BITADDR11 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR11: corrupted Bit Address in the page between the 2816th and the 3071st bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR11: corrupted Word Address in the page between the 2816th and the 3071st bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY11: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 291 24.7.13 ECC Parity Register 12 Name: ECC_PR12 Address: 0xFFFFE840 Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR12 4 14 NPARITY12 7 6 27 - 19 NPARITY12 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR12 1 BITADDR12 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR12; corrupted Bit Address in the page between the 3072nd and the 3327th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR12: corrupted Word Address in the page between the 3072nd and the 3327th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY12: Parity N 292 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.7.14 ECC Parity Register 13 Name: ECC_PR13 Address: 0xFFFFE844 Access: Read-only 31 - 23 0 15 7 30 - 22 29 - 21 14 13 NPARITY13 6 5 WORDADDR13 28 - 20 12 4 27 - 19 NPARITY13 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR13 1 BITADDR13 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR13: corrupted Bit Address in the page between the 3328th and the 3583rd bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR13: corrupted Word Address in the page between the 3328th and the 3583rd bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY13: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 293 24.7.15 ECC Parity Register 14 Name: ECC_PR14 Address: 0xFFFFE848 Access: Read-only 31 - 23 0 15 7 30 - 22 29 - 21 14 13 NPARITY14 6 5 WORDADDR14 28 - 20 12 4 27 - 19 NPARITY14 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR14 1 BITADDR14 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR14: corrupted Bit Address in the page between the 3584th and the 3839th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR14: corrupted Word Address in the page between the 3584th and the 3839th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY14: Parity N 294 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 24.7.16 ECC Parity Register 15 Name: ECC_PR15 Address: 0xFFFFE84C Access: Read-only 31 - 23 0 15 30 - 22 29 - 21 28 - 20 13 12 5 WORDADDR15 4 14 NPARITY15 7 6 27 - 19 NPARITY15 11 0 3 26 - 18 25 - 17 24 - 16 10 9 WORDADDR15 1 BITADDR15 8 2 0 Once the entire main area of a page is written with data, the register content must be stored at any free location of the spare area. * BITADDR15: corrupted Bit Address in the page between the 3840th and the 4095th bytes During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * WORDADDR15: corrupted Word Address in the page between the 3840th and the 4095th bytes During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless. * NPARITY15: Parity N SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 295 25. Peripheral DMA Controller (PDC) 25.1 Description The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the on- and/or off-chip memories. The link between the PDC and a serial peripheral is operated by the AHB to ABP bridge. The PDC contains 22 channels. The full-duplex peripherals feature 21 mono directional channels used in pairs (transmit only or receive only). The half-duplex peripherals feature 1 bi-directional channels. The user interface of each PDC channel is integrated into the user interface of the peripheral it serves. The user interface of mono directional channels (receive only or transmit only), contains two 32-bit memory pointers and two 16-bit counters, one set (pointer, counter) for current transfer and one set (pointer, counter) for next transfer. The bi-directional channel user interface contains four 32-bit memory pointers and four 16-bit counters. Each set (pointer, counter) is used by current transmit, next transmit, current receive and next receive. Using the PDC removes processor overhead by reducing its intervention during the transfer. This significantly reduces the number of clock cycles required for a data transfer, which improves microcontroller performance. To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and receive signals. When the programmed data is transferred, an end of transfer interrupt is generated by the peripheral itself. 296 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 25.2 Block Diagram Figure 25-1. Block Diagram FULL DUPLEX PERIPHERAL PDC THR PDC Channel A RHR PDC Channel B Control Status & Control HALF DUPLEX PERIPHERAL Control THR PDC Channel C RHR Control Status & Control RECEIVE or TRANSMIT PERIPHERAL RHR or THR Control PDC Channel D Status & Control SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 297 25.3 Functional Description 25.3.1 Configuration The PDC channel user interface enables the user to configure and control data transfers for each channel. The user interface of each PDC channel is integrated into the associated peripheral user interface. The user interface of a serial peripheral, whether it is full or half duplex, contains four 32-bit pointers (RPR, RNPR, TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR, TNCR). However, the transmit and receive parts of each type are programmed differently: the transmit and receive parts of a full duplex peripheral can be programmed at the same time, whereas only one part (transmit or receive) of a half duplex peripheral can be programmed at a time. 32-bit pointers define the access location in memory for current and next transfer, whether it is for read (transmit) or write (receive). 16-bit counters define the size of current and next transfers. It is possible, at any moment, to read the number of transfers left for each channel. The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for each channel. The status for each channel is located in the associated peripheral status register. Transfers can be enabled and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in the peripheral's Transfer Control Register. At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These flags are visible in the peripheral status register (ENDRX, ENDTX, RXBUFF, and TXBUFE). Refer to Section 25.3.3 and to the associated peripheral user interface. 25.3.2 Memory Pointers Each full duplex peripheral is connected to the PDC by a receive channel and a transmit channel. Both channels have 32-bit memory pointers that point respectively to a receive area and to a transmit area in on- and/or off-chip memory. Each half duplex peripheral is connected to the PDC by a bidirectional channel. This channel has two 32-bit memory pointers, one for current transfer and the other for next transfer. These pointers point to transmit or receive data depending on the operating mode of the peripheral. Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented respectively by 1, 2 or 4 bytes. If a memory pointer address changes in the middle of a transfer, the PDC channel continues operating using the new address. 25.3.3 Transfer Counters Each channel has two 16-bit counters, one for current transfer and the other one for next transfer. These counters define the size of data to be transferred by the channel. The current transfer counter is decremented first as the data addressed by current memory pointer starts to be transferred. When the current transfer counter reaches zero, the channel checks its next transfer counter. If the value of next counter is zero, the channel stops transferring data and sets the appropriate flag. But if the next counter value is greater then zero, the values of the next pointer/next counter are copied into the current pointer/current counter and the channel resumes the transfer whereas next pointer/next counter get zero/zero as values. At the end of this transfer the PDC channel sets the appropriate flags in the Peripheral Status Register. The following list gives an overview of how status register flags behave depending on the counters' values: 298 ENDRX flag is set when the PERIPH_RCR reaches zero. RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero. ENDTX flag is set when the PERIPH_TCR reaches zero. TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 These status flags are described in the Peripheral Status Register. 25.3.4 Data Transfers The serial peripheral triggers its associated PDC channels' transfers using transmit enable (TXEN) and receive enable (RXEN) flags in the transfer control register integrated in the peripheral's user interface. When the peripheral receives an external data, it sends a Receive Ready signal to its PDC receive channel which then requests access to the Matrix. When access is granted, the PDC receive channel starts reading the peripheral Receive Holding Register (RHR). The read data are stored in an internal buffer and then written to memory. When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then requests access to the Matrix. When access is granted, the PDC transmit channel reads data from memory and puts them to Transmit Holding Register (THR) of its associated peripheral. The same peripheral sends data according to its mechanism. 25.3.5 PDC Flags and Peripheral Status Register Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the PDC sends back flags to the peripheral. All these flags are only visible in the Peripheral Status Register. Depending on the type of peripheral, half or full duplex, the flags belong to either one single channel or two different channels. 25.3.5.1 Receive Transfer End This flag is set when PERIPH_RCR reaches zero and the last data has been transferred to memory. It is reset by writing a non zero value in PERIPH_RCR or PERIPH_RNCR. 25.3.5.2 Transmit Transfer End This flag is set when PERIPH_TCR reaches zero and the last data has been written into peripheral THR. It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR. 25.3.5.3 Receive Buffer Full This flag is set when PERIPH_RCR reaches zero with PERIPH_RNCR also set to zero and the last data has been transferred to memory. It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR. 25.3.5.4 Transmit Buffer Empty This flag is set when PERIPH_TCR reaches zero with PERIPH_TNCR also set to zero and the last data has been written into peripheral THR. It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 299 25.4 Peripheral DMA Controller (PDC) User Interface Table 25-1. Note: 300 Register Mapping Offset Register Name(1) 0x100 Receive Pointer Register 0x104 Access Reset PERIPH_RPR Read/Write 0 Receive Counter Register PERIPH_RCR Read/Write 0 0x108 Transmit Pointer Register PERIPH_TPR Read/Write 0 0x10C Transmit Counter Register PERIPH_TCR Read/Write 0 0x110 Receive Next Pointer Register PERIPH_RNPR Read/Write 0 0x114 Receive Next Counter Register PERIPH_RNCR Read/Write 0 0x118 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0 0x11C Transmit Next Counter Register PERIPH_TNCR Read/Write 0 0x120 Transfer Control Register PERIPH_PTCR Write-only - 0x124 Transfer Status Register PERIPH_PTSR Read-only 0 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user according to the function and the peripheral desired (DBGU, USART, SSC, SPI, MCI, etc.) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 25.4.1 Receive Pointer Register Name: PERIPH_RPR Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 RXPTR 23 22 21 20 RXPTR 15 14 13 12 RXPTR 7 6 5 4 RXPTR * RXPTR: Receive Pointer Register RXPTR must be set to receive buffer address. When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 301 25.4.2 Receive Counter Register Name: PERIPH_RCR Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 RXCTR 7 6 5 4 RXCTR * RXCTR: Receive Counter Register RXCTR must be set to receive buffer size. When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR. 0: Stops peripheral data transfer to the receiver 1-65535 = Starts peripheral data transfer if corresponding channel is active 302 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 25.4.3 Transmit Pointer Register Name: PERIPH_TPR Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 TXPTR 23 22 21 20 TXPTR 15 14 13 12 TXPTR 7 6 5 4 TXPTR * TXPTR: Transmit Counter Register TXPTR must be set to transmit buffer address. When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 303 25.4.4 Transmit Counter Register Name: PERIPH_TCR Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 TXCTR 7 6 5 4 TXCTR * TXCTR: Transmit Counter Register TXCTR must be set to transmit buffer size. When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR. 0: Stops peripheral data transfer to the transmitter 1- 65535 = Starts peripheral data transfer if corresponding channel is active 304 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 25.4.5 Receive Next Pointer Register Name: PERIPH_RNPR Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 RXNPTR 23 22 21 20 RXNPTR 15 14 13 12 RXNPTR 7 6 5 4 RXNPTR * RXNPTR: Receive Next Pointer RXNPTR contains next receive buffer address. When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 305 25.4.6 Receive Next Counter Register Name: PERIPH_RNCR Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 RXNCTR 7 6 5 4 RXNCTR * RXNCTR: Receive Next Counter RXNCTR contains next receive buffer size. When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR. 306 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 25.4.7 Transmit Next Pointer Register Name: PERIPH_TNPR Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 TXNPTR 23 22 21 20 TXNPTR 15 14 13 12 TXNPTR 7 6 5 4 TXNPTR * TXNPTR: Transmit Next Pointer TXNPTR contains next transmit buffer address. When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 307 25.4.8 Transmit Next Counter Register Name: PERIPH_TNCR Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 TXNCTR 7 6 5 4 TXNCTR * TXNCTR: Transmit Counter Next TXNCTR contains next transmit buffer size. When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR. 308 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 25.4.9 Transfer Control Register Name: PERIPH_PTCR Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 TXTDIS 8 TXTEN 7 - 6 - 5 - 4 - 3 - 2 - 1 RXTDIS 0 RXTEN * RXTEN: Receiver Transfer Enable 0: No effect. 1: Enables PDC receiver channel requests if RXTDIS is not set. When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral. * RXTDIS: Receiver Transfer Disable 0: No effect. 1: Disables the PDC receiver channel requests. When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmitter channel requests. * TXTEN: Transmitter Transfer Enable 0: No effect. 1: Enables the PDC transmitter channel requests. When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral. * TXTDIS: Transmitter Transfer Disable 0: No effect. 1: Disables the PDC transmitter channel requests. When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver channel requests. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 309 25.4.10 Transfer Status Register Name: PERIPH_PTSR Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 TXTEN 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 RXTEN * RXTEN: Receiver Transfer Enable 0: PDC Receiver channel requests are disabled. 1: PDC Receiver channel requests are enabled. * TXTEN: Transmitter Transfer Enable 0: PDC Transmitter channel requests are disabled. 1: PDC Transmitter channel requests are enabled. 310 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 26. Clock Generator 26.1 Description The Clock Generator is made up of 2 PLL, a Main Oscillator, as well as an RC Oscillator and a 32768 Hz lowpower Oscillator. It provides the following clocks: SLCK, the Slow Clock, which is the only permanent clock within the system MAINCK is the output of the Main Oscillator The Clock Generator User Interface is embedded within the Power Management Controller one and is described in Section 27.9. However, the Clock Generator registers are named CKGR_. 26.2 PLLACK is the output of the Divider and PLL A block PLLBCK is the output of the Divider and PLL B block Clock Generator Block Diagram Figure 26-1. Clock Generator Block Diagram Clock Generator OSC_SEL On Chip RC OSC XIN32 Slow Clock SLCK Slow Clock Oscillator XOUT32 XIN Main Oscillator Main Clock MAINCK PLL and Divider A PLLA Clock PLLACK PLL and Divider B PLLB Clock PLLBCK XOUT PLLRCA Status Control Power Management Controller SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 311 26.3 Slow Clock Crystal Oscillator The Clock Generator integrates a 32768 Hz low-power oscillator. The XIN32 and XOUT32 pins must be connected to a 32768 Hz crystal. Two external capacitors must be wired as shown in Figure 26-2. Figure 26-2. Typical Slow Clock Crystal Oscillator Connection XIN32 XOUT32 GNDBU 32768 Hz Crystal 26.4 Slow Clock RC Oscillator The user has to take into account the possible drifts of the RC Oscillator. More details are given in the section "DC Characteristics" of the product datasheet. 26.5 Slow Clock Selection The SAM9XE128/256/512 slow clock can be generated either by an external 32768 Hz crystal or the on-chip RC oscillator. The startup counter delay for the slow clock oscillator depends on the OSCSEL signal. The 32768 Hz startup delay is 1200 ms whereas it is 200 s for the internal RC oscillator. The pin OSCSEL must be tied either to GNDBU or VDDBU for correct operation of the device. Refer to the Slow Clock Selection table in the Electrical Characteristics section of the product datasheet for the states of the OSCSEL signal. 26.6 Main Oscillator Figure 26-3 shows the Main Oscillator block diagram. Figure 26-3. Main Oscillator Block Diagram MOSCEN XIN Main Oscillator XOUT MAINCK Main Clock OSCOUNT SLCK Slow Clock Main Oscillator Counter Main Clock Frequency Counter 312 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 MOSCS MAINF MAINRDY 26.6.1 Main Oscillator Connections The Clock Generator integrates a Main Oscillator that is designed for a 3 to 20 MHz fundamental crystal. The typical crystal connection is illustrated in Figure 26-4. The 1 k resistor is only required for crystals with frequencies lower than 8 MHz. For further details on the electrical characteristics of the Main Oscillator, see the section "DC Characteristics" of the product datasheet. Figure 26-4. Typical Crystal Connection AT91 Microcontroller XIN XOUT GND 1K 26.6.2 Main Oscillator Startup Time The startup time of the Main Oscillator is given in the DC Characteristics section of the product datasheet. The startup time depends on the crystal frequency and decreases when the frequency rises. 26.6.3 Main Oscillator Control To minimize the power required to start up the system, the main oscillator is disabled after reset and slow clock is selected. The software enables or disables the main oscillator so as to reduce power consumption by clearing the MOSCEN bit in the Main Oscillator Register (CKGR_MOR). When disabling the main oscillator by clearing the MOSCEN bit in CKGR_MOR, the MOSCS bit in PMC_SR is automatically cleared, indicating the main clock is off. When enabling the main oscillator, the user must initiate the main oscillator counter with a value corresponding to the startup time of the oscillator. This startup time depends on the crystal frequency connected to the main oscillator. When the MOSCEN bit and the OSCOUNT are written in CKGR_MOR to enable the main oscillator, the MOSCS bit in PMC_SR (Status Register) is cleared and the counter starts counting down on the slow clock divided by 8 from the OSCOUNT value. Since the OSCOUNT value is coded with 8 bits, the maximum startup time is about 62 ms. When the counter reaches 0, the MOSCS bit is set, indicating that the main clock is valid. Setting the MOSCS bit in PMC_IMR can trigger an interrupt to the processor. 26.6.4 Main Clock Frequency Counter The Main Oscillator features a Main Clock frequency counter that provides the quartz frequency connected to the Main Oscillator. Generally, this value is known by the system designer; however, it is useful for the boot program to configure the device with the correct clock speed, independently of the application. The Main Clock frequency counter starts incrementing at the Main Clock speed after the next rising edge of the Slow Clock as soon as the Main Oscillator is stable, i.e., as soon as the MOSCS bit is set. Then, at the 16th falling edge of Slow Clock, the MAINRDY bit in CKGR_MCFR (Main Clock Frequency Register) is set and the counter SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 313 stops counting. Its value can be read in the MAINF field of CKGR_MCFR and gives the number of Main Clock cycles during 16 periods of Slow Clock, so that the frequency of the crystal connected on the Main Oscillator can be determined. 26.6.5 Main Oscillator Bypass The user can input a clock on the device instead of connecting a crystal. In this case, the user has to provide the external clock signal on the XIN pin. The input characteristics of the XIN pin under these conditions are given in the product electrical characteristics section. The programmer has to be sure to set the OSCBYPASS bit to 1 and the MOSCEN bit to 0 in the Main OSC register (CKGR_MOR) for the external clock to operate properly. 26.7 Divider and PLL Block The PLL embeds an input divider to increase the accuracy of the resulting clock signals. However, the user must respect the PLL minimum input frequency when programming the divider. Figure 26-5 shows the block diagram of the divider and PLL blocks. Figure 26-5. Divider and PLL Block Diagram DIVB MULB Divider B MAINCK DIVA OUTB PLL B MULA Divider A PLLBCK OUTA PLL A PLLACK PLLRCA PLLBCOUNT PLL B Counter LOCKB PLLACOUNT SLCK 314 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 PLL A Counter LOCKA 26.7.1 PLL Filter The PLL requires connection to an external second-order filter through the PLLRCA and/or PLLRCB pin. Figure 26-6 shows a schematic of these filters. Figure 26-6. PLL Capacitors and Resistors PLLRC PLL R C2 C1 GND Values of R, C1 and C2 to be connected to the PLLRC pin must be calculated as a function of the PLL input frequency, the PLL output frequency and the phase margin. A trade-off has to be found between output signal overshoot and startup time. 26.7.2 Divider and Phase Lock Loop Programming The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is set to 0, the output of the corresponding divider and the PLL output is a continuous signal at level 0. On reset, each DIV field is set to 0, thus the corresponding PLL input clock is set to 0. The PLL allows multiplication of the divider's outputs. The PLL clock signal has a frequency that depends on the respective source signal frequency and on the parameters DIV and MUL. The factor applied to the source signal frequency is (MUL + 1)/DIV. When MUL is written to 0, the corresponding PLL is disabled and its power consumption is saved. Re-enabling the PLL can be performed by writing a value higher than 0 in the MUL field. Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK bit (LOCKA or LOCKB) in PMC_SR is automatically cleared. The values written in the PLLCOUNT field (PLLACOUNT or PLLBCOUNT) in CKGR_PLLR (CKGR_PLLAR or CKGR_PLLBR), are loaded in the PLL counter. The PLL counter then decrements at the speed of the Slow Clock until it reaches 0. At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the processor. The user has to load the number of Slow Clock cycles required to cover the PLL transient time into the PLLCOUNT field. The transient time depends on the PLL filter. The initial state of the PLL and its target frequency can be calculated using a specific tool provided by Atmel. During the PLLA or PLLB initialization, the PMC_PLLICPR must be programmed correctly. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 315 27. Power Management Controller (PMC) 27.1 Description The Power Management Controller (PMC) optimizes power consumption by controlling all system and user peripheral clocks. The PMC enables/disables the clock inputs to many of the peripherals and the ARM Processor. The Power Management Controller provides the following clocks: MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating frequency of the device. It is available to the modules running permanently, such as the AIC and the Memory Controller. Processor Clock (PCK), must be switched off when entering processor in Idle Mode. Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SSC, SPI, TWI, TC, MCI, etc.) and independently controllable. In order to reduce the number of clock names in a product, the Peripheral Clocks are named MCK in the product datasheet. UHP Clock (UHPCK), required by USB Host Port operations. Programmable Clock Outputs can be selected from the clocks provided by the clock generator and driven on the PCKx pins. Five flexible operating modes: Normal Mode, processor and peripherals running at a programmable frequency Idle Mode, processor stopped waiting for an interrupt Slow Clock Mode, processor and peripherals running at low frequency Standby Mode, mix of Idle and Backup Mode, peripheral running at low frequency, processor stopped waiting for an interrupt Backup Mode, Main Power Supplies off, VDDBU powered by a battery Figure 27-1. SAM9XE128/256/512 Power Management Controller Block Diagram Processor Clock Controller int Master Clock Controller SLCK MAINCK PLLACK PLLBCK Prescaler /1,/2,/4,...,/64 PCK Idle Mode Divider /1,/2,/4 MCK Peripherals Clock Controller periph_clk[..] ON/OFF Programmable Clock Controller SLCK MAINCK PLLACK PLLBCK PLLBCK 316 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 ON/OFF Prescaler /1,/2,/4,...,/64 USB Clock Controller ON/OFF Divider /1,/2,/4 pck[..] UDPCK UHPCK 27.2 Master Clock Controller The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is the clock provided to all the peripherals and the memory controller. The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting the Slow Clock provides a Slow Clock signal to the whole device. Selecting the Main Clock saves power consumption of the PLLs. The Master Clock Controller is made up of a clock selector and a prescaler. It also contains a Master Clock divider which allows the processor clock to be faster than the Master Clock. The Master Clock selection is made by writing the CSS field (Clock Source Selection) in PMC_MCKR (Master Clock Register). The prescaler supports the division by a power of 2 of the selected clock between 1 and 64. The PRES field in PMC_MCKR programs the prescaler. The Master Clock divider can be programmed through the MDIV field in PMC_MCKR. Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in PMC_SR. It reads 0 until the Master Clock is established. Then, the MCKRDY bit is set and can trigger an interrupt to the processor. This feature is useful when switching from a high-speed clock to a lower one to inform the software when the change is actually done. Figure 27-2. Master Clock Controller PMC_MCKR CSS PMC_MCKR PRES PMC_MCKR MDIV SLCK MAINCK PLLACK Master Clock Prescaler Master Clock Divider MCK PLLBCK To the Processor Clock Controller (PCK) 27.3 Processor Clock Controller The PMC features a Processor Clock Controller (PCK) that implements the Processor Idle Mode. The Processor Clock can be disabled by writing the System Clock Disable Register (PMC_SCDR). The status of this clock (at least for debug purposes) can be read in the System Clock Status Register (PMC_SCSR). The Processor Clock PCK is enabled after a reset and is automatically re-enabled by any enabled interrupt. The Processor Idle Mode is achieved by disabling the Processor Clock and entering Wait for Interrupt Mode. The Processor Clock is automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the product. Note: The ARM Wait for Interrupt mode is entered with CP15 coprocessor operation. Refer to the Atmel application note Optimizing Power Consumption of AT91SAM9261-based Systems, lit. number 6217. When the Processor Clock is disabled, the current instruction is finished before the clock is stopped, but this does not prevent data transfers from other masters of the system bus. 27.4 USB Clock Controller The USB Source Clock is always generated from the PLL B output. If using the USB, the user must program the PLL to generate a 48 MHz, a 96 MHz or a 192 MHz signal with an accuracy of 0.25% depending on the USBDIV bit in CKGR_PLLBR (see Figure 27-3). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 317 When the PLL B output is stable, i.e., the LOCKB is set: The USB host clock can be enabled by setting the UHP bit in PMC_SCER. To save power on this peripheral when it is not used, the user can set the UHP bit in PMC_SCDR. The UHP bit in PMC_SCSR gives the activity of this clock. The USB host port require both the 12/48 MHz signal and the Master Clock. The Master Clock may be controlled via the Master Clock Controller. Figure 27-3. USB Clock Controller USBDIV USB Source Clock UDP Clock (UDPCK) Divider /1,/2,/4 UDP UHP Clock (UHPCK) UHP 27.5 Peripheral Clock Controller The Power Management Controller controls the clocks of each embedded peripheral by the way of the Peripheral Clock Controller. The user can individually enable and disable the Master Clock on the peripherals by writing into the Peripheral Clock Enable (PMC_PCER) and Peripheral Clock Disable (PMC_PCDR) registers. The status of the peripheral clock activity can be read in the Peripheral Clock Status Register (PMC_PCSR). When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are automatically disabled after a reset. In order to stop a peripheral, it is recommended that the system software wait until the peripheral has executed its last programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the system. The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR, and PMC_PCSR) is the Peripheral Identifier defined at the product level. Generally, the bit number corresponds to the interrupt source number assigned to the peripheral. 27.6 Programmable Clock Output Controller The PMC controls two signals to be output on external pins PCKx. Each signal can be independently programmed via the PMC_PCKx registers. PCKx can be independently selected between the Slow clock, the PLL A output, the PLL B output and the main clock by writing the CSS field in PMC_PCKx. Each output signal can also be divided by a power of 2 between 1 and 64 by writing the PRES (Prescaler) field in PMC_PCKx. Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of PMC_SCER and PMC_SCDR, respectively. Status of the active programmable output clocks are given in the PCKx bits of PMC_SCSR (System Clock Status Register). Moreover, like the PCK, a status bit in PMC_SR indicates that the Programmable Clock is actually what has been programmed in the Programmable Clock registers. As the Programmable Clock Controller does not manage with glitch prevention when switching clocks, it is strongly recommended to disable the Programmable Clock before any configuration change and to re-enable it after the change is actually performed. 318 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27.7 Programming Sequence 1. Enabling the Main Oscillator: The main oscillator is enabled by setting the MOSCEN field in the CKGR_MOR. In some cases it may be advantageous to define a start-up time. This can be achieved by writing a value in the OSCOUNT field in the CKGR_MOR. Once this register has been correctly configured, the user must wait for MOSCS field in the PMC_SR to be set. This can be done either by polling the status register or by waiting the interrupt line to be raised if the associated interrupt to MOSCS has been enabled in the PMC_IER. Code Example: write_register(CKGR_MOR,0x00000701) Start Up Time = 8 * OSCOUNT / SLCK = 56 Slow Clock Cycles. So, the main oscillator will be enabled (MOSCS bit set) after 56 Slow Clock Cycles. 2. Checking the Main Oscillator Frequency (Optional): In some situations the user may need an accurate measure of the main oscillator frequency. This measure can be accomplished via the CKGR_MCFR. Once the MAINRDY field is set in CKGR_MCFR, the user may read the MAINF field in CKGR_MCFR. This provides the number of main clock cycles within sixteen slow clock cycles. 3. Setting PLL A and divider A: All parameters necessary to configure PLL A and divider A are located in the CKGR_PLLAR. ICPPLLA in PMC_PLLICPR must be set to 1 before configuring the CKGR_PLLAR. It is important to note that Bit 29 must always be set to 1 when programming the CKGR_PLLAR. The DIVA field is used to control the divider A itself. The user can program a value between 0 and 255. Divider A output is divider A input divided by DIVA. By default, DIVA parameter is set to 0 which means that divider A is turned off. The OUTA field is used to select the PLL A output frequency range. The MULA field is the PLL A multiplier factor. This parameter can be programmed between 0 and 2047. If MULA is set to 0, PLL A will be turned off. Otherwise PLL A output frequency is PLL A input frequency multiplied by (MULA + 1). The PLLACOUNT field specifies the number of slow clock cycles before LOCKA bit is set in the PMC_SR after CKGR_PLLAR has been written. Once CKGR_PLLAR has been written, the user is obliged to wait for the LOCKA bit to be set in the PMC_SR. This can be done either by polling the status register or by waiting the interrupt line to be raised if the associated interrupt to LOCKA has been enabled in the PMC_IER. All parameters in CKGR_PLLAR can be programmed in a single write operation. If at some stage one of the following parameters, SRCA, MULA, DIVA is modified, LOCKA bit will go low to indicate that PLL A is not ready yet. When PLL A is locked, LOCKA will be set again. User has to wait for LOCKA bit to be set before using the PLL A output clock. Code Example: write_register(CKGR_PLLAR,0x20030605) PLL A and divider A are enabled. PLL A input clock is main clock divided by 5. PLL An output clock is PLL A input clock multiplied by 4. Once CKGR_PLLAR has been written, LOCKA bit will be set after six slow clock cycles. 4. Setting PLL B and divider B: SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 319 All parameters needed to configure PLL B and divider B are located in the CKGR_PLLBR. ICPPLLB in PMC_PLLICPR must be set to 1 before configuring the CKGR_PLLBR. The DIVB field is used to control divider B itself. A value between 0 and 255 can be programmed. Divider B output is divider B input divided by DIVB parameter. By default DIVB parameter is set to 0 which means that divider B is turned off. The OUTB field is used to select the PLL B output frequency range. The MULB field is the PLL B multiplier factor. This parameter can be programmed between 0 and 2047. If MULB is set to 0, PLL B will be turned off, otherwise the PLL B output frequency is PLL B input frequency multiplied by (MULB + 1). The PLLBCOUNT field specifies the number of slow clock cycles before LOCKB bit is set in the PMC_SR after CKGR_PLLBR has been written. Once the PMC_PLLB register has been written, the user must wait for the LOCKB bit to be set in the PMC_SR. This can be done either by polling the status register or by waiting the interrupt line to be raised if the associated interrupt to LOCKB has been enabled in the PMC_IER. All parameters in CKGR_PLLBR can be programmed in a single write operation. If at some stage one of the following parameters, MULB, DIVB is modified, LOCKB bit will go low to indicate that PLL B is not ready yet. When PLL B is locked, LOCKB will be set again. The user is constrained to wait for LOCKB bit to be set before using the PLL A output clock. The USBDIV field is used to control the additional divider by 1, 2 or 4, which generates the USB clock(s). Code Example: write_register(CKGR_PLLBR,0x00040805) If PLL B and divider B are enabled, the PLL B input clock is the main clock. PLL B output clock is PLL B input clock multiplied by 5. Once CKGR_PLLBR has been written, LOCKB bit will be set after eight slow clock cycles. 5. Selection of Master Clock and Processor Clock The Master Clock and the Processor Clock are configurable via the PMC_MCKR. The CSS field is used to select the Master Clock divider source. By default, the selected clock source is slow clock. The PRES field is used to control the Master Clock prescaler. The user can choose between different values (1, 2, 4, 8, 16, 32, 64). Master Clock output is prescaler input divided by PRES parameter. By default, PRES parameter is set to 0 which means that master clock is equal to slow clock. The MDIV field is used to control the Master Clock divider. It is possible to choose between different values (0, 1, 2). The Master Clock output is Processor Clock divided by 1, 2 or 4, depending on the value programmed in MDIV. By default, MDIV is set to 0, which indicates that the Processor Clock is equal to the Master Clock. Once the PMC_MCKR has been written, the user must wait for the MCKRDY bit to be set in the PMC_SR. This can be done either by polling the status register or by waiting for the interrupt line to be raised if the associated interrupt to MCKRDY has been enabled in the PMC_IER. The PMC_MCKR must not be programmed in a single write operation. The preferred programming sequence for the PMC_MCKR is as follows: If a new value for CSS field corresponds to PLL Clock, 320 Program the PRES field in the PMC_MCKR. Wait for the MCKRDY bit to be set in the PMC_SR. Program the CSS field in the PMC_MCKR. Wait for the MCKRDY bit to be set in the PMC_SR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 If a new value for CSS field corresponds to Main Clock or Slow Clock, Program the CSS field in the PMC_MCKR. Wait for the MCKRDY bit to be set in the PMC_SR. Program the PRES field in the PMC_MCKR. Wait for the MCKRDY bit to be set in the PMC_SR. If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY bit will go low to indicate that the Master Clock and the Processor Clock are not ready yet. The user must wait for MCKRDY bit to be set again before using the Master and Processor Clocks. Note: IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in CKGR_PLLR (CKGR_PLLAR or CKGR_PLLBR), the MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again, LOCK (LOCKA or LOCKB) goes high and MCKRDY is set. While PLLA is unlocked, the Master Clock selection is automatically changed to Slow Clock. While PLLB is unlocked, the Master Clock selection is automatically changed to Main Clock. For further information, see Section 27.8.2. "Clock Switching Waveforms" on page 324. Code Example: write_register(PMC_MCKR,0x00000001) wait (MCKRDY=1) write_register(PMC_MCKR,0x00000011) wait (MCKRDY=1) The Master Clock is main clock divided by 16. The Processor Clock is the Master Clock. 6. Selection of Programmable clocks Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and PMC_SCSR. Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDRs. Depending on the system used, two Programmable clocks can be enabled or disabled. The PMC_SCSR provides a clear indication as to which Programmable clock is enabled. By default all Programmable clocks are disabled. PMC_PCKx registers are used to configure Programmable clocks. The CSS field is used to select the Programmable clock divider source. Four clock options are available: main clock, slow clock, PLLACK, PLLBCK. By default, the clock source selected is slow clock. The PRES field is used to control the Programmable clock prescaler. It is possible to choose between different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler input divided by PRES parameter. By default, the PRES parameter is set to 0 which means that master clock is equal to slow clock. Once the PMC_PCKx register has been programmed, The corresponding Programmable clock must be enabled and the user is constrained to wait for the PCKRDYx bit to be set in the PMC_SR. This can be done either by polling the status register or by waiting the interrupt line to be raised if the associated interrupt to PCKRDYx has been enabled in the PMC_IER. All parameters in PMC_PCKx can be programmed in a single write operation. If the CSS and PRES parameters are to be modified, the corresponding Programmable clock must be disabled first. The parameters can then be modified. Once this has been done, the user must re-enable the Programmable clock and wait for the PCKRDYx bit to be set. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 321 Code Example: write_register(PMC_PCK0,0x00000015) Programmable clock 0 is main clock divided by 32. 7. Enabling Peripheral Clocks Once all of the previous steps have been completed, the peripheral clocks can be enabled and/or disabled via registers PMC_PCER and PMC_PCDR. Depending on the system used, 17 peripheral clocks can be enabled or disabled. The PMC_PCSR provides a clear view as to which peripheral clock is enabled. Note: Each enabled peripheral clock corresponds to Master Clock. Code Examples: write_register(PMC_PCER,0x00000110) Peripheral clocks 4 and 8 are enabled. write_register(PMC_PCDR,0x00000010) Peripheral clock 4 is disabled. 322 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27.8 Clock Switching Details 27.8.1 Master Clock Switching Timings Table 27-1 and Table 27-2 give the worst case timings required for the Master Clock to switch from one selected clock to another one. This is in the event that the prescaler is de-activated. When the prescaler is activated, an additional time of 64 clock cycles of the new selected clock has to be added. Table 27-1. Clock Switching Timings (Worst Case) From Main Clock SLCK PLL Clock - 4 x SLCK + 2.5 x Main Clock 0.5 x Main Clock + 4.5 x SLCK - 3 x PLL Clock + 5 x SLCK 0.5 x Main Clock + 4 x SLCK + PLLCOUNT x SLCK + 2.5 x PLLx Clock 2.5 x PLL Clock + 5 x SLCK + PLLCOUNT x SLCK 2.5 x PLL Clock + 4 x SLCK + PLLCOUNT x SLCK To Main Clock SLCK PLL Clock Notes: 1. 2. Table 27-2. 3 x PLL Clock + 4 x SLCK + 1 x Main Clock PLL designates either the PLL A or the PLL B Clock. PLLCOUNT designates either PLLACOUNT or PLLBCOUNT. Clock Switching Timings Between Two PLLs (Worst Case) From PLLA Clock PLLB Clock PLLA Clock 2.5 x PLLA Clock + 4 x SLCK + PLLACOUNT x SLCK 3 x PLLA Clock + 4 x SLCK + 1.5 x PLLA Clock PLLB Clock 3 x PLLB Clock + 4 x SLCK + 1.5 x PLLB Clock 2.5 x PLLB Clock + 4 x SLCK + PLLBCOUNT x SLCK To SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 323 27.8.2 Clock Switching Waveforms Figure 27-4. Switch Master Clock from Slow Clock to PLL Clock Slow Clock PLL Clock LOCK MCKRDY Master Clock Write PMC_MCKR Figure 27-5. Switch Master Clock from Main Clock to Slow Clock Slow Clock Main Clock MCKRDY Master Clock Write PMC_MCKR 324 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 27-6. Change PLLA Programming Slow Clock PLLA Clock LOCK MCKRDY Master Clock Slow Clock Write CKGR_PLLAR Figure 27-7. Change PLLB Programming Main Clock PLLB Clock LOCK MCKRDY Master Clock Main Clock Write CKGR_PLLBR SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 325 Figure 27-8. Programmable Clock Output Programming PLL Clock PCKRDY PCKx Output Write PMC_PCKx Write PMC_SCER Write PMC_SCDR 326 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 PLL Clock is selected PCKx is enabled PCKx is disabled 27.9 Power Management Controller (PMC) User Interface Table 27-3. Register Mapping Offset Register Name Access Reset 0x0000 System Clock Enable Register PMC_SCER Write-only - 0x0004 System Clock Disable Register PMC_SCDR Write-only - 0x0008 System Clock Status Register PMC _SCSR Read-only 0x03 0x000C Reserved - - - 0x0010 Peripheral Clock Enable Register PMC _PCER Write-only - 0x0014 Peripheral Clock Disable Register PMC_PCDR Write-only - 0x0018 Peripheral Clock Status Register PMC_PCSR Read-only 0x0 0x001C Reserved - - - 0x0020 Main Oscillator Register CKGR_MOR Read/Write 0x0 0x0024 Main Clock Frequency Register CKGR_MCFR Read-only 0x0 0x0028 PLL A Register CKGR_PLLAR Read/Write 0x3F00 0x002C PLL B Register CKGR_PLLBR Read/Write 0x3F00 0x0030 Master Clock Register PMC_MCKR Read/Write 0x0 0x0038 Reserved - - - 0x003C Reserved - - - 0x0040 Programmable Clock 0 Register PMC_PCK0 Read/Write 0x0 0x0044 Programmable Clock 1 Register PMC_PCK1 Read/Write 0x0 ... ... 0x0060 Interrupt Enable Register PMC_IER Write-only - 0x0064 Interrupt Disable Register PMC_IDR Write-only - 0x0068 Status Register PMC_SR Read-only 0x08 0x006C Interrupt Mask Register PMC_IMR Read-only 0x0 Reserved - - - Charge Pump Current Register PMC_PLLICPR Read/Write - Reserved - - - ... 0x0070-0x007C 0x0080 0x0084-0x00FC ... ... SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 327 27.9.1 PMC System Clock Enable Register Name: PMC_SCER Address: 0xFFFFFC00 Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - PCK1 PCK0 7 6 5 4 3 2 1 0 UDP UHP - - - - - - * UHP: USB Host Port Clock Enable 0: No effect. 1: Enables the 12 and 48 MHz clock of the USB Host Port. * UDP: USB Device Port Clock Enable 0: No effect. 1: Enables the 48 MHz clock of the USB Device Port. * PCKx: Programmable Clock x Output Enable 0: No effect. 1: Enables the corresponding Programmable Clock output. 328 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27.9.2 PMC System Clock Disable Register Name: PMC_SCDR Address: 0xFFFFFC04 Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - PCK1 PCK0 7 6 5 4 3 2 1 0 UDP UHP - - - - - PCK * PCK: Processor Clock Disable 0: No effect. 1: Disables the Processor clock. This is used to enter the processor in Idle Mode. * UHP: USB Host Port Clock Disable 0: No effect. 1: Disables the 12 and 48 MHz clock of the USB Host Port. * UDP: USB Device Port Clock Disable 0: No effect. 1: Disables the 48 MHz clock of the USB Device Port. * PCKx: Programmable Clock x Output Disable 0: No effect. 1: Disables the corresponding Programmable Clock output. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 329 27.9.3 PMC System Clock Status Register Name: PMC_SCSR Address: 0xFFFFFC08 Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - PCK1 PCK0 7 6 5 4 3 2 1 0 UDP UHP - - - - - PCK * PCK: Processor Clock Status 0: The Processor clock is disabled. 1: The Processor clock is enabled. * UHP: USB Host Port Clock Status 0: The 12 and 48 MHz clock (UHPCK) of the USB Host Port is disabled. 1: The 12 and 48 MHz clock (UHPCK) of the USB Host Port is enabled. * UDP: USB Device Port Clock Status 0: The 48 MHz clock (UDPCK) of the USB Device Port is disabled. 1: The 48 MHz clock (UDPCK) of the USB Device Port is enabled. * PCKx: Programmable Clock x Output Status 0: The corresponding Programmable Clock output is disabled. 1: The corresponding Programmable Clock output is enabled. 330 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27.9.4 PMC Peripheral Clock Enable Register Name: PMC_PCER Address: 0xFFFFFC10 Access: Write-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 - - * PIDx: Peripheral Clock x Enable 0: No effect. 1: Enables the corresponding peripheral clock. Note: PID2 to PID31 refer to identifiers as defined in the section "Peripheral Identifiers" in the product datasheet. Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 331 27.9.5 PMC Peripheral Clock Disable Register Name: PMC_PCDR Address: 0xFFFFFC14 Access: Write-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 - - * PIDx: Peripheral Clock x Disable 0: No effect. 1: Disables the corresponding peripheral clock. Note: PID2 to PID31 refer to identifiers as defined in the section "Peripheral Identifiers" in the product datasheet. 332 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27.9.6 PMC Peripheral Clock Status Register Name: PMC_PCSR Address: 0xFFFFFC18 Access: Read-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 - - * PIDx: Peripheral Clock x Status 0: The corresponding peripheral clock is disabled. 1: The corresponding peripheral clock is enabled. Note: PID2 to PID31 refer to identifiers as defined in the section "Peripheral Identifiers" in the product datasheet. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 333 27.9.7 PMC Clock Generator Main Oscillator Register Name: CKGR_MOR Address: 0xFFFFFC20 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 - 2 - 1 OSCBYPASS 0 MOSCEN OSCOUNT 7 - 6 - 5 - 4 - * MOSCEN: Main Oscillator Enable A crystal must be connected between XIN and XOUT. 0: The Main Oscillator is disabled. 1: The Main Oscillator is enabled. OSCBYPASS must be set to 0. When MOSCEN is set, the MOSCS flag is set once the Main Oscillator startup time is achieved. * OSCBYPASS: Oscillator Bypass 0: No effect. 1: The Main Oscillator is bypassed. MOSCEN must be set to 0. An external clock must be connected on XIN. When OSCBYPASS is set, the MOSCS flag in PMC_SR is automatically set. Clearing MOSCEN and OSCBYPASS bits allows resetting the MOSCS flag. * OSCOUNT: Main Oscillator Start-up Time Specifies the number of Slow Clock cycles multiplied by 8 for the Main Oscillator start-up time. 334 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27.9.8 PMC Clock Generator Main Clock Frequency Register Name: CKGR_MCFR Address: 0xFFFFFC24 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 MAINRDY 15 14 13 12 11 10 9 8 3 2 1 0 MAINF 7 6 5 4 MAINF * MAINF: Main Clock Frequency Gives the number of Main Clock cycles within 16 Slow Clock periods. * MAINRDY: Main Clock Ready 0: MAINF value is not valid or the Main Oscillator is disabled. 1: The Main Oscillator has been enabled previously and MAINF value is available. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 335 27.9.9 PMC Clock Generator PLL A Register Name: CKGR_PLLAR Address: 0xFFFFFC28 Access: Read/Write 31 - 30 - 29 1 28 - 27 - 26 25 MULA 24 23 22 21 20 19 18 17 16 10 9 8 2 1 0 MULA 15 14 13 12 11 OUTA 7 PLLACOUNT 6 5 4 3 DIVA Possible limitations on PLL A input frequencies and multiplier factors should be checked before using the PMC. Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLAR. * DIVA: Divider A DIVA Divider Selected 0 Divider output is 0 1 Divider is bypassed 2-255 Divider output is the Main Clock divided by DIVA. * PLLACOUNT: PLL A Counter Specifies the number of Slow Clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written. * OUTA: PLL A Clock Frequency Range To optimize clock performance, this field must be programmed as specified in "PLL Characteristics" in the Electrical Characteristics section of the product datasheet. * MULA: PLL A Multiplier 0: The PLL A is deactivated. 1 up to 2047 = The PLL A Clock frequency is the PLL A input frequency multiplied by MULA + 1. 336 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27.9.10 PMC Clock Generator PLL B Register Name: CKGR_PLLBR Address: 0xFFFFFC2C Access: Read/Write 31 - 30 - 29 23 22 21 28 27 - 26 25 MULB 24 20 19 18 17 16 10 9 8 2 1 0 USBDIV MULB 15 14 13 12 11 OUTB 7 PLLBCOUNT 6 5 4 3 DIVB Possible limitations on PLL B input frequencies and multiplier factors should be checked before using the PMC. * DIVB: Divider B DIVB Divider Selected 0 Divider output is 0 1 Divider is bypassed 2-255 Divider output is the selected clock divided by DIVB. * PLLBCOUNT: PLL B Counter Specifies the number of slow clock cycles before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written. * OUTB: PLLB Clock Frequency Range To optimize clock performance, this field must be programmed as specified in "PLL Characteristics" in the Electrical Characteristics section of the product datasheet. * MULB: PLL Multiplier 0: The PLL B is deactivated. 1 up to 2047 = The PLL B Clock frequency is the PLL B input frequency multiplied by MULB + 1. * USBDIV: Divider for USB Clock USBDIV Divider for USB Clock(s) 0 0 Divider output is PLL B clock output. 0 1 Divider output is PLL B clock output divided by 2. 1 0 Divider output is PLL B clock output divided by 4. 1 1 Reserved. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 337 27.9.11 PMC Master Clock Register Name: PMC_MCKR Address: 0xFFFFFC30 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - 4 3 2 7 6 5 - - - * CSS: Master Clock Selection CSS Clock Source Selection 0 0 Slow Clock is selected 0 1 Main Clock is selected 1 0 PLL A Clock is selected 1 1 PLL B Clock is selected * PRES: Processor Clock Prescaler PRES Processor Clock 0 0 0 Selected clock 0 0 1 Selected clock divided by 2 0 1 0 Selected clock divided by 4 0 1 1 Selected clock divided by 8 1 0 0 Selected clock divided by 16 1 0 1 Selected clock divided by 32 1 1 0 Selected clock divided by 64 1 1 1 Reserved * MDIV: Master Clock Division MDIV Master Clock Division 0 0 Master Clock is Processor Clock. 0 1 Master Clock is Processor Clock divided by 2. 1 0 Master Clock is Processor Clock divided by 4. 1 1 Reserved. 338 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 PRES MDIV 1 0 CSS 27.9.12 PMC Programmable Clock Register Name: PMC_PCKx Address: 0xFFFFFC40 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 4 3 2 1 7 6 5 - - - PRES 0 CSS * CSS: Master Clock Selection CSS Clock Source Selection 0 0 Slow Clock is selected 0 1 Main Clock is selected 1 0 PLL A Clock is selected 1 1 PLL B Clock is selected * PRES: Programmable Clock Prescaler PRES Programmable Clock 0 0 0 Selected clock 0 0 1 Selected clock divided by 2 0 1 0 Selected clock divided by 4 0 1 1 Selected clock divided by 8 1 0 0 Selected clock divided by 16 1 0 1 Selected clock divided by 32 1 1 0 Selected clock divided by 64 1 1 1 Reserved SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 339 27.9.13 PMC Interrupt Enable Register Name: PMC_IER Address: 0xFFFFFC60 Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - PCKRDY1 PCKRDY0 7 6 5 4 3 2 1 0 - - - - MCKRDY LOCKB LOCKA MOSCS * MOSCS: Main Oscillator Status Interrupt Enable * LOCKA: PLL A Lock Interrupt Enable * LOCKB: PLL B Lock Interrupt Enable * MCKRDY: Master Clock Ready Interrupt Enable * PCKRDYx: Programmable Clock Ready x Interrupt Enable 0: No effect. 1: Enables the corresponding interrupt. 340 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27.9.14 PMC Interrupt Disable Register Name: PMC_IDR Address: 0xFFFFFC64 Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - PCKRDY1 PCKRDY0 7 6 5 4 3 2 1 0 - - - - MCKRDY LOCKB LOCKA MOSCS * MOSCS: Main Oscillator Status Interrupt Disable * LOCKA: PLL A Lock Interrupt Disable * LOCKB: PLL B Lock Interrupt Disable * MCKRDY: Master Clock Ready Interrupt Disable * PCKRDYx: Programmable Clock Ready x Interrupt Disable 0: No effect. 1: Disables the corresponding interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 341 27.9.15 PMC Status Register Name: PMC_SR Address: 0xFFFFFC68 Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - PCKRDY1 PCKRDY0 7 6 5 4 3 2 1 0 OSC_SEL - - - MCKRDY LOCKB LOCKA MOSCS * MOSCS: MOSCS Flag Status 0: Main oscillator is not stabilized. 1: Main oscillator is stabilized. * LOCKA: PLL A Lock Status 0: PLL A is not locked 1: PLL A is locked. * LOCKB: PLL B Lock Status 0: PLL B is not locked. 1: PLL B is locked. * MCKRDY: Master Clock Status 0: Master Clock is not ready. 1: Master Clock is ready. * OSC_SEL: Slow Clock Oscillator Selection 0: Internal slow clock RC oscillator. 1: External slow clock 32 kHz oscillator. * PCKRDYx: Programmable Clock Ready Status 0: Programmable Clock x is not ready. 1: Programmable Clock x is ready. 342 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 27.9.16 PMC Interrupt Mask Register Name: PMC_IMR Address: 0xFFFFFC6C Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - PCKRDY1 PCKRDY0 7 6 5 4 3 2 1 0 - - - - MCKRDY LOCKB LOCKA MOSCS * MOSCS: Main Oscillator Status Interrupt Mask * LOCKA: PLL A Lock Interrupt Mask * LOCKB: PLL B Lock Interrupt Mask * MCKRDY: Master Clock Ready Interrupt Mask * PCKRDYx: Programmable Clock Ready x Interrupt Mask 0: The corresponding interrupt is enabled. 1: The corresponding interrupt is disabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 343 27.9.17 PLL Charge Pump Current Register Name: PMC_PLLICPR Address: 0xFFFFFC80 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - ICPPLLB 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - - - - - - - ICPPLLA * ICPPLLA: Charge pump current Must be set to 1. * ICPPLLB: Charge pump current Must be set to 1. 344 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28. Advanced Interrupt Controller (AIC) 28.1 Description The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored interrupt controller, providing handling of up to thirty-two interrupt sources. It is designed to substantially reduce the software and realtime overhead in handling internal and external interrupts. The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs of an ARM processor. Inputs of the AIC are either internal peripheral interrupts or external interrupts coming from the product's pins. The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus permitting higher priority interrupts to be serviced even if a lower priority interrupt is being treated. Internal interrupt sources can be programmed to be level sensitive or edge triggered. External interrupt sources can be programmed to be positive-edge or negative-edge triggered or high-level or low-level sensitive. The fast forcing feature redirects any internal or external interrupt source to provide a fast interrupt rather than a normal interrupt. 28.2 Block Diagram Figure 28-1. Block Diagram FIQ AIC IRQ0-IRQn Embedded PeripheralEE Embedded ARM Processor Up to Thirty-two Sources nFIQ nIRQ Peripheral Embedded Peripheral APB 28.3 Application Block Diagram Figure 28-2. Description of the Application Block OS-based Applications Standalone Applications OS Drivers RTOS Drivers Hard Real Time Tasks General OS Interrupt Handler Advanced Interrupt Controller Embedded Peripherals External Peripherals (External Interrupts) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 345 28.4 AIC Detailed Block Diagram Figure 28-3. AIC Detailed Block Diagram Advanced Interrupt Controller FIQ PIO Controller Fast Interrupt Controller External Source Input Stage ARM Processor nFIQ nIRQ IRQ0-IRQn Embedded Peripherals Interrupt Priority Controller Fast Forcing PIOIRQ Internal Source Input Stage Processor Clock Power Management Controller User Interface Wake Up APB 28.5 I/O Line Description Table 28-1. 28.6 I/O Line Description Pin Name Pin Description Type FIQ Fast Interrupt Input IRQ0-IRQn Interrupt 0-Interrupt n Input Product Dependencies 28.6.1 I/O Lines The interrupt signals FIQ and IRQ0 to IRQn are normally multiplexed through the PIO controllers. Depending on the features of the PIO controller used in the product, the pins must be programmed in accordance with their assigned interrupt function. This is not applicable when the PIO controller used in the product is transparent on the input path. 28.6.2 Power Management The Advanced Interrupt Controller is continuously clocked. The Power Management Controller has no effect on the Advanced Interrupt Controller behavior. The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the ARM processor while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to wake up the processor without asserting the interrupt line of the processor, thus providing synchronization of the processor on an event. 28.6.3 Interrupt Sources The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the Interrupt Source 0 cannot be used. The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring of the system peripheral interrupt lines. When a system interrupt occurs, the service routine must first distinguish the cause of 346 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 the interrupt. This is performed by reading successively the status registers of the above mentioned system peripherals. The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded user peripheral or to external interrupt lines. The external interrupt lines can be connected directly, or through the PIO Controller. The PIO Controllers are considered as user peripherals in the scope of interrupt handling. Accordingly, the PIO Controller interrupt lines are connected to the Interrupt Sources 2 to 31. The peripheral identification defined at the product level corresponds to the interrupt source number (as well as the bit number controlling the clock of the peripheral). Consequently, to simplify the description of the functional operations and the user interface, the interrupt sources are named FIQ, SYS, and PID2 to PID31. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 347 28.7 Functional Description 28.7.1 Interrupt Source Control 28.7.1.1 Interrupt Source Mode The Advanced Interrupt Controller independently programs each interrupt source. The SRCTYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt condition of each source. The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be programmed either in level-sensitive mode or in edge-triggered mode. The active level of the internal interrupts is not important for the user. The external interrupt sources can be programmed either in high level-sensitive or low level-sensitive modes, or in positive edge-triggered or negative edge-triggered modes. 28.7.1.2 Interrupt Source Enabling Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt Disable Command Register). This set of registers conducts enabling or disabling in one instruction. The interrupt mask can be read in the AIC_IMR. A disabled interrupt does not affect servicing of other interrupts. 28.7.1.3 Interrupt Clearing and Setting All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers. Clearing or setting interrupt sources programmed in level-sensitive mode has no effect. The clear operation is perfunctory, as the software must perform an action to reinitialize the "memorization" circuitry activated when the source is programmed in edge-triggered mode. However, the set operation is available for auto-test or software debug purposes. It can also be used to execute an AIC-implementation of a software interrupt. The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector Register) is read. Only the interrupt source being detected by the AIC as the current interrupt is affected by this operation. (See "Priority Controller" on page 351.) The automatic clear reduces the operations required by the interrupt service routine entry code to reading the AIC_IVR. Note that the automatic interrupt clear is disabled if the interrupt source has the Fast Forcing feature enabled as it is considered uniquely as a FIQ source. (For further details, See "Fast Forcing" on page 355.) The automatic clear of the interrupt source 0 is performed when AIC_FVR is read. 28.7.1.4 Interrupt Status For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the sources, whether masked or not. The AIC_ISR reads the number of the current interrupt (see "Priority Controller" on page 351) and the register AIC_CISR gives an image of the signals nIRQ and nFIQ driven on the processor. Each status referred to above can be used to optimize the interrupt handling of the systems. 348 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.7.1.5 Internal Interrupt Source Input Stage Figure 28-4. Internal Interrupt Source Input Stage AIC_SMRI (SRCTYPE) Level/ Edge Source i AIC_IPR AIC_IMR Fast Interrupt Controller or Priority Controller Edge AIC_IECR Detector Set Clear FF AIC_ISCR AIC_ICCR AIC_IDCR 28.7.1.6 External Interrupt Source Input Stage Figure 28-5. External Interrupt Source Input Stage High/Low AIC_SMRi SRCTYPE Level/ Edge AIC_IPR AIC_IMR Source i Fast Interrupt Controller or Priority Controller AIC_IECR Pos./Neg. Edge Detector Set AIC_ISCR FF Clear AIC_IDCR AIC_ICCR SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 349 28.7.2 Interrupt Latencies Global interrupt latencies depend on several parameters, including: The time the software masks the interrupts. Occurrence, either at the processor level or at the AIC level. The execution time of the instruction in progress when the interrupt occurs. The treatment of higher priority interrupts and the resynchronization of the hardware signals. This section addresses only the hardware resynchronizations. It gives details of the latency times between the event on an external interrupt leading in a valid interrupt (edge or level) or the assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the processor. The resynchronization time depends on the programming of the interrupt source and on its type (internal or external). For the standard interrupt, resynchronization times are given assuming there is no higher priority in progress. The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt sources. 28.7.2.1 External Interrupt Edge Triggered Source Figure 28-6. External Interrupt Edge Triggered Source MCK IRQ or FIQ (Positive Edge) IRQ or FIQ (Negative Edge) nIRQ Maximum IRQ Latency = 4 Cycles nFIQ Maximum FIQ Latency = 4 Cycles 28.7.2.2 External Interrupt Level Sensitive Source Figure 28-7. External Interrupt Level Sensitive Source MCK IRQ or FIQ (High Level) IRQ or FIQ (Low Level) nIRQ Maximum IRQ Latency = 3 Cycles nFIQ Maximum FIQ Latency = 3 cycles 350 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.7.2.3 Internal Interrupt Edge Triggered Source Figure 28-8. Internal Interrupt Edge Triggered Source MCK nIRQ Maximum IRQ Latency = 4.5 Cycles Peripheral Interrupt Becomes Active 28.7.2.4 Internal Interrupt Level Sensitive Source Figure 28-9. Internal Interrupt Level Sensitive Source MCK nIRQ Maximum IRQ Latency = 3.5 Cycles Peripheral Interrupt Becomes Active 28.7.3 Normal Interrupt 28.7.3.1 Priority Controller An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt conditions occurring on the interrupt sources 1 to 31 (except for those programmed in Fast Forcing). Each interrupt source has a programmable priority level of 7 to 0, which is user-definable by writing the PRIOR field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the highest priority and level 0 the lowest. As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SMR (Source Mode Register), the nIRQ line is asserted. As a new interrupt condition might have happened on other interrupt sources since the nIRQ has been asserted, the priority controller determines the current interrupt at the time the AIC_IVR (Interrupt Vector Register) is read. The read of AIC_IVR is the entry point of the interrupt handling which allows the AIC to consider that the interrupt has been taken into account by the software. The current priority level is defined as the priority level of the current interrupt. If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is read, the interrupt with the lowest interrupt source number is serviced first. The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with a higher priority. If an interrupt condition happens (or is pending) during the interrupt treatment in progress, it is delayed until the software indicates to the AIC the end of the current service by writing the AIC_EOICR (End of Interrupt Command Register). The write of AIC_EOICR is the exit point of the interrupt handling. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 351 28.7.3.2 Interrupt Nesting The priority controller utilizes interrupt nesting in order for the high priority interrupt to be handled during the service of lower priority interrupts. This requires the interrupt service routines of the lower interrupts to re-enable the interrupt at the processor level. When an interrupt of a higher priority happens during an already occurring interrupt service routine, the nIRQ line is re-asserted. If the interrupt is enabled at the core level, the current execution is interrupted and the new interrupt service routine should read the AIC_IVR. At this time, the current interrupt number and its priority level are pushed into an embedded hardware stack, so that they are saved and restored when the higher priority interrupt servicing is finished and the AIC_EOICR is written. The AIC is equipped with an 8-level wide hardware stack in order to support up to eight interrupt nestings pursuant to having eight priority levels. 28.7.3.3 Interrupt Vectoring The interrupt handler addresses corresponding to each interrupt source can be stored in the registers AIC_SVR1 to AIC_SVR31 (Source Vector Register 1 to 31). When the processor reads AIC_IVR (Interrupt Vector Register), the value written into AIC_SVR corresponding to the current interrupt is returned. This feature offers a way to branch in one single instruction to the handler corresponding to the current interrupt, as AIC_IVR is mapped at the absolute address 0xFFFF F100 and thus accessible from the ARM interrupt vector at address 0x0000 0018 through the following instruction: LDR PC,[PC,# -&F20] When the processor executes this instruction, it loads the read value in AIC_IVR in its program counter, thus branching the execution on the correct interrupt handler. This feature is often not used when the application is based on an operating system (either real-time or not). Operating systems often have a single entry point for all the interrupts and the first task performed is to discern the source of the interrupt. However, it is strongly recommended to port the operating system on AT91 products by supporting the interrupt vectoring. This can be performed by defining all the AIC_SVR of the interrupt source to be handled by the operating system at the address of its interrupt handler. When doing so, the interrupt vectoring permits a critical interrupt to transfer the execution on a specific very fast handler and not onto the operating system's general interrupt handler. This facilitates the support of hard real-time tasks (input/outputs of voice/audio buffers and software peripheral handling) to be handled efficiently and independently of the application running under an operating system. 28.7.3.4 Interrupt Handlers This section gives an overview of the fast interrupt handling sequence when using the AIC. It is assumed that the programmer understands the architecture of the ARM processor, and especially the processor interrupt modes and the associated status bits. It is assumed that: 1. The Advanced Interrupt Controller has been programmed, AIC_SVR registers are loaded with corresponding interrupt service routine addresses and interrupts are enabled. 2. The instruction at the ARM interrupt exception vector address is required to work with the vectoring LDR PC, [PC, # -&F20] When nIRQ is asserted, if the bit "I" of CPSR is 0, the sequence is as follows: 352 1. The CPSR is stored in SPSR_irq, the current value of the Program Counter is loaded in the Interrupt link register (R14_irq) and the Program Counter (R15) is loaded with 0x18. In the following cycle during fetch at address 0x1C, the ARM core adjusts R14_irq, decrementing it by four. 2. The ARM core enters Interrupt mode, if it has not already done so. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 3. When the instruction loaded at address 0x18 is executed, the program counter is loaded with the value read in AIC_IVR. Reading the AIC_IVR has the following effects: Sets the current interrupt to be the pending and enabled interrupt with the highest priority. The current level is the priority level of the current interrupt. De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR must be read in order to de-assert nIRQ. Automatically clears the interrupt, if it has been programmed to be edge-triggered. Pushes the current level and the current interrupt number on to the stack. Returns the value written in the AIC_SVR corresponding to the current interrupt. 4. The previous step has the effect of branching to the corresponding interrupt service routine. This should start by saving the link register (R14_irq) and SPSR_IRQ. The link register must be decremented by four when it is saved if it is to be restored directly into the program counter at the end of the interrupt. For example, the instruction SUB PC, LR, #4 may be used. 5. Further interrupts can then be unmasked by clearing the "I" bit in CPSR, allowing re-assertion of the nIRQ to be taken into account by the core. This can happen if an interrupt with a higher priority than the current interrupt occurs. 6. The interrupt handler can then proceed as required, saving the registers that will be used and restoring them at the end. During this phase, an interrupt of higher priority than the current level will restart the sequence from step 1. Note: If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared during this phase. 7. The "I" bit in CPSR must be set in order to mask interrupts before exiting to ensure that the interrupt is completed in an orderly manner. 8. The End of Interrupt Command Register (AIC_EOICR) must be written in order to indicate to the AIC that the current interrupt is finished. This causes the current level to be popped from the stack, restoring the previous current level if one exists on the stack. If another interrupt is pending, with lower or equal priority than the old current level but with higher priority than the new current level, the nIRQ line is re-asserted, but the interrupt sequence does not immediately start because the "I" bit is set in the core. SPSR_irq is restored. Finally, the saved value of the link register is restored directly into the PC. This has the effect of returning from the interrupt to whatever was being executed before, and of loading the CPSR with the stored SPSR, masking or unmasking the interrupts depending on the state saved in SPSR_irq. Note: The "I" bit in SPSR is significant. If it is set, it indicates that the ARM core was on the verge of masking an interrupt when the mask instruction was interrupted. Hence, when SPSR is restored, the mask instruction is completed (interrupt is masked). 28.7.4 Fast Interrupt 28.7.4.1 Fast Interrupt Source The interrupt source 0 is the only source which can raise a fast interrupt request to the processor except if fast forcing is used. The interrupt source 0 is generally connected to a FIQ pin of the product, either directly or through a PIO Controller. 28.7.4.2 Fast Interrupt Control The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is programmed with the AIC_SMR0 and the field PRIOR of this register is not used even if it reads what has been written. The field SRCTYPE of AIC_SMR0 enables programming the fast interrupt source to be positive-edge triggered or negativeedge triggered or high-level sensitive or low-level sensitive Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt Disable Command Register) respectively enables and disables the fast interrupt. The bit 0 of AIC_IMR (Interrupt Mask Register) indicates whether the fast interrupt is enabled or disabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 353 28.7.4.3 Fast Interrupt Vectoring The fast interrupt handler address can be stored in AIC_SVR0 (Source Vector Register 0). The value written into this register is returned when the processor reads AIC_FVR (Fast Vector Register). This offers a way to branch in one single instruction to the interrupt handler, as AIC_FVR is mapped at the absolute address 0xFFFF F104 and thus accessible from the ARM fast interrupt vector at address 0x0000 001C through the following instruction: LDR PC,[PC,# -&F20] When the processor executes this instruction it loads the value read in AIC_FVR in its program counter, thus branching the execution on the fast interrupt handler. It also automatically performs the clear of the fast interrupt source if it is programmed in edge-triggered mode. 28.7.4.4 Fast Interrupt Handlers This section gives an overview of the fast interrupt handling sequence when using the AIC. It is assumed that the programmer understands the architecture of the ARM processor, and especially the processor interrupt modes and associated status bits. Assuming that: 1. The Advanced Interrupt Controller has been programmed, AIC_SVR0 is loaded with the fast interrupt service routine address, and the interrupt source 0 is enabled. 2. The Instruction at address 0x1C (FIQ exception vector address) is required to vector the fast interrupt: LDR PC, [PC, # -&F20] The user does not need nested fast interrupts. 3. When nFIQ is asserted, if the bit "F" of CPSR is 0, the sequence is: 1. The CPSR is stored in SPSR_fiq, the current value of the program counter is loaded in the FIQ link register (R14_FIQ) and the program counter (R15) is loaded with 0x1C. In the following cycle, during fetch at address 0x20, the ARM core adjusts R14_fiq, decrementing it by four. 2. The ARM core enters FIQ mode. 3. When the instruction loaded at address 0x1C is executed, the program counter is loaded with the value read in AIC_FVR. Reading the AIC_FVR has effect of automatically clearing the fast interrupt, if it has been programmed to be edge triggered. In this case only, it de-asserts the nFIQ line on the processor. 4. The previous step enables branching to the corresponding interrupt service routine. It is not necessary to save the link register R14_fiq and SPSR_fiq if nested fast interrupts are not needed. 5. The Interrupt Handler can then proceed as required. It is not necessary to save registers R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to R13 are banked. The other registers, R0 to R7, must be saved before being used, and restored at the end (before the next step). Note that if the fast interrupt is programmed to be level sensitive, the source of the interrupt must be cleared during this phase in order to de-assert the interrupt source 0. 6. Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four (with instruction SUB PC, LR, #4 for example). This has the effect of returning from the interrupt to whatever was being executed before, loading the CPSR with the SPSR and masking or unmasking the fast interrupt depending on the state saved in the SPSR. Note: The "F" bit in SPSR is significant. If it is set, it indicates that the ARM core was just about to mask FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is restored, the interrupted instruction is completed (FIQ is masked). Another way to handle the fast interrupt is to map the interrupt service routine at the address of the ARM vector 0x1C. This method does not use the vectoring, so that reading AIC_FVR must be performed at the very beginning of the handler operation. However, this method saves the execution of a branch instruction. 354 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.7.4.5 Fast Forcing The Fast Forcing feature of the advanced interrupt controller provides redirection of any normal Interrupt source on the fast interrupt controller. Fast Forcing is enabled or disabled by writing to the Fast Forcing Enable Register (AIC_FFER) and the Fast Forcing Disable Register (AIC_FFDR). Writing to these registers results in an update of the Fast Forcing Status Register (AIC_FFSR) that controls the feature for each internal or external interrupt source. When Fast Forcing is disabled, the interrupt sources are handled as described in the previous pages. When Fast Forcing is enabled, the edge/level programming and, in certain cases, edge detection of the interrupt source is still active but the source cannot trigger a normal interrupt to the processor and is not seen by the priority handler. If the interrupt source is programmed in level-sensitive mode and an active level is sampled, Fast Forcing results in the assertion of the nFIQ line to the core. If the interrupt source is programmed in edge-triggered mode and an active edge is detected, Fast Forcing results in the assertion of the nFIQ line to the core. The Fast Forcing feature does not affect the Source 0 pending bit in the Interrupt Pending Register (AIC_IPR). The FIQ Vector Register (AIC_FVR) reads the contents of the Source Vector Register 0 (AIC_SVR0), whatever the source of the fast interrupt may be. The read of the FVR does not clear the Source 0 when the fast forcing feature is used and the interrupt source should be cleared by writing to the Interrupt Clear Command Register (AIC_ICCR). All enabled and pending interrupt sources that have the fast forcing feature enabled and that are programmed in edge-triggered mode must be cleared by writing to the Interrupt Clear Command Register. In doing so, they are cleared independently and thus lost interrupts are prevented. The read of AIC_IVR does not clear the source that has the fast forcing feature enabled. The source 0, reserved to the fast interrupt, continues operating normally and becomes one of the Fast Interrupt sources. Figure 28-10. Fast Forcing Source 0 _ FIQ AIC_IPR Input Stage Automatic Clear AIC_IMR nFIQ Read FVR if Fast Forcing is disabled on Sources 1 to 31. AIC_FFSR Source n AIC_IPR Input Stage Priority Manager Automatic Clear nIRQ AIC_IMR Read IVR if Source n is the current interrupt and if Fast Forcing is disabled on Source n. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 355 28.7.5 Protect Mode The Protect Mode permits reading the Interrupt Vector Register without performing the associated automatic operations. This is necessary when working with a debug system. When a debugger, working either with a Debug Monitor or the ARM processor's ICE, stops the applications and updates the opened windows, it might read the AIC User Interface and thus the IVR. This has undesirable consequences: If an enabled interrupt with a higher priority than the current one is pending, it is stacked. If there is no enabled pending interrupt, the spurious vector is returned. In either case, an End of Interrupt command is necessary to acknowledge and to restore the context of the AIC. This operation is generally not performed by the debug system as the debug system would become strongly intrusive and cause the application to enter an undesired state. This is avoided by using the Protect Mode. Writing PROT in AIC_DCR (Debug Control Register) at 0x1 enables the Protect Mode. When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write access is performed on the AIC_IVR. Therefore, the Interrupt Service Routines must write (arbitrary data) to the AIC_IVR just after reading it. The new context of the AIC, including the value of the Interrupt Status Register (AIC_ISR), is updated with the current interrupt only when AIC_IVR is written. An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the AIC_ISR. Extra AIC_IVR reads perform the same operations. However, it is recommended to not stop the processor between the read and the write of AIC_IVR of the interrupt service routine to make sure the debugger does not modify the AIC context. To summarize, in normal operating mode, the read of AIC_IVR performs the following operations within the AIC: 1. Calculates active interrupt (higher than current or spurious). 2. Determines and returns the vector of the active interrupt. 3. Memorizes the interrupt. 4. Pushes the current priority level onto the internal stack. 5. Acknowledges the interrupt. However, while the Protect Mode is activated, only operations 1 to 3 are performed when AIC_IVR is read. Operations 4 and 5 are only performed by the AIC when AIC_IVR is written. Software that has been written and debugged using the Protect Mode runs correctly in Normal Mode without modification. However, in Normal Mode the AIC_IVR write has no effect and can be removed to optimize the code. 28.7.6 Spurious Interrupt The Advanced Interrupt Controller features protection against spurious interrupts. A spurious interrupt is defined as being the assertion of an interrupt source long enough for the AIC to assert the nIRQ, but no longer present when AIC_IVR is read. This is most prone to occur when: An external interrupt source is programmed in level-sensitive mode and an active level occurs for only a short time. An internal interrupt source is programmed in level sensitive and the output signal of the corresponding embedded peripheral is activated for a short time. (As in the case for the Watchdog.) An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in a pulse on the interrupt source. The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt source is pending. When this happens, the AIC returns the value stored by the programmer in AIC_SPU (Spurious Vector Register). The programmer must store the address of a spurious interrupt handler in AIC_SPU as part of the application, to enable an as fast as possible return to the normal execution flow. This handler writes in AIC_EOICR and performs a return from interrupt. 356 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.7.7 General Interrupt Mask The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the processor. Both the nIRQ and the nFIQ lines are driven to their inactive state if the bit GMSK in AIC_DCR (Debug Control Register) is set. However, this mask does not prevent waking up the processor if it has entered Idle Mode. This function facilitates synchronizing the processor on a next event and, as soon as the event occurs, performs subsequent operations without having to handle an interrupt. It is strongly recommended to use this mask with caution. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 357 28.8 Advanced Interrupt Controller (AIC) User Interface 28.8.1 Base Address The AIC is mapped at the address 0xFFFF F000. It has a total 4 KB addressing space. This permits the vectoring feature, as the PC-relative load/store instructions of the ARM processor support only a 4 KB offset. Table 28-2. Register Mapping Offset Register Name Access Reset 0x00 Source Mode Register 0 AIC_SMR0 Read/Write 0x0 0x04 ... Source Mode Register 1 AIC_SMR1 Read/Write 0x0 ... ... ... ... 0x7C Source Mode Register 31 AIC_SMR31 Read/Write 0x0 0x80 Source Vector Register 0 AIC_SVR0 Read/Write 0x0 0x84 Source Vector Register 1 AIC_SVR1 Read/Write 0x0 ... ... ... ... ... 0xFC Source Vector Register 31 AIC_SVR31 Read/Write 0x0 0x100 Interrupt Vector Register AIC_IVR Read-only 0x0 0x104 FIQ Interrupt Vector Register AIC_FVR Read-only 0x0 0x108 Interrupt Status Register AIC_ISR Read-only 0x0 0x10C Interrupt Pending Register(2) AIC_IPR Read-only 0x0(1) 0x110 Interrupt Mask Register(2) AIC_IMR Read-only 0x0 0x114 Core Interrupt Status Register AIC_CISR Read-only 0x0 0x118-0x11C Reserved - - - AIC_IECR Write-only - AIC_IDCR Write-only - (2) 0x120 Interrupt Enable Command Register (2) 0x124 Interrupt Disable Command Register 0x128 Interrupt Clear Command Register (2) AIC_ICCR Write-only - 0x12C Interrupt Set Command Register(2) AIC_ISCR Write-only - 0x130 End of Interrupt Command Register AIC_EOICR Write-only - 0x134 Spurious Interrupt Vector Register AIC_SPU Read/Write 0x0 0x138 Debug Control Register AIC_DCR Read/Write 0x0 0x13C Reserved - - - AIC_FFER Write-only - AIC_FFDR Write-only - AIC_FFSR (2) 0x140 Fast Forcing Enable Register 0x144 Fast Forcing Disable Register (2) (2) 0x148 Fast Forcing Status Register Read-only 0x0 0x14C-0x1E0 Reserved - - - 0x1EC-0x1FC Reserved - - - Notes: 358 1. The reset value of this register depends on the level of the external interrupt source. All other sources are cleared at reset, thus not pending. 2. PID2...PID31 bit fields refer to the identifiers as defined in the Peripheral Identifiers section of the product datasheet. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.8.2 AIC Source Mode Register Name: AIC_SMR0..AIC_SMR31 Address: 0xFFFFF000 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 4 3 2 1 0 - - - 5 SRCTYPE PRIOR * PRIOR: Priority Level Programs the priority level for all sources except FIQ source (source 0). The priority level can be between 0 (lowest) and 7 (highest). The priority level is not used for the FIQ in the related SMR register AIC_SMRx. * SRCTYPE: Interrupt Source Type The active level or edge is not programmable for the internal interrupt sources. SRCTYPE Internal Interrupt Sources External Interrupt Sources 0 0 High level Sensitive Low level Sensitive 0 1 Positive edge triggered Negative edge triggered 1 0 High level Sensitive High level Sensitive 1 1 Positive edge triggered Positive edge triggered SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 359 28.8.3 AIC Source Vector Register Name: AIC_SVR0..AIC_SVR31 Address: 0xFFFFF080 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 VECTOR 23 22 21 20 VECTOR 15 14 13 12 VECTOR 7 6 5 4 VECTOR * VECTOR: Source Vector The user may store in these registers the addresses of the corresponding handler for each interrupt source. 360 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.8.4 AIC Interrupt Vector Register Name: AIC_IVR Address: 0xFFFFF100 Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 IRQV 23 22 21 20 IRQV 15 14 13 12 IRQV 7 6 5 4 IRQV * IRQV: Interrupt Vector Register The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to the current interrupt. The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read. When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 361 28.8.5 AIC FIQ Vector Register Name: AIC_FVR Address: 0xFFFFF104 Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 FIQV 23 22 21 20 FIQV 15 14 13 12 FIQV 7 6 5 4 FIQV * FIQV: FIQ Vector Register The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no fast interrupt, the FIQ Vector Register reads the value stored in AIC_SPU. 362 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.8.6 AIC Interrupt Status Register Name: AIC_ISR Address: 0xFFFFF108 Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 4 3 2 1 0 7 6 5 - - - IRQID * IRQID: Current Interrupt Identifier The Interrupt Status Register returns the current interrupt source number. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 363 28.8.7 AIC Interrupt Pending Register Name: AIC_IPR Address: 0xFFFFF10C Access: Read-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ * FIQ, SYS, PID2-PID31: Interrupt Pending 0: Corresponding interrupt is not pending. 1: Corresponding interrupt is pending. 364 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.8.8 AIC Interrupt Mask Register Name: AIC_IMR Address: 0xFFFFF110 Access: Read-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ * FIQ, SYS, PID2-PID31: Interrupt Mask 0: Corresponding interrupt is disabled. 1: Corresponding interrupt is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 365 28.8.9 AIC Core Interrupt Status Register Name: AIC_CISR Address: 0xFFFFF114 Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - - - - - - NIRQ NFIQ * NFIQ: NFIQ Status 0: nFIQ line is deactivated. 1: nFIQ line is active. * NIRQ: NIRQ Status 0: nIRQ line is deactivated. 1: nIRQ line is active. 366 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.8.10 AIC Interrupt Enable Command Register Name: AIC_IECR Address: 0xFFFFF120 Access: Write-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ * FIQ, SYS, PID2-PID31: Interrupt Enable 0: No effect. 1: Enables corresponding interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 367 28.8.11 AIC Interrupt Disable Command Register Name: AIC_IDCR Address: 0xFFFFF124 Access: Write-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ * FIQ, SYS, PID2-PID31: Interrupt Disable 0: No effect. 1: Disables corresponding interrupt. 368 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.8.12 AIC Interrupt Clear Command Register Name: AIC_ICCR Address: 0xFFFFF128 Access: Write-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ * FIQ, SYS, PID2-PID31: Interrupt Clear 0: No effect. 1: Clears corresponding interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 369 28.8.13 AIC Interrupt Set Command Register Name: AIC_ISCR Address: 0xFFFFF12C Access: Write-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ * FIQ, SYS, PID2-PID31: Interrupt Set 0: No effect. 1: Sets corresponding interrupt. 370 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.8.14 AIC End of Interrupt Command Register Name: AIC_EOICR Address: 0xFFFFF130 Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - - - - - - - - The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete. Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt treatment. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 371 28.8.15 AIC Spurious Interrupt Vector Register Name: AIC_SPU Address: 0xFFFFF134 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 SIVR 23 22 21 20 SIVR 15 14 13 12 SIVR 7 6 5 4 SIVR * SIVR: Spurious Interrupt Vector Register The user may store the address of a spurious interrupt handler in this register. The written value is returned in AIC_IVR in case of a spurious interrupt and in AIC_FVR in case of a spurious fast interrupt. 372 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.8.16 AIC Debug Control Register Name: AIC_DCR Address: 0xFFFFF138 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - - - - - - GMSK PROT * PROT: Protection Mode 0: The Protection Mode is disabled. 1: The Protection Mode is enabled. * GMSK: General Mask 0: The nIRQ and nFIQ lines are normally controlled by the AIC. 1: The nIRQ and nFIQ lines are tied to their inactive state. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 373 28.8.17 AIC Fast Forcing Enable Register Name: AIC_FFER Address: 0xFFFFF140 Access: Write-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 SYS - * SYS, PID2-PID31: Fast Forcing Enable 0: No effect. 1: Enables the fast forcing feature on the corresponding interrupt. 374 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 28.8.18 AIC Fast Forcing Disable Register Name: AIC_FFDR Address: 0xFFFFF144 Access: Write-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 SYS - * SYS, PID2-PID31: Fast Forcing Disable 0: No effect. 1: Disables the Fast Forcing feature on the corresponding interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 375 28.8.19 AIC Fast Forcing Status Register Name: AIC_FFSR Address: 0xFFFFF148 Access: Read-only 31 30 29 28 27 26 25 24 PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24 23 22 21 20 19 18 17 16 PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16 15 14 13 12 11 10 9 8 PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8 7 6 5 4 3 2 1 0 PID7 PID6 PID5 PID4 PID3 PID2 SYS - * SYS, PID2-PID31: Fast Forcing Status 0: The Fast Forcing feature is disabled on the corresponding interrupt. 1: The Fast Forcing feature is enabled on the corresponding interrupt. 376 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 29. Debug Unit (DBGU) 29.1 Description The Debug Unit provides a single entry point from the processor for access to all the debug capabilities of Atmel's ARM-based systems. The Debug Unit features a two-pin UART that can be used for several debug and trace purposes and offers an ideal medium for in-situ programming solutions and debug monitor communications. The Debug Unit two-pin UART can be used stand-alone for general purpose serial communication. Moreover, the association with two peripheral data controller channels permits packet handling for these tasks with processor time reduced to a minimum. The Debug Unit also makes the Debug Communication Channel (DCC) signals provided by the In-circuit Emulator of the ARM processor visible to the software. These signals indicate the status of the DCC read and write registers and generate an interrupt to the ARM processor, making possible the handling of the DCC under interrupt control. Chip Identifier registers permit recognition of the device and its revision. These registers inform as to the sizes and types of the on-chip memories, as well as the set of embedded peripherals. Finally, the Debug Unit features a Force NTRST capability that enables the software to decide whether to prevent access to the system via the In-circuit Emulator. This permits protection of the code, stored in ROM. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 377 29.2 Block Diagram Figure 29-1. Debug Unit Functional Block Diagram Peripheral Bridge Peripheral DMA Controller APB Debug Unit DTXD Transmit Power Management Controller MCK Parallel Input/ Output Baud Rate Generator Receive DRXD COMMRX R ARM Processor COMMTX DCC Handler Chip ID nTRST ICE Access Handler Interrupt Control dbgu_irq Power-on Reset force_ntrst Table 29-1. Debug Unit Pin Description Pin Name Description Type DRXD Debug Receive Data Input DTXD Debug Transmit Data Output Figure 29-2. Debug Unit Application Example Boot Program Debug Monitor Trace Manager Debug Unit RS232 Drivers Programming Tool 378 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Debug Console Trace Console 29.3 Product Dependencies 29.3.1 I/O Lines Depending on product integration, the Debug Unit pins may be multiplexed with PIO lines. In this case, the programmer must first configure the corresponding PIO Controller to enable I/O lines operations of the Debug Unit. 29.3.2 Power Management Depending on product integration, the Debug Unit clock may be controllable through the Power Management Controller. In this case, the programmer must first configure the PMC to enable the Debug Unit clock. Usually, the peripheral identifier used for this purpose is 1. 29.3.3 Interrupt Source Depending on product integration, the Debug Unit interrupt line is connected to one of the interrupt sources of the Advanced Interrupt Controller. Interrupt handling requires programming of the AIC before configuring the Debug Unit. Usually, the Debug Unit interrupt line connects to the interrupt source 1 of the AIC, which may be shared with the real-time clock, the system timer interrupt lines and other system peripheral interrupts, as shown in Figure 291. This sharing requires the programmer to determine the source of the interrupt when the source 1 is triggered. 29.4 UART Operations The Debug Unit operates as a UART, (asynchronous mode only) and supports only 8-bit character handling (with parity). It has no clock pin. The Debug Unit's UART is made up of a receiver and a transmitter that operate independently, and a common baud rate generator. Receiver timeout and transmitter timeguard are not implemented. However, all the implemented features are compatible with those of a standard USART. 29.4.1 Baud Rate Generator The baud rate generator provides the bit period clock named baud rate clock to both the receiver and the transmitter. The baud rate clock is the master clock divided by 16 times the value (CD) written in DBGU_BRGR (Baud Rate Generator Register). If DBGU_BRGR is set to 0, the baud rate clock is disabled and the Debug Unit's UART remains inactive. The maximum allowable baud rate is Master Clock divided by 16. The minimum allowable baud rate is Master Clock divided by (16 x 65536). MCK Baud Rate = -------------------16 x CD Figure 29-3. Baud Rate Generator CD CD MCK 16-bit Counter OUT >1 1 0 Divide by 16 Baud Rate Clock 0 Receiver Sampling Clock SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 379 29.4.2 Receiver 29.4.2.1 Receiver Reset, Enable and Disable After device reset, the Debug Unit receiver is disabled and must be enabled before being used. The receiver can be enabled by writing the control register DBGU_CR with the bit RXEN at 1. At this command, the receiver starts looking for a start bit. The programmer can disable the receiver by writing DBGU_CR with the bit RXDIS at 1. If the receiver is waiting for a start bit, it is immediately stopped. However, if the receiver has already detected a start bit and is receiving the data, it waits for the stop bit before actually stopping its operation. The programmer can also put the receiver in its reset state by writing DBGU_CR with the bit RSTRX at 1. In doing so, the receiver immediately stops its current operations and is disabled, whatever its current state. If RSTRX is applied when data is being processed, this data is lost. 29.4.2.2 Start Detection and Data Sampling The Debug Unit only supports asynchronous operations, and this affects only its receiver. The Debug Unit receiver detects the start of a received character by sampling the DRXD signal until it detects a valid start bit. A low level (space) on DRXD is interpreted as a valid start bit if it is detected for more than 7 cycles of the sampling clock, which is 16 times the baud rate. Hence, a space that is longer than 7/16 of the bit period is detected as a valid start bit. A space which is 7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit. When a valid start bit has been detected, the receiver samples the DRXD at the theoretical midpoint of each bit. It is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period) so the bit sampling point is eight cycles (0.5-bit period) after the start of the bit. The first sampling point is therefore 24 cycles (1.5-bit periods) after the falling edge of the start bit was detected. Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one. Figure 29-4. Start Bit Detection Sampling Clock DRXD True Start Detection D0 Baud Rate Clock Figure 29-5. Character Reception Example: 8-bit, parity enabled 1 stop 0.5 bit period 1 bit period DRXD Sampling D0 D1 True Start Detection D2 D3 D4 D5 D6 Stop Bit D7 Parity Bit 29.4.2.3 Receiver Ready When a complete character is received, it is transferred to the DBGU_RHR and the RXRDY status bit in DBGU_SR (Status Register) is set. The bit RXRDY is automatically cleared when the receive holding register DBGU_RHR is read. 380 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 29-6. Receiver Ready DRXD S D0 D1 D2 D3 D4 D5 D6 D7 S P D0 D1 D2 D3 D4 D5 D6 D7 P RXRDY Read DBGU_RHR 29.4.2.4 Receiver Overrun If DBGU_RHR has not been read by the software (or the Peripheral Data Controller) since the last transfer, the RXRDY bit is still set and a new character is received, the OVRE status bit in DBGU_SR is set. OVRE is cleared when the software writes the control register DBGU_CR with the bit RSTSTA (Reset Status) at 1. Figure 29-7. Receiver Overrun DRXD S D0 D1 D2 D3 D4 D5 D6 D7 P S stop D0 D1 D2 D3 D4 D5 D6 D7 P stop RXRDY OVRE RSTSTA 29.4.2.5 Parity Error Each time a character is received, the receiver calculates the parity of the received data bits, in accordance with the field PAR in DBGU_MR. It then compares the result with the received parity bit. If different, the parity error bit PARE in DBGU_SR is set at the same time the RXRDY is set. The parity bit is cleared when the control register DBGU_CR is written with the bit RSTSTA (Reset Status) at 1. If a new character is received before the reset status command is written, the PARE bit remains at 1. Figure 29-8. Parity Error DRXD S D0 D1 D2 D3 D4 D5 D6 D7 P stop RXRDY PARE Wrong Parity Bit RSTSTA 29.4.2.6 Receiver Framing Error When a start bit is detected, it generates a character reception when all the data bits have been sampled. The stop bit is also sampled and when it is detected at 0, the FRAME (Framing Error) bit in DBGU_SR is set at the same time the RXRDY bit is set. The bit FRAME remains high until the control register DBGU_CR is written with the bit RSTSTA at 1. Figure 29-9. Receiver Framing Error DRXD S D0 D1 D2 D3 D4 D5 D6 D7 P stop RXRDY FRAME Stop Bit Detected at 0 RSTSTA SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 381 29.4.3 Transmitter 29.4.3.1 Transmitter Reset, Enable and Disable After device reset, the Debug Unit transmitter is disabled and it must be enabled before being used. The transmitter is enabled by writing the control register DBGU_CR with the bit TXEN at 1. From this command, the transmitter waits for a character to be written in the Transmit Holding Register DBGU_THR before actually starting the transmission. The programmer can disable the transmitter by writing DBGU_CR with the bit TXDIS at 1. If the transmitter is not operating, it is immediately stopped. However, if a character is being processed into the Shift Register and/or a character has been written in the Transmit Holding Register, the characters are completed before the transmitter is actually stopped. The programmer can also put the transmitter in its reset state by writing the DBGU_CR with the bit RSTTX at 1. This immediately stops the transmitter, whether or not it is processing characters. 29.4.3.2 Transmit Format The Debug Unit transmitter drives the pin DTXD at the baud rate clock speed. The line is driven depending on the format defined in the Mode Register and the data stored in the Shift Register. One start bit at level 0, then the 8 data bits, from the lowest to the highest bit, one optional parity bit and one stop bit at 1 are consecutively shifted out as shown on the following figure. The field PARE in the mode register DBGU_MR defines whether or not a parity bit is shifted out. When a parity bit is enabled, it can be selected between an odd parity, an even parity, or a fixed space or mark bit. Figure 29-10. Character Transmission Example: Parity enabled Baud Rate Clock DTXD Start Bit D0 D1 D2 D3 D4 D5 D6 D7 Parity Bit Stop Bit 29.4.3.3 Transmitter Control When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in the status register DBGU_SR. The transmission starts when the programmer writes in the Transmit Holding Register DBGU_THR, and after the written character is transferred from DBGU_THR to the Shift Register. The bit TXRDY remains high until a second character is written in DBGU_THR. As soon as the first character is completed, the last character written in DBGU_THR is transferred into the shift register and TXRDY rises again, showing that the holding register is empty. When both the Shift Register and the DBGU_THR are empty, i.e., all the characters written in DBGU_THR have been processed, the bit TXEMPTY rises after the last stop bit has been completed. 382 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 29-11. Transmitter Control DBGU_THR Data 0 Data 1 Shift Register DTXD Data 0 S Data 0 Data 1 P stop S Data 1 P stop TXRDY TXEMPTY Write Data 0 in DBGU_THR Write Data 1 in DBGU_THR 29.4.4 Peripheral Data Controller Both the receiver and the transmitter of the Debug Unit's UART are generally connected to a Peripheral Data Controller (PDC) channel. The peripheral data controller channels are programmed via registers that are mapped within the Debug Unit user interface from the offset 0x100. The status bits are reported in the Debug Unit status register DBGU_SR and can generate an interrupt. The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of the data in DBGU_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmitter. This results in a write of a data in DBGU_THR. 29.4.5 Test Modes The Debug Unit supports three tests modes. These modes of operation are programmed by using the field CHMODE (Channel Mode) in the mode register DBGU_MR. The Automatic Echo mode allows bit-by-bit retransmission. When a bit is received on the DRXD line, it is sent to the DTXD line. The transmitter operates normally, but has no effect on the DTXD line. The Local Loopback mode allows the transmitted characters to be received. DTXD and DRXD pins are not used and the output of the transmitter is internally connected to the input of the receiver. The DRXD pin level has no effect and the DTXD line is held high, as in idle state. The Remote Loopback mode directly connects the DRXD pin to the DTXD line. The transmitter and the receiver are disabled and have no effect. This mode allows a bit-by-bit retransmission. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 383 Figure 29-12. Test Modes Automatic Echo RXD Receiver Transmitter Disabled TXD Local Loopback Disabled Receiver RXD VDD Disabled Transmitter Remote Loopback Receiver Transmitter TXD VDD Disabled Disabled RXD TXD 29.4.6 Debug Communication Channel Support The Debug Unit handles the signals COMMRX and COMMTX that come from the Debug Communication Channel of the ARM Processor and are driven by the In-circuit Emulator. The Debug Communication Channel contains two registers that are accessible through the ICE Breaker on the JTAG side and through the coprocessor 0 on the ARM Processor side. As a reminder, the following instructions are used to read and write the Debug Communication Channel: MRC p14, 0, Rd, c1, c0, 0 Returns the debug communication data read register into Rd MCR p14, 0, Rd, c1, c0, 0 Writes the value in Rd to the debug communication data write register. The bits COMMRX and COMMTX, which indicate, respectively, that the read register has been written by the debugger but not yet read by the processor, and that the write register has been written by the processor and not yet read by the debugger, are wired on the two highest bits of the status register DBGU_SR. These bits can generate an interrupt. This feature permits handling under interrupt a debug link between a debug monitor running on the target system and a debugger. 384 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 29.4.7 Chip Identifier The Debug Unit features two chip identifier registers, DBGU_CIDR (Chip ID Register) and DBGU_EXID (Extension ID). Both registers contain a hard-wired value that is read-only. The first register contains the following fields: EXT - shows the use of the extension identifier register NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size ARCH - identifies the set of embedded peripherals SRAMSIZ - indicates the size of the embedded SRAM EPROC - indicates the embedded ARM processor VERSION - gives the revision of the silicon The second register is device-dependent and reads 0 if the bit EXT is 0. 29.4.8 ICE Access Prevention The Debug Unit allows blockage of access to the system through the ARM processor's ICE interface. This feature is implemented via the register Force NTRST (DBGU_FNR), that allows assertion of the NTRST signal of the ICE Interface. Writing the bit FNTRST (Force NTRST) to 1 in this register prevents any activity on the TAP controller. On standard devices, the bit FNTRST resets to 0 and thus does not prevent ICE access. This feature is especially useful on custom ROM devices for customers who do not want their on-chip code to be visible. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 385 29.5 Debug Unit (DBGU) User Interface Table 29-2. Register Mapping Offset Register Name Access Reset 0x0000 Control Register DBGU_CR Write-only - 0x0004 Mode Register DBGU_MR Read/Write 0x0 0x0008 Interrupt Enable Register DBGU_IER Write-only - 0x000C Interrupt Disable Register DBGU_IDR Write-only - 0x0010 Interrupt Mask Register DBGU_IMR Read-only 0x0 0x0014 Status Register DBGU_SR Read-only - 0x0018 Receive Holding Register DBGU_RHR Read-only 0x0 0x001C Transmit Holding Register DBGU_THR Write-only - 0x0020 Baud Rate Generator Register DBGU_BRGR Read/Write 0x0 Reserved - - - 0x0040 Chip ID Register DBGU_CIDR Read-only - 0x0044 Chip ID Extension Register DBGU_EXID Read-only - 0x0048 Force NTRST Register DBGU_FNR Read/Write 0x0 0x004C-0x00FC Reserved - - - 0x0100-0x0124 PDC Area - - - 0x0024-0x003C 386 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 29.5.1 Debug Unit Control Register Name: DBGU_CR Address: 0xFFFFF200 Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - RSTSTA 7 6 5 4 3 2 1 0 TXDIS TXEN RXDIS RXEN RSTTX RSTRX - - * RSTRX: Reset Receiver 0: No effect. 1: The receiver logic is reset and disabled. If a character is being received, the reception is aborted. * RSTTX: Reset Transmitter 0: No effect. 1: The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted. * RXEN: Receiver Enable 0: No effect. 1: The receiver is enabled if RXDIS is 0. * RXDIS: Receiver Disable 0: No effect. 1: The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the receiver is stopped. * TXEN: Transmitter Enable 0: No effect. 1: The transmitter is enabled if TXDIS is 0. * TXDIS: Transmitter Disable 0: No effect. 1: The transmitter is disabled. If a character is being processed and a character has been written the DBGU_THR and RSTTX is not set, both characters are completed before the transmitter is stopped. * RSTSTA: Reset Status Bits 0: No effect. 1: Resets the status bits PARE, FRAME and OVRE in the DBGU_SR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 387 29.5.2 Debug Unit Mode Register Name: DBGU_MR Address: 0xFFFFF204 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 14 13 12 11 10 9 - - 15 CHMODE 8 - 7 6 5 4 3 2 1 0 - - - - - - - - * PAR: Parity Type PAR Parity Type 0 0 0 Even parity 0 0 1 Odd parity 0 1 0 Space: parity forced to 0 0 1 1 Mark: parity forced to 1 1 x x No parity * CHMODE: Channel Mode CHMODE Mode Description 0 0 Normal Mode 0 1 Automatic Echo 1 0 Local Loopback 1 1 Remote Loopback 388 PAR SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 29.5.3 Debug Unit Interrupt Enable Register Name: DBGU_IER Address: 0xFFFFF208 Access: Write-only 31 30 29 28 27 26 25 24 COMMRX COMMTX - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - RXBUFF TXBUFE - TXEMPTY - 7 6 5 4 3 2 1 0 PARE FRAME OVRE ENDTX ENDRX - TXRDY RXRDY * RXRDY: Enable RXRDY Interrupt * TXRDY: Enable TXRDY Interrupt * ENDRX: Enable End of Receive Transfer Interrupt * ENDTX: Enable End of Transmit Interrupt * OVRE: Enable Overrun Error Interrupt * FRAME: Enable Framing Error Interrupt * PARE: Enable Parity Error Interrupt * TXEMPTY: Enable TXEMPTY Interrupt * TXBUFE: Enable Buffer Empty Interrupt * RXBUFF: Enable Buffer Full Interrupt * COMMTX: Enable COMMTX (from ARM) Interrupt * COMMRX: Enable COMMRX (from ARM) Interrupt 0: No effect. 1: Enables the corresponding interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 389 29.5.4 Debug Unit Interrupt Disable Register Name: DBGU_IDR Address: 0xFFFFF20C Access: Write-only 31 30 29 28 27 26 25 24 COMMRX COMMTX - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - RXBUFF TXBUFE - TXEMPTY - 7 6 5 4 3 2 1 0 PARE FRAME OVRE ENDTX ENDRX - TXRDY RXRDY * RXRDY: Disable RXRDY Interrupt * TXRDY: Disable TXRDY Interrupt * ENDRX: Disable End of Receive Transfer Interrupt * ENDTX: Disable End of Transmit Interrupt * OVRE: Disable Overrun Error Interrupt * FRAME: Disable Framing Error Interrupt * PARE: Disable Parity Error Interrupt * TXEMPTY: Disable TXEMPTY Interrupt * TXBUFE: Disable Buffer Empty Interrupt * RXBUFF: Disable Buffer Full Interrupt * COMMTX: Disable COMMTX (from ARM) Interrupt * COMMRX: Disable COMMRX (from ARM) Interrupt 0: No effect. 1: Disables the corresponding interrupt. 390 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 29.5.5 Debug Unit Interrupt Mask Register Name: DBGU_IMR Address: 0xFFFFF210 Access: Read-only 31 30 29 28 27 26 25 24 COMMRX COMMTX - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - RXBUFF TXBUFE - TXEMPTY - 7 6 5 4 3 2 1 0 PARE FRAME OVRE ENDTX ENDRX - TXRDY RXRDY * RXRDY: Mask RXRDY Interrupt * TXRDY: Disable TXRDY Interrupt * ENDRX: Mask End of Receive Transfer Interrupt * ENDTX: Mask End of Transmit Interrupt * OVRE: Mask Overrun Error Interrupt * FRAME: Mask Framing Error Interrupt * PARE: Mask Parity Error Interrupt * TXEMPTY: Mask TXEMPTY Interrupt * TXBUFE: Mask TXBUFE Interrupt * RXBUFF: Mask RXBUFF Interrupt * COMMTX: Mask COMMTX Interrupt * COMMRX: Mask COMMRX Interrupt 0: The corresponding interrupt is disabled. 1: The corresponding interrupt is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 391 29.5.6 Debug Unit Status Register Name: DBGU_SR Address: 0xFFFFF214 Access: Read-only 31 30 29 28 27 26 25 24 COMMRX COMMTX - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - RXBUFF TXBUFE - TXEMPTY - 7 6 5 4 3 2 1 0 PARE FRAME OVRE ENDTX ENDRX - TXRDY RXRDY * RXRDY: Receiver Ready 0: No character has been received since the last read of the DBGU_RHR or the receiver is disabled. 1: At least one complete character has been received, transferred to DBGU_RHR and not yet read. * TXRDY: Transmitter Ready 0: A character has been written to DBGU_THR and not yet transferred to the Shift Register, or the transmitter is disabled. 1: There is no character written to DBGU_THR not yet transferred to the Shift Register. * ENDRX: End of Receiver Transfer 0: The End of Transfer signal from the receiver Peripheral Data Controller channel is inactive. 1: The End of Transfer signal from the receiver Peripheral Data Controller channel is active. * ENDTX: End of Transmitter Transfer 0: The End of Transfer signal from the transmitter Peripheral Data Controller channel is inactive. 1: The End of Transfer signal from the transmitter Peripheral Data Controller channel is active. * OVRE: Overrun Error 0: No overrun error has occurred since the last RSTSTA. 1: At least one overrun error has occurred since the last RSTSTA. * FRAME: Framing Error 0: No framing error has occurred since the last RSTSTA. 1: At least one framing error has occurred since the last RSTSTA. * PARE: Parity Error 0: No parity error has occurred since the last RSTSTA. 1: At least one parity error has occurred since the last RSTSTA. * TXEMPTY: Transmitter Empty 0: There are characters in DBGU_THR, or characters being processed by the transmitter, or the transmitter is disabled. 1: There are no characters in DBGU_THR and there are no characters being processed by the transmitter. 392 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * TXBUFE: Transmission Buffer Empty 0: The buffer empty signal from the transmitter PDC channel is inactive. 1: The buffer empty signal from the transmitter PDC channel is active. * RXBUFF: Receive Buffer Full 0: The buffer full signal from the receiver PDC channel is inactive. 1: The buffer full signal from the receiver PDC channel is active. * COMMTX: Debug Communication Channel Write Status 0: COMMTX from the ARM processor is inactive. 1: COMMTX from the ARM processor is active. * COMMRX: Debug Communication Channel Read Status 0: COMMRX from the ARM processor is inactive. 1: COMMRX from the ARM processor is active. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 393 29.5.7 Debug Unit Receiver Holding Register Name: DBGU_RHR Address: 0xFFFFF218 Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 RXCHR * RXCHR: Received Character Last received character if RXRDY is set. 394 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 29.5.8 Debug Unit Transmit Holding Register Name: DBGU_THR Address: 0xFFFFF21C Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 TXCHR * TXCHR: Character to be Transmitted Next character to be transmitted after the current character if TXRDY is not set. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 395 29.5.9 Debug Unit Baud Rate Generator Register Name: DBGU_BRGR Address: 0xFFFFF220 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 3 2 1 0 CD 7 6 5 4 CD * CD: Clock Divisor CD Baud Rate Clock 0 Disabled 1 MCK 2-65535 396 MCK / (CD x 16) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 29.5.10 Debug Unit Chip ID Register Name: DBGU_CIDR Address: 0xFFFFF240 Access: Read-only 31 30 29 EXT 28 27 26 NVPTYP 23 22 21 20 19 18 ARCH 15 14 13 6 24 17 16 9 8 1 0 SRAMSIZ 12 11 10 NVPSIZ2 7 25 ARCH NVPSIZ 5 EPROC 4 3 2 VERSION * VERSION: Version of the Device Current version of the device. * EPROC: Embedded Processor EPROC Processor 0 0 1 ARM946ES 0 1 0 ARM7TDMI 1 0 0 ARM920T 1 0 1 ARM926EJS * NVPSIZ: Non-volatile Program Memory Size NVPSIZ Size 0 0 0 0 None 0 0 0 1 8 Kbytes 0 0 1 0 16 Kbytes 0 0 1 1 32 Kbytes 0 1 0 0 Reserved 0 1 0 1 64 Kbytes 0 1 1 0 Reserved 0 1 1 1 128 Kbytes 1 0 0 0 Reserved 1 0 0 1 256 Kbytes 1 0 1 0 512 Kbytes 1 0 1 1 Reserved 1 1 0 0 1024 Kbytes 1 1 0 1 Reserved 1 1 1 0 2048 Kbytes 1 1 1 1 Reserved SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 397 * NVPSIZ2 Second Non-volatile Program Memory Size NVPSIZ2 Size 0 0 0 0 None 0 0 0 1 8 Kbytes 0 0 1 0 16 Kbytes 0 0 1 1 32 Kbytes 0 1 0 0 Reserved 0 1 0 1 64 Kbytes 0 1 1 0 Reserved 0 1 1 1 128 Kbytes 1 0 0 0 Reserved 1 0 0 1 256 Kbytes 1 0 1 0 512 Kbytes 1 0 1 1 Reserved 1 1 0 0 1024 Kbytes 1 1 0 1 Reserved 1 1 1 0 2048 Kbytes 1 1 1 1 Reserved * SRAMSIZ: Internal SRAM Size SRAMSIZ Size 0 0 0 0 Reserved 0 0 0 1 1 Kbytes 0 0 1 0 2 Kbytes 0 0 1 1 6 Kbytes 0 1 0 0 112 Kbytes 0 1 0 1 4 Kbytes 0 1 1 0 80 Kbytes 0 1 1 1 160 Kbytes 1 0 0 0 8 Kbytes 1 0 0 1 16 Kbytes 1 0 1 0 32 Kbytes 1 0 1 1 64 Kbytes 1 1 0 0 128 Kbytes 1 1 0 1 256 Kbytes 1 1 1 0 96 Kbytes 1 1 1 1 512 Kbytes 398 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * ARCH: Architecture Identifier ARCH Hex Bin Architecture 0x19 0001 1001 AT91SAM9xx Series 0x29 0010 1001 AT91SAM9XExx Series 0x34 0011 0100 AT91x34 Series 0x37 0011 0111 CAP7 Series 0x39 0011 1001 CAP9 Series 0x3B 0011 1011 CAP11 Series 0x40 0100 0000 AT91x40 Series 0x42 0100 0010 AT91x42 Series 0x55 0101 0101 AT91x55 Series 0x60 0110 0000 AT91SAM7Axx Series 0x61 0110 0001 AT91SAM7AQxx Series 0x63 0110 0011 AT91x63 Series 0x70 0111 0000 AT91SAM7Sxx Series 0x71 0111 0001 AT91SAM7XCxx Series 0x72 0111 0010 AT91SAM7SExx Series 0x73 0111 0011 AT91SAM7Lxx Series 0x75 0111 0101 AT91SAM7Xxx Series 0x92 1001 0010 AT91x92 Series 0xF0 1111 0000 AT75Cxx Series * NVPTYP: Non-volatile Program Memory Type NVPTYP Memory 0 0 0 ROM 0 0 1 ROMless or on-chip Flash 1 0 0 SRAM emulating ROM 0 1 0 Embedded Flash Memory 0 1 1 ROM and Embedded Flash Memory NVPSIZ is ROM size NVPSIZ2 is Flash size * EXT: Extension Flag 0: Chip ID has a single register definition without extension 1: An extended Chip ID exists. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 399 29.5.11 Debug Unit Chip ID Extension Register Name: DBGU_EXID Address: 0xFFFFF244 Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 EXID 23 22 21 20 EXID 15 14 13 12 EXID 7 6 5 4 EXID * EXID: Chip ID Extension Reads 0 if the bit EXT in DBGU_CIDR is 0. 400 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 29.5.12 Debug Unit Force NTRST Register Name: DBGU_FNR Address: 0xFFFFF248 Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - - - - - - - FNTRST * FNTRST: Force NTRST 0: NTRST of the ARM processor's TAP controller is driven by the power_on_reset signal. 1: NTRST of the ARM processor's TAP controller is held low.b SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 401 30. Parallel Input/Output Controller (PIO) 30.1 Description The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of an embedded peripheral. This assures effective optimization of the pins of a product. Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User Interface. Each I/O line of the PIO Controller features: An input change interrupt enabling level change detection on any I/O line. A glitch filter providing rejection of pulses lower than one-half of clock cycle. Multi-drive capability similar to an open drain I/O line. Control of the pull-up of the I/O line. Input visibility and output control. The PIO Controller also features a synchronous output providing up to 32 bits of data output in a single write operation. 402 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.2 Block Diagram Figure 30-1. Block Diagram PIO Controller AIC PMC PIO Interrupt PIO Clock Data, Enable Up to 32 peripheral IOs Embedded Peripheral PIN 0 Data, Enable PIN 1 Up to 32 pins Up to 32 peripheral IOs Embedded Peripheral PIN 31 APB Figure 30-2. Application Block Diagram On-Chip Peripheral Drivers Keyboard Driver Control & Command Driver On-Chip Peripherals PIO Controller Keyboard Driver General Purpose I/Os External Devices SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 403 30.3 Product Dependencies 30.3.1 Pin Multiplexing Each pin is configurable, according to product definition as either a general-purpose I/O line only, or as an I/O line multiplexed with one or two peripheral I/Os. As the multiplexing is hardware-defined and thus product-dependent, the hardware designer and programmer must carefully determine the configuration of the PIO controllers required by their application. When an I/O line is general-purpose only, i.e., not multiplexed with any peripheral I/O, programming of the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Controller can control how the pin is driven by the product. 30.3.2 External Interrupt Lines The interrupt signals FIQ and IRQ0 to IRQn are most generally multiplexed through the PIO Controllers. However, it is not necessary to assign the I/O line to the interrupt function as the PIO Controller has no effect on inputs and the interrupt lines (FIQ or IRQs) are used only as inputs. 30.3.3 Power Management The Power Management Controller controls the PIO Controller clock in order to save power. Writing any of the registers of the user interface does not require the PIO Controller clock to be enabled. This means that the configuration of the I/O lines does not require the PIO Controller clock to be enabled. However, when the clock is disabled, not all of the features of the PIO Controller are available. Note that the Input Change Interrupt and the read of the pin level require the clock to be validated. After a hardware reset, the PIO clock is disabled by default. The user must configure the Power Management Controller before any access to the input line information. 30.3.4 Interrupt Generation For interrupt handling, the PIO Controllers are considered as user peripherals. This means that the PIO Controller interrupt lines are connected among the interrupt sources 2 to 31. Refer to the PIO Controller peripheral identifier in the product description to identify the interrupt sources dedicated to the PIO Controllers. The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled. 404 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.4 Functional Description The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic associated to each I/O is represented in Figure 30-3. In this description each signal shown represents but one of up to 32 possible indexes. Figure 30-3. I/O Line Control Logic PIO_OER[0] PIO_OSR[0] PIO_PUER[0] PIO_ODR[0] PIO_PUSR[0] PIO_PUDR[0] 1 Peripheral A Output Enable 0 0 Peripheral B Output Enable 0 1 PIO_PER[0] PIO_ASR[0] 1 PIO_PSR[0] PIO_ABSR[0] PIO_PDR[0] PIO_BSR[0] Peripheral A Output 0 Peripheral B Output 1 PIO_MDER[0] PIO_MDSR[0] PIO_MDDR[0] 0 0 PIO_SODR[0] PIO_ODSR[0] 1 Pad PIO_CODR[0] 1 Peripheral A Input PIO_PDSR[0] PIO_ISR[0] 0 Edge Detector Glitch Filter Peripheral B Input (Up to 32 possible inputs) PIO Interrupt 1 PIO_IFER[0] PIO_IFSR[0] PIO_IFDR[0] PIO_IER[0] PIO_IMR[0] PIO_IDR[0] PIO_ISR[31] PIO_IER[31] PIO_IMR[31] PIO_IDR[31] SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 405 30.4.1 Pull-up Resistor Control Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled or disabled by writing respectively PIO_PUER (Pull-up Enable Register) and PIO_PUDR (Pull-up Disable Resistor). Writing in these registers results in setting or clearing the corresponding bit in PIO_PUSR (Pull-up Status Register). Reading a 1 in PIO_PUSR means the pull-up is disabled and reading a 0 means the pull-up is enabled. Control of the pull-up resistor is possible regardless of the configuration of the I/O line. After reset, all of the pull-ups are enabled, i.e., PIO_PUSR resets at the value 0x0. 30.4.2 I/O Line or Peripheral Function Selection When a pin is multiplexed with one or two peripheral functions, the selection is controlled with the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The register PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value of 0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the PIO_ABSR (AB Select Status Register). A value of 1 indicates the pin is controlled by the PIO controller. If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral), PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit. After reset, most generally, the I/O lines are controlled by the PIO controller, i.e., PIO_PSR resets at 1. However, in some events, it is important that PIO lines are controlled by the peripheral (as in the case of memory chip select lines that must be driven inactive after reset or for address lines that must be driven low for booting out of an external memory). Thus, the reset value of PIO_PSR is defined at the product level, depending on the multiplexing of the device. 30.4.3 Peripheral A or B Selection The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The selection is performed by writing PIO_ASR (A Select Register) and PIO_BSR (Select B Register). PIO_ABSR (AB Select Status Register) indicates which peripheral line is currently selected. For each pin, the corresponding bit at level 0 means peripheral A is selected whereas the corresponding bit at level 1 indicates that peripheral B is selected. Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral input lines are always connected to the pin input. After reset, PIO_ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A. However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode. Writing in PIO_ASR and PIO_BSR manages PIO_ABSR regardless of the configuration of the pin. However, assignment of a pin to a peripheral function requires a write in the corresponding peripheral selection register (PIO_ASR or PIO_BSR) in addition to a write in PIO_PDR. 30.4.4 Output Control When the I/0 line is assigned to a peripheral function, i.e., the corresponding bit in PIO_PSR is at 0, the drive of the I/O line is controlled by the peripheral. Peripheral A or B, depending on the value in PIO_ABSR, determines whether the pin is driven or not. When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This is done by writing PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register). The results of these write operations are detected in PIO_OSR (Output Status Register). When a bit in this register is at 0, the corresponding I/O line is used as an input only. When the bit is at 1, the corresponding I/O line is driven by the PIO controller. The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data Register) and PIO_CODR (Clear Output Data Register). These write operations respectively set and clear PIO_ODSR (Output Data Status Register), which represents the data driven on the I/O lines. Writing in PIO_OER and PIO_ODR 406 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 manages PIO_OSR whether the pin is configured to be controlled by the PIO controller or assigned to a peripheral function. This enables configuration of the I/O line prior to setting it to be managed by the PIO Controller. Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it defines the first level driven on the I/O line. 30.4.5 Synchronous Data Output Controlling all parallel busses using several PIOs requires two successive write operations in the PIO_SODR and PIO_CODR registers. This may lead to unexpected transient values. The PIO controller offers a direct control of PIO outputs by single write access to PIO_ODSR (Output Data Status Register). Only bits unmasked by PIO_OWSR (Output Write Status Register) are written. The mask bits in the PIO_OWSR are set by writing to PIO_OWER (Output Write Enable Register) and cleared by writing to PIO_OWDR (Output Write Disable Register). After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at 0x0. 30.4.6 Multi Drive Control (Open Drain) Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This feature permits several drivers to be connected on the I/O line which is driven low only by each device. An external pull-up resistor (or enabling of the internal one) is generally required to guarantee a high level on the line. The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O line is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver Status Register) indicates the pins that are configured to support external drivers. After reset, the Multi Drive feature is disabled on all pins, i.e., PIO_MDSR resets at value 0x0. 30.4.7 Output Line Timings Figure 30-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is set. Figure 30-4 also shows when the feedback in PIO_PDSR is available. Figure 30-4. Output Line Timings MCK Write PIO_SODR Write PIO_ODSR at 1 APB Access Write PIO_CODR Write PIO_ODSR at 0 APB Access PIO_ODSR 2 cycles 2 cycles PIO_PDSR SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 407 30.4.8 Inputs The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This register indicates the level of the I/O lines regardless of their configuration, whether uniquely as an input or driven by the PIO controller or driven by a peripheral. Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled. 30.4.9 Input Glitch Filtering Optional input glitch filters are independently programmable on each I/O line. When the glitch filter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle latency if the pin level change occurs before a rising edge. However, this latency does not appear if the pin level change occurs before a falling edge. This is illustrated in Figure 30-5. The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register), PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register enables the glitch filter on the I/O lines. When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The glitch filters require that the PIO Controller clock is enabled. Figure 30-5. Input Glitch Filter Timing MCK up to 1.5 cycles Pin Level 1 cycle 1 cycle 1 cycle 1 cycle PIO_PDSR if PIO_IFSR = 0 2 cycles PIO_PDSR if PIO_IFSR = 1 408 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 up to 2.5 cycles 1 cycle up to 2 cycles 30.4.10 Input Change Interrupt The PIO Controller can be programmed to generate an interrupt when it detects an input change on an I/O line. The Input Change Interrupt is controlled by writing PIO_IER (Interrupt Enable Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and disable the input change interrupt by setting and clearing the corresponding bit in PIO_IMR (Interrupt Mask Register). As Input change detection is possible only by comparing two successive samplings of the input of the I/O line, the PIO Controller clock must be enabled. The Input Change Interrupt is available, regardless of the configuration of the I/O line, i.e., configured as an input only, controlled by the PIO Controller or assigned to a peripheral function. When an input change is detected on an I/O line, the corresponding bit in PIO_ISR (Interrupt Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted. The interrupt signals of the thirty-two channels are ORed-wired together to generate a single interrupt signal to the Advanced Interrupt Controller. When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts that are pending when PIO_ISR is read must be handled. Figure 30-6. Input Change Interrupt Timings MCK Pin Level PIO_ISR Read PIO_ISR APB Access APB Access SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 409 30.5 I/O Lines Programming Example The programing example as shown in Table 30-1 below is used to define the following configuration. 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-drain, with pull-up resistor Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no pull-up resistor Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up resistors, glitch filters and input change interrupts Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input change interrupt), no pull-up resistor, no glitch filter I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor I/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor I/O line 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor Table 30-1. 410 Programming Example Register Value to be Written PIO_PER 0x0000 FFFF PIO_PDR 0x0FFF 0000 PIO_OER 0x0000 00FF PIO_ODR 0x0FFF FF00 PIO_IFER 0x0000 0F00 PIO_IFDR 0x0FFF F0FF PIO_SODR 0x0000 0000 PIO_CODR 0x0FFF FFFF PIO_IER 0x0F00 0F00 PIO_IDR 0x00FF F0FF PIO_MDER 0x0000 000F PIO_MDDR 0x0FFF FFF0 PIO_PUDR 0x00F0 00F0 PIO_PUER 0x0F0F FF0F PIO_ASR 0x0F0F 0000 PIO_BSR 0x00F0 0000 PIO_OWER 0x0000 000F PIO_OWDR 0x0FFF FFF0 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6 Parallel Input/Output Controller (PIO) User Interface Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined, writing to the corresponding bits has no effect. Undefined bits read zero. If the I/O line is not multiplexed with any peripheral, the I/O line is controlled by the PIO Controller and PIO_PSR returns 1 systematically. Table 30-2. Register Mapping Offset Register Name Access Reset 0x0000 PIO Enable Register PIO_PER Write-only - 0x0004 PIO Disable Register PIO_PDR Write-only - Read-only (1) - - 0x0008 PIO Status Register PIO_PSR 0x000C Reserved - 0x0010 Output Enable Register PIO_OER Write-only - 0x0014 Output Disable Register PIO_ODR Write-only - 0x0018 Output Status Register PIO_OSR Read-only 0x0000 0000 0x001C Reserved - - - 0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only - 0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only - 0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x0000 0000 0x002C Reserved - - - 0x0030 Set Output Data Register PIO_SODR Write-only - 0x0034 Clear Output Data Register PIO_CODR Write-only - 0x0038 Output Data Status Register PIO_ODSR Read-only or(2) Read/Write - 0x003C Pin Data Status Register PIO_PDSR Read-only (3) 0x0040 Interrupt Enable Register PIO_IER Write-only - 0x0044 Interrupt Disable Register PIO_IDR Write-only - 0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000 PIO_ISR Read-only 0x00000000 (4) 0x004C Interrupt Status Register 0x0050 Multi-driver Enable Register PIO_MDER Write-only - 0x0054 Multi-driver Disable Register PIO_MDDR Write-only - 0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000 0x005C Reserved - - - 0x0060 Pull-up Disable Register PIO_PUDR Write-only - 0x0064 Pull-up Enable Register PIO_PUER Write-only - 0x0068 Pad Pull-up Status Register PIO_PUSR Read-only 0x00000000 0x006C Reserved - - - SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 411 Table 30-2. Register Mapping (Continued) Offset Register Name 0x0070 Peripheral A Select Register(5) 0x0074 (5) Peripheral B Select Register (5) Access Reset PIO_ASR Write-only - PIO_BSR Write-only - PIO_ABSR Read-only 0x00000000 - - 0x0078 AB Status Register 0x007C-0x009C Reserved - 0x00A0 Output Write Enable PIO_OWER Write-only - 0x00A4 Output Write Disable PIO_OWDR Write-only - 0x00A8 Output Write Status Register PIO_OWSR Read-only 0x00000000 0x00AC Reserved - - - Notes: 1. Reset value of PIO_PSR depends on the product implementation. 2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines. 3. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the I/O line levels requires the clock of the PIO Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled. 4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have occurred. 5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second register. 412 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.1 PIO Controller PIO Enable Register Name: PIO_PER Address: 0xFFFFF400 (PIOA), 0xFFFFF600 (PIOB), 0xFFFFF800 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: PIO Enable 0: No effect. 1: Enables the PIO to control the corresponding pin (disables peripheral control of the pin). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 413 30.6.2 PIO Controller PIO Disable Register Name: PIO_PDR Address: 0xFFFFF404 (PIOA), 0xFFFFF604 (PIOB), 0xFFFFF804 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: PIO Disable 0: No effect. 1: Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin). 414 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.3 PIO Controller PIO Status Register Name: PIO_PSR Address: 0xFFFFF408 (PIOA), 0xFFFFF608 (PIOB), 0xFFFFF808 (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: PIO Status 0: PIO is inactive on the corresponding I/O line (peripheral is active). 1: PIO is active on the corresponding I/O line (peripheral is inactive). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 415 30.6.4 PIO Controller Output Enable Register Name: PIO_OER Address: 0xFFFFF410 (PIOA), 0xFFFFF610 (PIOB), 0xFFFFF810 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Output Enable 0: No effect. 1: Enables the output on the I/O line. 416 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.5 PIO Controller Output Disable Register Name: PIO_ODR Address: 0xFFFFF414 (PIOA), 0xFFFFF614 (PIOB), 0xFFFFF814 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Output Disable 0: No effect. 1: Disables the output on the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 417 30.6.6 PIO Controller Output Status Register Name: PIO_OSR Address: 0xFFFFF418 (PIOA), 0xFFFFF618 (PIOB), 0xFFFFF818 (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Output Status 0: The I/O line is a pure input. 1: The I/O line is enabled in output. 418 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.7 PIO Controller Input Filter Enable Register Name: PIO_IFER Address: 0xFFFFF420 (PIOA), 0xFFFFF620 (PIOB), 0xFFFFF820 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Input Filter Enable 0: No effect. 1: Enables the input glitch filter on the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 419 30.6.8 PIO Controller Input Filter Disable Register Name: PIO_IFDR Address: 0xFFFFF424 (PIOA), 0xFFFFF624 (PIOB), 0xFFFFF824 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Input Filter Disable 0: No effect. 1: Disables the input glitch filter on the I/O line. 420 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.9 PIO Controller Input Filter Status Register Name: PIO_IFSR Address: 0xFFFFF428 (PIOA), 0xFFFFF628 (PIOB), 0xFFFFF828 (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Input Filer Status 0: The input glitch filter is disabled on the I/O line. 1: The input glitch filter is enabled on the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 421 30.6.10 PIO Controller Set Output Data Register Name: PIO_SODR Address: 0xFFFFF430 (PIOA), 0xFFFFF630 (PIOB), 0xFFFFF830 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Set Output Data 0: No effect. 1: Sets the data to be driven on the I/O line. 422 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.11 PIO Controller Clear Output Data Register Name: PIO_CODR Address: 0xFFFFF434 (PIOA), 0xFFFFF634 (PIOB), 0xFFFFF834 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Set Output Data 0: No effect. 1: Clears the data to be driven on the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 423 30.6.12 PIO Controller Output Data Status Register Name: PIO_ODSR Address: 0xFFFFF438 (PIOA), 0xFFFFF638 (PIOB), 0xFFFFF838 (PIOC) Access: Read-only or Read/Write 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Output Data Status 0: The data to be driven on the I/O line is 0. 1: The data to be driven on the I/O line is 1. 424 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.13 PIO Controller Pin Data Status Register Name: PIO_PDSR Address: 0xFFFFF43C (PIOA), 0xFFFFF63C (PIOB), 0xFFFFF83C (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Output Data Status 0: The I/O line is at level 0. 1: The I/O line is at level 1. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 425 30.6.14 PIO Controller Interrupt Enable Register Name: PIO_IER Address: 0xFFFFF440 (PIOA), 0xFFFFF640 (PIOB), 0xFFFFF840 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Input Change Interrupt Enable 0: No effect. 1: Enables the Input Change Interrupt on the I/O line. 426 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.15 PIO Controller Interrupt Disable Register Name: PIO_IDR Address: 0xFFFFF444 (PIOA), 0xFFFFF644 (PIOB), 0xFFFFF844 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Input Change Interrupt Disable 0: No effect. 1: Disables the Input Change Interrupt on the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 427 30.6.16 PIO Controller Interrupt Mask Register Name: PIO_IMR Address: 0xFFFFF448 (PIOA), 0xFFFFF648 (PIOB), 0xFFFFF848 (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Input Change Interrupt Mask 0: Input Change Interrupt is disabled on the I/O line. 1: Input Change Interrupt is enabled on the I/O line. 428 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.17 PIO Controller Interrupt Status Register Name: PIO_ISR Address: 0xFFFFF44C (PIOA), 0xFFFFF64C (PIOB), 0xFFFFF84C (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Input Change Interrupt Status 0: No Input Change has been detected on the I/O line since PIO_ISR was last read or since reset. 1: At least one Input Change has been detected on the I/O line since PIO_ISR was last read or since reset. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 429 30.6.18 PIO Multi-driver Enable Register Name: PIO_MDER Address: 0xFFFFF450 (PIOA), 0xFFFFF650 (PIOB), 0xFFFFF850 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Multi Drive Enable 0: No effect. 1: Enables Multi Drive on the I/O line. 430 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.19 PIO Multi-driver Disable Register Name: PIO_MDDR Address: 0xFFFFF454 (PIOA), 0xFFFFF654 (PIOB), 0xFFFFF854 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Multi Drive Disable 0: No effect. 1: Disables Multi Drive on the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 431 30.6.20 PIO Multi-driver Status Register Name: PIO_MDSR Address: 0xFFFFF458 (PIOA), 0xFFFFF658 (PIOB), 0xFFFFF858 (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Multi Drive Status 0: The Multi Drive is disabled on the I/O line. The pin is driven at high and low level. 1: The Multi Drive is enabled on the I/O line. The pin is driven at low level only. 432 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.21 PIO Pull Up Disable Register Name: PIO_PUDR Address: 0xFFFFF460 (PIOA), 0xFFFFF660 (PIOB), 0xFFFFF860 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Pull Up Disable 0: No effect. 1: Disables the pull up resistor on the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 433 30.6.22 PIO Pull Up Enable Register Name: PIO_PUER Address: 0xFFFFF464 (PIOA), 0xFFFFF664 (PIOB), 0xFFFFF864 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Pull Up Enable 0: No effect. 1: Enables the pull up resistor on the I/O line. 434 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.23 PIO Pull Up Status Register Name: PIO_PUSR Address: 0xFFFFF468 (PIOA), 0xFFFFF668 (PIOB), 0xFFFFF868 (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Pull Up Status 0: Pull Up resistor is enabled on the I/O line. 1: Pull Up resistor is disabled on the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 435 30.6.24 PIO Peripheral A Select Register Name: PIO_ASR Address: 0xFFFFF470 (PIOA), 0xFFFFF670 (PIOB), 0xFFFFF870 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Peripheral A Select 0: No effect. 1: Assigns the I/O line to the Peripheral A function. 436 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.25 PIO Peripheral B Select Register Name: PIO_BSR Address: 0xFFFFF474 (PIOA), 0xFFFFF674 (PIOB), 0xFFFFF874 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Peripheral B Select 0: No effect. 1: Assigns the I/O line to the peripheral B function. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 437 30.6.26 PIO Peripheral A B Status Register Name: PIO_ABSR Address: 0xFFFFF478 (PIOA), 0xFFFFF678 (PIOB), 0xFFFFF878 (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Peripheral A B Status 0: The I/O line is assigned to the Peripheral A. 1: The I/O line is assigned to the Peripheral B. 438 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.27 PIO Output Write Enable Register Name: PIO_OWER Address: 0xFFFFF4A0 (PIOA), 0xFFFFF6A0 (PIOB), 0xFFFFF8A0 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Output Write Enable 0: No effect. 1: Enables writing PIO_ODSR for the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 439 30.6.28 PIO Output Write Disable Register Name: PIO_OWDR Address: 0xFFFFF4A4 (PIOA), 0xFFFFF6A4 (PIOB), 0xFFFFF8A4 (PIOC) Access: Write-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Output Write Disable 0: No effect. 1: Disables writing PIO_ODSR for the I/O line. 440 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 30.6.29 PIO Output Write Status Register Name: PIO_OWSR Address: 0xFFFFF4A8 (PIOA), 0xFFFFF6A8 (PIOB), 0xFFFFF8A8 (PIOC) Access: Read-only 31 30 29 28 27 26 25 24 P31 P30 P29 P28 P27 P26 P25 P24 23 22 21 20 19 18 17 16 P23 P22 P21 P20 P19 P18 P17 P16 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 * P0-P31: Output Write Status 0: Writing PIO_ODSR does not affect the I/O line. 1: Writing PIO_ODSR affects the I/O line. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 441 31. Serial Peripheral Interface (SPI) 31.1 Description The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication with external devices in Master or Slave Mode. It also enables communication between processors if an external processor is connected to the system. The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to other SPIs. During a data transfer, one SPI system acts as the "master"' which controls the data flow, while the other devices act as "slaves'' which have data shifted into and out by the master. Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master Protocol where one CPU is always the master while all of the others are always slaves) and one master may simultaneously shift data into multiple slaves. However, only one slave may drive its output to write data back to the master at any given time. A slave device is selected when the master asserts its NSS signal. If multiple slave devices exist, the master generates a separate slave select signal for each slave (NPCS). The SPI system consists of two data lines and two control lines: 31.2 Master Out Slave In (MOSI): This data line supplies the output data from the master shifted into the input(s) of the slave(s). Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of the master. There may be no more than one slave transmitting data during any particular transfer. Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once for each bit that is transmitted. Slave Select (NSS): This control line allows slaves to be turned on and off by hardware. Block Diagram Figure 31-1. Block Diagram PDC APB SPCK MISO PMC MOSI MCK SPI Interface PIO NPCS0/NSS NPCS1 NPCS2 Interrupt Control NPCS3 SPI Interrupt 442 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 31.3 Application Block Diagram Figure 31-2. Application Block Diagram: Single Master/Multiple Slave Implementation SPI Master SPCK SPCK MISO MISO MOSI MOSI NPCS0 NSS Slave 0 SPCK NPCS1 NPCS2 NC NPCS3 MISO Slave 1 MOSI NSS SPCK MISO Slave 2 MOSI NSS 31.4 Signal Description Table 31-1. Signal Description Type Pin Name Pin Description Master Slave MISO Master In Slave Out Input Output MOSI Master Out Slave In Output Input SPCK Serial Clock Output Input NPCS1-NPCS3 Peripheral Chip Selects Output Unused NPCS0/NSS Peripheral Chip Select/Slave Select Output Input SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 443 31.5 Product Dependencies 31.5.1 I/O Lines The pins used for interfacing the compliant external devices may be multiplexed with PIO lines. The programmer must first program the PIO controllers to assign the SPI pins to their peripheral functions. 31.5.2 Power Management The SPI may be clocked through the Power Management Controller (PMC), thus the programmer must first configure the PMC to enable the SPI clock. 31.5.3 Interrupt The SPI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling the SPI interrupt requires programming the AIC before configuring the SPI. 31.6 Functional Description 31.6.1 Modes of Operation The SPI operates in Master Mode or in Slave Mode. Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register. The pins NPCS0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line is wired on the receiver input and the MOSI line driven as an output by the transmitter. If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the transmitter to synchronize the receiver. The NPCS0 pin becomes an input, and is used as a Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other purposes. The data transfers are identically programmable for both modes of operations. The baud rate generator is activated only in Master Mode. 31.6.2 Data Transfer Four combinations of polarity and phase are available for data transfers. The clock polarity is programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with the NCPHA bit. These two parameters determine the edges of the clock signal on which data is driven and sampled. Each of the two parameters has two possible states, resulting in four possible combinations that are incompatible with one another. Thus, a master/slave pair must use the same parameter pair values to communicate. If multiple slaves are used and fixed in different configurations, the master must reconfigure itself each time it needs to communicate with a different slave. Table 31-2 shows the four modes and corresponding parameter settings. Table 31-2. SPI Bus Protocol Mode SPI Mode CPOL NCPHA 0 0 1 1 0 0 2 1 1 3 1 0 Figure 31-3 and Figure 31-4 show examples of data transfers. 444 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 31-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer) 1 SPCK cycle (for reference) 2 3 4 6 5 7 8 SPCK (CPOL = 0) SPCK (CPOL = 1) MOSI (from master) MSB MISO (from slave) MSB 6 5 4 3 2 1 LSB 6 5 4 3 2 1 LSB * NSS (to slave) * Not defined, but normally MSB of previous character received. Figure 31-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer) 1 SPCK cycle (for reference) 2 3 4 5 8 7 6 SPCK (CPOL = 0) SPCK (CPOL = 1) MOSI (from master) MISO (from slave) * MSB 6 5 4 3 2 1 MSB 6 5 4 3 2 1 LSB LSB NSS (to slave) * Not defined but normally LSB of previous character transmitted. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 445 31.6.3 Master Mode Operations When configured in Master Mode, the SPI operates on the clock generated by the internal programmable baud rate generator. It fully controls the data transfers to and from the slave(s) connected to the SPI bus. The SPI drives the chip select line to the slave and the serial clock signal (SPCK). The SPI features two holding registers, the Transmit Data Register and the Receive Data Register, and a single Shift Register. The holding registers maintain the data flow at a constant rate. After enabling the SPI, a data transfer begins when the processor writes to the SPI_TDR (Transmit Data Register). The written data is immediately transferred in the Shift Register and transfer on the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO line is sampled and shifted in the Shift Register. Transmission cannot occur without reception. Before writing the TDR, the PCS field must be set in order to select a slave. If new data is written in SPI_TDR during the transfer, it stays in it until the current transfer is completed. Then, the received data is transferred from the Shift Register to SPI_RDR, the data in SPI_TDR is loaded in the Shift Register and a new transfer starts. The transfer of a data written in SPI_TDR in the Shift Register is indicated by the TDRE bit (Transmit Data Register Empty) in the Status Register (SPI_SR). When new data is written in SPI_TDR, this bit is cleared. The TDRE bit is used to trigger the Transmit PDC channel. The end of transfer is indicated by the TXEMPTY flag in the SPI_SR. If a transfer delay (DLYBCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said delay. The master clock (MCK) can be switched off at this time. The transfer of received data from the Shift Register in SPI_RDR is indicated by the RDRF bit (Receive Data Register Full) in the Status Register (SPI_SR). When the received data is read, the RDRF bit is cleared. If the SPI_RDR (Receive Data Register) has not been read before new data is received, the Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data is loaded in SPI_RDR. The user has to read the status register to clear the OVRES bit. Figure 31-5 shows a block diagram of the SPI when operating in Master Mode. Figure 31-6 on page 448 shows a flow chart describing how transfers are handled. 446 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 31.6.3.1 Master Mode Block Diagram Figure 31-5. Master Mode Block Diagram SPI_CSR0..3 SCBR Baud Rate Generator MCK SPCK SPI Clock SPI_CSR0..3 BITS NCPHA CPOL LSB MISO SPI_RDR RDRF OVRES RD MSB Shift Register MOSI SPI_TDR TDRE TD SPI_CSR0..3 SPI_RDR CSAAT PCS PS NPCS3 PCSDEC SPI_MR PCS 0 NPCS2 Current Peripheral NPCS1 SPI_TDR NPCS0 PCS 1 MSTR MODF NPCS0 MODFDIS SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 447 31.6.3.2 Master Mode Flow Diagram Figure 31-6. Master Mode Flow Diagram SPI Enable - NPCS defines the current Chip Select - CSAAT, DLYBS, DLYBCT refer to the fields of the Chip Select Register corresponding to the Current Chip Select - When NPCS is 0xF, CSAAT is 0. 1 TDRE ? 0 CSAAT ? PS ? 1 0 0 Fixed peripheral PS ? 1 Variable peripheral NPCS = SPI_MR(PCS) Delay DLYBS Serializer = SPI_TDR(TD) TDRE = 1 Data Transfer SPI_RDR(RD) = Serializer RDRF = 1 Delay DLYBCT 0 TDRE ? 1 1 CSAAT ? 0 NPCS = 0xF Delay DLYBCS SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Variable peripheral SPI_TDR(PCS) = NPCS ? no NPCS = SPI_TDR(PCS) 448 Fixed peripheral 0 1 yes SPI_MR(PCS) = NPCS ? no NPCS = 0xF NPCS = 0xF Delay DLYBCS Delay DLYBCS NPCS = SPI_TDR(PCS) NPCS = SPI_MR(PCS), SPI_TDR(PCS) 31.6.3.3 Clock Generation The SPI baud rate clock is generated by dividing the Master Clock (MCK), by a value between 1 and 255. This allows a maximum operating baud rate at up to Master Clock and a minimum operating baud rate of MCK divided by 255. Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results. At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer. The divisor can be defined independently for each chip select, as it has to be programmed in the SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud rate for each interfaced peripheral without reprogramming. 31.6.3.4 Transfer Delays Figure 31-7 shows a chip select transfer change and consecutive transfers on the same chip select. Three delays can be programmed to modify the transfer waveforms: The delay between chip selects, programmable only once for all the chip selects by writing the DLYBCS field in the Mode Register. Allows insertion of a delay between release of one chip select and before assertion of a new one. The delay before SPCK, independently programmable for each chip select by writing the field DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted. The delay between consecutive transfers, independently programmable for each chip select by writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on the same chip select These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus release time. Figure 31-7. Programmable Delays Chip Select 1 Chip Select 2 SPCK DLYBCS DLYBS DLYBCT DLYBCT 31.6.3.5 Peripheral Selection The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By default, all the NPCS signals are high before and after each transfer. The peripheral selection can be performed in two different ways: Fixed Peripheral Select: SPI exchanges data with only one peripheral Variable Peripheral Select: Data can be exchanged with more than one peripheral Fixed Peripheral Select is activated by writing the PS bit to zero in SPI_MR (Mode Register). In this case, the current peripheral is defined by the PCS field in SPI_MR and the PCS field in the SPI_TDR has no effect. Variable Peripheral Select is activated by setting PS bit to one. The PCS field in SPI_TDR is used to select the current peripheral. This means that the peripheral selection can be defined for each new data. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 449 The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is an optimal means, as the size of the data transfer between the memory and the SPI is either 8 bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be reprogrammed. The Variable Peripheral Selection allows buffer transfers with multiple peripherals without reprogramming the Mode Register. Data written in SPI_TDR is 32 bits wide and defines the real data to be transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit wide buffers, with the data in the Lisps and the PCS and LASTXFER fields in the MSBs, however the SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI lines with the chip select configuration registers. This is not the optimal means in term of memory size for the buffers, but it provides a very effective means to exchange data with several peripherals without any intervention of the processor. 31.6.3.6 Peripheral Chip Select Decoding The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip Select lines, NPCS0 to NPCS3 with an external logic. This can be enabled by writing the PCSDEC bit at 1 in the Mode Register (SPI_MR). When operating without decoding, the SPI makes sure that in any case only one chip select line is activated, i.e., driven low at a time. If two bits are defined low in a PCS field, only the lowest numbered chip select is driven low. When operating with decoding, the SPI directly outputs the value defined by the PCS field of either the Mode Register or the Transmit Data Register (depending on PS). As the SPI sets a default value of 0xF on the chip select lines (i.e., all chip select lines at 1) when not processing any transfer, only 15 peripherals can be decoded. The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated, each chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0 defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14. 31.6.3.7 Peripheral Deselection When operating normally, as soon as the transfer of the last data written in SPI_TDR is completed, the NPCS lines all rise. This might lead to runtime error if the processor is too long in responding to an interrupt, and thus might lead to difficulties for interfacing with some serial peripherals requiring the chip select line to remain active during a full set of transfers. To facilitate interfacing with such devices, the Chip Select Register can be programmed with the CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in their current state (low = active) until transfer to another peripheral is required. Figure 31-8 shows different peripheral deselction cases and the effect of the CSAAT bit. 450 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 31-8. Peripheral Deselection CSAAT = 0 TDRE NPCS[0..3] CSAAT = 1 DLYBCT DLYBCT A A A A DLYBCS A DLYBCS PCS = A PCS = A Write SPI_TDR TDRE NPCS[0..3] DLYBCT DLYBCT A A A A DLYBCS A DLYBCS PCS=A PCS = A Write SPI_TDR TDRE NPCS[0..3] DLYBCT DLYBCT A B A B DLYBCS DLYBCS PCS = B PCS = B Write SPI_TDR 31.6.3.8 Mode Fault Detection A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven by an external master on the NPCS0/NSS signal. NPCS0, MOSI, MISO and SPCK must be configured in open drain through the PIO controller, so that external pull up resistors are needed to guarantee high level. When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is read and the SPI is automatically disabled until re-enabled by writing the SPIEN bit in the SPI_CR (Control Register) at 1. By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault detection by setting the MODFDIS bit in the SPI Mode Register (SPI_MR). 31.6.4 SPI Slave Mode When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI clock pin (SPCK). The SPI waits for NSS to go active before receiving the serial clock from an external master. When NSS falls, the clock is validated on the serializer, which processes the number of bits defined by the BITS field of the Chip Select Register 0 (SPI_CSR0). These bits are processed following a phase and a polarity defined respectively by the NCPHA and CPOL bits of the SPI_CSR0. Note that BITS, CPOL and NCPHA of the other Chip Select Registers have no effect when the SPI is programmed in Slave Mode. The bits are shifted out on the MISO line and sampled on the MOSI line. (For more information on BITS field, see also the note below the register bitmap in Section 31.7.9 "SPI Chip Select Register" on page 464.) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 451 When all the bits are processed, the received data is transferred in the Receive Data Register and the RDRF bit rises. If the SPI_RDR (Receive Data Register) has not been read before new data is received, the Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data is loaded in SPI_RDR. The user has to read the status register to clear the OVRES bit. When a transfer starts, the data shifted out is the data present in the Shift Register. If no data has been written in the Transmit Data Register (SPI_TDR), the last data received is transferred. If no data has been received since the last reset, all bits are transmitted low, as the Shift Register resets at 0. When a first data is written in SPI_TDR, it is transferred immediately in the Shift Register and the TDRE bit rises. If new data is written, it remains in SPI_TDR until a transfer occurs, i.e., NSS falls and there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in SPI_TDR is transferred in the Shift Register and the TDRE bit rises. This enables frequent updates of critical variables with single transfers. Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no character is ready to be transmitted, i.e., no character has been written in SPI_TDR since the last load from SPI_TDR to the Shift Register, the Shift Register is not modified and the last received character is retransmitted. Figure 31-9 shows a block diagram of the SPI when operating in Slave Mode. Figure 31-9. Slave Mode Functional Block Diagram SPCK NSS SPI Clock SPIEN SPIENS SPIDIS SPI_CSR0 BITS NCPHA CPOL MOSI LSB SPI_RDR RDRF OVRES RD MSB Shift Register MISO SPI_TDR TD 452 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 TDRE 31.7 Serial Peripheral Interface (SPI) User Interface Table 31-3. Register Mapping Offset Register Name Access Reset 0x00 Control Register SPI_CR Write-only - 0x04 Mode Register SPI_MR Read/Write 0x0 0x08 Receive Data Register SPI_RDR Read-only 0x0 0x0C Transmit Data Register SPI_TDR Write-only - 0x10 Status Register SPI_SR Read-only 0x000000F0 0x14 Interrupt Enable Register SPI_IER Write-only - 0x18 Interrupt Disable Register SPI_IDR Write-only - 0x1C Interrupt Mask Register SPI_IMR Read-only 0x0 Reserved - - - 0x30 Chip Select Register 0 SPI_CSR0 Read/Write 0x0 0x34 Chip Select Register 1 SPI_CSR1 Read/Write 0x0 0x38 Chip Select Register 2 SPI_CSR2 Read/Write 0x0 0x3C Chip Select Register 3 SPI_CSR3 Read/Write 0x0 0x004C-0x00F8 Reserved - - - 0x004C-0x00FC Reserved - - - Reserved for the PDC - - - 0x20-0x2C 0x100-0x124 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 453 31.7.1 SPI Control Register Name: SPI_CR Address: 0xFFFC8000 (0), 0xFFFCC000 (1) Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - LASTXFER 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 SWRST - - - - - SPIDIS SPIEN * SPIEN: SPI Enable 0: No effect. 1: Enables the SPI to transfer and receive data. * SPIDIS: SPI Disable 0: No effect. 1: Disables the SPI. As soon as SPIDIS is set, SPI finishes its transfer. All pins are set in input mode and no data is received or transmitted. If a transfer is in progress, the transfer is finished before the SPI is disabled. If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled. * SWRST: SPI Software Reset 0: No effect. 1: Reset the SPI. A software-triggered hardware reset of the SPI interface is performed. The SPI is in slave mode after software reset. PDC channels are not affected by software reset. * LASTXFER: Last Transfer 0: No effect. 1: The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD transfer has completed. 454 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 31.7.2 SPI Mode Register Name: SPI_MR Address: 0xFFFC8004 (0), 0xFFFCC004 (1) Access: Read/Write 31 30 29 28 27 26 19 18 25 24 17 16 DLYBCS 23 22 21 20 - - - - 15 14 13 12 11 10 9 8 - - - - - - - - PCS 7 6 5 4 3 2 1 0 LLB - 0 MODFDIS - PCSDEC PS MSTR * MSTR: Master/Slave Mode 0: SPI is in Slave mode. 1: SPI is in Master mode. * PS: Peripheral Select 0: Fixed Peripheral Select. 1: Variable Peripheral Select. * PCSDEC: Chip Select Decode 0: The chip selects are directly connected to a peripheral device. 1: The four chip select lines are connected to a 4- to 16-bit decoder. When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules: SPI_CSR0 defines peripheral chip select signals 0 to 3. SPI_CSR1 defines peripheral chip select signals 4 to 7. SPI_CSR2 defines peripheral chip select signals 8 to 11. SPI_CSR3 defines peripheral chip select signals 12 to 14. * MODFDIS: Mode Fault Detection 0: Mode fault detection is enabled. 1: Mode fault detection is disabled. * LLB: Local Loopback Enable 0: Local loopback path disabled. 1: Local loopback path enabled LLB controls the local loopback on the data serializer for testing in Master Mode only. (MISO is internally connected on MOSI.) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 455 * PCS: Peripheral Chip Select This field is only used if Fixed Peripheral Select is active (PS = 0). If PCSDEC = 0: PCS = xxx0 NPCS[3:0] = 1110 PCS = xx01 NPCS[3:0] = 1101 PCS = x011 NPCS[3:0] = 1011 PCS = 0111 NPCS[3:0] = 0111 PCS = 1111 forbidden (no peripheral is selected) (x = don't care) If PCSDEC = 1: NPCS[3:0] output signals = PCS. * DLYBCS: Delay Between Chip Selects This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees nonoverlapping chip selects and solves bus contentions in case of peripherals having long data float times. If DLYBCS is less than or equal to six, six MCK periods will be inserted by default. Otherwise, the following equation determines the delay: DLYBCS Delay Between Chip Selects = ----------------------MCK 456 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 31.7.3 SPI Receive Data Register Name: SPI_RDR Address: 0xFFFC8008 (0), 0xFFFCC008 (1) Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - 15 14 13 12 PCS 11 10 9 8 3 2 1 0 RD 7 6 5 4 RD * RD: Receive Data Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero. * PCS: Peripheral Chip Select In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read zero. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 457 31.7.4 SPI Transmit Data Register Name: SPI_TDR Address: 0xFFFC800C (0), 0xFFFCC00C (1) Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - LASTXFER 23 22 21 20 19 18 17 16 - - - - 15 14 13 12 PCS 11 10 9 8 3 2 1 0 TD 7 6 5 4 TD * TD: Transmit Data Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the transmit data register in a right-justified format. * PCS: Peripheral Chip Select This field is only used if Variable Peripheral Select is active (PS = 1). If PCSDEC = 0: PCS = xxx0 NPCS[3:0] = 1110 PCS = xx01 NPCS[3:0] = 1101 PCS = x011 NPCS[3:0] = 1011 PCS = 0111 NPCS[3:0] = 0111 PCS = 1111 forbidden (no peripheral is selected) (x = don't care) If PCSDEC = 1: NPCS[3:0] output signals = PCS * LASTXFER: Last Transfer 0: No effect. 1: The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD transfer has completed. This field is only used if Variable Peripheral Select is active (PS = 1). 458 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 31.7.5 SPI Status Register Name: SPI_SR Address: 0xFFFC8010 (0), 0xFFFCC010 (1) Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - SPIENS 15 14 13 12 11 10 9 8 - - - - - 0 TXEMPTY NSSR 7 6 5 4 3 2 1 0 TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF * RDRF: Receive Data Register Full 0: No data has been received since the last read of SPI_RDR 1: Data has been received and the received data has been transferred from the serializer to SPI_RDR since the last read of SPI_RDR. * TDRE: Transmit Data Register Empty 0: Data has been written to SPI_TDR and not yet transferred to the serializer. 1: The last data written in the Transmit Data Register has been transferred to the serializer. TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one. * MODF: Mode Fault Error 0: No Mode Fault has been detected since the last read of SPI_SR. 1: A Mode Fault occurred since the last read of the SPI_SR. * OVRES: Overrun Error Status 0: No overrun has been detected since the last read of SPI_SR. 1: An overrun has occurred since the last read of SPI_SR. An overrun occurs when SPI_RDR is loaded at least twice from the serializer since the last read of the SPI_RDR. * ENDRX: End of RX buffer 0: The Receive Counter Register has not reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1). 1: The Receive Counter Register has reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1). * ENDTX: End of TX buffer 0: The Transmit Counter Register has not reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1). 1: The Transmit Counter Register has reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1). * RXBUFF: RX Buffer Full 0: SPI_RCR(1) or SPI_RNCR(1) has a value other than 0. 1: Both SPI_RCR(1) and SPI_RNCR(1) have a value of 0. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 459 * TXBUFE: TX Buffer Empty 0: SPI_TCR(1) or SPI_TNCR(1) has a value other than 0. 1: Both SPI_TCR(1) and SPI_TNCR(1) have a value of 0. * NSSR: NSS Rising 0: No rising edge detected on NSS pin since last read. 1: A rising edge occurred on NSS pin since last read. * TXEMPTY: Transmission Registers Empty 0: As soon as data is written in SPI_TDR. 1: SPI_TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of such delay. * SPIENS: SPI Enable Status 0: SPI is disabled. 1: SPI is enabled. Note: 460 1. SPI_RCR, SPI_RNCR, SPI_TCR, SPI_TNCR are physically located in the PDC. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 31.7.6 SPI Interrupt Enable Register Name: SPI_IER Address: 0xFFFC8014 (0), 0xFFFCC014 (1) Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - 0 TXEMPTY NSSR 7 6 5 4 3 2 1 0 TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF 0: No effect. 1: Enables the corresponding interrupt. * RDRF: Receive Data Register Full Interrupt Enable * TDRE: SPI Transmit Data Register Empty Interrupt Enable * MODF: Mode Fault Error Interrupt Enable * OVRES: Overrun Error Interrupt Enable * ENDRX: End of Receive Buffer Interrupt Enable * ENDTX: End of Transmit Buffer Interrupt Enable * RXBUFF: Receive Buffer Full Interrupt Enable * TXBUFE: Transmit Buffer Empty Interrupt Enable * NSSR: NSS Rising Interrupt Enable * TXEMPTY: Transmission Registers Empty Enable SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 461 31.7.7 SPI Interrupt Disable Register Name: SPI_IDR Address: 0xFFFC8018 (0), 0xFFFCC018 (1) Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - 0 TXEMPTY NSSR 7 6 5 4 3 2 1 0 TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF 0: No effect. 1: Disables the corresponding interrupt. * RDRF: Receive Data Register Full Interrupt Disable * TDRE: SPI Transmit Data Register Empty Interrupt Disable * MODF: Mode Fault Error Interrupt Disable * OVRES: Overrun Error Interrupt Disable * ENDRX: End of Receive Buffer Interrupt Disable * ENDTX: End of Transmit Buffer Interrupt Disable * RXBUFF: Receive Buffer Full Interrupt Disable * TXBUFE: Transmit Buffer Empty Interrupt Disable * NSSR: NSS Rising Interrupt Disable * TXEMPTY: Transmission Registers Empty Disable 462 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 31.7.8 SPI Interrupt Mask Register Name: SPI_IMR Address: 0xFFFC801C (0), 0xFFFCC01C (1) Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - 0 TXEMPTY NSSR 7 6 5 4 3 2 1 0 TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF 0: The corresponding interrupt is not enabled. 1: The corresponding interrupt is enabled. * RDRF: Receive Data Register Full Interrupt Mask * TDRE: SPI Transmit Data Register Empty Interrupt Mask * MODF: Mode Fault Error Interrupt Mask * OVRES: Overrun Error Interrupt Mask * ENDRX: End of Receive Buffer Interrupt Mask * ENDTX: End of Transmit Buffer Interrupt Mask * RXBUFF: Receive Buffer Full Interrupt Mask * TXBUFE: Transmit Buffer Empty Interrupt Mask * NSSR: NSS Rising Interrupt Mask * TXEMPTY: Transmission Registers Empty Mask SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 463 31.7.9 SPI Chip Select Register Name: SPI_CSR0... SPI_CSR3 Address: 0xFFFC8030 (0), 0xFFFCC030 (1) Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 DLYBCT 23 22 21 20 DLYBS 15 14 13 12 SCBR 7 6 5 4 BITS 3 2 1 0 CSAAT - NCPHA CPOL Note: SPI_CSRx must be written even if the user wants to use the defaults. The BITS field will not be updated with the translated value unless the register is written. * CPOL: Clock Polarity 0: The inactive state value of SPCK is logic level zero. 1: The inactive state value of SPCK is logic level one. CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the required clock/data relationship between master and slave devices. * NCPHA: Clock Phase 0: Data is changed on the leading edge of SPCK and captured on the following edge of SPCK. 1: Data is captured on the leading edge of SPCK and changed on the following edge of SPCK. NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is used with CPOL to produce the required clock/data relationship between master and slave devices. * CSAAT: Chip Select Active After Transfer 0: The Peripheral Chip Select Line rises as soon as the last transfer is achieved. 1: The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is requested on a different chip select. * BITS: Bits Per Transfer (See the note below the register bitmap.) The BITS field determines the number of data bits transferred. Reserved values should not be used. 464 BITS Bits Per Transfer 0000 8 0001 9 0010 10 0011 11 0100 12 0101 13 0110 14 0111 15 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 BITS (Continued) Bits Per Transfer 1000 16 1001 Reserved 1010 Reserved 1011 Reserved 1100 Reserved 1101 Reserved 1110 Reserved 1111 Reserved * SCBR: Serial Clock Baud Rate In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud rate: MCK SPCK Baudrate = --------------SCBR Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results. At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer. * DLYBS: Delay Before SPCK This field defines the delay from NPCS valid to the first valid SPCK transition. When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period. Otherwise, the following equations determine the delay: DLYBS Delay Before SPCK = ------------------MCK * DLYBCT: Delay Between Consecutive Transfers This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The delay is always inserted after each transfer and before removing the chip select if needed. When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the character transfers. Otherwise, the following equation determines the delay: 32 x DLYBCT Delay Between Consecutive Transfers = -----------------------------------MCK SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 465 32. Two-wire Interface (TWI) 32.1 Description The Atmel Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of one clock line and one data line with speeds of up to 400 Kbits per second, based on a byte-oriented transfer format. It can be used with any Atmel Two-wire Interface bus Serial EEPROM and I2C compatible device such as Real-time Clock (RTC), Dot Matrix/Graphic LCD Controllers and Temperature Sensor, to name but a few. The TWI is programmable as a master or a slave with sequential or single-byte access. Multiple master capability is supported. Arbitration of the bus is performed internally and puts the TWI in slave mode automatically if the bus arbitration is lost. A configurable baud rate generator permits the output data rate to be adapted to a wide range of core clock frequencies. Table 32-1 lists the compatibility level of the Atmel Two-wire Interface in Master Mode and a full I2C compatible device. Atmel TWI compatibility with I2C Standard Table 32-1. I2C Standard Atmel TWI Standard Mode Speed (100 kHz) Supported Fast Mode Speed (400 kHz) Supported 7 or 10 bits Slave Addressing Supported (1) START BYTE Not Supported Repeated Start (Sr) Condition Supported ACK and NACK Management Supported Slope control and input filtering (Fast mode) Not Supported Clock stretching Supported Note: 32.2 1. START + b000000001 + Ack + Sr List of Abbreviations Table 32-2. 466 Abbreviations Abbreviation Description TWI Two-wire Interface A Acknowledge NA Non Acknowledge P Stop S Start Sr Repeated Start SADR Slave Address ADR Any address except SADR R Read W Write SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 32.3 Block Diagram Figure 32-1. Block Diagram APB Bridge TWCK PIO PMC MCK TWD Two-wire Interface TWI Interrupt 32.4 AIC Application Block Diagram Figure 32-2. Application Block Diagram VDD Rp Host with TWI Interface Rp TWD TWCK Atmel TWI Serial EEPROM Slave 1 IC RTC IC LCD Controller IC Temp. Sensor Slave 2 Slave 3 Slave 4 Rp: Pull up value as given by the IC Standard 32.4.1 I/O Lines Description Table 32-3. I/O Lines Description Pin Name Pin Description Type TWD Two-wire Serial Data Input/Output TWCK Two-wire Serial Clock Input/Output SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 467 32.5 Product Dependencies 32.5.1 I/O Lines Both TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current source or pull-up resistor (see Figure 32-2 on page 467). When the bus is free, both lines are high. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the wired-AND function. TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer must perform the following step: Program the PIO controller to dedicate TWD and TWCK as peripheral lines. The user must not program TWD and TWCK as open-drain. It is already done by the hardware. 32.5.2 Power Management Enable the peripheral clock. The TWI interface may be clocked through the Power Management Controller (PMC), thus the programmer must first configure the PMC to enable the TWI clock. 32.5.3 Interrupt The TWI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). In order to handle interrupts, the AIC must be programmed before configuring the TWI. 32.6 Functional Description 32.6.1 Transfer Format The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure 32-4). Each transfer begins with a START condition and terminates with a STOP condition (see Figure 32-3). A high-to-low transition on the TWD line while TWCK is high defines the START condition. A low-to-high transition on the TWD line while TWCK is high defines a STOP condition. Figure 32-3. START and STOP Conditions TWD TWCK Start Figure 32-4. Stop Transfer Format TWD TWCK Start 468 Address SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 R/W Ack Data Ack Data Ack Stop 32.6.2 Modes of Operation The TWI has six modes of operations: Master transmitter mode Master receiver mode Multi-master transmitter mode Multi-master receiver mode Slave transmitter mode Slave receiver mode These modes are described in the following sections. 32.6.3 Master Mode 32.6.3.1 Definition The Master is the device that starts a transfer, generates a clock and stops it. 32.6.3.2 Application Block Diagram Figure 32-5. Master Mode Typical Application Block Diagram VDD Rp Host with TWI Interface Rp TWD TWCK Atmel TWI Serial EEPROM Slave 1 IC RTC IC LCD Controller IC Temp. Sensor Slave 2 Slave 3 Slave 4 Rp: Pull up value as given by the IC Standard 32.6.3.3 Programming Master Mode The following registers have to be programmed before entering Master mode: 1. DADR (+ IADRSZ + IADR if a 10 bit device is addressed): The device address is used to access slave devices in read or write mode. 2. CKDIV + CHDIV + CLDIV: Clock Waveform. 3. SVDIS: Disable the slave mode. 4. MSEN: Enable the master mode. 32.6.3.4 Master Transmitter Mode After the master initiates a Start condition when writing into the Transmit Holding Register, TWI_THR, it sends a 7bit slave address, configured in the Master Mode register (DADR in TWI_MMR), to notify the slave device. The bit following the slave address indicates the transfer direction, 0 in this case (MREAD = 0 in TWI_MMR). The TWI transfers require the slave to acknowledge each received byte. During the acknowledge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull it down in order to generate the acknowledge. The master polls the data line during this clock pulse and sets the Not Acknowledge bit (NACK) in SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 469 the status register if the slave does not acknowledge the byte. As with the other status bits, an interrupt can be generated if enabled in the interrupt enable register (TWI_IER). If the slave acknowledges the byte, the data written in the TWI_THR, is then shifted in the internal shifter and transferred. When an acknowledge is detected, the TXRDY bit is set until a new write in the TWI_THR. While no new data is written in the TWI_THR, the Serial Clock Line is tied low. When new data is written in the TWI_THR, the SCL is released and the data is sent. To generate a STOP event, the STOP command must be performed by writing in the STOP field of TWI_CR. After a Master Write transfer, the Serial Clock line is stretched (tied low) while no new data is written in the TWI_THR or until a STOP command is performed. See Figure 32-6, Figure 32-7, and Figure 32-8. Figure 32-6. Master Write with One Data Byte STOP Command sent (write in TWI_CR) S TWD DADR W A DATA A P TXCOMP TXRDY Write THR (DATA) Figure 32-7. Master Write with Multiple Data Bytes STOP command performed (by writing in the TWI_CR) TWD S DADR W A DATA n A DATA n+1 A DATA n+2 TWCK TXCOMP TXRDY Write THR (Data n) Write THR (Data n+1) 470 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Write THR (Data n+2) Last data sent A P Figure 32-8. Master Write with One Byte Internal Address and Multiple Data Bytes STOP command performed (by writing in the TWI_CR) TWD S DADR W A IADR A DATA n A DATA n+1 A DATA n+2 A P TWCK TXCOMP TXRDY Write THR (Data n) Write THR (Data n+1) Write THR (Data n+2) Last data sent TXRDY is used as Transmit Ready for the PDC transmit channel. 32.6.3.5 Master Receiver Mode The read sequence begins by setting the START bit. After the start condition has been sent, the master sends a 7bit slave address to notify the slave device. The bit following the slave address indicates the transfer direction, 1 in this case (MREAD = 1 in TWI_MMR). During the acknowledge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull it down in order to generate the acknowledge. The master polls the data line during this clock pulse and sets the NACK bit in the status register if the slave does not acknowledge the byte. If an acknowledge is received, the master is then ready to receive data from the slave. After data has been received, the master sends an acknowledge condition to notify the slave that the data has been received except for the last data, after the stop condition. See Figure 32-9. When the RXRDY bit is set in the status register, a character has been received in the receive-holding register (TWI_RHR). The RXRDY bit is reset when reading the TWI_RHR. When a single data byte read is performed, with or without internal address (IADR), the START and STOP bits must be set at the same time. See Figure 32-9. When a multiple data byte read is performed, with or without internal address (IADR), the STOP bit must be set after the next-to-last data received. See Figure 32-10. For Internal Address usage see Section 32.6.3.6. Figure 32-9. Master Read with One Data Byte TWD S DADR R A DATA N P TXCOMP Write START & STOP Bit RXRDY Read RHR SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 471 Figure 32-10. Master Read with Multiple Data Bytes TWD S DADR R A DATA n A DATA (n+1) A DATA (n+m)-1 A DATA (n+m) N P TXCOMP Write START Bit RXRDY Read RHR DATA n Read RHR DATA (n+1) Read RHR DATA (n+m)-1 Read RHR DATA (n+m) Write STOP Bit after next-to-last data read RXRDY is used as Receive Ready for the PDC receive channel. 32.6.3.6 Internal Address The TWI interface can perform various transfer formats: Transfers with 7-bit slave address devices and 10-bit slave address devices. 7-bit Slave Addressing When Addressing 7-bit slave devices, the internal address bytes are used to perform random address (read or write) accesses to reach one or more data bytes, within a memory page location in a serial memory, for example. When performing read operations with an internal address, the TWI performs a write operation to set the internal address into the slave device, and then switch to Master Receiver mode. Note that the second start condition (after sending the IADR) is sometimes called "repeated start" (Sr) in I2C fully-compatible devices. See Figure 32-12. See Figure 32-11 and Figure 32-13 for Master Write operation with internal address. The three internal address bytes are configurable through the Master Mode register (TWI_MMR). If the slave device supports only a 7-bit address, i.e., no internal address, IADRSZ must be set to 0. In the figures below the following abbreviations are used: 472 S Start Sr Repeated Start P Stop W Write R Read A Acknowledge N Not Acknowledge DADR Device Address IADR Internal Address SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 32-11. Master Write with One, Two or Three Bytes Internal Address and One Data Byte Three bytes internal address S TWD DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A W A IADR(15:8) A IADR(7:0) A DATA A W A IADR(7:0) A DATA A DATA A P Two bytes internal address S TWD DADR P One byte internal address S TWD DADR P Figure 32-12. Master Read with One, Two or Three Bytes Internal Address and One Data Byte Three bytes internal address TWD S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A Sr DADR R A DATA N P Two bytes internal address TWD S DADR W A IADR(15:8) A IADR(7:0) A Sr W A IADR(7:0) A Sr R A DADR R A DATA N P One byte internal address TWD S DADR DADR DATA N P 10-bit Slave Addressing For a slave address higher than 7 bits, the user must configure the address size (IADRSZ) and set the other slave address bits in the internal address register (TWI_IADR). The two remaining Internal address bytes, IADR[15:8] and IADR[23:16] can be used the same as in 7-bit Slave Addressing. Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10) 1. Program IADRSZ = 1, 2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.) 3. Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit address) Figure 32-13 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the use of internal addresses to access the device. Figure 32-13. Internal Address Usage S T A R T Device Address W R I T E FIRST WORD ADDRESS SECOND WORD ADDRESS S T O P DATA 0 M S B LR A S / C BW K M S B A C K LA SC BK A C K SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 473 32.6.3.7 Using the Peripheral DMA Controller (PDC) The use of the PDC significantly reduces the CPU load. To assure correct implementation, respect the following programming sequences: Data Transmit with the PDC 1. Initialize the transmit PDC (memory pointers, size, etc.). 2. Configure the master mode (DADR, CKDIV, etc.). 3. Start the transfer by setting the PDC TXTEN bit. 4. Wait for the PDC end TX flag. 5. Disable the PDC by setting the PDC TXDIS bit. Data Receive with the PDC 1. Initialize the receive PDC (memory pointers, size - 1, etc.). 2. Configure the master mode (DADR, CKDIV, etc.). 3. Start the transfer by setting the PDC RXTEN bit. 4. Wait for the PDC end RX flag. 5. Disable the PDC by setting the PDC RXDIS bit. 32.6.3.8 SMBUS Quick Command (Master Mode Only) The TWI interface can perform a Quick Command: 1. Configure the master mode (DADR, CKDIV, etc.). 2. Write the MREAD bit in the TWI_MMR at the value of the one-bit command to be sent. 3. Start the transfer by setting the QUICK bit in the TWI_CR. Figure 32-14. SMBUS Quick Command TWD S DADR R/W A P TXCOMP TXRDY Write QUICK command in TWI_CR 32.6.3.9 Read/Write Flowcharts The flowcharts in the following figures provide examples of read and write operations. A polling or interrupt method can be used to check the status bits. The interrupt method requires that the interrupt enable register (TWI_IER) be configured first. 474 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 32-15. TWI Write Operation with Single Data Byte without Internal Address BEGIN Set TWI clock (CLDIV, CHDIV, CKDIV) in TWI_CWGR (Needed only once) Set the Control register: - Master enable TWI_CR = MSEN + SVDIS Set the Master Mode register: - Device slave address (DADR) - Transfer direction bit Write ==> bit MREAD = 0 Load Transmit register TWI_THR = Data to send Write STOP Command TWI_CR = STOP Read Status register No TXRDY = 1? Yes Read Status register No TXCOMP = 1? Yes Transfer finished SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 475 Figure 32-16. TWI Write Operation with Single Data Byte and Internal Address BEGIN Set TWI clock (CLDIV, CHDIV, CKDIV) in TWI_CWGR (Needed only once) Set the Control register: - Master enable TWI_CR = MSEN + SVDIS Set the Master Mode register: - Device slave address (DADR) - Internal address size (IADRSZ) - Transfer direction bit Write ==> bit MREAD = 0 Set the internal address TWI_IADR = address Load transmit register TWI_THR = Data to send Write STOP command TWI_CR = STOP Read Status register No TXRDY = 1? Yes Read Status register TXCOMP = 1? No Yes Transfer finished 476 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 32-17. TWI Write Operation with Multiple Data Bytes with or without Internal Address BEGIN Set TWI clock (CLDIV, CHDIV, CKDIV) in TWI_CWGR (Needed only once) Set the Control register: - Master enable TWI_CR = MSEN + SVDIS Set the Master Mode register: - Device slave address - Internal address size (if IADR used) - Transfer direction bit Write ==> bit MREAD = 0 No Internal address size = 0? Set the internal address TWI_IADR = address Yes Load Transmit register TWI_THR = Data to send Read Status register TWI_THR = data to send No TXRDY = 1? Yes Data to send? Yes Write STOP Command TWI_CR = STOP Read Status register Yes No TXCOMP = 1? END SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 477 Figure 32-18. TWI Read Operation with Single Data Byte without Internal Address BEGIN Set TWI clock (CLDIV, CHDIV, CKDIV) in TWI_CWGR (Needed only once) Set the Control register: - Master enable TWI_CR = MSEN + SVDIS Set the Master Mode register: - Device slave address - Transfer direction bit Read ==> bit MREAD = 1 Start the transfer TWI_CR = START | STOP Read status register RXRDY = 1? No Yes Read Receive Holding Register Read Status register No TXCOMP = 1? Yes END 478 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 32-19. TWI Read Operation with Single Data Byte and Internal Address BEGIN Set TWI clock (CLDIV, CHDIV, CKDIV) in TWI_CWGR (Needed only once) Set the Control register: - Master enable TWI_CR = MSEN + SVDIS Set the Master Mode register: - Device slave address - Internal address size (IADRSZ) - Transfer direction bit Read ==> bit MREAD = 1 Set the internal address TWI_IADR = address Start the transfer TWI_CR = START | STOP Read Status register No RXRDY = 1? Yes Read Receive Holding register Read Status register No TXCOMP = 1? Yes END SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 479 Figure 32-20. TWI Read Operation with Multiple Data Bytes with or without Internal Address BEGIN Set TWI clock (CLDIV, CHDIV, CKDIV) in TWI_CWGR (Needed only once) Set the Control register: - Master enable TWI_CR = MSEN + SVDIS Set the Master Mode register: - Device slave address - Internal address size (if IADR used) - Transfer direction bit Read ==> bit MREAD = 1 Internal address size = 0? Set the internal address TWI_IADR = address Yes Start the transfer TWI_CR = START Read Status register RXRDY = 1? No Yes Read Receive Holding register (TWI_RHR) No Last data to read but one? Yes Stop the transfer TWI_CR = STOP Read Status register No RXRDY = 1? Yes Read Receive Holding register (TWI_RHR) Read status register TXCOMP = 1? Yes END 480 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 No 32.6.4 Multi-master Mode 32.6.4.1 Definition More than one master may handle the bus at the same time without data corruption by using arbitration. Arbitration starts as soon as two or more masters place information on the bus at the same time, and stops (arbitration is lost) for the master that intends to send a logical one while the other master sends a logical zero. As soon as arbitration is lost by a master, it stops sending data and listens to the bus in order to detect a stop. When the stop is detected, the master who has lost arbitration may put its data on the bus by respecting arbitration. Arbitration is illustrated in Figure 32-22 on page 482. 32.6.4.2 Different Multi-master Modes Two multi-master modes may be distinguished: 1. TWI is considered as a Master only and will never be addressed. 2. TWI may be either a Master or a Slave and may be addressed. Note: In both Multi-master modes arbitration is supported. TWI as Master Only In this mode, TWI is considered as a Master only (MSEN is always at one) and must be driven like a Master with the ARBLST (ARBitration Lost) flag in addition. If arbitration is lost (ARBLST = 1), the programmer must reinitiate the data transfer. If the user starts a transfer (ex.: DADR + START + W + Write in THR) and if the bus is busy, the TWI automatically waits for a STOP condition on the bus to initiate the transfer (see Figure 32-21 on page 482). Note: The state of the bus (busy or free) is not indicated in the user interface. TWI as Master or Slave The automatic reversal from Master to Slave is not supported in case of a lost arbitration. Then, in the case where TWI may be either a Master or a Slave, the programmer must manage the pseudo Multimaster mode described in the steps below. 1. Program TWI in Slave mode (SADR + MSDIS + SVEN) and perform Slave Access (if TWI is addressed). 2. If TWI has to be set in Master mode, wait until TXCOMP flag is at 1. 3. Program Master mode (DADR + SVDIS + MSEN) and start the transfer (ex: START + Write in THR). 4. As soon as the Master mode is enabled, TWI scans the bus in order to detect if it is busy or free. When the bus is considered as free, TWI initiates the transfer. 5. As soon as the transfer is initiated and until a STOP condition is sent, the arbitration becomes relevant and the user must monitor the ARBLST flag. 6. If the arbitration is lost (ARBLST is set to 1), the user must program the TWI in Slave mode in the case where the Master that won the arbitration wanted to access the TWI. 7. If TWI has to be set in Slave mode, wait until TXCOMP flag is at 1 and then program the Slave mode. Note: In the case where the arbitration is lost and TWI is addressed, TWI will not acknowledge even if it is programmed in Slave mode as soon as ARBLST is set to 1. Then, the Master must repeat SADR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 481 Figure 32-21. Programmer Sends Data While the Bus is Busy TWCK START sent by the TWI STOP sent by the master DATA sent by a master TWD DATA sent by the TWI Bus is busy Bus is free Transfer is kept TWI DATA transfer A transfer is programmed (DADR + W + START + Write THR) Bus is considered as free Transfer is initiated Figure 32-22. Arbitration Cases TWCK TWD TWCK Data from a Master S 1 0 0 1 1 Data from TWI S 1 0 1 TWD S 1 0 0 P Arbitration is lost TWI stops sending data 1 1 Data from the master P Arbitration is lost S 1 0 1 S 1 0 0 1 1 S 1 0 0 1 1 The master stops sending data Data from the TWI ARBLST Bus is busy Transfer is kept TWI DATA transfer A transfer is programmed (DADR + W + START + Write THR) Bus is free Transfer is stopped Transfer is programmed again (DADR + W + START + Write THR) Bus is considered as free Transfer is initiated The flowchart shown in Figure 32-23 on page 483 gives an example of read and write operations in Multi-master mode. 482 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 32-23. Multi-master Flowchart START Programm the SLAVE mode: SADR + MSDIS + SVEN Read Status Register SVACC = 1 ? Yes GACC = 1 ? No No No No SVREAD = 0 ? EOSACC = 1 ? TXRDY= 1 ? Yes Yes Yes No Write in TWI_THR TXCOMP = 1 ? No RXRDY= 0 ? Yes No No Yes Read TWI_RHR Need to perform a master access ? GENERAL CALL TREATMENT Yes Decoding of the programming sequence No Prog seq OK ? Change SADR Program the Master mode DADR + SVDIS + MSEN + CLK + R / W Read Status Register Yes No ARBLST = 1 ? Yes Yes No MREAD = 1 ? RXRDY= 0 ? TXRDY= 0 ? No No Read TWI_RHR Yes Yes Data to read? Data to send ? Yes Write in TWI_THR No No Stop Transfer TWI_CR = STOP Read Status Register Yes TXCOMP = 0 ? No SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 483 32.6.5 Slave Mode 32.6.5.1 Definition The Slave Mode is defined as a mode where the device receives the clock and the address from another device called the master. In this mode, the device never initiates and never completes the transmission (START, REPEATED_START and STOP conditions are always provided by the master). 32.6.5.2 Application Block Diagram Figure 32-24. Slave Mode Typical Application Block Diagram VDD R Master Host with TWI Interface R TWD TWCK Host with TWI Interface Host with TWI Interface LCD Controller Slave 1 Slave 2 Slave 3 32.6.5.3 Programming Slave Mode The following fields must be programmed before entering Slave mode: 1. SADR (TWI_SMR): The slave device address is used in order to be accessed by master devices in read or write mode. 2. MSDIS (TWI_CR): Disable the master mode. 3. SVEN (TWI_CR): Enable the slave mode. As the device receives the clock, values written in TWI_CWGR are not taken into account. 32.6.5.4 Receiving Data After a Start or Repeated Start condition is detected and if the address sent by the Master matches with the Slave address programmed in the SADR (Slave ADdress) field, SVACC (Slave ACCess) flag is set and SVREAD (Slave READ) indicates the direction of the transfer. SVACC remains high until a STOP condition or a repeated START is detected. When such a condition is detected, EOSACC (End Of Slave ACCess) flag is set. Read Sequence In the case of a Read sequence (SVREAD is high), TWI transfers data written in the TWI_THR (TWI Transmit Holding Register) until a STOP condition or a REPEATED_START + an address different from SADR is detected. Note that at the end of the read sequence TXCOMP (Transmission Complete) flag is set and SVACC reset. As soon as data is written in the TWI_THR, TXRDY (Transmit Holding Register Ready) flag is reset, and it is set when the shift register is empty and the sent data acknowledged or not. If the data is not acknowledged, the NACK flag is set. Note that a STOP or a repeated START always follows a NACK. See Figure 32-25 on page 485. 484 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Write Sequence In the case of a Write sequence (SVREAD is low), the RXRDY (Receive Holding Register Ready) flag is set as soon as a character has been received in the TWI_RHR (TWI Receive Holding Register). RXRDY is reset when reading the TWI_RHR. TWI continues receiving data until a STOP condition or a REPEATED_START + an address different from SADR is detected. Note that at the end of the write sequence TXCOMP flag is set and SVACC reset. See Figure 32-26 on page 486. Clock Synchronization Sequence In the case where TWI_THR or TWI_RHR is not written/read in time, TWI performs a clock synchronization. Clock stretching information is given by the SCLWS (Clock Wait state) bit. See Figure 32-28 on page 487 and Figure 32-29 on page 488. General Call In the case where a GENERAL CALL is performed, GACC (General Call ACCess) flag is set. After GACC is set, it is up to the programmer to interpret the meaning of the GENERAL CALL and to decode the new address programming sequence. See Figure 32-27 on page 486. PDC As it is impossible to know the exact number of data to receive/send, the use of PDC is NOT recommended in SLAVE mode. 32.6.5.5 Data Transfer Read Operation The read mode is defined as a data requirement from the master. After a START or a REPEATED START condition is detected, the decoding of the address starts. If the slave address (SADR) is decoded, SVACC is set and SVREAD indicates the direction of the transfer. Until a STOP or REPEATED START condition is detected, TWI continues sending data loaded in the TWI_THR. If a STOP condition or a REPEATED START + an address different from SADR is detected, SVACC is reset. Figure 32-25 on page 485 describes the write operation. Figure 32-25. Read Access Ordered by a MASTER SADR matches, TWI answers with an ACK SADR does not match, TWI answers with a NACK TWD S ADR R NA DATA NA P/S/Sr SADR R A DATA A ACK/NACK from the Master A DATA NA S/Sr TXRDY NACK Read RHR Write THR SVACC SVREAD SVREAD has to be taken into account only while SVACC is active EOSVACC Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 485 2. TXRDY is reset when data has been transmitted from TWI_THR to the shift register and set when this data has been acknowledged or non acknowledged. Write Operation The write mode is defined as a data transmission from the master. After a START or a REPEATED START, the decoding of the address starts. If the slave address is decoded, SVACC is set and SVREAD indicates the direction of the transfer (SVREAD is low in this case). Until a STOP or REPEATED START condition is detected, TWI stores the received data in the TWI_RHR. If a STOP condition or a REPEATED START + an address different from SADR is detected, SVACC is reset. Figure 32-26 describes the Write operation. Figure 32-26. Write Access Ordered by a Master SADR does not match, TWI answers with a NACK S TWD ADR W NA DATA NA SADR matches, TWI answers with an ACK P/S/Sr SADR W A DATA Read RHR A A DATA NA S/Sr RXRDY SVACC SVREAD has to be taken into account only while SVACC is active SVREAD EOSVACC Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant. 2. RXRDY is set when data has been transmitted from the shift register to the TWI_RHR and reset when this data is read. General Call The general call is performed in order to change the address of the slave. If a GENERAL CALL is detected, GACC is set. After the detection of General Call, it is up to the programmer to decode the commands which come afterwards. In case of a WRITE command, the programmer has to decode the programming sequence and program a new SADR if the programming sequence matches. Figure 32-27 describes the General Call access. Figure 32-27. Master Performs a General Call 0000000 + W TXD S GENERAL CALL RESET command = 00000110X WRITE command = 00000100X A Reset or write DADD A DATA1 A DATA2 A New SADR A P New SADR Programming sequence GCACC Reset after read SVACC Note: 486 This method allows the user to create an own programming sequence by choosing the programming bytes and the number of them. The programming sequence has to be provided to the master. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Clock Synchronization In both read and write modes, it may happen that TWI_THR/TWI_RHR buffer is not filled /emptied before the emission/reception of a new character. In this case, to avoid sending/receiving undesired data, a clock stretching mechanism is implemented. Clock Synchronization in Read Mode The clock is tied low if the shift register is empty and if a STOP or REPEATED START condition was not detected. It is tied low until the shift register is loaded. Figure 32-28 describes the clock synchronization in Read mode. Figure 32-28. Clock Synchronization in Read Mode TWI_THR S SADR R DATA1 1 DATA0 A DATA0 A DATA1 DATA2 A XXXXXXX DATA2 NA S 2 TWCK Write THR CLOCK is tied low by the TWI as long as THR is empty SCLWS TXRDY SVACC SVREAD As soon as a START is detected TXCOMP TWI_THR is transmitted to the shift register Notes: Ack or Nack from the master 1 The data is memorized in TWI_THR until a new value is written 2 The clock is stretched after the ACK, the state of TWD is undefined during clock stretching 1. TXRDY is reset when data has been written in the TWI_THR to the shift register and set when this data has been acknowledged or non acknowledged. 2. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from SADR. 3. SCLWS is automatically set when the clock synchronization mechanism is started. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 487 Clock Synchronization in Write Mode The clock is tied low if the shift register and the TWI_RHR is full. If a STOP or REPEATED_START condition was not detected, it is tied low until TWI_RHR is read. Figure 32-29 describes the clock synchronization in Read mode. Figure 32-29. Clock Synchronization in Write Mode TWCK CLOCK is tied low by the TWI as long as RHR is full TWD S SADR W A DATA0 TWI_RHR A DATA1 A DATA0 is not read in the RHR DATA2 DATA1 NA S ADR DATA2 SCLWS SCL is stretched on the last bit of DATA1 RXRDY Rd DATA0 Rd DATA1 Rd DATA2 SVACC SVREAD TXCOMP Notes: 488 As soon as a START is detected 1. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from SADR. 2. SCLWS is automatically set when the clock synchronization mechanism is started and automatically reset when the mechanism is finished. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Reversal after a Repeated Start Reversal of Read to Write The master initiates the communication by a read command and finishes it by a write command. Figure 32-30 describes the repeated start + reversal from Read to Write mode. Figure 32-30. Repeated Start + Reversal from Read to Write Mode TWI_THR TWD DATA0 S SADR R A DATA0 DATA1 A DATA1 NA Sr SADR W A DATA2 TWI_RHR A DATA3 DATA2 A P DATA3 SVACC SVREAD TXRDY RXRDY EOSACC Cleared after read As soon as a START is detected TXCOMP 1. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again. Reversal of Write to Read The master initiates the communication by a write command and finishes it by a read command.Figure 32-31 describes the repeated start + reversal from Write to Read mode. Figure 32-31. Repeated Start + Reversal from Write to Read Mode DATA2 TWI_THR TWD S SADR W A DATA0 TWI_RHR A DATA1 DATA0 A Sr SADR R A DATA3 DATA2 A DATA3 NA P DATA1 SVACC SVREAD TXRDY RXRDY EOSACC TXCOMP Notes: Read TWI_RHR Cleared after read As soon as a START is detected 1. In this case, if TWI_THR has not been written at the end of the read command, the clock is automatically stretched before the ACK. 2. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 489 32.6.5.6 Read/Write Flowcharts The flowchart shown in Figure 32-32 gives an example of read and write operations in Slave mode. A polling or interrupt method can be used to check the status bits. The interrupt method requires that the interrupt enable register (TWI_IER) be configured first. Figure 32-32. Read/Write Flowchart in Slave Mode Set the SLAVE mode: SADR + MSDIS + SVEN Read Status Register SVACC = 1 ? No No EOSACC = 1 ? GACC = 1 ? No SVREAD = 0 ? TXRDY= 1 ? No Write in TWI_THR No TXCOMP = 1 ? RXRDY= 0 ? No END Read TWI_RHR GENERAL CALL TREATMENT Decoding of the programming sequence Prog seq OK ? Change SADR 490 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 No No 32.7 Two-wire Interface (TWI) User Interface Table 32-4. Register Mapping Offset Register Name Access Reset 0x00 Control Register TWI_CR Write-only - 0x04 Master Mode Register TWI_MMR Read/Write 0x00000000 0x08 Slave Mode Register TWI_SMR Read/Write 0x00000000 0x0C Internal Address Register TWI_IADR Read/Write 0x00000000 0x10 Clock Waveform Generator Register TWI_CWGR Read/Write 0x00000000 0x20 Status Register TWI_SR Read-only 0x0000F009 0x24 Interrupt Enable Register TWI_IER Write-only - 0x28 Interrupt Disable Register TWI_IDR Write-only - 0x2C Interrupt Mask Register TWI_IMR Read-only 0x00000000 0x30 Receive Holding Register TWI_RHR Read-only 0x00000000 0x34 Transmit Holding Register TWI_THR Write-only - 0x38-0xFC Reserved - - - 0x100-0x124 Reserved for the PDC - - - SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 491 32.7.1 TWI Control Register Name: TWI_CR Address: 0xFFFAC000 (0), 0xFFFD8000 (1) Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 SWRST 6 QUICK 5 SVDIS 4 SVEN 3 MSDIS 2 MSEN 1 STOP 0 START * START: Send a START Condition 0: No effect. 1: A frame beginning with a START bit is transmitted according to the features defined in the mode register. This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (TWI_THR). * STOP: Send a STOP Condition 0: No effect. 1: STOP Condition is sent just after completing the current byte transmission in master read mode. - In single data byte master read, the START and STOP must both be set. - In multiple data bytes master read, the STOP must be set after the last data received but one. - In master read mode, if a NACK bit is received, the STOP is automatically performed. - In master data write operation, a STOP condition will be sent after the transmission of the current data is finished. * MSEN: TWI Master Mode Enabled 0: No effect. 1: If MSDIS = 0, the master mode is enabled. Note: Switching from Slave to Master mode is only permitted when TXCOMP = 1. * MSDIS: TWI Master Mode Disabled 0: No effect. 1: The master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are transmitted in case of write operation. In read operation, the character being transferred must be completely received before disabling. 492 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * SVEN: TWI Slave Mode Enabled 0: No effect. 1: If SVDIS = 0, the slave mode is enabled. Note: Switching from Master to Slave mode is only permitted when TXCOMP = 1. * SVDIS: TWI Slave Mode Disabled 0: No effect. 1: The slave mode is disabled. The shifter and holding characters (if it contains data) are transmitted in case of read operation. In write operation, the character being transferred must be completely received before disabling. * QUICK: SMBUS Quick Command 0: No effect. 1: If Master mode is enabled, a SMBUS Quick Command is sent. * SWRST: Software Reset 0: No effect. 1: Equivalent to a system reset. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 493 32.7.2 TWI Master Mode Register Name: TWI_MMR Address: 0xFFFAC004 (0), 0xFFFD8004 (1) Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 21 20 19 DADR 18 17 16 15 - 14 - 13 - 12 MREAD 11 - 10 - 9 7 - 6 - 5 - 4 - 3 - 2 - 1 - 8 IADRSZ 0 - * IADRSZ: Internal Device Address Size IADRSZ[9:8] Description 0 0 No internal device address 0 1 One-byte internal device address 1 0 Two-byte internal device address 1 1 Three-byte internal device address * MREAD: Master Read Direction 0: Master write direction. 1: Master read direction. * DADR: Device Address The device address is used to access slave devices in read or write mode. Those bits are only used in Master mode. 494 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 32.7.3 TWI Slave Mode Register Name: TWI_SMR Address: 0xFFFAC008 (0), 0xFFFD8008 (1) Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 21 20 19 SADR 18 17 16 15 - 14 - 13 - 12 - 11 - 10 - 9 8 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 - * SADR: Slave Address The slave device address is used in Slave mode in order to be accessed by master devices in read or write mode. SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 495 32.7.4 TWI Internal Address Register Name: TWI_IADR Address: 0xFFFAC00C (0), 0xFFFD800C (1) Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 22 21 20 19 18 17 16 11 10 9 8 3 2 1 0 IADR 15 14 13 12 IADR 7 6 5 4 IADR * IADR: Internal Address 0, 1, 2 or 3 bytes depending on IADRSZ. 496 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 32.7.5 TWI Clock Waveform Generator Register Name: TWI_CWGR Address: 0xFFFAC010 (0), 0xFFFD8010 (1) Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 22 21 20 19 18 17 CKDIV 16 15 14 13 12 11 10 9 8 3 2 1 0 CHDIV 7 6 5 4 CLDIV TWI_CWGR is only used in Master mode. * CLDIV: Clock Low Divider The SCL low period is defined as follows: t low = ( ( CLDIV x 2 CKDIV ) + 4 ) x t MCK * CHDIV: Clock High Divider The SCL high period is defined as follows: t high = ( ( CHDIV x 2 CKDIV ) + 4 ) x t MCK * CKDIV: Clock Divider The CKDIV is used to increase both SCL high and low periods. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 497 32.7.6 TWI Status Register Name: TWI_SR Address: 0xFFFAC020 (0), 0xFFFD8020 (1) Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 TXBUFE 14 RXBUFF 13 ENDTX 12 ENDRX 11 EOSACC 10 SCLWS 9 ARBLST 8 NACK 7 - 6 OVRE 5 GACC 4 SVACC 3 SVREAD 2 TXRDY 1 RXRDY 0 TXCOMP * TXCOMP: Transmission Completed (automatically set / reset) TXCOMP used in Master mode: 0: During the length of the current frame. 1: When both holding and shifter registers are empty and STOP condition has been sent. TXCOMP behavior in Master mode can be seen in Figure 32-8 on page 471 and in Figure 32-10 on page 472. TXCOMP used in Slave mode: 0: As soon as a Start is detected. 1: After a Stop or a Repeated Start + an address different from SADR is detected. TXCOMP behavior in Slave mode can be seen in Figure 32-28 on page 487, Figure 32-29 on page 488, Figure 32-30 on page 489 and Figure 32-31 on page 489. * RXRDY: Receive Holding Register Ready (automatically set / reset) 0: No character has been received since the last TWI_RHR read operation. 1: A byte has been received in the TWI_RHR since the last read. RXRDY behavior in Master mode can be seen in Figure 32-10 on page 472. RXRDY behavior in Slave mode can be seen in Figure 32-26 on page 486, Figure 32-29 on page 488, Figure 32-30 on page 489 and Figure 32-31 on page 489. * TXRDY: Transmit Holding Register Ready (automatically set / reset) TXRDY used in Master mode: 0: The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR. 1: As soon as a data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at the same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI). TXRDY behavior in Master mode can be seen in Figure 32-8 on page 471. TXRDY used in Slave mode: 0: As soon as data is written in the TWI_THR, until this data has been transmitted and acknowledged (ACK or NACK). 1: It indicates that the TWI_THR is empty and that data has been transmitted and acknowledged. 498 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 If TXRDY is high and if a NACK has been detected, the transmission will be stopped. Thus when TRDY = NACK = 1, the programmer must not fill TWI_THR to avoid losing it. TXRDY behavior in Slave mode can be seen in Figure 32-25 on page 485, Figure 32-28 on page 487, Figure 32-30 on page 489 and Figure 32-31 on page 489. * SVREAD: Slave Read (automatically set / reset) This bit is only used in Slave mode. When SVACC is low (no Slave access has been detected) SVREAD is irrelevant. 0: Indicates that a write access is performed by a Master. 1: Indicates that a read access is performed by a Master. SVREAD behavior can be seen in Figure 32-25 on page 485, Figure 32-26 on page 486, Figure 32-30 on page 489 and Figure 32-31 on page 489. * SVACC: Slave Access (automatically set / reset) This bit is only used in Slave mode. 0: TWI is not addressed. SVACC is automatically cleared after a NACK or a STOP condition is detected. 1: Indicates that the address decoding sequence has matched (A Master has sent SADR). SVACC remains high until a NACK or a STOP condition is detected. SVACC behavior can be seen in Figure 32-25 on page 485, Figure 32-26 on page 486, Figure 32-30 on page 489 and Figure 32-31 on page 489. * GACC: General Call Access (clear on read) This bit is only used in Slave mode. 0: No General Call has been detected. 1: A General Call has been detected. After the detection of General Call, if need be, the programmer may acknowledge this access and decode the following bytes and respond according to the value of the bytes. GACC behavior can be seen in Figure 32-27 on page 486. * OVRE: Overrun Error (clear on read) This bit is only used in Master mode. 0: TWI_RHR has not been loaded while RXRDY was set 1: TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set. * NACK: Not Acknowledged (clear on read) NACK used in Master mode: 0: Each data byte has been correctly received by the far-end side TWI slave component. 1: A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP. NACK used in Slave Read mode: 0: Each data byte has been correctly received by the Master. 1: In read mode, a data byte has not been acknowledged by the Master. When NACK is set the programmer must not fill TWI_THR even if TXRDY is set, because it means that the Master will stop the data transfer or re initiate it. Note that in Slave Write mode all data are acknowledged by the TWI. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 499 * ARBLST: Arbitration Lost (clear on read) This bit is only used in Master mode. 0: Arbitration won. 1: Arbitration lost. Another master of the TWI bus has won the multi-master arbitration. TXCOMP is set at the same time. * SCLWS: Clock Wait State (automatically set / reset) This bit is only used in Slave mode. 0: The clock is not stretched. 1: The clock is stretched. TWI_THR / TWI_RHR buffer is not filled / emptied before the emission / reception of a new character. SCLWS behavior can be seen in Figure 32-28 on page 487 and Figure 32-29 on page 488. * EOSACC: End Of Slave Access (clear on read) This bit is only used in Slave mode. 0: A slave access is being performing. 1: The Slave Access is finished. End Of Slave Access is automatically set as soon as SVACC is reset. EOSACC behavior can be seen in Figure 32-30 on page 489 and Figure 32-31 on page 489 * ENDRX: End of RX buffer This bit is only used in Master mode. 0: The Receive Counter Register has not reached 0 since the last write in TWI_RCR or TWI_RNCR. 1: The Receive Counter Register has reached 0 since the last write in TWI_RCR or TWI_RNCR. * ENDTX: End of TX buffer This bit is only used in Master mode. 0: The Transmit Counter Register has not reached 0 since the last write in TWI_TCR or TWI_TNCR. 1: The Transmit Counter Register has reached 0 since the last write in TWI_TCR or TWI_TNCR. * RXBUFF: RX Buffer Full This bit is only used in Master mode. 0: TWI_RCR or TWI_RNCR have a value other than 0. 1: Both TWI_RCR and TWI_RNCR have a value of 0. * TXBUFE: TX Buffer Empty This bit is only used in Master mode. 0: TWI_TCR or TWI_TNCR have a value other than 0. 1: Both TWI_TCR and TWI_TNCR have a value of 0. 500 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 32.7.7 TWI Interrupt Enable Register Name: TWI_IER Address: 0xFFFAC024 (0), 0xFFFD8024 (1) Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 TXBUFE 14 RXBUFF 13 ENDTX 12 ENDRX 11 EOSACC 10 SCL_WS 9 ARBLST 8 NACK 7 - 6 OVRE 5 GACC 4 SVACC 3 - 2 TXRDY 1 RXRDY 0 TXCOMP * TXCOMP: Transmission Completed Interrupt Enable * RXRDY: Receive Holding Register Ready Interrupt Enable * TXRDY: Transmit Holding Register Ready Interrupt Enable * SVACC: Slave Access Interrupt Enable * GACC: General Call Access Interrupt Enable * OVRE: Overrun Error Interrupt Enable * NACK: Not Acknowledge Interrupt Enable * ARBLST: Arbitration Lost Interrupt Enable * SCL_WS: Clock Wait State Interrupt Enable * EOSACC: End Of Slave Access Interrupt Enable * ENDRX: End of Receive Buffer Interrupt Enable * ENDTX: End of Transmit Buffer Interrupt Enable * RXBUFF: Receive Buffer Full Interrupt Enable * TXBUFE: Transmit Buffer Empty Interrupt Enable 0: No effect. 1: Enables the corresponding interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 501 32.7.8 TWI Interrupt Disable Register Name: TWI_IDR Address: 0xFFFAC028 (0), 0xFFFD8028 (1) Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 TXBUFE 14 RXBUFF 13 ENDTX 12 ENDRX 11 EOSACC 10 SCL_WS 9 ARBLST 8 NACK 7 - 6 OVRE 5 GACC 4 SVACC 3 - 2 TXRDY 1 RXRDY 0 TXCOMP * TXCOMP: Transmission Completed Interrupt Disable * RXRDY: Receive Holding Register Ready Interrupt Disable * TXRDY: Transmit Holding Register Ready Interrupt Disable * SVACC: Slave Access Interrupt Disable * GACC: General Call Access Interrupt Disable * OVRE: Overrun Error Interrupt Disable * NACK: Not Acknowledge Interrupt Disable * ARBLST: Arbitration Lost Interrupt Disable * SCL_WS: Clock Wait State Interrupt Disable * EOSACC: End Of Slave Access Interrupt Disable * ENDRX: End of Receive Buffer Interrupt Disable * ENDTX: End of Transmit Buffer Interrupt Disable * RXBUFF: Receive Buffer Full Interrupt Disable * TXBUFE: Transmit Buffer Empty Interrupt Disable 0: No effect. 1: Disables the corresponding interrupt. 502 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 32.7.9 TWI Interrupt Mask Register Name: TWI_IMR Address: 0xFFFAC02C (0), 0xFFFD802C (1) Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 TXBUFE 14 RXBUFF 13 ENDTX 12 ENDRX 11 EOSACC 10 SCL_WS 9 ARBLST 8 NACK 7 - 6 OVRE 5 GACC 4 SVACC 3 - 2 TXRDY 1 RXRDY 0 TXCOMP * TXCOMP: Transmission Completed Interrupt Mask * RXRDY: Receive Holding Register Ready Interrupt Mask * TXRDY: Transmit Holding Register Ready Interrupt Mask * SVACC: Slave Access Interrupt Mask * GACC: General Call Access Interrupt Mask * OVRE: Overrun Error Interrupt Mask * NACK: Not Acknowledge Interrupt Mask * ARBLST: Arbitration Lost Interrupt Mask * SCL_WS: Clock Wait State Interrupt Mask * EOSACC: End Of Slave Access Interrupt Mask * ENDRX: End of Receive Buffer Interrupt Mask * ENDTX: End of Transmit Buffer Interrupt Mask * RXBUFF: Receive Buffer Full Interrupt Mask * TXBUFE: Transmit Buffer Empty Interrupt Mask 0: The corresponding interrupt is disabled. 1: The corresponding interrupt is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 503 32.7.10 TWI Receive Holding Register Name: TWI_RHR Address: 0xFFFAC030 (0), 0xFFFD8030 (1) Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 RXDATA * RXDATA: Master or Slave Receive Holding Data 504 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 32.7.11 TWI Transmit Holding Register Name: TWI_THR Address: 0xFFFAC034 (0), 0xFFFD8034 (1) Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 TXDATA * TXDATA: Master or Slave Transmit Holding Data SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 505 33. Universal Synchronous Asynchronous Receiver Transceiver (USART) 33.1 Description The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full duplex universal synchronous asynchronous serial link. Data frame format is widely programmable (data length, parity, number of stop bits) to support a maximum of standards. The receiver implements parity error, framing error and overrun error detection. The receiver time-out enables handling variable-length frames and the transmitter timeguard facilitates communications with slow remote devices. Multidrop communications are also supported through address bit handling in reception and transmission. The USART features three test modes: remote loopback, local loopback and automatic echo. The USART supports specific operating modes providing interfaces on RS485 buses, with ISO7816 T = 0 or T = 1 smart card slots, infrared transceivers and connection to modem ports. The hardware handshaking feature enables an out-of-band flow control by automatic management of the pins RTS and CTS. The USART supports the connection to the Peripheral DMA Controller, which enables data transfers to the transmitter and from the receiver. The PDC provides chained buffer management without any intervention of the processor. 506 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.2 Block Diagram Figure 33-1. USART Block Diagram Peripheral DMA Controller Channel Channel PIO Controller USART RXD Receiver RTS AIC USART Interrupt TXD Transmitter CTS DTR PMC Modem Signals Control MCK DIV DSR DCD MCK/DIV RI SLCK Baud Rate Generator SCK User Interface APB SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 507 33.3 Application Block Diagram Figure 33-2. Application Block Diagram IrLAP PPP Modem Driver Serial Driver Field Bus Driver EMV Driver IrDA Driver USART RS232 Drivers RS232 Drivers RS485 Drivers Serial Port Differential Bus Smart Card Slot IrDA Transceivers Modem PSTN 33.4 I/O Lines Description Table 33-1. I/O Line Description Name Description Type SCK Serial Clock I/O TXD Transmit Serial Data I/O RXD Receive Serial Data Input RI Ring Indicator Input Low DSR Data Set Ready Input Low DCD Data Carrier Detect Input Low DTR Data Terminal Ready Output Low CTS Clear to Send Input Low RTS Request to Send Output Low 508 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Active Level 33.5 Product Dependencies 33.5.1 I/O Lines The pins used for interfacing the USART may be multiplexed with the PIO lines. The programmer must first program the PIO controller to assign the desired USART pins to their peripheral function. If I/O lines of the USART are not used by the application, they can be used for other purposes by the PIO Controller. To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up is mandatory. If the hardware handshaking feature or Modem mode is used, the internal pull up on TXD must also be enabled. All the pins of the modems may or may not be implemented on the USART. Only USART0 is fully equipped with all the modem signals. On USARTs not equipped with the corresponding pin, the associated control bits and statuses have no effect on the behavior of the USART. 33.5.2 Power Management The USART is not continuously clocked. The programmer must first enable the USART Clock in the Power Management Controller (PMC) before using the USART. However, if the application does not require USART operations, the USART clock can be stopped when not needed and be restarted later. In this case, the USART will resume its operations where it left off. Configuring the USART does not require the USART clock to be enabled. 33.5.3 Interrupt The USART interrupt line is connected on one of the internal sources of the Advanced Interrupt Controller. Using the USART interrupt requires the AIC to be programmed first. Note that it is not recommended to use the USART interrupt line in edge sensitive mode. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 509 33.6 Functional Description The USART is capable of managing several types of serial synchronous or asynchronous communications. It supports the following communication modes: 5- to 9-bit full-duplex asynchronous serial communication MSB- or LSB-first 1, 1.5 or 2 stop bits Parity even, odd, marked, space or none By 8 or by 16 over-sampling receiver frequency Optional hardware handshaking Optional modem signals management Optional break management Optional multidrop serial communication High-speed 5- to 9-bit full-duplex synchronous serial communication MSB- or LSB-first 1 or 2 stop bits Parity even, odd, marked, space or none By 8 or by 16 over-sampling frequency Optional hardware handshaking Optional modem signals management Optional break management Optional multidrop serial communication RS485 with driver control signal ISO7816, T0 or T1 protocols for interfacing with smart cards NACK handling, error counter with repetition and iteration limit InfraRed IrDA Modulation and Demodulation Test modes 510 Remote loopback, local loopback, automatic echo SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.6.1 Baud Rate Generator The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the receiver and the transmitter. The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode Register (US_MR) between: the Master Clock MCK a division of the Master Clock, the divider being product dependent, but generally set to 8 the external clock, available on the SCK pin The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field of the Baud Rate Generator Register (US_BRGR). If CD is programmed at 0, the Baud Rate Generator does not generate any clock. If CD is programmed at 1, the divider is bypassed and becomes inactive. If the external SCK clock is selected, the duration of the low and high levels of the signal provided on the SCK pin must be longer than a Master Clock (MCK) period. The frequency of the signal provided on SCK must be at least 4.5 times lower than MCK. Figure 33-3. Baud Rate Generator USCLKS MCK MCK/DIV SCK Reserved CD CD SCK 0 1 2 16-bit Counter FIDI >1 3 1 0 0 0 SYNC OVER Sampling Divider 0 Baud Rate Clock 1 1 SYNC USCLKS = 3 Sampling Clock 33.6.1.1 Baud Rate in Asynchronous Mode If the USART is programmed to operate in asynchronous mode, the selected clock is first divided by CD, which is field programmed in the Baud Rate Generator Register (US_BRGR). The resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8, depending on the programming of the OVER bit in US_MR. If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is cleared, the sampling is performed at 16 times the baud rate clock. The following formula performs the calculation of the baud rate. SelectedClock Baudrate = -------------------------------------------( 8 ( 2 - Over )CD ) This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest possible clock and that OVER is programmed at 1. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 511 Baud Rate Calculation Example Table 33-2 shows calculations of CD to obtain a baud rate at 38400 bauds for different source clock frequencies. This table also shows the actual resulting baud rate and the error. Table 33-2. Baud Rate Example (OVER = 0) Source Clock (MHz) Expected Baud Rate (bit/s) Calculation Result CD Actual Baud Rate (bit/s) Error 3 686 400 38 400 6.00 6 38 400.00 0.00% 4 915 200 38 400 8.00 8 38 400.00 0.00% 5 000 000 38 400 8.14 8 39 062.50 1.70% 7 372 800 38 400 12.00 12 38 400.00 0.00% 8 000 000 38 400 13.02 13 38 461.54 0.16% 12 000 000 38 400 19.53 20 37 500.00 2.40% 12 288 000 38 400 20.00 20 38 400.00 0.00% 14 318 180 38 400 23.30 23 38 908.10 1.31% 14 745 600 38 400 24.00 24 38 400.00 0.00% 18 432 000 38 400 30.00 30 38 400.00 0.00% 24 000 000 38 400 39.06 39 38 461.54 0.16% 24 576 000 38 400 40.00 40 38 400.00 0.00% 25 000 000 38 400 40.69 40 38 109.76 0.76% 32 000 000 38 400 52.08 52 38 461.54 0.16% 32 768 000 38 400 53.33 53 38 641.51 0.63% 33 000 000 38 400 53.71 54 38 194.44 0.54% 40 000 000 38 400 65.10 65 38 461.54 0.16% 50 000 000 38 400 81.38 81 38 580.25 0.47% The baud rate is calculated with the following formula: BaudRate = MCK CD x 16 The baud rate error is calculated with the following formula. It is not recommended to work with an error higher than 5%. ExpectedBaudRate Error = 1 - --------------------------------------------------- ActualBaudRate 512 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.6.1.2 Fractional Baud Rate in Asynchronous Mode The Baud Rate Generator previously defined is subject to the following limitation: the output frequency changes by only integer multiples of the reference frequency. An approach to this problem is to integrate a fractional N clock generator that has a high resolution. The generator architecture is modified to obtain baud rate changes by a fraction of the reference source clock. This fractional part is programmed with the FP field in the Baud Rate Generator Register (US_BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the clock divider. This feature is only available when using USART normal mode. The fractional baud rate is calculated using the following formula: SelectedClock Baudrate = --------------------------------------------------------------- 8 ( 2 - Over ) CD + FP ------- 8 The modified architecture is presented below: Figure 33-4. Fractional Baud Rate Generator FP USCLKS CD Modulus Control FP MCK MCK/DIV SCK Reserved CD SCK 0 1 2 16-bit Counter 3 glitch-free logic 1 0 FIDI >1 0 0 SYNC OVER Sampling Divider 0 Baud Rate Clock 1 1 SYNC Sampling Clock USCLKS = 3 33.6.1.3 Baud Rate in Synchronous Mode If the USART is programmed to operate in synchronous mode, the selected clock is simply divided by the field CD in US_BRGR. SelectedClock BaudRate = -------------------------------------CD In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided directly by the signal on the USART SCK pin. No division is active. The value written in US_BRGR has no effect. The external clock frequency must be at least 4.5 times lower than the system clock. When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on the SCK pin. If the internal clock MCK is selected, the Baud Rate Generator ensures a 50:50 duty cycle on the SCK pin, even if the value programmed in CD is odd. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 513 33.6.1.4 Baud Rate in ISO 7816 Mode The ISO7816 specification defines the bit rate with the following formula: Di B = ------ x f Fi where: B is the bit rate Di is the bit-rate adjustment factor Fi is the clock frequency division factor f is the ISO7816 clock frequency (Hz) Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 33-3. Table 33-3. Binary and Decimal Values for Di DI field 0001 0010 0011 0100 0101 0110 1000 1001 1 2 4 8 16 32 12 20 Di (decimal) Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 33-4. Table 33-4. Binary and Decimal Values for Fi FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101 Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048 Table 33-5 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the baud rate clock. Table 33-5. Possible Values for the Fi/Di Ratio Fi/Di 372 558 744 1116 1488 1806 512 768 1024 1536 2048 1 372 558 744 1116 1488 1860 512 768 1024 1536 2048 2 186 279 372 558 744 930 256 384 512 768 1024 4 93 139.5 186 279 372 465 128 192 256 384 512 8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256 16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128 32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64 12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6 20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4 If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the Mode Register (US_MR) is first divided by the value programmed in the field CD in the Baud Rate Generator Register (US_BRGR). The resulting clock can be provided to the SCK pin to feed the smart card clock inputs. This means that the CLKO bit can be set in US_MR. This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio register (US_FIDI). This is performed by the Sampling Divider, which performs a division by up to 2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the user must program the FI_DI_RATIO field to a value as close as possible to the expected value. The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1). Figure 33-5 shows the relation between the Elementary Time Unit, corresponding to a bit time, and the ISO 7816 clock. 514 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 33-5. Elementary Time Unit (ETU) FI_DI_RATIO ISO7816 Clock Cycles ISO7816 Clock on SCK ISO7816 I/O Line on TXD 1 ETU 33.6.2 Receiver and Transmitter Control After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit in the Control Register (US_CR). However, the receiver registers can be programmed before the receiver clock is enabled. After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the Control Register (US_CR). However, the transmitter registers can be programmed before being enabled. The Receiver and the Transmitter can be enabled together or independently. At any time, the software can perform a reset on the receiver or the transmitter of the USART by setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register (US_CR). The software resets clear the status flag and reset internal state machines but the user interface configuration registers hold the value configured prior to software reset. Regardless of what the receiver or the transmitter is performing, the communication is immediately stopped. The user can also independently disable the receiver or the transmitter by setting RXDIS and TXDIS respectively in US_CR. If the receiver is disabled during a character reception, the USART waits until the end of reception of the current character, then the reception is stopped. If the transmitter is disabled while it is operating, the USART waits the end of transmission of both the current character and character being stored in the Transmit Holding Register (US_THR). If a timeguard is programmed, it is handled normally. 33.6.3 Synchronous and Asynchronous Modes 33.6.3.1 Transmitter Operations The transmitter performs the same in both synchronous and asynchronous operating modes (SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two stop bits are successively shifted out on the TXD pin at each falling edge of the programmed serial clock. The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register (US_MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The parity bit is set according to the PAR field in US_MR. The even, odd, space, marked or none parity bit can be configured. The MSBF field in US_MR configures which data bit is sent first. If written at 1, the most significant bit is sent first. At 0, the less significant bit is sent first. The number of stop bits is selected by the NBSTOP field in US_MR. The 1.5 stop bit is supported in asynchronous mode only. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 515 Figure 33-6. Character Transmit Example: 8-bit, Parity Enabled One Stop Baud Rate Clock TXD D0 Start Bit D1 D2 D3 D4 D5 D6 D7 Parity Bit Stop Bit The characters are sent by writing in the Transmit Holding Register (US_THR). The transmitter reports two status bits in the Channel Status Register (US_CSR): TXRDY (Transmitter Ready), which indicates that US_THR is empty and TXEMPTY, which indicates that all the characters written in US_THR have been processed. When the current character processing is completed, the last character written in US_THR is transferred into the Shift Register of the transmitter and US_THR becomes empty, thus TXRDY rises. Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in US_THR while TXRDY is low has no effect and the written character is lost. Figure 33-7. Transmitter Status Baud Rate Clock TXD Start D0 Bit D1 D2 D3 D4 D5 D6 D7 Parity Stop Start D0 Bit Bit Bit D1 D2 D3 D4 D5 D6 D7 Parity Stop Bit Bit Write US_THR TXRDY TXEMPTY 33.6.3.2 Asynchronous Receiver If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver oversamples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate Clock, depending on the OVER bit in the Mode Register (US_MR). The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start bit is detected and data, parity and stop bits are successively sampled on the bit rate clock. If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8 (OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop bit are sampled on each 8 sampling clock cycle. The number of data bits, first bit sent and parity mode are selected by the same fields and bits as the transmitter, i.e., respectively CHRL, MODE9, MSBF and PAR. For the synchronization mechanism only, the number of stop bits has no effect on the receiver as it considers only one stop bit, regardless of the field NBSTOP, so that resynchronization between the receiver and the transmitter can occur. Moreover, as soon as the stop bit is sampled, the receiver starts looking for a new start bit so that resynchronization can also be accomplished when the transmitter is operating with one stop bit. Figure 33-8 and Figure 33-9 illustrate start detection and character reception when USART operates in asynchronous mode. 516 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 33-8. Asynchronous Start Detection Baud Rate Clock Sampling Clock (x16) RXD Sampling 1 2 3 4 5 6 7 8 1 2 3 4 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 D0 Sampling Start Detection RXD Sampling 1 Figure 33-9. 2 3 4 5 6 7 0 1 Start Rejection Asynchronous Character Reception Example: 8-bit, Parity Enabled Baud Rate Clock RXD Start Detection 16 16 16 16 16 16 16 16 16 16 samples samples samples samples samples samples samples samples samples samples D0 D1 D2 D3 D4 D5 D6 D7 Parity Bit Stop Bit 33.6.3.3 Synchronous Receiver In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode operations provide a high speed transfer capability. Configuration fields and bits are the same as in asynchronous mode. Figure 33-10 illustrates a character reception in synchronous mode. Figure 33-10. Synchronous Mode Character Reception Example: 8-bit, Parity Enabled 1 Stop Baud Rate Clock RXD Sampling Start D0 D1 D2 D3 D4 D5 D6 D7 Stop Bit Parity Bit SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 517 33.6.3.4 Receiver Operations When a character reception is completed, it is transferred to the Receive Holding Register (US_RHR) and the RXRDY bit in the Status Register (US_CSR) rises. If a character is completed while the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing the Control Register (US_CR) with the RSTSTA (Reset Status) bit at 1. Figure 33-11. Receiver Status Baud Rate Clock RXD Start D0 Bit D1 D2 D3 D4 D5 D6 D7 Parity Stop Start D0 Bit Bit Bit D1 D2 D3 D4 D5 D6 D7 Parity Stop Bit Bit RSTSTA = 1 Write US_CR Read US_RHR RXRDY OVRE 33.6.3.5 Parity The USART supports five parity modes selected by programming the PAR field in the Mode Register (US_MR). The PAR field also enables the Multidrop mode, see "Multidrop Mode" on page 519. Even and odd parity bit generation and error detection are supported. If even parity is selected, the parity generator of the transmitter drives the parity bit at 0 if a number of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received 1s and reports a parity error if the sampled parity bit does not correspond. If odd parity is selected, the parity generator of the transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at 0 if the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received 1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the transmitter does not generate any parity bit and the receiver does not report any parity error. Table 33-6 shows an example of the parity bit for the character 0x41 (character ASCII "A") depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added when a parity is odd, or 0 is added when a parity is even. Table 33-6. 518 Parity Bit Examples Character Hexadecimal Binary Parity Bit Parity Mode A 0x41 0100 0001 1 Odd A 0x41 0100 0001 0 Even A 0x41 0100 0001 1 Mark A 0x41 0100 0001 0 Space A 0x41 0100 0001 None None SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status Register (US_CSR). The PARE bit can be cleared by writing the Control Register (US_CR) with the RSTSTA bit at 1. Figure 33-12 illustrates the parity bit status setting and clearing. Figure 33-12. Parity Error Baud Rate Clock RXD Start D0 Bit D1 D2 D3 D4 D5 D6 D7 Bad Stop Parity Bit Bit RSTSTA = 1 Write US_CR PARE RXRDY 33.6.3.6 Multidrop Mode If the PAR field in the Mode Register (US_MR) is programmed to the value 0x6 or 0x07, the USART runs in Multidrop Mode. This mode differentiates the data characters and the address characters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the parity bit at 1. If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when the parity bit is high and the transmitter is able to send a character with the parity bit high when the Control Register is written with the SENDA bit at 1. To handle parity error, the PARE bit is cleared when the Control Register is written with the bit RSTSTA at 1. The transmitter sends an address byte (parity bit set) when SENDA is written to US_CR. In this case, the next byte written to US_THR is transmitted as an address. Any character written in US_THR without having written the command SENDA is transmitted normally with the parity at 0. 33.6.3.7 Transmitter Timeguard The timeguard feature enables the USART interface with slow remote devices. The timeguard function enables the transmitter to insert an idle state on the TXD line between two characters. This idle state actually acts as a long stop bit. The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Register (US_TTGR). When this field is programmed at zero no timeguard is generated. Otherwise, the transmitter holds a high level on TXD after each transmitted byte during the number of bit periods programmed in TG in addition to the number of stop bits. As illustrated in Figure 33-13, the behavior of TXRDY and TXEMPTY status bits is modified by the programming of a timeguard. TXRDY rises only when the start bit of the next character is sent, and thus remains at 0 during the timeguard transmission if a character has been written in US_THR. TXEMPTY remains low until the timeguard transmission is completed as the timeguard is part of the current character being transmitted. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 519 Figure 33-13. Timeguard Operations TG = 4 TG = 4 Baud Rate Clock TXD Start D0 Bit D1 D2 D3 D4 D5 D6 D7 Parity Stop Bit Bit Start D0 Bit D1 D2 D3 D4 D5 D6 D7 Parity Stop Bit Bit Write US_THR TXRDY TXEMPTY Table 33-7 indicates the maximum length of a timeguard period that the transmitter can handle according to the baud rate. Table 33-7. 520 Maximum Timeguard Length Depending on Baud Rate Baud Rate (bit/s) Bit Time (s) Timeguard (ms) 1,200 833 212.50 9,600 104 26.56 14,400 69.4 17.71 19,200 52.1 13.28 28,800 34.7 8.85 33,400 29.9 7.63 56,000 17.9 4.55 57,600 17.4 4.43 115,200 8.7 2.21 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.6.3.8 Receiver Time-out The Receiver Time-out provides support in handling variable-length frames. This feature detects an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel Status Register (US_CSR) rises and can generate an interrupt, thus indicating to the driver an end of frame. The time-out delay period (during which the receiver waits for a new character) is programmed in the TO field of the Receiver Time-out Register (US_RTOR). If the TO field is programmed at 0, the Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in US_CSR remains at 0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO. This counter is decremented at each bit period and reloaded each time a new character is received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises. Then, the user can either: Stop the counter clock until a new character is received. This is performed by writing the Control Register (US_CR) with the STTTO (Start Time-out) bit at 1. In this case, the idle state on RXD before a new character is received will not provide a time-out. This prevents having to handle an interrupt before a character is received and allows waiting for the next idle state on RXD after a frame is received. Obtain an interrupt while no character is received. This is performed by writing US_CR with the RETTO (Reload and Start Time-out) bit at 1. If RETTO is performed, the counter starts counting down immediately from the value TO. This enables generation of a periodic interrupt so that a user time-out can be handled, for example when no key is pressed on a keyboard. If STTTO is performed, the counter clock is stopped until a first character is received. The idle state on RXD before the start of the frame does not provide a time-out. This prevents having to obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is detected. If RETTO is performed, the counter starts counting down immediately from the value TO. This enables generation of a periodic interrupt so that a user time-out can be handled, for example when no key is pressed on a keyboard. Figure 33-14 shows the block diagram of the Receiver Time-out feature. Figure 33-14. Receiver Time-out Block Diagram TO Baud Rate Clock 1 D Q Clock 16-bit Time-out Counter 16-bit Value = STTTO Character Received Clear Load TIMEOUT 0 RETTO SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 521 Table 33-8 gives the maximum time-out period for some standard baud rates. Table 33-8. Maximum Time-out Period Baud Rate (bit/s) Bit Time (s) Time-out (ms) 600 1,667 109,225 1,200 833 54,613 2,400 417 27,306 4,800 208 13,653 9,600 104 6,827 14,400 69 4,551 19,200 52 3,413 28,800 35 2,276 33,400 30 1,962 56,000 18 1,170 57,600 17 1,138 200,000 5 328 33.6.3.9 Framing Error The receiver is capable of detecting framing errors. A framing error happens when the stop bit of a received character is detected at level 0. This can occur if the receiver and the transmitter are fully desynchronized. A framing error is reported on the FRAME bit of the Channel Status Register (US_CSR). The FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is cleared by writing the Control Register (US_CR) with the RSTSTA bit at 1. Figure 33-15. Framing Error Status Baud Rate Clock RXD Start D0 Bit Write US_CR FRAME RXRDY 522 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 D1 D2 D3 D4 D5 D6 D7 Parity Stop Bit Bit RSTSTA = 1 33.6.3.10Transmit Break The user can request the transmitter to generate a break condition on the TXD line. A break condition drives the TXD line low during at least one complete character. It appears the same as a 0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the TXD line at least during one character until the user requests the break condition to be removed. A break is transmitted by writing the Control Register (US_CR) with the STTBRK bit at 1. This can be performed at any time, either while the transmitter is empty (no character in either the Shift Register or in US_THR) or when a character is being transmitted. If a break is requested while a character is being shifted out, the character is first completed before the TXD line is held low. Once STTBRK command is requested further STTBRK commands are ignored until the end of the break is completed. The break condition is removed by writing US_CR with the STPBRK bit at 1. If the STPBRK is requested before the end of the minimum break duration (one character, including start, data, parity and stop bits), the transmitter ensures that the break condition completes. The transmitter considers the break as though it is a character, i.e., the STTBRK and STPBRK commands are taken into account only if the TXRDY bit in US_CSR is at 1 and the start of the break condition clears the TXRDY and TXEMPTY bits as if a character is processed. Writing US_CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable result. All STPBRK commands requested without a previous STTBRK command are ignored. A byte written into the Transmit Holding Register while a break is pending, but not started, is ignored. After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times. Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the start of the next character. If the timeguard is programmed with a value higher than 12, the TXD line is held high for the timeguard period. After holding the TXD line for this period, the transmitter resumes normal operations. Figure 33-16 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK) commands on the TXD line. Figure 33-16. Break Transmission Baud Rate Clock TXD Start D0 Bit D1 D2 D3 D4 D5 STTBRK = 1 D6 D7 Parity Stop Bit Bit Break Transmission End of Break STPBRK = 1 Write US_CR TXRDY TXEMPTY 33.6.3.11Receive Break The receiver detects a break condition when all data, parity and stop bits are low. This corresponds to detecting a framing error with data at 0x00, but FRAME remains low. When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may be cleared by writing the Control Register (US_CR) with the bit RSTSTA at 1. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 523 An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchronous operating mode or one sample at high level in synchronous operating mode. The end of break detection also asserts the RXBRK bit. 33.6.3.12Hardware Handshaking The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins are used to connect with the remote device, as shown in Figure 33-17. Figure 33-17. Connection with a Remote Device for Hardware Handshaking USART Remote Device TXD RXD RXD TXD CTS RTS RTS CTS Setting the USART to operate with hardware handshaking is performed by writing the USART_MODE field in the Mode Register (US_MR) to the value 0x2. The USART behavior when hardware handshaking is enabled is the same as the behavior in standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as described below and the level on the CTS pin modifies the behavior of the transmitter as described below. Using this mode requires using the PDC channel for reception. The transmitter can handle hardware handshaking in any case. Figure 33-18 shows how the receiver operates if hardware handshaking is enabled. The RTS pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) coming from the PDC channel is high. Normally, the remote device does not start transmitting while its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the status bit RXBUFF and, as a result, asserts the pin RTS low. Figure 33-18. Receiver Behavior when Operating with Hardware Handshaking RXD RXEN = 1 RXDIS = 1 Write US_CR RTS RXBUFF Figure 33-19 shows how the transmitter operates if hardware handshaking is enabled. The CTS pin disables the transmitter. If a character is being processing, the transmitter is disabled only after the completion of the current character and transmission of the next character happens as soon as the pin CTS falls. Figure 33-19. Transmitter Behavior when Operating with Hardware Handshaking CTS TXD 524 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.6.4 ISO7816 Mode The USART features an ISO7816-compatible operating mode. This mode permits interfacing with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link. Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported. Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T = 1. 33.6.4.1 ISO7816 Mode Overview The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is determined by a division of the clock provided to the remote device (see "Baud Rate Generator" on page 511). The USART connects to a smart card as shown in Figure 33-20. The TXD line becomes bidirectional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin becomes bidirectional, its output remains driven by the output of the transmitter but only when the transmitter is active while its input is directed to the input of the receiver. The USART is considered as the master of the communication as it generates the clock. Figure 33-20. Connection of a Smart Card to the USART USART SCK TXD CLK I/O Smart Card When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values programmed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to "USART Mode Register" on page 537 and "PAR: Parity Type" on page 538. The USART cannot operate concurrently in both receiver and transmitter modes as the communication is unidirectional at a time. It has to be configured according to the required mode by enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver and the transmitter at the same time in ISO7816 mode may lead to unpredictable results. The ISO7816 specification defines an inverse transmission format. Data bits of the character must be transmitted on the I/O line at their negative value. The USART does not support this format and the user has to perform an exclusive OR on the data before writing it in the Transmit Holding Register (US_THR) or after reading it in the Receive Holding Register (US_RHR). 33.6.4.2 Protocol T = 0 In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the I/O line during the guard time. If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter can continue with the transmission of the next character, as shown in Figure 33-21. If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as shown in Figure 3322. This error bit is also named NACK, for Non Acknowledge. In this case, the character lasts 1 bit time more, as the guard time length is the same and is added to the error bit time which lasts 1 bit time. When the USART is the receiver and it detects an error, it does not load the erroneous character in the Receive Holding Register (US_RHR). It appropriately sets the PARE bit in the Status Register (US_SR) so that the software can handle the error. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 525 Figure 33-21. T = 0 Protocol without Parity Error Baud Rate Clock RXD Start Bit D0 D1 D2 D3 D4 D5 D6 D7 Parity Guard Guard Next Bit Time 1 Time 2 Start Bit Figure 33-22. T = 0 Protocol with Parity Error Baud Rate Clock Error I/O Start Bit D0 D1 D2 D3 D4 D5 D6 D7 Parity Guard Bit Time 1 D0 Guard Start Time 2 Bit D1 Repetition 33.6.4.3 Receive Error Counter The USART receiver also records the total number of errors. This can be read in the Number of Error (US_NER) register. The NB_ERRORS field can record up to 255 errors. Reading US_NER automatically clears the NB_ERRORS field. 33.6.4.4 Receive NACK Inhibit The USART can also be configured to inhibit an error. This can be achieved by setting the INACK bit in the Mode Register (US_MR). If INACK is at 1, no error signal is driven on the I/O line even if a parity bit is detected, but the INACK bit is set in the Status Register (US_SR). The INACK bit can be cleared by writing the Control Register (US_CR) with the RSTNACK bit at 1. Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding Register, as if no error occurred. However, the RXRDY bit does not raise. 33.6.4.5 Transmit Character Repetition When the USART is transmitting a character and gets a NACK, it can automatically repeat the character before moving on to the next one. Repetition is enabled by writing the MAX_ITERATION field in the Mode Register (US_MR) at a value higher than 0. Each character can be transmitted up to eight times; the first transmission plus seven repetitions. If MAX_ITERATION does not equal zero, the USART repeats the character as many times as the value loaded in MAX_ITERATION. When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the Channel Status Register (US_CSR). If the repetition of the character is acknowledged by the receiver, the repetitions are stopped and the iteration counter is cleared. The ITERATION bit in US_CSR can be cleared by writing the Control Register with the RSIT bit at 1. 33.6.4.6 Disable Successive Receive NACK The receiver can limit the number of successive NACKs sent back to the remote transmitter. This is programmed by setting the bit DSNACK in the Mode Register (US_MR). The maximum number of NACK transmitted is programmed in the MAX_ITERATION field. As soon as MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on the line and the ITERATION bit in the Channel Status Register is set. 526 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.6.4.7 Protocol T = 1 When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous format with only one stop bit. The parity is generated when transmitting and checked when receiving. Parity error detection sets the PARE bit in the Channel Status Register (US_CSR). 33.6.5 IrDA Mode The USART features an IrDA mode supplying half-duplex point-to-point wireless communication. It embeds the modulator and demodulator which allows a glueless connection to the infrared transceivers, as shown in Figure 33-23. The modulator and demodulator are compliant with the IrDA specification version 1.1 and support data transfer speeds ranging from 2.4 Kb/s to 115.2 Kb/s. The USART IrDA mode is enabled by setting the USART_MODE field in the Mode Register (US_MR) to the value 0x8. The IrDA Filter Register (US_IF) allows configuring the demodulator filter. The USART transmitter and receiver operate in a normal asynchronous mode and all parameters are accessible. Note that the modulator and the demodulator are activated. Figure 33-23. Connection to IrDA Transceivers USART IrDA Transceivers Receiver Demodulator Transmitter Modulator RXD RX TX TXD The receiver and the transmitter must be enabled or disabled according to the direction of the transmission to be managed. To receive IrDA signals, the following needs to be done: Disable TX and Enable RX Configure the TXD pin as PIO and set it as an output at 0 (to avoid LED emission). Disable the internal pullup (better for power consumption). Receive data SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 527 33.6.5.1 IrDA Modulation For baud rates up to and including 115.2 kbit/s, the RZI modulation scheme is used. "0" is represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are shown in Table 33-9. Table 33-9. IrDA Pulse Duration Baud Rate Pulse Duration (3/16) 2.4 kbit/s 78.13 s 9.6 kbit/s 19.53 s 19.2 kbit/s 9.77 s 38.4 kbit/s 4.88 s 57.6 kbit/s 3.26 s 115.2 kbit/s 1.63 s Figure 33-24 shows an example of character transmission. Figure 33-24. IrDA Modulation Start Bit Transmitter Output 0 Stop Bit Data Bits 1 0 1 0 0 1 1 0 1 TXD Bit Period 528 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 3 16 Bit Period 33.6.5.2 IrDA Baud Rate Table 33-10 gives some examples of CD values, baud rate error and pulse duration. Note that the requirement on the maximum acceptable error of 1.87% must be met. Table 33-10. IrDA Baud Rate Error Peripheral Clock Baud Rate (bit/s) CD Baud Rate Error Pulse Time (s) 3 686 400 115 200 2 0.00% 1.63 20 000 000 115 200 11 1.38% 1.63 32 768 000 115 200 18 1.25% 1.63 40 000 000 115 200 22 1.38% 1.63 3 686 400 57 600 4 0.00% 3.26 20 000 000 57 600 22 1.38% 3.26 32 768 000 57 600 36 1.25% 3.26 40 000 000 57 600 43 0.93% 3.26 3 686 400 38 400 6 0.00% 4.88 20 000 000 38 400 33 1.38% 4.88 32 768 000 38 400 53 0.63% 4.88 40 000 000 38 400 65 0.16% 4.88 3 686 400 19 200 12 0.00% 9.77 20 000 000 19 200 65 0.16% 9.77 32 768 000 19 200 107 0.31% 9.77 40 000 000 19 200 130 0.16% 9.77 3 686 400 9 600 24 0.00% 19.53 20 000 000 9 600 130 0.16% 19.53 32 768 000 9 600 213 0.16% 19.53 40 000 000 9 600 260 0.16% 19.53 3 686 400 2 400 96 0.00% 78.13 20 000 000 2 400 521 0.03% 78.13 32 768 000 2 400 853 0.04% 78.13 33.6.5.3 IrDA Demodulator The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is loaded with the value programmed in US_IF. When a falling edge is detected on the RXD pin, the Filter Counter starts counting down at the Master Clock (MCK) speed. If a rising edge is detected on the RXD pin, the counter stops and is reloaded with US_IF. If no rising edge is detected when the counter reaches 0, the input of the receiver is driven low during one bit time. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 529 Figure 33-25 illustrates the operations of the IrDA demodulator. Figure 33-25. IrDA Demodulator Operations MCK RXD Counter Value Receiver Input 6 5 4 3 Pulse Rejected 2 6 6 5 4 3 2 1 0 Pulse Accepted As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in US_FIDI must be set to a value higher than 0 in order to assure IrDA communications operate correctly. 33.6.6 RS485 Mode The USART features the RS485 mode to enable line driver control. While operating in RS485 mode, the USART behaves as though in asynchronous or synchronous mode and configuration of all the parameters is possible. The difference is that the RTS pin is driven high when the transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical connection of the USART to a RS485 bus is shown in Figure 33-26. Figure 33-26. Typical Connection to a RS485 Bus USART RXD TXD Differential Bus RTS The USART is set in RS485 mode by programming the USART_MODE field in the Mode Register (US_MR) to the value 0x1. The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high when a timeguard is programmed so that the line can remain driven after the last character completion. Figure 33-27 gives an example of the RTS waveform during a character transmission when the timeguard is enabled. 530 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 33-27. Example of RTS Drive with Timeguard TG = 4 Baud Rate Clock TXD Start D0 Bit D1 D2 D3 D4 D5 D6 D7 Parity Stop Bit Bit Write US_THR TXRDY TXEMPTY RTS 33.6.7 Modem Mode The USART features modem mode, which enables control of the signals: DTR (Data Terminal Ready), DSR (Data Set Ready), RTS (Request to Send), CTS (Clear to Send), DCD (Data Carrier Detect) and RI (Ring Indicator). While operating in modem mode, the USART behaves as a DTE (Data Terminal Equipment) as it drives DTR and RTS and can detect level change on DSR, DCD, CTS and RI. Setting the USART in modem mode is performed by writing the USART_MODE field in the Mode Register (US_MR) to the value 0x3. While operating in modem mode the USART behaves as though in asynchronous mode and all the parameter configurations are available. Table 33-11 gives the correspondence of the USART signals with modem connection standards. Table 33-11. Circuit References USART Pin V24 CCITT Direction TXD 2 103 From terminal to modem RTS 4 105 From terminal to modem DTR 20 108.2 From terminal to modem RXD 3 104 From modem to terminal CTS 5 106 From terminal to modem DSR 6 107 From terminal to modem DCD 8 109 From terminal to modem RI 22 125 From terminal to modem The control of the DTR output pin is performed by writing the Control Register (US_CR) with the DTRDIS and DTREN bits respectively at 1. The disable command forces the corresponding pin to its inactive level, i.e., high. The enable command forces the corresponding pin to its active level, i.e., low. RTS output pin is automatically controlled in this mode The level changes are detected on the RI, DSR, DCD and CTS pins. If an input change is detected, the RIIC, DSRIC, DCDIC and CTSIC bits in the Channel Status Register (US_CSR) are set respectively and can trigger an interrupt. The status is automatically cleared when US_CSR is read. Furthermore, the CTS automatically disables SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 531 the transmitter when it is detected at its inactive state. If a character is being transmitted when the CTS rises, the character transmission is completed before the transmitter is actually disabled. 33.6.8 Test Modes The USART can be programmed to operate in three different test modes. The internal loopback capability allows on-board diagnostics. In the loopback mode the USART interface pins are disconnected or not and reconfigured for loopback internally or externally. 33.6.8.1 Normal Mode Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD pin. Figure 33-28. Normal Mode Configuration RXD Receiver TXD Transmitter 33.6.8.2 Automatic Echo Mode Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it is sent to the TXD pin, as shown in Figure 33-29. Programming the transmitter has no effect on the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains active. Figure 33-29. Automatic Echo Mode Configuration RXD Receiver TXD Transmitter 33.6.8.3 Local Loopback Mode Local loopback mode connects the output of the transmitter directly to the input of the receiver, as shown in Figure 33-30. The TXD and RXD pins are not used. The RXD pin has no effect on the receiver and the TXD pin is continuously driven high, as in idle state. Figure 33-30. Local Loopback Mode Configuration RXD Receiver Transmitter 532 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 1 TXD 33.6.8.4 Remote Loopback Mode Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 33-31. The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit retransmission. Figure 33-31. Remote Loopback Mode Configuration Receiver 1 RXD TXD Transmitter SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 533 33.7 Universal Synchronous Asynchronous Receiver Transceiver (USART) User Interface Table 33-13. Register Mapping Offset Register Name Access Reset 0x0000 Control Register US_CR Write-only - 0x0004 Mode Register US_MR Read/Write 0x0 0x0008 Interrupt Enable Register US_IER Write-only - 0x000C Interrupt Disable Register US_IDR Write-only - 0x0010 Interrupt Mask Register US_IMR Read-only 0x0 0x0014 Channel Status Register US_CSR Read-only 0x0 0x0018 Receiver Holding Register US_RHR Read-only 0x0 0x001C Transmitter Holding Register US_THR Write-only - 0x0020 Baud Rate Generator Register US_BRGR Read/Write 0x0 0x0024 Receiver Time-out Register US_RTOR Read/Write 0x0 0x0028 Transmitter Timeguard Register US_TTGR Read/Write 0x0 Reserved - - - 0x0040 FI DI Ratio Register US_FIDI Read/Write 0x174 0x0044 Number of Errors Register US_NER Read-only 0x0 0x0048 Reserved - - - 0x004C IrDA Filter Register US_IF Read/Write 0x0 0x0050 Reserved - - - 0x5C-0xFC Reserved - - - Reserved for PDC Registers - - - 0x2C-0x3C 0x100-0x128 534 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.7.1 USART Control Register Name: US_CR Address: 0xFFFB0000 (0), 0xFFFB4000 (1), 0xFFFB8000 (2), 0xFFFD0000 (3), 0xFFFD4000 (4) Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 RTSDIS 18 RTSEN 17 DTRDIS 16 DTREN 15 RETTO 14 RSTNACK 13 RSTIT 12 SENDA 11 STTTO 10 STPBRK 9 STTBRK 8 RSTSTA 7 TXDIS 6 TXEN 5 RXDIS 4 RXEN 3 RSTTX 2 RSTRX 1 - 0 - * RSTRX: Reset Receiver 0: No effect. 1: Resets the receiver. * RSTTX: Reset Transmitter 0: No effect. 1: Resets the transmitter. * RXEN: Receiver Enable 0: No effect. 1: Enables the receiver, if RXDIS is 0. * RXDIS: Receiver Disable 0: No effect. 1: Disables the receiver. * TXEN: Transmitter Enable 0: No effect. 1: Enables the transmitter if TXDIS is 0. * TXDIS: Transmitter Disable 0: No effect. 1: Disables the transmitter. * RSTSTA: Reset Status Bits 0: No effect. 1: Resets the status bits PARE, FRAME, OVRE and RXBRK in US_CSR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 535 * STTBRK: Start Break 0: No effect. 1: Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been transmitted. No effect if a break is already being transmitted. * STPBRK: Stop Break 0: No effect. 1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods. No effect if no break is being transmitted. * STTTO: Start Time-out 0: No effect. 1: Starts waiting for a character before clocking the time-out counter. Resets the status bit TIMEOUT in US_CSR. * SENDA: Send Address 0: No effect. 1: In Multidrop Mode only, the next character written to the US_THR is sent with the address bit set. * RSTIT: Reset Iterations 0: No effect. 1: Resets ITERATION in US_CSR. No effect if the ISO7816 is not enabled. * RSTNACK: Reset Non Acknowledge 0: No effect 1: Resets NACK in US_CSR. * RETTO: Rearm Time-out 0: No effect 1: Restart Time-out * DTREN: Data Terminal Ready Enable 0: No effect. 1: Drives the pin DTR at 0. * DTRDIS: Data Terminal Ready Disable 0: No effect. 1: Drives the pin DTR to 1. * RTSEN: Request to Send Enable 0: No effect. 1: Drives the pin RTS to 0. * RTSDIS: Request to Send Disable 0: No effect. 1: Drives the pin RTS to 1. 536 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.7.2 USART Mode Register Name: US_MR Address: 0xFFFB0004 (0), 0xFFFB4004 (1), 0xFFFB8004 (2), 0xFFFD0004 (3), 0xFFFD4004 (4) Access: Read/Write 31 - 30 - 29 - 28 FILTER 27 - 26 25 MAX_ITERATION 24 23 - 22 - 21 DSNACK 20 INACK 19 OVER 18 CLKO 17 MODE9 16 MSBF 14 13 12 11 10 PAR 9 8 SYNC 4 3 2 1 0 15 CHMODE 7 NBSTOP 6 5 CHRL USCLKS USART_MODE * USART_MODE USART_MODE Mode of the USART 0 0 0 0 Normal 0 0 0 1 RS485 0 0 1 0 Hardware Handshaking 0 0 1 1 Modem 0 1 0 0 IS07816 Protocol: T = 0 0 1 1 0 IS07816 Protocol: T = 1 1 0 0 0 IrDA Others Reserved * USCLKS: Clock Selection USCLKS Selected Clock 0 0 MCK 0 1 MCK/DIV (DIV = 8) 1 0 Reserved 1 1 SCK * CHRL: Character Length CHRL Character Length 0 0 5 bits 0 1 6 bits 1 0 7 bits 1 1 8 bits SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 537 * SYNC: Synchronous Mode Select 0: USART operates in Asynchronous Mode. 1: USART operates in Synchronous Mode. * PAR: Parity Type PAR Parity Type 0 0 0 Even parity 0 0 1 Odd parity 0 1 0 Parity forced to 0 (Space) 0 1 1 Parity forced to 1 (Mark) 1 0 x No parity 1 1 x Multidrop mode * NBSTOP: Number of Stop Bits NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC = 1) 0 0 1 stop bit 1 stop bit 0 1 1.5 stop bits Reserved 1 0 2 stop bits 2 stop bits 1 1 Reserved Reserved * CHMODE: Channel Mode CHMODE Mode Description 0 0 Normal Mode 0 1 Automatic Echo. Receiver input is connected to the TXD pin. 1 0 Local Loopback. Transmitter output is connected to the Receiver Input. 1 1 Remote Loopback. RXD pin is internally connected to the TXD pin. * MSBF: Bit Order 0: Least Significant Bit is sent/received first. 1: Most Significant Bit is sent/received first. * MODE9: 9-bit Character Length 0: CHRL defines character length. 1: 9-bit character length. * CLKO: Clock Output Select 0: The USART does not drive the SCK pin. 1: The USART drives the SCK pin if USCLKS does not select the external clock SCK. * OVER: Oversampling Mode 0: 16x Oversampling. 1: 8x Oversampling. 538 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * INACK: Inhibit Non Acknowledge 0: The NACK is generated. 1: The NACK is not generated. * DSNACK: Disable Successive NACK 0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set). 1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors generate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag ITERATION is asserted. * MAX_ITERATION Defines the maximum number of iterations in mode ISO7816, protocol T= 0. * FILTER: Infrared Receive Line Filter 0: The USART does not filter the receive line. 1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 539 33.7.3 USART Interrupt Enable Register Name: US_IER Address: 0xFFFB0008 (0), 0xFFFB4008 (1), 0xFFFB8008 (2), 0xFFFD0008 (3), 0xFFFD4008 (4) Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 CTSIC 18 DCDIC 17 DSRIC 16 RIIC 15 - 14 - 13 NACK 12 RXBUFF 11 TXBUFE 10 ITER 9 TXEMPTY 8 TIMEOUT 7 PARE 6 FRAME 5 OVRE 4 ENDTX 3 ENDRX 2 RXBRK 1 TXRDY 0 RXRDY * RXRDY: RXRDY Interrupt Enable * TXRDY: TXRDY Interrupt Enable * RXBRK: Receiver Break Interrupt Enable * ENDRX: End of Receive Transfer Interrupt Enable * ENDTX: End of Transmit Interrupt Enable * OVRE: Overrun Error Interrupt Enable * FRAME: Framing Error Interrupt Enable * PARE: Parity Error Interrupt Enable * TIMEOUT: Time-out Interrupt Enable * TXEMPTY: TXEMPTY Interrupt Enable * ITER: Iteration Interrupt Enable * TXBUFE: Buffer Empty Interrupt Enable * RXBUFF: Buffer Full Interrupt Enable * NACK: Non Acknowledge Interrupt Enable * RIIC: Ring Indicator Input Change Enable * DSRIC: Data Set Ready Input Change Enable * DCDIC: Data Carrier Detect Input Change Interrupt Enable * CTSIC: Clear to Send Input Change Interrupt Enable 540 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.7.4 USART Interrupt Disable Register Name: US_IDR Address: 0xFFFB000C (0), 0xFFFB400C (1), 0xFFFB800C (2), 0xFFFD000C (3), 0xFFFD400C (4) Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 CTSIC 18 DCDIC 17 DSRIC 16 RIIC 15 - 14 - 13 NACK 12 RXBUFF 11 TXBUFE 10 ITER 9 TXEMPTY 8 TIMEOUT 7 PARE 6 FRAME 5 OVRE 4 ENDTX 3 ENDRX 2 RXBRK 1 TXRDY 0 RXRDY * RXRDY: RXRDY Interrupt Disable * TXRDY: TXRDY Interrupt Disable * RXBRK: Receiver Break Interrupt Disable * ENDRX: End of Receive Transfer Interrupt Disable * ENDTX: End of Transmit Interrupt Disable * OVRE: Overrun Error Interrupt Disable * FRAME: Framing Error Interrupt Disable * PARE: Parity Error Interrupt Disable * TIMEOUT: Time-out Interrupt Disable * TXEMPTY: TXEMPTY Interrupt Disable * ITER: Iteration Interrupt Enable * TXBUFE: Buffer Empty Interrupt Disable * RXBUFF: Buffer Full Interrupt Disable * NACK: Non Acknowledge Interrupt Disable * RIIC: Ring Indicator Input Change Disable * DSRIC: Data Set Ready Input Change Disable * DCDIC: Data Carrier Detect Input Change Interrupt Disable * CTSIC: Clear to Send Input Change Interrupt Disable SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 541 33.7.5 USART Interrupt Mask Register Name: US_IMR Address: 0xFFFB0010 (0), 0xFFFB4010 (1), 0xFFFB8010 (2), 0xFFFD0010 (3), 0xFFFD4010 (4) Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 CTSIC 18 DCDIC 17 DSRIC 16 RIIC 15 - 14 - 13 NACK 12 RXBUFF 11 TXBUFE 10 ITER 9 TXEMPTY 8 TIMEOUT 7 PARE 6 FRAME 5 OVRE 4 ENDTX 3 ENDRX 2 RXBRK 1 TXRDY 0 RXRDY * RXRDY: RXRDY Interrupt Mask * TXRDY: TXRDY Interrupt Mask * RXBRK: Receiver Break Interrupt Mask * ENDRX: End of Receive Transfer Interrupt Mask * ENDTX: End of Transmit Interrupt Mask * OVRE: Overrun Error Interrupt Mask * FRAME: Framing Error Interrupt Mask * PARE: Parity Error Interrupt Mask * TIMEOUT: Time-out Interrupt Mask * TXEMPTY: TXEMPTY Interrupt Mask * ITER: Iteration Interrupt Enable * TXBUFE: Buffer Empty Interrupt Mask * RXBUFF: Buffer Full Interrupt Mask * NACK: Non Acknowledge Interrupt Mask * RIIC: Ring Indicator Input Change Mask * DSRIC: Data Set Ready Input Change Mask * DCDIC: Data Carrier Detect Input Change Interrupt Mask * CTSIC: Clear to Send Input Change Interrupt Mask 542 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.7.6 USART Channel Status Register Name: US_CSR Address: 0xFFFB0014 (0), 0xFFFB4014 (1), 0xFFFB8014 (2), 0xFFFD0014 (3), 0xFFFD4014 (4) Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 CTS 22 DCD 21 DSR 20 RI 19 CTSIC 18 DCDIC 17 DSRIC 16 RIIC 15 - 14 - 13 NACK 12 RXBUFF 11 TXBUFE 10 ITER 9 TXEMPTY 8 TIMEOUT 7 PARE 6 FRAME 5 OVRE 4 ENDTX 3 ENDRX 2 RXBRK 1 TXRDY 0 RXRDY * RXRDY: Receiver Ready 0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled. 1: At least one complete character has been received and US_RHR has not yet been read. * TXRDY: Transmitter Ready 0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1. 1: There is no character in the US_THR. * RXBRK: Break Received/End of Break 0: No Break received or End of Break detected since the last RSTSTA. 1: Break Received or End of Break detected since the last RSTSTA. * ENDRX: End of Receiver Transfer 0: The End of Transfer signal from the Receive PDC channel is inactive. 1: The End of Transfer signal from the Receive PDC channel is active. * ENDTX: End of Transmitter Transfer 0: The End of Transfer signal from the Transmit PDC channel is inactive. 1: The End of Transfer signal from the Transmit PDC channel is active. * OVRE: Overrun Error 0: No overrun error has occurred since the last RSTSTA. 1: At least one overrun error has occurred since the last RSTSTA. * FRAME: Framing Error 0: No stop bit has been detected low since the last RSTSTA. 1: At least one stop bit has been detected low since the last RSTSTA. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 543 * PARE: Parity Error 0: No parity error has been detected since the last RSTSTA. 1: At least one parity error has been detected since the last RSTSTA. * TIMEOUT: Receiver Time-out 0: There has not been a time-out since the last Start Time-out command (STTTO in US_CR) or the Time-out Register is 0. 1: There has been a time-out since the last Start Time-out command (STTTO in US_CR). * TXEMPTY: Transmitter Empty 0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled. 1: There are no characters in US_THR, nor in the Transmit Shift Register. * ITER: Max number of Repetitions Reached 0: Maximum number of repetitions has not been reached since the last RSTSTA. 1: Maximum number of repetitions has been reached since the last RSTSTA. * TXBUFE: Transmission Buffer Empty 0: The signal Buffer Empty from the Transmit PDC channel is inactive. 1: The signal Buffer Empty from the Transmit PDC channel is active. * RXBUFF: Reception Buffer Full 0: The signal Buffer Full from the Receive PDC channel is inactive. 1: The signal Buffer Full from the Receive PDC channel is active. * NACK: Non Acknowledge 0: No Non Acknowledge has not been detected since the last RSTNACK. * 1: At least one Non Acknowledge has been detected since the last RSTNACK. * RIIC: Ring Indicator Input Change Flag 0: No input change has been detected on the RI pin since the last read of US_CSR. 1: At least one input change has been detected on the RI pin since the last read of US_CSR. * DSRIC: Data Set Ready Input Change Flag 0: No input change has been detected on the DSR pin since the last read of US_CSR. 1: At least one input change has been detected on the DSR pin since the last read of US_CSR. * DCDIC: Data Carrier Detect Input Change Flag 0: No input change has been detected on the DCD pin since the last read of US_CSR. 1: At least one input change has been detected on the DCD pin since the last read of US_CSR. * CTSIC: Clear to Send Input Change Flag 0: No input change has been detected on the CTS pin since the last read of US_CSR. 1: At least one input change has been detected on the CTS pin since the last read of US_CSR. 544 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * RI: Image of RI Input 0: RI is at 0. 1: RI is at 1. * DSR: Image of DSR Input 0: DSR is at 0 1: DSR is at 1. * DCD: Image of DCD Input 0: DCD is at 0. 1: DCD is at 1. * CTS: Image of CTS Input 0: CTS is at 0. 1: CTS is at 1. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 545 33.7.7 USART Receive Holding Register Name: US_RHR Address: 0xFFFB0018 (0), 0xFFFB4018 (1), 0xFFFB8018 (2), 0xFFFD0018 (3), 0xFFFD4018 (4) Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 RXSYNH 14 - 13 - 12 - 11 - 10 - 9 - 8 RXCHR 7 6 5 4 3 2 1 0 RXCHR * RXCHR: Received Character Last character received if RXRDY is set. * RXSYNH: Received Sync 0: Last Character received is a Data. 1: Last Character received is a Command. 546 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.7.8 USART Transmit Holding Register Name: US_THR Address: 0xFFFB001C (0), 0xFFFB401C (1), 0xFFFB801C (2), 0xFFFD001C (3), 0xFFFD401C (4) Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 TXSYNH 14 - 13 - 12 - 11 - 10 - 9 - 8 TXCHR 7 6 5 4 3 2 1 0 TXCHR * TXCHR: Character to be Transmitted Next character to be transmitted after the current character if TXRDY is not set. * TXSYNH: Sync Field to be transmitted 0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC. 1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 547 33.7.9 USART Baud Rate Generator Register Name: US_BRGR Address: 0xFFFB0020 (0), 0xFFFB4020 (1), 0xFFFB8020 (2), 0xFFFD0020 (3), 0xFFFD4020 (4) Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 17 FP- 16 15 14 13 12 11 10 9 8 3 2 1 0 CD 7 6 5 4 CD * CD: Clock Divider USART_MODE ISO7816 SYNC = 0 OVER = 0 CD SYNC = 1 OVER = 1 0 1-65535 Baud Rate Clock Disabled Baud Rate = Baud Rate = Baud Rate = Selected Clock/16/CD Selected Clock/8/CD Selected Clock /CD * FP: Fractional Part 0: Fractional divider is disabled. 1-7: Baud rate resolution, defined by FP x 1/8. 548 USART_MODE = ISO7816 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Baud Rate = Selected Clock/CD/FI_DI_RATIO 33.7.10 USART Receiver Time-out Register Name: US_RTOR Address: 0xFFFB0024 (0), 0xFFFB4024 (1), 0xFFFB8024 (2), 0xFFFD0024 (3), 0xFFFD4024 (4) Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 TO 7 6 5 4 TO * TO: Time-out Value 0: The Receiver Time-out is disabled. 1-65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 549 33.7.11 USART Transmitter Timeguard Register Name: US_TTGR Address: 0xFFFB0028 (0), 0xFFFB4028 (1), 0xFFFB8028 (2), 0xFFFD0028 (3), 0xFFFD4028 (4) Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 TG * TG: Timeguard Value 0: The Transmitter Timeguard is disabled. 1-255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period. 550 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.7.12 USART FI DI RATIO Register Name: US_FIDI Address: 0xFFFB0040 (0), 0xFFFB4040 (1), 0xFFFB8040 (2), 0xFFFD0040 (3), 0xFFFD4040 (4) Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 9 FI_DI_RATIO 8 7 6 5 4 3 2 1 0 FI_DI_RATIO * FI_DI_RATIO: FI Over DI Ratio Value 0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal. 1-2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 551 33.7.13 USART Number of Errors Register Name: US_NER Address: 0xFFFB0044 (0), 0xFFFB4044 (1), 0xFFFB8044 (2), 0xFFFD0044 (3), 0xFFFD4044 (4) Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 NB_ERRORS * NB_ERRORS: Number of Errors Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read. 552 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 33.7.14 USART IrDA Filter Register Name: US_IF Address: 0xFFFB004C (0), 0xFFFB404C (1), 0xFFFB804C (2), 0xFFFD004C (3), 0xFFFD404C (4) Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 IRDA_FILTER * IRDA_FILTER: IrDA Filter Sets the filter of the IrDA demodulator. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 553 34. Synchronous Serial Controller (SSC) 34.1 Description The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link with external devices. It supports many serial synchronous communication protocols generally used in audio and telecommunications applications such as I2S, Short Frame Sync, Long Frame Sync, etc. The SSC contains an independent receiver and transmitter and a common clock divider. The receiver and the transmitter each interface with three signals: the TD/RD signal for data, the TK/RK signal for the clock and the TF/RF signal for the Frame Sync. The transfers can be programmed to start automatically or on different events detected on the Frame Sync signal. The SSC's high-level of programmability and its two dedicated PDC channels of up to 32 bits permit a continuous high bit rate data transfer without processor intervention. Featuring connection to two PDC channels, the SSC permits interfacing with low processor overhead to the following: 34.2 Codecs in master or slave mode DAC through dedicated serial interface, particularly I2S Magnetic card reader Block Diagram Figure 34-1. Block Diagram System Bus APB Bridge PDC Peripheral Bus TF TK PMC TD MCK SSC Interface PIO RF RK Interrupt Control RD SSC Interrupt 554 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 34.3 Application Block Diagram Figure 34-2. Application Block Diagram OS or RTOS Driver Power Management Interrupt Management Test Management SSC Serial AUDIO 34.4 Time Slot Management Frame Management Line Interface Pin Name List Table 34-1. I/O Lines Description Pin Name 34.5 Codec Pin Description Type RF Receiver Frame Synchro Input/Output RK Receiver Clock Input/Output RD Receiver Data Input TF Transmitter Frame Synchro Input/Output TK Transmitter Clock Input/Output TD Transmitter Data Output Product Dependencies 34.5.1 I/O Lines The pins used for interfacing the compliant external devices may be multiplexed with PIO lines. Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC receiver I/O lines to the SSC peripheral mode. Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC transmitter I/O lines to the SSC peripheral mode. 34.5.2 Power Management The SSC is not continuously clocked. The SSC interface may be clocked through the Power Management Controller (PMC), therefore the programmer must first configure the PMC to enable the SSC clock. 34.5.3 Interrupt The SSC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling interrupts requires programming the AIC before configuring the SSC. All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt service routine can get the interrupt origin by reading the SSC interrupt status register. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 555 34.6 Functional Description This section contains the functional description of the following: SSC Functional Block, Clock Management, Data format, Start, Transmitter, Receiver and Frame Sync. The receiver and transmitter operate separately. However, they can work synchronously by programming the receiver to use the transmit clock and/or to start a data transfer when transmission starts. Alternatively, this can be done by programming the transmitter to use the receive clock and/or to start a data transfer when reception starts. The transmitter and the receiver can be programmed to operate with the clock signals provided on either the TK or RK pins. This allows the SSC to support many slave-mode data transfers. The maximum clock speed allowed on the TK and RK pins is the master clock divided by 2. Figure 34-3. SSC Functional Block Diagram Transmitter MCK TK Input Clock Divider Transmit Clock Controller RX clock TF RF Start Selector TX clock Clock Output Controller TK Frame Sync Controller TF Transmit Shift Register TX PDC APB Transmit Holding Register TD Transmit Sync Holding Register Load Shift User Interface Receiver RK Input Receive Clock RX Clock Controller TX Clock RF TF Start Selector Interrupt Control AIC 556 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 RK Frame Sync Controller RF Receive Shift Register RX PDC PDC Clock Output Controller Receive Holding Register Load Shift Receive Sync Holding Register RD 34.6.1 Clock Management The transmitter clock can be generated by: an external clock received on the TK I/O pad the receiver clock the internal clock divider The receiver clock can be generated by: an external clock received on the RK I/O pad the transmitter clock the internal clock divider Furthermore, the transmitter block can generate an external clock on the TK I/O pad, and the receiver block can generate an external clock on the RK I/O pad. This allows the SSC to support many Master and Slave Mode data transfers. 34.6.1.1 Clock Divider Figure 34-4. Divided Clock Block Diagram Clock Divider SSC_CMR MCK /2 12-bit Counter Divided Clock The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its maximal value is 4095) in the Clock Mode Register (SSC_CMR), allowing a Master Clock division by up to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this field is programmed to 0, the Clock Divider is not used and remains inactive. When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Master Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of whether the DIV value is even or odd. Figure 34-5. Divided Clock Generation Master Clock Divided Clock DIV = 1 Divided Clock Frequency = MCK/2 Master Clock Divided Clock DIV = 3 Divided Clock Frequency = MCK/6 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 557 34.6.1.2 Transmitter Clock Management The transmitter clock is generated from the receiver clock or the divider clock or an external clock scanned on the TK I/O pad. The transmitter clock is selected by the CKS field in SSC_TCMR (Transmit Clock Mode Register). Transmit Clock can be inverted independently by the CKI bits in SSC_TCMR. The transmitter can also drive the TK I/O pad continuously or be limited to the actual data transfer. The clock output is configured by the SSC_TCMR. The Transmit Clock Inversion (CKI) bits have no effect on the clock outputs. Programming the SSC_TCMR to select TK pin (CKS field) and at the same time Continuous Transmit Clock (CKO field) might lead to unpredictable results. Figure 34-6. Transmitter Clock Management TK (pin) Clock Output Tri_state Controller MUX Receiver Clock Divider Clock Data Transfer CKO CKS 558 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 INV MUX Tri-state Controller CKI CKG Transmitter Clock 34.6.1.3 Receiver Clock Management The receiver clock is generated from the transmitter clock or the divider clock or an external clock scanned on the RK I/O pad. The Receive Clock is selected by the CKS field in SSC_RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently by the CKI bits in SSC_RCMR. The receiver can also drive the RK I/O pad continuously or be limited to the actual data transfer. The clock output is configured by the SSC_RCMR. The Receive Clock Inversion (CKI) bits have no effect on the clock outputs. Programming the SSC_RCMR to select RK pin (CKS field) and at the same time Continuous Receive Clock (CKO field) can lead to unpredictable results. Figure 34-7. Receiver Clock Management RK (pin) Tri-state Controller MUX Clock Output Transmitter Clock Divider Clock Data Transfer CKO CKS INV MUX Tri-state Controller CKI CKG Receiver Clock 34.6.1.4 Serial Clock Ratio Considerations The Transmitter and the Receiver can be programmed to operate with the clock signals provided on either the TK or RK pins. This allows the SSC to support many slave-mode data transfers. In this case, the maximum clock speed allowed on the RK pin is: Master Clock divided by 2 if Receiver Frame Synchro is input Master Clock divided by 3 if Receiver Frame Synchro is output In addition, the maximum clock speed allowed on the TK pin is: Master Clock divided by 6 if Transmit Frame Synchro is input Master Clock divided by 2 if Transmit Frame Synchro is output 34.6.2 Transmitter Operations A transmitted frame is triggered by a start event and can be followed by synchronization data before data transmission. The start event is configured by setting the Transmit Clock Mode Register (SSC_TCMR). See "Start" on page 561. The frame synchronization is configured setting the Transmit Frame Mode Register (SSC_TFMR). See "Frame Sync" on page 563. To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and the start mode selected in the SSC_TCMR. Data is written by the application to the SSC_THR then transferred to the shift register according to the data format selected. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 559 When both the SSC_THR and the transmit shift register are empty, the status flag TXEMPTY is set in SSC_SR. When the Transmit Holding register is transferred in the Transmit shift register, the status flag TXRDY is set in SSC_SR and additional data can be loaded in the holding register. Figure 34-8. Transmitter Block Diagram SSC_CR.TXEN SSC_SR.TXEN SSC_CR.TXDIS SSC_TFMR.DATDEF 1 RF Transmitter Clock TF Transmit Shift Register 0 SSC_TFMR.FSDEN SSC_TCMR.STTDLY SSC_TFMR.DATLEN TD 0 SSC_TFMR.MSBF Start Selector SSC_TCMR.STTDLY SSC_TFMR.FSDEN SSC_TFMR.DATNB SSC_THR 1 SSC_TSHR SSC_TFMR.FSLEN 34.6.3 Receiver Operations A received frame is triggered by a start event and can be followed by synchronization data before data transmission. The start event is configured setting the Receive Clock Mode Register (SSC_RCMR). See "Start" on page 561. The frame synchronization is configured setting the Receive Frame Mode Register (SSC_RFMR). See "Frame Sync" on page 563. The receiver uses a shift register clocked by the receiver clock signal and the start mode selected in the SSC_RCMR. The data is transferred from the shift register depending on the data format selected. When the receiver shift register is full, the SSC transfers this data in the holding register, the status flag RXRDY is set in SSC_SR and the data can be read in the receiver holding register. If another transfer occurs before read of the RHR, the status flag OVERUN is set in SSC_SR and the receiver shift register is transferred in the RHR. 560 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 34-9. Receiver Block Diagram SSC_CR.RXEN SSC_SR.RXEN SSC_CR.RXDIS RF Receiver Clock TF Start Selector SSC_RFMR.MSBF SSC_RFMR.DATNB Receive Shift Register SSC_RSHR SSC_RHR SSC_RFMR.FSLEN SSC_RFMR.DATLEN RD SSC_RCMR.STTDLY 34.6.4 Start The transmitter and receiver can both be programmed to start their operations when an event occurs, respectively in the Transmit Start Selection (START) field of SSC_TCMR and in the Receive Start Selection (START) field of SSC_RCMR. Under the following conditions the start event is independently programmable: Continuous. In this case, the transmission starts as soon as a word is written in SSC_THR and the reception starts as soon as the Receiver is enabled. Synchronously with the transmitter/receiver On detection of a falling/rising edge on TF/RF On detection of a low level/high level on TF/RF On detection of a level change or an edge on TF/RF A start can be programmed in the same manner on either side of the Transmit/Receive Clock Register (RCMR/TCMR). Thus, the start could be on TF (Transmit) or RF (Receive). Moreover, the Receiver can start when data is detected in the bit stream with the Compare Functions. Detection on TF/RF input/output is done by the field FSOS of the Transmit/Receive Frame Mode Register (TFMR/RFMR). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 561 Figure 34-10. Transmit Start Mode TK TF (Input) Start = Low Level on TF Start = Falling Edge on TF Start = High Level on TF Start = Rising Edge on TF TD (Output) TD (Output) X BO X B1 STTDLY BO X TD (Output) B1 STTDLY TD (Output) TD (Output) B1 STTDLY BO X B1 STTDLY TD Start = Level Change on TF (Output) Start = Any Edge on TF BO BO X B1 BO B1 STTDLY X B1 BO BO B1 STTDLY Figure 34-11. Receive Pulse/Edge Start Modes RK RF (Input) Start = Low Level on RF Start = Falling Edge on RF Start = High Level on RF Start = Rising Edge on RF Start = Level Change on RF Start = Any Edge on RF RD (Input) RD (Input) X BO STTDLY BO X B1 STTDLY BO X RD (Input) B1 STTDLY RD (Input) BO X B1 STTDLY RD (Input) RD (Input) B1 BO X B1 BO B1 STTDLY X BO B1 BO B1 STTDLY 562 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 34.6.5 Frame Sync The Transmitter and Receiver Frame Sync pins, TF and RF, can be programmed to generate different kinds of frame synchronization signals. The Frame Sync Output Selection (FSOS) field in the Receive Frame Mode Register (SSC_RFMR) and in the Transmit Frame Mode Register (SSC_TFMR) are used to select the required waveform. Programmable low or high levels during data transfer are supported. Programmable high levels before the start of data transfers or toggling are also supported. If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in SSC_RFMR and SSC_TFMR programs the length of the pulse, from 1 bit time up to 16 bit time. The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed through the Period Divider Selection (PERIOD) field in SSC_RCMR and SSC_TCMR. 34.6.5.1 Frame Sync Data Frame Sync Data transmits or receives a specific tag during the Frame Sync signal. During the Frame Sync signal, the Receiver can sample the RD line and store the data in the Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Register in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync signal is programmed by the FSLEN field in SSC_RFMR/SSC_TFMR and has a maximum value of 16. Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or lower than the delay between the start event and the actual data reception, the data sampling operation is performed in the Receive Sync Holding Register through the Receive Shift Register. The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync Data Enable (FSDEN) in SSC_TFMR is set. If the Frame Sync length is equal to or lower than the delay between the start event and the actual data transmission, the normal transmission has priority and the data contained in the Transmit Sync Holding Register is transferred in the Transmit Register, then shifted out. 34.6.5.2 Frame Sync Edge Detection The Frame Sync Edge detection is programmed by the FSEDGE field in SSC_RFMR/SSC_TFMR. This sets the corresponding flags RXSYN/TXSYN in the SSC Status Register (SSC_SR) on frame synchro edge detection (signals RF/TF). 34.6.6 Receive Compare Modes Figure 34-12. Receive Compare Modes RK RD (Input) CMP0 CMP1 CMP2 CMP3 Ignored B0 B1 B2 Start FSLEN Up to 16 Bits (4 in This Example) STDLY DATLEN SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 563 34.6.6.1 Compare Functions Length of the comparison patterns (Compare 0, Compare 1) and thus the number of bits they are compared to is defined by FSLEN, but with a maximum value of 16 bits. Comparison is always done by comparing the last bits received with the comparison pattern. Compare 0 can be one start event of the Receiver. In this case, the receiver compares at each new sample the last bits received at the Compare 0 pattern contained in the Compare 0 Register (SSC_RC0R). When this start event is selected, the user can program the Receiver to start a new data transfer either by writing a new Compare 0, or by receiving continuously until Compare 1 occurs. This selection is done with the bit (STOP) in SSC_RCMR. 34.6.7 Data Format The data framing format of both the transmitter and the receiver are programmable through the Transmitter Frame Mode Register (SSC_TFMR) and the Receiver Frame Mode Register (SSC_RFMR). In either case, the user can independently select: the event that starts the data transfer (START) the delay in number of bit periods between the start event and the first data bit (STTDLY) the length of the data (DATLEN) the number of data to be transferred for each start event (DATNB). the length of synchronization transferred for each start event (FSLEN) the bit sense: most or lowest significant bit first (MSBF) Additionally, the transmitter can be used to transfer synchronization and select the level driven on the TD pin while not in data transfer operation. This is done respectively by the Frame Sync Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in SSC_TFMR. Table 34-2. 564 Data Frame Registers Transmitter Receiver Field Length Comment SSC_TFMR SSC_RFMR DATLEN Up to 32 Size of word SSC_TFMR SSC_RFMR DATNB Up to 16 Number of words transmitted in frame SSC_TFMR SSC_RFMR MSBF SSC_TFMR SSC_RFMR FSLEN Up to 16 Size of Synchro data register SSC_TFMR DATDEF 0 or 1 Data default value ended SSC_TFMR FSDEN Most significant bit first Enable send SSC_TSHR SSC_TCMR SSC_RCMR PERIOD Up to 512 Frame size SSC_TCMR SSC_RCMR STTDLY Up to 255 Size of transmit start delay SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 34-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes Start Start PERIOD TF/RF (1) FSLEN TD (If FSDEN = 1) Sync Data Data Data From SSC_THR From SSC_THR Default Data Data TD (If FSDEN = 0) RD Default From SSC_TSHR FromDATDEF From SSC_THR From DATDEF Sync Data Ignored From SSC_THR Data To SSC_RSHR Data To SSC_RHR To SSC_RHR DATLEN DATLEN STTDLY Default Sync Data FromDATDEF Default From DATDEF Ignored Sync Data DATNB Note: 1. Example of input on falling edge of TF/RF. Figure 34-14. Transmit Frame Format in Continuous Mode Start Data TD Default Data From SSC_THR From SSC_THR DATLEN DATLEN Start: 1. TXEMPTY set to 1 2. Write into the SSC_THR Note: 1. STTDLY is set to 0. In this example, SSC_THR is loaded twice. FSDEN value has no effect on the transmission. SyncData cannot be output in continuous mode. Figure 34-15. Receive Frame Format in Continuous Mode Start = Enable Receiver RD Note: 1. Data Data To SSC_RHR To SSC_RHR DATLEN DATLEN STTDLY is set to 0. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 565 34.6.8 Loop Mode The receiver can be programmed to receive transmissions from the transmitter. This is done by setting the Loop Mode (LOOP) bit in SSC_RFMR. In this case, RD is connected to TD, RF is connected to TF and RK is connected to TK. 34.6.9 Interrupt Most bits in SSC_SR have a corresponding bit in interrupt management registers. The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is controlled by writing SSC_IER (Interrupt Enable Register) and SSC_IDR (Interrupt Disable Register) These registers enable and disable, respectively, the corresponding interrupt by setting and clearing the corresponding bit in SSC_IMR (Interrupt Mask Register), which controls the generation of interrupts by asserting the SSC interrupt line connected to the AIC. Figure 34-16. Interrupt Block Diagram SSC_IMR SSC_IER PDC SSC_IDR Set Clear TXBUFE ENDTX Transmitter TXRDY TXEMPTY TXSYNC Interrupt Control RXBUFF ENDRX Receiver RXRDY OVRUN RXSYNC 566 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 SSC Interrupt 34.7 SSC Application Examples The SSC can support several serial communication modes used in audio or high speed serial links. Some standard applications are shown in the following figures. All serial link applications supported by the SSC are not listed here. Figure 34-17. Audio Application Block Diagram Clock SCK TK Word Select WS I2S RECEIVER TF Data SD SSC TD RD Clock SCK RF Word Select WS RK MSB Data SD LSB MSB Right Channel Left Channel Figure 34-18. Codec Application Block Diagram Serial Data Clock (SCLK) TK Frame sync (FSYNC) TF Serial Data Out SSC CODEC TD Serial Data In RD RF RK Serial Data Clock (SCLK) Frame sync (FSYNC) First Time Slot Dstart Dend Serial Data Out Serial Data In SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 567 Figure 34-19. Time Slot Application Block Diagram SCLK TK FSYNC TF CODEC First Time Slot Data Out TD SSC RD Data in RF RK CODEC Second Time Slot Serial Data Clock (SCLK) Frame sync (FSYNC) First Time Slot Dstart Serial Data Out Serial Data in 568 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Second Time Slot Dend 34.8 Synchronous Serial Controller (SSC) User Interface Table 34-3. Offset Register Mapping Register Name Access Reset 0x0 Control Register SSC_CR Write-only - 0x4 Clock Mode Register SSC_CMR Read/Write 0x0 0x8 Reserved - - - 0xC Reserved - - - 0x10 Receive Clock Mode Register SSC_RCMR Read/Write 0x0 0x14 Receive Frame Mode Register SSC_RFMR Read/Write 0x0 0x18 Transmit Clock Mode Register SSC_TCMR Read/Write 0x0 0x1C Transmit Frame Mode Register SSC_TFMR Read/Write 0x0 0x20 Receive Holding Register SSC_RHR Read-only 0x0 0x24 Transmit Holding Register SSC_THR Write-only - 0x28 Reserved - - - 0x2C Reserved - - - 0x30 Receive Sync. Holding Register SSC_RSHR Read-only 0x0 0x34 Transmit Sync. Holding Register SSC_TSHR Read/Write 0x0 0x38 Receive Compare 0 Register SSC_RC0R Read/Write 0x0 0x3C Receive Compare 1 Register SSC_RC1R Read/Write 0x0 0x40 Status Register SSC_SR Read-only 0x000000CC 0x44 Interrupt Enable Register SSC_IER Write-only - 0x48 Interrupt Disable Register SSC_IDR Write-only - 0x4C Interrupt Mask Register SSC_IMR Read-only 0x0 Reserved - - - Reserved for Peripheral Data Controller (PDC) - - - 0x50-0xFC 0x100-0x124 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 569 34.8.1 SSC Control Register Name: SSC_CR Address: 0xFFFBC000 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 SWRST 14 - 13 - 12 - 11 - 10 - 9 TXDIS 8 TXEN 7 - 6 - 5 - 4 - 3 - 2 - 1 RXDIS 0 RXEN * RXEN: Receive Enable 0: No effect. 1: Enables Receive if RXDIS is not set. * RXDIS: Receive Disable 0: No effect. 1: Disables Receive. If a character is currently being received, disables at end of current character reception. * TXEN: Transmit Enable 0: No effect. 1: Enables Transmit if TXDIS is not set. * TXDIS: Transmit Disable 0: No effect. 1: Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission. * SWRST: Software Reset 0: No effect. 1: Performs a software reset. Has priority on any other bit in SSC_CR. 570 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 34.8.2 SSC Clock Mode Register Name: SSC_CMR Address: 0xFFFBC004 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 10 9 8 7 6 5 4 1 0 DIV 3 2 DIV * DIV: Clock Divider 0: The Clock Divider is not active. Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is MCK/2. The minimum bit rate is MCK/2 x 4095 = MCK/8190. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 571 34.8.3 SSC Receive Clock Mode Register Name: SSC_RCMR Address: 0xFFFBC010 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 10 9 8 PERIOD 23 22 21 20 STTDLY 15 - 7 14 - 13 - 12 STOP 11 6 5 CKI 4 3 CKO CKG START 2 1 0 CKS * CKS: Receive Clock Selection CKS Selected Receive Clock 0x0 Divided Clock 0x1 TK Clock signal 0x2 RK pin 0x3 Reserved * CKO: Receive Clock Output Mode Selection CKO Receive Clock Output Mode RK pin 0x0 None 0x1 Continuous Receive Clock Output 0x2 Receive Clock only during data transfers Output 0x3-0x7 Input-only Reserved * CKI: Receive Clock Inversion 0: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge. The Frame Sync signal output is shifted out on Receive Clock rising edge. 1: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge. The Frame Sync signal output is shifted out on Receive Clock falling edge. CKI affects only the Receive Clock and not the output clock signal. 572 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * CKG: Receive Clock Gating Selection CKG Receive Clock Gating 0x0 None, continuous clock 0x1 Receive Clock enabled only if RF Low 0x2 Receive Clock enabled only if RF High 0x3 Reserved * START: Receive Start Selection START Receive Start 0x0 Continuous, as soon as the receiver is enabled, and immediately after the end of transfer of the previous data. 0x1 Transmit start 0x2 Detection of a low level on RF signal 0x3 Detection of a high level on RF signal 0x4 Detection of a falling edge on RF signal 0x5 Detection of a rising edge on RF signal 0x6 Detection of any level change on RF signal 0x7 Detection of any edge on RF signal 0x8 Compare 0 0x9-0xF Reserved * STOP: Receive Stop Selection 0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a new compare 0. 1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected. * STTDLY: Receive Start Delay If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception. When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied. Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG (Receive Sync Data) reception. * PERIOD: Receive Period Divider Selection This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 573 34.8.4 SSC Receive Frame Mode Register Name: SSC_RFMR Address: 0xFFFBC014 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 FSEDGE 23 - 22 21 FSOS 20 19 18 17 16 15 - 14 - 13 - 12 - 11 9 8 7 MSBF 6 - 5 LOOP 4 3 1 0 FSLEN 10 DATNB 2 DATLEN * DATLEN: Data Length 0: Forbidden value (1-bit data length not supported). Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the PDC2 assigned to the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and 15 (included), half-words are transferred, and for any other value, 32-bit words are transferred. * LOOP: Loop Mode 0: Normal operating mode. 1: RD is driven by TD, RF is driven by TF and TK drives RK. * MSBF: Most Significant Bit First 0: The lowest significant bit of the data register is sampled first in the bit stream. 1: The most significant bit of the data register is sampled first in the bit stream. * DATNB: Data Number per Frame This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1). * FSLEN: Receive Frame Sync Length This field defines the number of bits sampled and stored in the Receive Sync Data Register. When this mode is selected by the START field in the Receive Clock Mode Register, it also determines the length of the sampled data to be compared to the Compare 0 or Compare 1 register. 574 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * FSOS: Receive Frame Sync Output Selection FSOS Selected Receive Frame Sync Signal RF Pin 0x0 None 0x1 Negative Pulse Output 0x2 Positive Pulse Output 0x3 Driven Low during data transfer Output 0x4 Driven High during data transfer Output 0x5 Toggling at each start of data transfer Output 0x6-0x7 Input-only Reserved Undefined * FSEDGE: Frame Sync Edge Detection Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register. FSEDGE Frame Sync Edge Detection 0x0 Positive Edge Detection 0x1 Negative Edge Detection SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 575 34.8.5 SSC Transmit Clock Mode Register Name: SSC_TCMR Address: 0xFFFBC018 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 10 9 8 PERIOD 23 22 21 20 STTDLY 15 - 7 14 - 13 - 12 - 11 6 5 CKI 4 3 CKO CKG START 2 1 0 CKS * CKS: Transmit Clock Selection CKS Selected Transmit Clock 0x0 Divided Clock 0x1 RK Clock signal 0x2 TK Pin 0x3 Reserved * CKO: Transmit Clock Output Mode Selection CKO Transmit Clock Output Mode TK pin 0x0 None 0x1 Continuous Transmit Clock Output 0x2 Transmit Clock only during data transfers Output 0x3-0x7 Input-only Reserved * CKI: Transmit Clock Inversion 0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal input is sampled on Transmit clock rising edge. 1: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal input is sampled on Transmit clock falling edge. CKI affects only the Transmit Clock and not the output clock signal. * CKG: Transmit Clock Gating Selection CKG 576 Transmit Clock Gating 0x0 None, continuous clock 0x1 Transmit Clock enabled only if TF Low 0x2 Transmit Clock enabled only if TF High 0x3 Reserved SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * START: Transmit Start Selection START Transmit Start 0x0 Continuous, as soon as a word is written in the SSC_THR Register (if Transmit is enabled), and immediately after the end of transfer of the previous data. 0x1 Receive start 0x2 Detection of a low level on TF signal 0x3 Detection of a high level on TF signal 0x4 Detection of a falling edge on TF signal 0x5 Detection of a rising edge on TF signal 0x6 Detection of any level change on TF signal 0x7 Detection of any edge on TF signal 0x8-0xF Reserved * STTDLY: Transmit Start Delay If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied. Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data is emitted instead of the end of TAG. * PERIOD: Transmit Period Divider Selection This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 577 34.8.6 SSC Transmit Frame Mode Register Name: SSC_TFMR Address: 0xFFFBC01C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 FSEDGE 23 FSDEN 22 21 FSOS 20 19 18 17 16 15 - 14 - 13 - 12 - 11 9 8 7 MSBF 6 - 5 DATDEF 4 3 1 0 FSLEN 10 DATNB 2 DATLEN * DATLEN: Data Length 0: Forbidden value (1-bit data length not supported). Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the PDC2 assigned to the Transmit. If DATLEN is lower or equal to 7, data transfers are bytes, if DATLEN is between 8 and 15 (included), half-words are transferred, and for any other value, 32-bit words are transferred. * DATDEF: Data Default Value This bit defines the level driven on the TD pin while out of transmission. Note that if the pin is defined as multi-drive by the PIO Controller, the pin is enabled only if the SCC TD output is 1. * MSBF: Most Significant Bit First 0: The lowest significant bit of the data register is shifted out first in the bit stream. 1: The most significant bit of the data register is shifted out first in the bit stream. * DATNB: Data Number per frame This field defines the number of data words to be transferred after each transfer start, which is equal to (DATNB +1). * FSLEN: Transmit Frame Sync Length This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync Data Register if FSDEN is 1. 578 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * FSOS: Transmit Frame Sync Output Selection FSOS Selected Transmit Frame Sync Signal TF Pin 0x0 None 0x1 Negative Pulse Output 0x2 Positive Pulse Output 0x3 Driven Low during data transfer Output 0x4 Driven High during data transfer Output 0x5 Toggling at each start of data transfer Output 0x6-0x7 Input-only Reserved Undefined * FSDEN: Frame Sync Data Enable 0: The TD line is driven with the default value during the Transmit Frame Sync signal. 1: SSC_TSHR value is shifted out during the transmission of the Transmit Frame Sync signal. * FSEDGE: Frame Sync Edge Detection Determines which edge on frame sync will generate the interrupt TXSYN (Status Register). FSEDGE Frame Sync Edge Detection 0x0 Positive Edge Detection 0x1 Negative Edge Detection SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 579 34.8.7 SSC Receive Holding Register Name: SSC_RHR Address: 0xFFFBC020 Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 RDAT 23 22 21 20 RDAT 15 14 13 12 RDAT 7 6 5 4 RDAT * RDAT: Receive Data Right aligned regardless of the number of data bits defined by DATLEN in SSC_RFMR. 580 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 34.8.8 SSC Transmit Holding Register Name: SSC_THR Address: 0xFFFBC024 Access: Write-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 TDAT 23 22 21 20 TDAT 15 14 13 12 TDAT 7 6 5 4 TDAT * TDAT: Transmit Data Right aligned regardless of the number of data bits defined by DATLEN in SSC_TFMR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 581 34.8.9 SSC Receive Synchronization Holding Register Name: SSC_RSHR Address: 0xFFFBC030 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 RSDAT 7 6 5 4 RSDAT * RSDAT: Receive Synchronization Data 582 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 34.8.10 SSC Transmit Synchronization Holding Register Name: SSC_TSHR Address: 0xFFFBC034 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 TSDAT 7 6 5 4 TSDAT * TSDAT: Transmit Synchronization Data SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 583 34.8.11 SSC Receive Compare 0 Register Name: SSC_RC0R Address: 0xFFFBC038 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 CP0 7 6 5 4 CP0 * CP0: Receive Compare Data 0 584 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 34.8.12 SSC Receive Compare 1 Register Name: SSC_RC1R Address: 0xFFFBC03C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 CP1 7 6 5 4 CP1 * CP1: Receive Compare Data 1 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 585 34.8.13 SSC Status Register Name: SSC_SR Address: 0xFFFBC040 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 RXEN 16 TXEN 15 - 14 - 13 - 12 - 11 RXSYN 10 TXSYN 9 CP1 8 CP0 7 RXBUFF 6 ENDRX 5 OVRUN 4 RXRDY 3 TXBUFE 2 ENDTX 1 TXEMPTY 0 TXRDY * TXRDY: Transmit Ready 0: Data has been loaded in SSC_THR and is waiting to be loaded in the Transmit Shift Register (TSR). 1: SSC_THR is empty. * TXEMPTY: Transmit Empty 0: Data remains in SSC_THR or is currently transmitted from TSR. 1: Last data written in SSC_THR has been loaded in TSR and last data loaded in TSR has been transmitted. * ENDTX: End of Transmission 0: The register SSC_TCR has not reached 0 since the last write in SSC_TCR or SSC_TNCR. 1: The register SSC_TCR has reached 0 since the last write in SSC_TCR or SSC_TNCR. * TXBUFE: Transmit Buffer Empty 0: SSC_TCR or SSC_TNCR have a value other than 0. 1: Both SSC_TCR and SSC_TNCR have a value of 0. * RXRDY: Receive Ready 0: SSC_RHR is empty. 1: Data has been received and loaded in SSC_RHR. * OVRUN: Receive Overrun 0: No data has been loaded in SSC_RHR while previous data has not been read since the last read of the Status Register. 1: Data has been loaded in SSC_RHR while previous data has not yet been read since the last read of the Status Register. * ENDRX: End of Reception 0: Data is written on the Receive Counter Register or Receive Next Counter Register. 1: End of PDC transfer when Receive Counter Register has arrived at zero. 586 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * RXBUFF: Receive Buffer Full 0: SSC_RCR or SSC_RNCR have a value other than 0. 1: Both SSC_RCR and SSC_RNCR have a value of 0. * CP0: Compare 0 0: A compare 0 has not occurred since the last read of the Status Register. 1: A compare 0 has occurred since the last read of the Status Register. * CP1: Compare 1 0: A compare 1 has not occurred since the last read of the Status Register. 1: A compare 1 has occurred since the last read of the Status Register. * TXSYN: Transmit Sync 0: A Tx Sync has not occurred since the last read of the Status Register. 1: A Tx Sync has occurred since the last read of the Status Register. * RXSYN: Receive Sync 0: An Rx Sync has not occurred since the last read of the Status Register. 1: An Rx Sync has occurred since the last read of the Status Register. * TXEN: Transmit Enable 0: Transmit is disabled. 1: Transmit is enabled. * RXEN: Receive Enable 0: Receive is disabled. 1: Receive is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 587 34.8.14 SSC Interrupt Enable Register Name: SSC_IER Address: 0xFFFBC044 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 RXSYN 10 TXSYN 9 CP1 8 CP0 7 RXBUFF 6 ENDRX 5 OVRUN 4 RXRDY 3 TXBUFE 2 ENDTX 1 TXEMPTY 0 TXRDY * TXRDY: Transmit Ready Interrupt Enable 0: No effect. 1: Enables the Transmit Ready Interrupt. * TXEMPTY: Transmit Empty Interrupt Enable 0: No effect. 1: Enables the Transmit Empty Interrupt. * ENDTX: End of Transmission Interrupt Enable 0: No effect. 1: Enables the End of Transmission Interrupt. * TXBUFE: Transmit Buffer Empty Interrupt Enable 0: No effect. 1: Enables the Transmit Buffer Empty Interrupt * RXRDY: Receive Ready Interrupt Enable 0: No effect. 1: Enables the Receive Ready Interrupt. * OVRUN: Receive Overrun Interrupt Enable 0: No effect. 1: Enables the Receive Overrun Interrupt. * ENDRX: End of Reception Interrupt Enable 0: No effect. 1: Enables the End of Reception Interrupt. 588 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * RXBUFF: Receive Buffer Full Interrupt Enable 0: No effect. 1: Enables the Receive Buffer Full Interrupt. * CP0: Compare 0 Interrupt Enable 0: No effect. 1: Enables the Compare 0 Interrupt. * CP1: Compare 1 Interrupt Enable 0: No effect. 1: Enables the Compare 1 Interrupt. * TXSYN: Tx Sync Interrupt Enable 0: No effect. 1: Enables the Tx Sync Interrupt. * RXSYN: Rx Sync Interrupt Enable 0: No effect. 1: Enables the Rx Sync Interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 589 34.8.15 SSC Interrupt Disable Register Name: SSC_IDR Address: 0xFFFBC048 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 RXSYN 10 TXSYN 9 CP1 8 CP0 7 RXBUFF 6 ENDRX 5 OVRUN 4 RXRDY 3 TXBUFE 2 ENDTX 1 TXEMPTY 0 TXRDY * TXRDY: Transmit Ready Interrupt Disable 0: No effect. 1: Disables the Transmit Ready Interrupt. * TXEMPTY: Transmit Empty Interrupt Disable 0: No effect. 1: Disables the Transmit Empty Interrupt. * ENDTX: End of Transmission Interrupt Disable 0: No effect. 1: Disables the End of Transmission Interrupt. * TXBUFE: Transmit Buffer Empty Interrupt Disable 0: No effect. 1: Disables the Transmit Buffer Empty Interrupt. * RXRDY: Receive Ready Interrupt Disable 0: No effect. 1: Disables the Receive Ready Interrupt. * OVRUN: Receive Overrun Interrupt Disable 0: No effect. 1: Disables the Receive Overrun Interrupt. * ENDRX: End of Reception Interrupt Disable 0: No effect. 1: Disables the End of Reception Interrupt. 590 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * RXBUFF: Receive Buffer Full Interrupt Disable 0: No effect. 1: Disables the Receive Buffer Full Interrupt. * CP0: Compare 0 Interrupt Disable 0: No effect. 1: Disables the Compare 0 Interrupt. * CP1: Compare 1 Interrupt Disable 0: No effect. 1: Disables the Compare 1 Interrupt. * TXSYN: Tx Sync Interrupt Enable 0: No effect. 1: Disables the Tx Sync Interrupt. * RXSYN: Rx Sync Interrupt Enable 0: No effect. 1: Disables the Rx Sync Interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 591 34.8.16 SSC Interrupt Mask Register Name: SSC_IMR Address: 0xFFFBC04C Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 RXSYN 10 TXSYN 9 CP1 8 CP0 7 RXBUF 6 ENDRX 5 OVRUN 4 RXRDY 3 TXBUFE 2 ENDTX 1 TXEMPTY 0 TXRDY * TXRDY: Transmit Ready Interrupt Mask 0: The Transmit Ready Interrupt is disabled. 1: The Transmit Ready Interrupt is enabled. * TXEMPTY: Transmit Empty Interrupt Mask 0: The Transmit Empty Interrupt is disabled. 1: The Transmit Empty Interrupt is enabled. * ENDTX: End of Transmission Interrupt Mask 0: The End of Transmission Interrupt is disabled. 1: The End of Transmission Interrupt is enabled. * TXBUFE: Transmit Buffer Empty Interrupt Mask 0: The Transmit Buffer Empty Interrupt is disabled. 1: The Transmit Buffer Empty Interrupt is enabled. * RXRDY: Receive Ready Interrupt Mask 0: The Receive Ready Interrupt is disabled. 1: The Receive Ready Interrupt is enabled. * OVRUN: Receive Overrun Interrupt Mask 0: The Receive Overrun Interrupt is disabled. 1: The Receive Overrun Interrupt is enabled. * ENDRX: End of Reception Interrupt Mask 0: The End of Reception Interrupt is disabled. 1: The End of Reception Interrupt is enabled. 592 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * RXBUFF: Receive Buffer Full Interrupt Mask 0: The Receive Buffer Full Interrupt is disabled. 1: The Receive Buffer Full Interrupt is enabled. * CP0: Compare 0 Interrupt Mask 0: The Compare 0 Interrupt is disabled. 1: The Compare 0 Interrupt is enabled. * CP1: Compare 1 Interrupt Mask 0: The Compare 1 Interrupt is disabled. 1: The Compare 1 Interrupt is enabled. * TXSYN: Tx Sync Interrupt Mask 0: The Tx Sync Interrupt is disabled. 1: The Tx Sync Interrupt is enabled. * RXSYN: Rx Sync Interrupt Mask 0: The Rx Sync Interrupt is disabled. 1: The Rx Sync Interrupt is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 593 35. Timer Counter (TC) 35.1 Description The Timer Counter (TC) includes three identical 16-bit Timer Counter channels. Each channel can be independently programmed to perform a wide range of functions including frequency measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation. Each channel has three external clock inputs, five internal clock inputs and two multi-purpose input/output signals which can be configured by the user. Each channel drives an internal interrupt signal which can be programmed to generate processor interrupts. The Timer Counter block has two global registers which act upon all three TC channels. The Block Control Register allows the three channels to be started simultaneously with the same instruction. The Block Mode Register defines the external clock inputs for each channel, allowing them to be chained. Table 35-1 gives the assignment of the device Timer Counter clock inputs common to Timer Counter 0 to 2. Table 35-1. 594 Timer Counter Clock Assignment Name Definition TIMER_CLOCK1 MCK/2 TIMER_CLOCK2 MCK/8 TIMER_CLOCK3 MCK/32 TIMER_CLOCK4 MCK/128 TIMER_CLOCK5 SLCK SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.2 Block Diagram Figure 35-1. Timer Counter Block Diagram Parallel I/O Controller TIMER_CLOCK1 TCLK0 TIMER_CLOCK2 TIOA1 TIOA2 TIMER_CLOCK3 TIMER_CLOCK4 XC0 TCLK1 XC1 TCLK2 XC2 Timer/Counter Channel 0 TIOA TIOA0 TIOB0 TIOA0 TIOB TIMER_CLOCK5 TC0XC0S TIOB0 SYNC TCLK0 TCLK1 TCLK2 INT0 TCLK0 TCLK1 XC0 TIOA0 XC1 Timer/Counter Channel 1 TIOA TIOA1 TIOB1 TIOA1 TIOB TIOA2 TIOB1 XC2 TCLK2 TC1XC1S TCLK0 XC0 TCLK1 XC1 SYNC Timer/Counter Channel 2 INT1 TIOA TIOA2 TIOB2 TIOA2 TIOB TCLK2 XC2 TIOA0 TC2XC2S TIOA1 TIOB2 SYNC INT2 Timer Counter Advanced Interrupt Controller Table 35-2. Signal Name Description Block/Channel Signal Name XC0, XC1, XC2 Channel Signal Description External Clock Inputs TIOA Capture Mode: Timer Counter Input Waveform Mode: Timer Counter Output TIOB Capture Mode: Timer Counter Input Waveform Mode: Timer Counter Input/Output INT SYNC Interrupt Signal Output Synchronization Input Signal SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 595 35.3 Pin Name List Table 35-3. 35.4 TC pin list Pin Name Description Type TCLK0-TCLK2 External Clock Input Input TIOA0-TIOA2 I/O Line A I/O TIOB0-TIOB2 I/O Line B I/O Product Dependencies 35.4.1 I/O Lines The pins used for interfacing the compliant external devices may be multiplexed with PIO lines. The programmer must first program the PIO controllers to assign the TC pins to their peripheral functions. 35.4.2 Power Management The TC is clocked through the Power Management Controller (PMC), thus the programmer must first configure the PMC to enable the Timer Counter clock. 35.4.3 Interrupt The TC has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling the TC interrupt requires programming the AIC before configuring the TC. 596 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.5 Functional Description 35.5.1 TC Description The three channels of the Timer Counter are independent and identical in operation. The registers for channel programming are listed in Table 35-4 on page 609. 35.5.2 16-bit Counter Each channel is organized around a 16-bit counter. The value of the counter is incremented at each positive edge of the selected clock. When the counter has reached the value 0xFFFF and passes to 0x0000, an overflow occurs and the COVFS bit in TC_SR (Status Register) is set. The current value of the counter is accessible in real time by reading the Counter Value Register, TC_CV. The counter can be reset by a trigger. In this case, the counter value passes to 0x0000 on the next valid edge of the selected clock. 35.5.3 Clock Selection At block level, input clock signals of each channel can either be connected to the external inputs TCLK0, TCLK1 or TCLK2, or be connected to the internal I/O signals TIOA0, TIOA1 or TIOA2 for chaining by programming the TC_BMR (Block Mode). See Figure 35-2 on page 598. Each channel can independently select an internal or external clock source for its counter: Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3, TIMER_CLOCK4, TIMER_CLOCK5 External clock signals: XC0, XC1 or XC2 This selection is made by the TCCLKS bits in the TC Channel Mode Register. The selected clock can be inverted with the CLKI bit in TC_CMR. This allows counting on the opposite edges of the clock. The burst function allows the clock to be validated when an external signal is high. The BURST parameter in the Mode Register defines this signal (none, XC0, XC1, XC2). See Figure 35-3 on page 598. Note: In all cases, if an external clock is used, the duration of each of its levels must be longer than the master clock period. The external clock frequency must be at least 2.5 times lower than the master clock SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 597 Figure 35-2. Clock Chaining Selection TC0XC0S Timer/Counter Channel 0 TCLK0 TIOA1 XC0 TIOA2 TIOA0 XC1 = TCLK1 XC2 = TCLK2 TIOB0 SYNC TC1XC1S Timer/Counter Channel 1 TCLK1 XC0 = TCLK2 TIOA0 TIOA1 XC1 TIOA2 XC2 = TCLK2 TIOB1 SYNC Timer/Counter Channel 2 TC2XC2S XC0 = TCLK0 TCLK2 TIOA2 XC1 = TCLK1 TIOA0 XC2 TIOB2 TIOA1 SYNC Figure 35-3. Clock Selection TCCLKS TIMER_CLOCK1 TIMER_CLOCK2 CLKI TIMER_CLOCK3 TIMER_CLOCK4 TIMER_CLOCK5 Selected Clock XC0 XC1 XC2 BURST 1 598 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.5.4 Clock Control The clock of each counter can be controlled in two different ways: it can be enabled/disabled and started/stopped. See Figure 35-4. The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS commands in the Control Register. In Capture Mode it can be disabled by an RB load event if LDBDIS is set to 1 in TC_CMR. In Waveform Mode, it can be disabled by an RC Compare event if CPCDIS is set to 1 in TC_CMR. When disabled, the start or the stop actions have no effect: only a CLKEN command in the Control Register can reenable the clock. When the clock is enabled, the CLKSTA bit is set in the Status Register. The clock can also be started or stopped: a trigger (software, synchro, external or compare) always starts the clock. The clock can be stopped by an RB load event in Capture Mode (LDBSTOP = 1 in TC_CMR) or a RC compare event in Waveform Mode (CPCSTOP = 1 in TC_CMR). The start and the stop commands have effect only if the clock is enabled. Figure 35-4. Clock Control Selected Clock Trigger CLKSTA Q Q S CLKEN CLKDIS S R R Counter Clock Stop Event Disable Event 35.5.5 TC Operating Modes Each channel can independently operate in two different modes: Capture Mode provides measurement on signals. Waveform Mode provides wave generation. The TC Operating Mode is programmed with the WAVE bit in the TC Channel Mode Register. In Capture Mode, TIOA and TIOB are configured as inputs. In Waveform Mode, TIOA is always configured to be an output and TIOB is an output if it is not selected to be the external trigger. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 599 35.5.6 Trigger A trigger resets the counter and starts the counter clock. Three types of triggers are common to both modes, and a fourth external trigger is available to each mode. The following triggers are common to both modes: Software Trigger: Each channel has a software trigger, available by setting SWTRG in TC_CCR. SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has the same effect as a software trigger. The SYNC signals of all channels are asserted simultaneously by writing TC_BCR (Block Control) with SYNC set. Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the counter value matches the RC value if CPCTRG is set in TC_CMR. The channel can also be configured to have an external trigger. In Capture Mode, the external trigger signal can be selected between TIOA and TIOB. In Waveform Mode, an external event can be programmed on one of the following signals: TIOB, XC0, XC1 or XC2. This external event can then be programmed to perform a trigger by setting ENETRG in TC_CMR. If an external trigger is used, the duration of the pulses must be longer than the master clock period in order to be detected. Regardless of the trigger used, it will be taken into account at the following active edge of the selected clock. This means that the counter value can be read differently from zero just after a trigger, especially when a low frequency signal is selected as the clock. 35.5.7 Capture Operating Mode This mode is entered by clearing the WAVE parameter in TC_CMR (Channel Mode Register). Capture Mode allows the TC channel to perform measurements such as pulse timing, frequency, period, duty cycle and phase on TIOA and TIOB signals which are considered as inputs. Figure 35-5 shows the configuration of the TC channel when programmed in Capture Mode. 35.5.8 Capture Registers A and B Registers A and B (RA and RB) are used as capture registers. This means that they can be loaded with the counter value when a programmable event occurs on the signal TIOA. The LDRA parameter in TC_CMR defines the TIOA edge for the loading of register A, and the LDRB parameter defines the TIOA edge for the loading of Register B. RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since the last loading of RA. RB is loaded only if RA has been loaded since the last trigger or the last loading of RB. Loading RA or RB before the read of the last value loaded sets the Overrun Error Flag (LOVRS) in TC_SR (Status Register). In this case, the old value is overwritten. 35.5.9 Trigger Conditions In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trigger can be defined. The ABETRG bit in TC_CMR selects TIOA or TIOB input signal as an external trigger. The ETRGEDG parameter defines the edge (rising, falling or both) detected to generate an external trigger. If ETRGEDG = 0 (none), the external trigger is disabled. 600 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 MTIOA MTIOB 1 If RA is not loaded or RB is Loaded Edge Detector ETRGEDG SWTRG Timer/Counter Channel ABETRG BURST CLKI R S OVF LDRB Edge Detector Edge Detector Capture Register A LDBSTOP R S CLKEN LDRA If RA is Loaded CPCTRG 16-bit Counter RESET Trig CLK Q Q CLKSTA LDBDIS Capture Register B CLKDIS TC1_SR TIOA TIOB SYNC XC2 XC1 XC0 TIMER_CLOCK5 TIMER_CLOCK4 TIMER_CLOCK3 TIMER_CLOCK2 TIMER_CLOCK1 TCCLKS Compare RC = Register C COVFS INT Figure 35-5. Capture Mode CPCS LOVRS LDRBS ETRGS LDRAS TC1_IMR Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 SAM9XE Series [DATASHEET] 601 35.5.10 Waveform Operating Mode Waveform operating mode is entered by setting the WAVE parameter in TC_CMR (Channel Mode Register). In Waveform Operating Mode the TC channel generates 1 or 2 PWM signals with the same frequency and independently programmable duty cycles, or generates different types of one-shot or repetitive pulses. In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used as an external event (EEVT parameter in TC_CMR). Figure 35-6 shows the configuration of the TC channel when programmed in Waveform Operating Mode. 35.5.11 Waveform Selection Depending on the WAVSEL parameter in TC_CMR (Channel Mode Register), the behavior of TC_CV varies. With any selection, RA, RB and RC can all be used as compare registers. RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB output (if correctly configured) and RC Compare is used to control TIOA and/or TIOB outputs. 602 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 TIOB SYNC XC2 XC1 XC0 TIMER_CLOCK5 TIMER_CLOCK4 TIMER_CLOCK3 TIMER_CLOCK2 TIMER_CLOCK1 1 EEVT BURST TCCLKS Timer/Counter Channel Edge Detector EEVTEDG SWTRG ENETRG CLKI Trig CLK R S OVF WAVSEL RESET 16-bit Counter WAVSEL Q Compare RA = Register A Q CLKSTA Compare RC = Compare RB = CPCSTOP CPCDIS Register C CLKDIS Register B R S CLKEN CPAS INT BSWTRG BEEVT BCPB BCPC ASWTRG AEEVT ACPA ACPC Output Controller Output Controller TIOB MTIOB TIOA MTIOA Figure 35-6. Waveform Mode CPCS CPBS COVFS TC1_SR ETRGS TC1_IMR Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 SAM9XE Series [DATASHEET] 603 35.5.11.1 WAVSEL = 00 When WAVSEL = 00, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF has been reached, the value of TC_CV is reset. Incrementation of TC_CV starts again and the cycle continues. See Figure 35-7. An external event trigger or a software trigger can reset the value of TC_CV. It is important to note that the trigger may occur at any time. See Figure 35-8. RC Compare cannot be programmed to generate a trigger in this configuration. At the same time, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock (CPCDIS = 1 in TC_CMR). Figure 35-7. WAVSEL = 00 without trigger Counter Value 0xFFFF Counter decremented by compare match with RC RC RB RA Waveform Examples TIOB TIOA Figure 35-8. WAVSEL = 00 with trigger Counter Value Counter cleared by compare match with 0xFFFF 0xFFFF RC Counter cleared by trigger RB RA Waveform Examples TIOB TIOA 604 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Time 35.5.11.2 WAVSEL = 10 When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then automatically reset on a RC Compare. Once the value of TC_CV has been reset, it is then incremented and so on. See Figure 35-9. It is important to note that TC_CV can be reset at any time by an external event or a software trigger if both are programmed correctly. See Figure 35-10. In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock (CPCDIS = 1 in TC_CMR). Figure 35-9. WAVSEL = 10 Without Trigger Counter Value 0xFFFF Counter cleared by compare match with RC RC RB RA Time Waveform Examples TIOB TIOA Figure 35-10. WAVSEL = 10 With Trigger Counter Value Counter decremented by compare match with 0xFFFF 0xFFFF Counter decremented by trigger RC RB Counter incremented by trigger RA Time Waveform Examples TIOB TIOA SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 605 35.5.11.3 WAVSEL = 01 When WAVSEL = 01, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF is reached, the value of TC_CV is decremented to 0, then re-incremented to 0xFFFF and so on. See Figure 35-11. A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while TC_CV is decrementing, TC_CV then increments. See Figure 35-12. RC Compare cannot be programmed to generate a trigger in this configuration. At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock (CPCDIS = 1). Figure 35-11. WAVSEL = 01 Without Trigger Counter Value Counter decremented by compare match with 0xFFFF 0xFFFF RC RB RA Time Waveform Examples TIOB TIOA Figure 35-12. WAVSEL = 01 With Trigger Counter Value Counter decremented by compare match with 0xFFFF 0xFFFF Counter decremented by trigger RC RB Counter incremented by trigger RA Waveform Examples TIOB TIOA 606 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Time 35.5.11.4 WAVSEL = 11 When WAVSEL = 11, the value of TC_CV is incremented from 0 to RC. Once RC is reached, the value of TC_CV is decremented to 0, then re-incremented to RC and so on. See Figure 35-13. A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while TC_CV is decrementing, TC_CV then increments. See Figure 35-14. RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock (CPCDIS = 1). Figure 35-13. WAVSEL = 11 Without Trigger Counter Value 0xFFFF Counter decremented by compare match with RC RC RB RA Time Waveform Examples TIOB TIOA Figure 35-14. WAVSEL = 11 With Trigger Counter Value 0xFFFF Counter decremented by compare match with RC RC RB Counter decremented by trigger Counter incremented by trigger RA Waveform Examples Time TIOB TIOA SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 607 35.5.12 External Event/Trigger Conditions An external event can be programmed to be detected on one of the clock sources (XC0, XC1, XC2) or TIOB. The external event selected can then be used as a trigger. The EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG parameter defines the trigger edge for each of the possible external triggers (rising, falling or both). If EEVTEDG is cleared (none), no external event is defined. If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output and the compare register B is not used to generate waveforms and subsequently no IRQs. In this case the TC channel can only generate a waveform on TIOA. When an external event is defined, it can be used as a trigger by setting bit ENETRG in TC_CMR. As in Capture Mode, the SYNC signal and the software trigger are also available as triggers. RC Compare can also be used as a trigger depending on the parameter WAVSEL. 35.5.13 Output Controller The output controller defines the output level changes on TIOA and TIOB following an event. TIOB control is used only if TIOB is defined as output (not as an external event). The following events control TIOA and TIOB: software trigger, external event and RC compare. RA compare controls TIOA and RB compare controls TIOB. Each of these events can be programmed to set, clear or toggle the output as defined in the corresponding parameter in TC_CMR. 608 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.6 Timer Counter (TC) User Interface Table 35-4. Register Mapping Offset(1) Register Name 0x00 + channel * 0x40 + 0x00 Channel Control Register 0x00 + channel * 0x40 + 0x04 Channel Mode Register 0x00 + channel * 0x40 + 0x08 Reserved 0x00 + channel * 0x40 + 0x0C Reserved 0x00 + channel * 0x40 + 0x10 Counter Value 0x00 + channel * 0x40 + 0x14 Register A Access Reset TC_CCR Write-only - TC_CMR Read/Write 0 TC_CV Read-only 0 TC_RA Read/Write (2) 0 (2) 0 0x00 + channel * 0x40 + 0x18 Register B TC_RB 0x00 + channel * 0x40 + 0x1C Register C TC_RC Read/Write 0 0x00 + channel * 0x40 + 0x20 Status Register TC_SR Read-only 0 0x00 + channel * 0x40 + 0x24 Interrupt Enable Register TC_IER Write-only - 0x00 + channel * 0x40 + 0x28 Interrupt Disable Register TC_IDR Write-only - 0x00 + channel * 0x40 + 0x2C Interrupt Mask Register TC_IMR Read-only 0 0xC0 Block Control Register TC_BCR Write-only - 0xC4 Block Mode Register TC_BMR Read/Write 0 0xFC Reserved - - - Notes: Read/Write 1. Channel index ranges from 0 to 2. 2. Read-only if WAVE = 0 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 609 35.6.1 TC Block Control Register Name: TC_BCR Address: 0xFFFA00C0 (0), 0xFFFDC0C0 (1) Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - - - - - - - SYNC * SYNC: Synchro Command 0: No effect. 1: Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels. 610 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.6.2 TC Block Mode Register Name: TC_BMR Address: 0xFFFA00C4 (0), 0xFFFDC0C4 (1) Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 - - TC2XC2S TC1XC1S 0 TC0XC0S * TC0XC0S: External Clock Signal 0 Selection TC0XC0S Signal Connected to XC0 0 0 TCLK0 0 1 none 1 0 TIOA1 1 1 TIOA2 * TC1XC1S: External Clock Signal 1 Selection TC1XC1S Signal Connected to XC1 0 0 TCLK1 0 1 none 1 0 TIOA0 1 1 TIOA2 * TC2XC2S: External Clock Signal 2 Selection TC2XC2S Signal Connected to XC2 0 0 TCLK2 0 1 none 1 0 TIOA0 1 1 TIOA1 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 611 35.6.3 TC Channel Control Register Name: TC_CCRx [x=0..2] Address: 0xFFFA0000 (0)[0], 0xFFFA0040 (0)[1], 0xFFFA0080 (0)[2], 0xFFFDC000 (1)[0], 0xFFFDC040 (1)[1], 0xFFFDC080 (1)[2] Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - - - - - SWTRG CLKDIS CLKEN * CLKEN: Counter Clock Enable Command 0: No effect. 1: Enables the clock if CLKDIS is not 1. * CLKDIS: Counter Clock Disable Command 0: No effect. 1: Disables the clock. * SWTRG: Software Trigger Command 0: No effect. 1: A software trigger is performed: the counter is reset and the clock is started. 612 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.6.4 TC Channel Mode Register: Capture Mode Name: TC_CMRx [x=0..2] (WAVE = 0) Address: 0xFFFA0004 (0)[0], 0xFFFA0044 (0)[1], 0xFFFA0084 (0)[2], 0xFFFDC004 (1)[0], 0xFFFDC044 (1)[1], 0xFFFDC084 (1)[2] Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 - - - - 15 14 13 12 11 10 WAVE CPCTRG - - - ABETRG 7 6 5 3 2 LDBDIS LDBSTOP 4 BURST 16 LDRB CLKI LDRA 9 8 ETRGEDG 1 0 TCCLKS * TCCLKS: Clock Selection TCCLKS Clock Selected 0 0 0 TIMER_CLOCK1 0 0 1 TIMER_CLOCK2 0 1 0 TIMER_CLOCK3 0 1 1 TIMER_CLOCK4 1 0 0 TIMER_CLOCK5 1 0 1 XC0 1 1 0 XC1 1 1 1 XC2 * CLKI: Clock Invert 0: Counter is incremented on rising edge of the clock. 1: Counter is incremented on falling edge of the clock. * BURST: Burst Signal Selection BURST Description 0 0 The clock is not gated by an external signal. 0 1 XC0 is ANDed with the selected clock. 1 0 XC1 is ANDed with the selected clock. 1 1 XC2 is ANDed with the selected clock. * LDBSTOP: Counter Clock Stopped with RB Loading 0: Counter clock is not stopped when RB loading occurs. 1: Counter clock is stopped when RB loading occurs. * LDBDIS: Counter Clock Disable with RB Loading 0: Counter clock is not disabled when RB loading occurs. 1: Counter clock is disabled when RB loading occurs. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 613 * ETRGEDG: External Trigger Edge Selection ETRGEDG Edge 0 0 none 0 1 rising edge 1 0 falling edge 1 1 each edge * ABETRG: TIOA or TIOB External Trigger Selection 0: TIOB is used as an external trigger. 1: TIOA is used as an external trigger. * CPCTRG: RC Compare Trigger Enable 0: RC Compare has no effect on the counter and its clock. 1: RC Compare resets the counter and starts the counter clock. * WAVE 0: Capture Mode is enabled. 1: Capture Mode is disabled (Waveform Mode is enabled). * LDRA: RA Loading Selection LDRA Edge 0 0 none 0 1 rising edge of TIOA 1 0 falling edge of TIOA 1 1 each edge of TIOA * LDRB: RB Loading Selection LDRB Edge 0 0 none 0 1 rising edge of TIOA 1 0 falling edge of TIOA 1 1 each edge of TIOA 614 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.6.5 TC Channel Mode Register: Waveform Mode Name: TC_CMRx [x=0..2] (WAVE = 1) Address: 0xFFFA0004 (0)[0], 0xFFFA0044 (0)[1], 0xFFFA0084 (0)[2], 0xFFFDC004 (1)[0], 0xFFFDC044 (1)[1], 0xFFFDC084 (1)[2] Access: Read/Write 31 30 29 BSWTRG 23 22 27 20 19 AEEVT 14 WAVE 7 6 CPCDIS CPCSTOP 25 24 BCPB 18 17 16 ACPC 13 12 WAVSEL 26 BCPC 21 ASWTRG 15 28 BEEVT 11 ENETRG 5 4 BURST ACPA 10 9 EEVT 3 CLKI 8 EEVTEDG 2 1 0 TCCLKS * TCCLKS: Clock Selection TCCLKS Clock Selected 0 0 0 TIMER_CLOCK1 0 0 1 TIMER_CLOCK2 0 1 0 TIMER_CLOCK3 0 1 1 TIMER_CLOCK4 1 0 0 TIMER_CLOCK5 1 0 1 XC0 1 1 0 XC1 1 1 1 XC2 * CLKI: Clock Invert 0: Counter is incremented on rising edge of the clock. 1: Counter is incremented on falling edge of the clock. * BURST: Burst Signal Selection BURST Description 0 0 The clock is not gated by an external signal. 0 1 XC0 is ANDed with the selected clock. 1 0 XC1 is ANDed with the selected clock. 1 1 XC2 is ANDed with the selected clock. * CPCSTOP: Counter Clock Stopped with RC Compare 0: Counter clock is not stopped when counter reaches RC. 1: Counter clock is stopped when counter reaches RC. * CPCDIS: Counter Clock Disable with RC Compare 0: Counter clock is not disabled when counter reaches RC. 1: Counter clock is disabled when counter reaches RC. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 615 * EEVTEDG: External Event Edge Selection EEVTEDG Edge 0 0 none 0 1 rising edge 1 0 falling edge 1 1 each edge * EEVT: External Event Selection EEVT Signal selected as external event TIOB Direction 0 0 TIOB input (1) 0 1 XC0 output 1 0 XC1 output 1 1 XC2 output Note: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and subsequently no IRQs. * ENETRG: External Event Trigger Enable 0: The external event has no effect on the counter and its clock. In this case, the selected external event only controls the TIOA output. 1: The external event resets the counter and starts the counter clock. * WAVSEL: Waveform Selection WAVSEL Effect 0 0 UP mode without automatic trigger on RC Compare 1 0 UP mode with automatic trigger on RC Compare 0 1 UPDOWN mode without automatic trigger on RC Compare 1 1 UPDOWN mode with automatic trigger on RC Compare * WAVE 0: Waveform Mode is disabled (Capture Mode is enabled). 1: Waveform Mode is enabled. * ACPA: RA Compare Effect on TIOA ACPA Effect 0 0 none 0 1 set 1 0 clear 1 1 toggle 616 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * ACPC: RC Compare Effect on TIOA ACPC Effect 0 0 none 0 1 set 1 0 clear 1 1 toggle * AEEVT: External Event Effect on TIOA AEEVT Effect 0 0 none 0 1 set 1 0 clear 1 1 toggle * ASWTRG: Software Trigger Effect on TIOA ASWTRG Effect 0 0 none 0 1 set 1 0 clear 1 1 toggle * BCPB: RB Compare Effect on TIOB BCPB Effect 0 0 none 0 1 set 1 0 clear 1 1 toggle * BCPC: RC Compare Effect on TIOB BCPC Effect 0 0 none 0 1 set 1 0 clear 1 1 toggle * BEEVT: External Event Effect on TIOB BEEVT Effect 0 0 none 0 1 set 1 0 clear 1 1 toggle SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 617 * BSWTRG: Software Trigger Effect on TIOB BSWTRG Effect 0 0 none 0 1 set 1 0 clear 1 1 toggle 618 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.6.6 TC Counter Value Register Name: TC_CVx [x=0..2] Address: 0xFFFA0010 (0)[0], 0xFFFA0050 (0)[1], 0xFFFA0090 (0)[2], 0xFFFDC010 (1)[0], 0xFFFDC050 (1)[1], 0xFFFDC090 (1)[2] Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 3 2 1 0 CV 7 6 5 4 CV * CV: Counter Value CV contains the counter value in real time. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 619 35.6.7 TC Register A Name: TC_RAx [x=0..2] Address: 0xFFFA0014 (0)[0], 0xFFFA0054 (0)[1], 0xFFFA0094 (0)[2], 0xFFFDC014 (1)[0], 0xFFFDC054 (1)[1], 0xFFFDC094 (1)[2] Access: Read-only if WAVE = 0, Read/Write if WAVE = 1 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 3 2 1 0 RA 7 6 5 4 RA * RA: Register A RA contains the Register A value in real time. 620 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.6.8 TC Register B Name: TC_RBx [x=0..2] Address: 0xFFFA0018 (0)[0], 0xFFFA0058 (0)[1], 0xFFFA0098 (0)[2], 0xFFFDC018 (1)[0], 0xFFFDC058 (1)[1], 0xFFFDC098 (1)[2] Access: Read-only if WAVE = 0, Read/Write if WAVE = 1 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 3 2 1 0 RB 7 6 5 4 RB * RB: Register B RB contains the Register B value in real time. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 621 35.6.9 TC Register C Name: TC_RCx [x=0..2] Address: 0xFFFA001C (0)[0], 0xFFFA005C (0)[1], 0xFFFA009C (0)[2], 0xFFFDC01C (1)[0], 0xFFFDC05C (1)[1], 0xFFFDC09C (1)[2] Access: Read/Write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 3 2 1 0 RC 7 6 5 4 RC * RC: Register C RC contains the Register C value in real time. 622 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.6.10 TC Status Register Name: TC_SRx [x=0..2] Address: 0xFFFA0020 (0)[0], 0xFFFA0060 (0)[1], 0xFFFA00A0 (0)[2], 0xFFFDC020 (1)[0], 0xFFFDC060 (1)[1], 0xFFFDC0A0 (1)[2] Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - MTIOB MTIOA CLKSTA 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS * COVFS: Counter Overflow Status 0: No counter overflow has occurred since the last read of the Status Register. 1: A counter overflow has occurred since the last read of the Status Register. * LOVRS: Load Overrun Status 0: Load overrun has not occurred since the last read of the Status Register or WAVE = 1. 1: RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Status Register, if WAVE = 0. * CPAS: RA Compare Status 0: RA Compare has not occurred since the last read of the Status Register or WAVE = 0. 1: RA Compare has occurred since the last read of the Status Register, if WAVE = 1. * CPBS: RB Compare Status 0: RB Compare has not occurred since the last read of the Status Register or WAVE = 0. 1: RB Compare has occurred since the last read of the Status Register, if WAVE = 1. * CPCS: RC Compare Status 0: RC Compare has not occurred since the last read of the Status Register. 1: RC Compare has occurred since the last read of the Status Register. * LDRAS: RA Loading Status 0: RA Load has not occurred since the last read of the Status Register or WAVE = 1. 1: RA Load has occurred since the last read of the Status Register, if WAVE = 0. * LDRBS: RB Loading Status 0: RB Load has not occurred since the last read of the Status Register or WAVE = 1. 1: RB Load has occurred since the last read of the Status Register, if WAVE = 0. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 623 * ETRGS: External Trigger Status 0: External trigger has not occurred since the last read of the Status Register. 1: External trigger has occurred since the last read of the Status Register. * CLKSTA: Clock Enabling Status 0: Clock is disabled. 1: Clock is enabled. * MTIOA: TIOA Mirror 0: TIOA is low. If WAVE = 0, this means that TIOA pin is low. If WAVE = 1, this means that TIOA is driven low. 1: TIOA is high. If WAVE = 0, this means that TIOA pin is high. If WAVE = 1, this means that TIOA is driven high. * MTIOB: TIOB Mirror 0: TIOB is low. If WAVE = 0, this means that TIOB pin is low. If WAVE = 1, this means that TIOB is driven low. 1: TIOB is high. If WAVE = 0, this means that TIOB pin is high. If WAVE = 1, this means that TIOB is driven high. 624 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.6.11 TC Interrupt Enable Register Name: TC_IERx [x=0..2] Address: 0xFFFA0024 (0)[0], 0xFFFA0064 (0)[1], 0xFFFA00A4 (0)[2], 0xFFFDC024 (1)[0], 0xFFFDC064 (1)[1], 0xFFFDC0A4 (1)[2] Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS * COVFS: Counter Overflow 0: No effect. 1: Enables the Counter Overflow Interrupt. * LOVRS: Load Overrun 0: No effect. 1: Enables the Load Overrun Interrupt. * CPAS: RA Compare 0: No effect. 1: Enables the RA Compare Interrupt. * CPBS: RB Compare 0: No effect. 1: Enables the RB Compare Interrupt. * CPCS: RC Compare 0: No effect. 1: Enables the RC Compare Interrupt. * LDRAS: RA Loading 0: No effect. 1: Enables the RA Load Interrupt. * LDRBS: RB Loading 0: No effect. 1: Enables the RB Load Interrupt. * ETRGS: External Trigger 0: No effect. 1: Enables the External Trigger Interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 625 35.6.12 TC Interrupt Disable Register Name: TC_IDRx [x=0..2] Address: 0xFFFA0028 (0)[0], 0xFFFA0068 (0)[1], 0xFFFA00A8 (0)[2], 0xFFFDC028 (1)[0], 0xFFFDC068 (1)[1], 0xFFFDC0A8 (1)[2] Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS * COVFS: Counter Overflow 0: No effect. 1: Disables the Counter Overflow Interrupt. * LOVRS: Load Overrun 0: No effect. 1: Disables the Load Overrun Interrupt (if WAVE = 0). * CPAS: RA Compare 0: No effect. 1: Disables the RA Compare Interrupt (if WAVE = 1). * CPBS: RB Compare 0: No effect. 1: Disables the RB Compare Interrupt (if WAVE = 1). * CPCS: RC Compare 0: No effect. 1: Disables the RC Compare Interrupt. * LDRAS: RA Loading 0: No effect. 1: Disables the RA Load Interrupt (if WAVE = 0). * LDRBS: RB Loading 0: No effect. 1: Disables the RB Load Interrupt (if WAVE = 0). 626 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * ETRGS: External Trigger 0: No effect. 1: Disables the External Trigger Interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 627 35.6.13 TC Interrupt Mask Register Name: TC_IMRx [x=0..2] Address: 0xFFFA002C (0)[0], 0xFFFA006C (0)[1], 0xFFFA00AC (0)[2], 0xFFFDC02C (1)[0], 0xFFFDC06C (1)[1], 0xFFFDC0AC (1)[2] Access: Read-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS * COVFS: Counter Overflow 0: The Counter Overflow Interrupt is disabled. 1: The Counter Overflow Interrupt is enabled. * LOVRS: Load Overrun 0: The Load Overrun Interrupt is disabled. 1: The Load Overrun Interrupt is enabled. * CPAS: RA Compare 0: The RA Compare Interrupt is disabled. 1: The RA Compare Interrupt is enabled. * CPBS: RB Compare 0: The RB Compare Interrupt is disabled. 1: The RB Compare Interrupt is enabled. * CPCS: RC Compare 0: The RC Compare Interrupt is disabled. 1: The RC Compare Interrupt is enabled. * LDRAS: RA Loading 0: The Load RA Interrupt is disabled. 1: The Load RA Interrupt is enabled. * LDRBS: RB Loading 0: The Load RB Interrupt is disabled. 1: The Load RB Interrupt is enabled. * ETRGS: External Trigger 0: The External Trigger Interrupt is disabled. 1: The External Trigger Interrupt is enabled. 628 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36. MultiMedia Card Interface (MCI) 36.1 Description The MultiMedia Card Interface (MCI) supports the MultiMedia Card (MMC) Specification V3.11, the SDIO Specification V1.1 and the SD Memory Card Specification V1.0. The MCI includes a command register, response registers, data registers, timeout counters and error detection logic that automatically handle the transmission of commands and, when required, the reception of the associated responses and data with a limited processor overhead. The MCI supports stream, block and multi-block data read and write, and is compatible with the Peripheral DMA Controller (PDC) channels, minimizing processor intervention for large buffer transfers. The MCI operates at a rate of up to Master Clock divided by 2 and supports the interfacing of two slot(s). Each slot may be used to interface with a MultiMediaCard bus (up to 30 Cards) or with a SD Memory Card. Only one slot can be selected at a time (slots are multiplexed). A bit field in the SD Card Register performs this selection. The SD Memory Card communication is based on a 9-pin interface (clock, command, four data and three power lines) and the MultiMedia Card on a 7-pin interface (clock, command, one data, three power lines and one reserved for future use). The SD Memory Card interface also supports MultiMedia Card operations. The main differences between SD and MultiMedia Cards are the initialization process and the bus topology. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 629 36.2 Block Diagram Figure 36-1. Block Diagram APB Bridge PDC APB MCCK(1) MCCDA(1) MCDA0(1) PMC MCK MCDA1(1) MCDA2(1) MCDA3(1) MCI Interface PIO MCCDB(1) MCDB0(1) MCDB1(1) MCDB2(1) Interrupt Control MCDB3(1) MCI Interrupt Note: 630 1. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCCDB to MCIx_CDB,MCDAy to MCIx_DAy, MCDBy to MCIx_DBy. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.3 Application Block Diagram Figure 36-2. Application Block Diagram Application Layer ex: File System, Audio, Security, etc. Physical Layer MCI Interface 1 2 3 4 5 6 78 1234567 9 SDCard MMC 36.4 Pin Name List Table 36-1. I/O Lines Description (2) Pin Name Pin Description Type(1) Comments MCCDA/MCCDB Command/response I/O/PP/OD CMD of an MMC or SDCard/SDIO MCCK Clock I/O CLK of an MMC or SD Card/SDIO MCDA0-MCDA3 Data 0..3 of Slot A I/O/PP MCDB0-MCDB3 Data 0..3 of Slot B I/O/PP Notes: 36.5 1. 2. DAT0 of an MMC DAT[0..3] of an SD Card/SDIO DAT0 of an MMC DAT[0..3] of an SD Card/SDIO I: Input, O: Output, PP: Push/Pull, OD: Open Drain. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy. Product Dependencies 36.5.1 I/O Lines The pins used for interfacing the MultiMedia Cards or SD Cards may be multiplexed with PIO lines. The programmer must first program the PIO controllers to assign the peripheral functions to MCI pins. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 631 36.5.2 Power Management The MCI may be clocked through the Power Management Controller (PMC), so the programmer must first configure the PMC to enable the MCI clock. 36.5.3 Interrupt The MCI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling the MCI interrupt requires programming the AIC before configuring the MCI. 36.6 Bus Topology Figure 36-3. Multimedia Memory Card Bus Topology 1234567 MMC The MultiMedia Card communication is based on a 7-pin serial bus interface. It has three communication lines and four supply lines. Table 36-2. Bus Topology Pin Number Name Type(1) Description MCI Pin Name(2) (Slot z) 1 RSV NC Not connected - 2 CMD I/O/PP/OD Command/response MCCDz 3 VSS1 S Supply voltage ground VSS 4 VDD S Supply voltage VDD 5 CLK I/O Clock MCCK 6 VSS2 S Supply voltage ground VSS 7 DAT[0] I/O/PP Data 0 MCDz0 Notes: 1. 2. Figure 36-4. I: Input, O: Output, PP: Push/Pull, OD: Open Drain. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy. MMC Bus Connections (One Slot) MCI MCDA0 MCCDA MCCK Note: 632 1234567 1234567 1234567 MMC1 MMC2 MMC3 When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA MCDAy to MCIx_DAy. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 36-5. SD Memory Card Bus Topology 1 2 3 4 5 6 78 9 SD CARD The SD Memory Card bus includes the signals listed in Table 36-3. Table 36-3. SD Memory Card Bus Signals Pin Number Name Type(1) Description MCI Pin Name(2) (Slot z) 1 CD/DAT[3] I/O/PP Card detect/ Data line Bit 3 MCDz3 2 CMD PP Command/response MCCDz 3 VSS1 S Supply voltage ground VSS 4 VDD S Supply voltage VDD 5 CLK I/O Clock MCCK 6 VSS2 S Supply voltage ground VSS 7 DAT[0] I/O/PP Data line Bit 0 MCDz0 8 DAT[1] I/O/PP Data line Bit 1 or Interrupt MCDz1 9 DAT[2] I/O/PP Data line Bit 2 MCDz2 1. 2. Figure 36-6. I: Input, O: Output, PP: Push Pull, OD: Open Drain. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy. SD Card Bus Connections with One Slot MCDA0 - MCDA3 MCCK SD CARD 9 MCCDA 1 2 3 4 5 6 78 Notes: When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA MCDAy to MCIx_DAy. Figure 36-7. SD Card Bus Connections with Two Slots MCDA0 - MCDA3 MCCK SD CARD 1 MCDB0 - MCDB3 SD CARD 2 9 MCCDB 1 2 3 4 5 6 78 9 MCCDA 1 2 3 4 5 6 78 Note: Note: When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK,MCCDA to MCIx_CDA, MCDAy to MCIx_DAy, MCCDB to MCIx_CDB, MCDBy to MCIx_DBy. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 633 Figure 36-8. Mixing MultiMedia and SD Memory Cards with Two Slots MCDA0 MCCDA MCCK 1234567 1234567 MMC1 MMC2 MMC3 MCDB0 - MCDB3 SD CARD 9 MCCDB 1 2 3 4 5 6 78 1234567 Note: When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCDAy to MCIx_DAy, MCCDB to MCIx_CDB, MCDBy to MCIx_DBy. When the MCI is configured to operate with SD memory cards, the width of the data bus can be selected in the MCI_SDCR. Clearing the SDCBUS bit in this register means that the width is one bit; setting it means that the width is four bits. In the case of multimedia cards, only the data line 0 is used. The other data lines can be used as independent PIOs. 36.7 MultiMedia Card Operations After a power-on reset, the cards are initialized by a special message-based MultiMedia Card bus protocol. Each message is represented by one of the following tokens: Command: A command is a token that starts an operation. A command is sent from the host either to a single card (addressed command) or to all connected cards (broadcast command). A command is transferred serially on the CMD line. Response: A response is a token which is sent from an addressed card or (synchronously) from all connected cards to the host as an answer to a previously received command. A response is transferred serially on the CMD line. Data: Data can be transferred from the card to the host or vice versa. Data is transferred via the data line. Card addressing is implemented using a session address assigned during the initialization phase by the bus controller to all currently connected cards. Their unique CID number identifies individual cards. The structure of commands, responses and data blocks is described in the MultiMedia-Card System Specification. See also Table 36-4 on page 635. MultiMediaCard bus data transfers are composed of these tokens. There are different types of operations. Addressed operations always contain a command and a response token. In addition, some operations have a data token; the others transfer their information directly within the command or response structure. In this case, no data token is present in an operation. The bits on the DAT and the CMD lines are transferred synchronous to the clock MCI Clock. Two types of data transfer commands are defined: 634 Sequential commands: These commands initiate a continuous data stream. They are terminated only when a stop command follows on the CMD line. This mode reduces the command overhead to an absolute minimum. Block-oriented commands: These commands send a data block succeeded by CRC bits. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Both read and write operations allow either single or multiple block transmission. A multiple block transmission is terminated when a stop command follows on the CMD line similarly to the sequential read or when a multiple block transmission has a predefined block count (See "Data Transfer Operation" on page 637.). The MCI provides a set of registers to perform the entire range of MultiMedia Card operations. 36.7.1 Command - Response Operation After reset, the MCI is disabled and becomes valid after setting the MCIEN bit in the MCI_CR Control Register. The PWSEN bit saves power by dividing the MCI clock by 2PWSDIV + 1 when the bus is inactive. The two bits, RDPROOF and WRPROOF in the MCI Mode Register (MCI_MR) allow stopping the MCI Clock during read or write access if the internal FIFO is full. This will guarantee data integrity, not bandwidth. The command and the response of the card are clocked out with the rising edge of the MCI Clock. All the timings for MultiMedia Card are defined in the MultiMediaCard System Specification. The two bus modes (open drain and push/pull) needed to process all the operations are defined in the MCI command register. The MCI_CMDR allows a command to be carried out. For example, to perform an ALL_SEND_CID command: Host Command CMD S T Content CRC NID Cycles E Z ****** Response Z S T CID Content High Impedance State Z Z Z The command ALL_SEND_CID and the fields and values for the MCI_CMDR Control Register are described in Table 36-4 and Table 36-5. Table 36-4. ALL_SEND_CID Command Description CMD Index Type Argument Resp Abbreviation Command Description CMD2 bcr(1) [31:0] stuff bits R2 ALL_SEND_CID Asks all cards to send their CID numbers on the CMD line Note: 1. Table 36-5. bcr means broadcast command with response. Fields and Values for MCI_CMDR Field Value CMDNB (command number) 2 (CMD2) RSPTYP (response type) 2 (R2: 136 bits response) SPCMD (special command) 0 (not a special command) OPCMD (open drain command) 1 MAXLAT (max latency for command to response) 0 (NID cycles ==> 5 cycles) TRCMD (transfer command) 0 (No transfer) TRDIR (transfer direction) X (available only in transfer command) TRTYP (transfer type) X (available only in transfer command) IOSPCMD (SDIO special command) 0 (not a special command) The MCI_ARGR contains the argument field of the command. To send a command, the user must perform the following steps: Fill the argument register (MCI_ARGR) with the command argument. Set the command register (MCI_CMDR) (see Table 36-5). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 635 The command is sent immediately after writing the command register. The status bit CMDRDY in the status register (MCI_SR) is asserted when the command is completed. If the command requires a response, it can be read in the MCI response register (MCI_RSPR). The response size can be from 48 bits up to 136 bits depending on the command. The MCI embeds an error detection to prevent any corrupted data during the transfer. The following flowchart shows how to send a command to the card and read the response if needed. In this example, the status register bits are polled but setting the appropriate bits in the interrupt enable register (MCI_IER) allows using an interrupt method. Figure 36-9. Command/Response Functional Flow Diagram Set the command argument MCI_ARGR = Argument(1) Set the command MCI_CMDR = Command Read MCI_SR Wait for command ready status flag 0 CMDRDY 1 Check error bits in the status register (1) Yes Status error flags? Read response if required RETURN ERROR (1) RETURN OK Note: 636 1. If the command is SEND_OP_COND, the CRC error flag is always present (refer to R3 response in the MultiMedia Card specification). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.7.2 Data Transfer Operation The MultiMedia Card allows several read/write operations (single block, multiple blocks, stream, etc.). These kind of transfers can be selected setting the Transfer Type (TRTYP) field in the MCI Command Register (MCI_CMDR). These operations can be done using the features of the Peripheral DMA Controller (PDC). If the PDCMODE bit is set in MCI_MR, then all reads and writes use the PDC facilities. In all cases, the block length (BLKLEN field) must be defined either in the mode register MCI_MR, or in the Block Register MCI_BLKR. This field determines the size of the data block. Enabling PDC Force Byte Transfer (PDCFBYTE bit in the MCI_MR) allows the PDC to manage with internal byte transfers, so that transfer of blocks with a size different from modulo 4 can be supported. When PDC Force Byte Transfer is disabled, the PDC type of transfers are in words, otherwise the type of transfers are in bytes. Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions are defined (the host can use either one at any time): Open-ended/Infinite Multiple block read (or write): The number of blocks for the read (or write) multiple block operation is not defined. The card will continuously transfer (or program) data blocks until a stop transmission command is received. Multiple block read (or write) with predefined block count (since version 3.1 and higher): The card will transfer (or program) the requested number of data blocks and terminate the transaction. The stop command is not required at the end of this type of multiple block read (or write), unless terminated with an error. In order to start a multiple block read (or write) with predefined block count, the host must correctly program the MCI Block Register (MCI_BLKR). Otherwise the card will start an open-ended multiple block read. The BCNT field of the Block Register defines the number of blocks to transfer (from 1 to 65535 blocks). Programming the value 0 in the BCNT field corresponds to an infinite block transfer. 36.7.3 Read Operation The following flowchart shows how to read a single block with or without use of PDC facilities. In this example (see Figure 36-10), a polling method is used to wait for the end of read. Similarly, the user can configure the interrupt enable register (MCI_IER) to trigger an interrupt at the end of read. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 637 Figure 36-10. Read Functional Flow Diagram Send SELECT/DESELECT_CARD (1) command to select the card Send SET_BLOCKLEN command(1) No Yes Read with PDC Set the PDCMODE bit MCI_MR |= PDCMODE Set the block length (in bytes) (2) MCI_MR |= (BlockLength << 16) Set the block count (if necessary) MCI_BLKR |= (BlockCount << 0) Reset the PDCMODE bit MCI_MR &= ~PDCMODE Set the block length (in bytes) (2) MCI_MR |= (BlockLenght <<16) Set the block count (if necessary) MCI_BLKR |= (BlockCount << 0) Configure the PDC channel MCI_RPR = Data Buffer Address MCI_RCR = BlockLength/4 MCI_PTCR = RXTEN Send READ_SINGLE_BLOCK command(1) Number of words to read = BlockLength/4 Send READ_SINGLE_BLOCK command(1) Yes Number of words to read = 0 ? Read status register MCI_SR No Read status register MCI_SR Poll the bit ENDRX = 0? Poll the bit RXRDY = 0? Yes No No RETURN Read data = MCI_RDR Number of words to read = Number of words to read -1 RETURN Notes: 638 1. 2. It is assumed that this command has been correctly sent (see Figure 36-9). This field is also accessible in the MCI Block Register (MCI_BLKR). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Yes 36.7.4 Write Operation In write operation, the MCI Mode Register (MCI_MR) is used to define the padding value when writing non-multiple block size. If the bit PDCPADV is 0, then 0x00 value is used when padding data, otherwise 0xFF is used. If set, the bit PDCMODE enables PDC transfer. The following flowchart shows how to write a single block with or without use of PDC facilities (see Figure 36-11). Polling or interrupt method can be used to wait for the end of write according to the contents of the Interrupt Mask Register (MCI_IMR). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 639 Figure 36-11. Write Functional Flow Diagram Send SELECT/DESELECT_CARD (1) command to select the card (1) Send SET_BLOCKLEN command Yes No Write using PDC Set the PDCMODE bit MCI_MR |= PDCMODE Set the block length (in bytes) (2) MCI_MR |= (BlockLength << 16) Set the block count (if necessary) MCI_BLKR |= (BlockCount << 0) Reset the PDCMODE bit MCI_MR &= ~PDCMODE Set the block length (in bytes) (2) MCI_MR |= (BlockLenght <<16) Set the block count (if necessary) MCI_BLKR |= (BlockCount << 0) Configure the PDC channel MCI_TPR = Data Buffer Address to write MCI_TCR = BlockLength/4 Send WRITE_SINGLE_BLOCK command(1) Send WRITE_SINGLE_BLOCK command(1) Number of words to write = BlockLength/4 MCI_PTCR = TXTEN Yes Number of words to write = 0 ? Read status register MCI_SR No Read status register MCI_SR Poll the bit NOTBUSY= 0? Poll the bit TXRDY = 0? Yes No No RETURN MCI_TDR = Data to write Number of words to write = Number of words to write -1 RETURN Notes: 640 1. 2. It is assumed that this command has been correctly sent (see Figure 36-9). This field is also accessible in the MCI Block Register (MCI_BLKR). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Yes The following flowchart, (Figure 36-12) shows how to manage a multiple write block transfer with the PDC. Polling or interrupt method can be used to wait for the end of write according to the contents of the Interrupt Mask Register (MCI_IMR). Figure 36-12. Multiple Write Functional Flow Diagram Send SELECT/DESELECT_CARD (1) command to select the card Send SET_BLOCKLEN command(1) Set the PDCMODE bit MCI_MR |= PDCMODE Set the block length (in bytes) MCI_MR |= (BlockLength << 16)(2) Set the block count (if necessary) MCI_BLKR |= (BlockCount << 0) Configure the PDC channel MCI_TPR = Data Buffer Address to write MCI_TCR = BlockLength/4 Send WRITE_MULTIPLE_BLOCK command(1) MCI_PTCR = TXTEN Read status register MCI_SR Poll the bit BLKE = 0? Yes No Send STOP_TRANSMISSION command(1) Poll the bit NOTBUSY = 0? Yes No RETURN Notes: 1. 2. It is assumed that this command has been correctly sent (see Figure 36-9). This field is also accessible in the MCI Block Register (MCI_BLKR). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 641 36.8 SD/SDIO Card Operations The MultiMedia Card Interface allows processing of SD Memory (Secure Digital Memory Card) and SDIO (SD Input Output) Card commands. SD/SDIO cards are based on the Multi Media Card (MMC) format, but are physically slightly thicker and feature higher data transfer rates, a lock switch on the side to prevent accidental overwriting and security features. The physical form factor, pin assignment and data transfer protocol are forward-compatible with the MultiMedia Card with some additions. SD slots can actually be used for more than flash memory cards. Devices that support SDIO can use small devices designed for the SD form factor, such as GPS receivers, Wi-Fi or Bluetooth adapters, modems, barcode readers, IrDA adapters, FM radio tuners, RFID readers, digital cameras and more. SD/SDIO is covered by numerous patents and trademarks, and licensing is only available through the Secure Digital Card Association. The SD/SDIO Card communication is based on a 9-pin interface (Clock, Command, 4 x Data and 3 x Power lines). The communication protocol is defined as a part of this specification. The main difference between the SD/SDIO Card and the MultiMedia Card is the initialization process. The SD/SDIO Card Register (MCI_SDCR) allows selection of the Card Slot and the data bus width. The SD/SDIO Card bus allows dynamic configuration of the number of data lines. After power up, by default, the SD/SDIO Card uses only DAT0 for data transfer. After initialization, the host can change the bus width (number of active data lines). 36.8.1 SDIO Data Transfer Type SDIO cards may transfer data in either a multi-byte (1 to 512 bytes) or an optional block format (1 to 511 blocks), while the SD memory cards are fixed in the block transfer mode. The TRTYP field in the MCI Command Register (MCI_CMDR) allows to choose between SDIO Byte or SDIO Block transfer. The number of bytes/blocks to transfer is set through the BCNT field in the MCI Block Register (MCI_BLKR). In SDIO Block mode, the field BLKLEN must be set to the data block size while this field is not used in SDIO Byte mode. An SDIO Card can have multiple I/O or combined I/O and memory (called Combo Card). Within a multi-function SDIO or a Combo card, there are multiple devices (I/O and memory) that share access to the SD bus. In order to allow the sharing of access to the host among multiple devices, SDIO and combo cards can implement the optional concept of suspend/resume (Refer to the SDIO Specification for more details). To send a suspend or a resume command, the host must set the SDIO Special Command field (IOSPCMD) in the MCI Command Register. 36.8.2 SDIO Interrupts Each function within an SDIO or Combo card may implement interrupts (Refer to the SDIO Specification for more details). In order to allow the SDIO card to interrupt the host, an interrupt function is added to a pin on the DAT[1] line to signal the card's interrupt to the host. An SDIO interrupt on each slot can be enabled through the MCI Interrupt Enable Register. The SDIO interrupt is sampled regardless of the currently selected slot. 642 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.9 MultiMedia Card Interface (MCI) User Interface Table 36-6. Register Mapping Offset Register Register Name Access Reset 0x00 Control Register MCI_CR Write-only - 0x04 Mode Register MCI_MR Read/Write 0x0 0x08 Data Timeout Register MCI_DTOR Read/Write 0x0 0x0C SD/SDIO Card Register MCI_SDCR Read/Write 0x0 0x10 Argument Register MCI_ARGR Read/Write 0x0 0x14 Command Register MCI_CMDR Write-only - 0x18 Block Register MCI_BLKR Read/Write 0x0 0x1C Reserved - - - 0x20 Response Register(1) MCI_RSPR Read-only 0x0 0x24 Response Register (1) MCI_RSPR Read-only 0x0 Response Register (1) MCI_RSPR Read-only 0x0 0x2C Response Register (1) MCI_RSPR Read-only 0x0 0x30 Receive Data Register MCI_RDR Read-only 0x0 0x34 Transmit Data Register MCI_TDR Write-only - Reserved - - - 0x40 Status Register MCI_SR Read-only 0xC0E5 0x44 Interrupt Enable Register MCI_IER Write-only - 0x48 Interrupt Disable Register MCI_IDR Write-only - 0x4C Interrupt Mask Register MCI_IMR Read-only 0x0 Reserved - - - Reserved for the PDC - - - 0x28 0x38-0x3C 0x50-0xFC 0x100-0x124 Note: 1. The response register can be read by N accesses at the same MCI_RSPR or at consecutive addresses (0x20 to 0x2C). N depends on the size of the response. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 643 36.9.1 MCI Control Register Name: MCI_CR Address: 0xFFFA8000 Access: Write-only 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 SWRST - - - PWSDIS PWSEN MCIDIS MCIEN * MCIEN: Multi-Media Interface Enable 0: No effect. 1: Enables the Multi-Media Interface if MCDIS is 0. * MCIDIS: Multi-Media Interface Disable 0: No effect. 1: Disables the Multi-Media Interface. * PWSEN: Power Save Mode Enable 0: No effect. 1: Enables the Power Saving Mode if PWSDIS is 0. Warning: Before enabling this mode, the user must set a value different from 0 in the PWSDIV field (Mode Register MCI_MR). * PWSDIS: Power Save Mode Disable 0: No effect. 1: Disables the Power Saving Mode. * SWRST: Software Reset 0: No effect. 1: Resets the MCI. A software triggered hardware reset of the MCI interface is performed. 644 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.9.2 MCI Mode Register Name: MCI_MR Address: 0xFFFA8004 Access: Read/write 31 30 29 28 27 26 25 24 19 18 17 16 10 9 8 BLKLEN 23 22 21 20 BLKLEN 15 14 13 12 11 PDCMODE PDCPADV PDCFBYTE WRPROOF RDPROOF 7 6 5 4 3 PWSDIV 2 1 0 CLKDIV * CLKDIV: Clock Divider Multimedia Card Interface clock (MCCK or MCI_CK) is Master Clock (MCK) divided by (2*(CLKDIV+1)). * PWSDIV: Power Saving Divider Multimedia Card Interface clock is divided by 2(PWSDIV) + 1 when entering Power Saving Mode. Warning: This value must be different from 0 before enabling the Power Save Mode in the MCI_CR (MCI_PWSEN bit). * RDPROOF Read Proof Enable Enabling Read Proof allows to stop the MCI Clock during read access if the internal FIFO is full. This will guarantee data integrity, not bandwidth. 0: Disables Read Proof. 1: Enables Read Proof. * WRPROOF Write Proof Enable Enabling Write Proof allows to stop the MCI Clock during write access if the internal FIFO is full. This will guarantee data integrity, not bandwidth. 0: Disables Write Proof. 1: Enables Write Proof. * PDCFBYTE: PDC Force Byte Transfer Enabling PDC Force Byte Transfer allows the PDC to manage with internal byte transfers, so that transfer of blocks with a size different from modulo 4 can be supported. Warning: BLKLEN value depends on PDCFBYTE. 0: Disables PDC Force Byte Transfer. PDC type of transfer are in words. 1: Enables PDC Force Byte Transfer. PDC type of transfer are in bytes. * PDCPADV: PDC Padding Value 0: 0x00 value is used when padding data in write transfer (not only PDC transfer). 1: 0xFF value is used when padding data in write transfer (not only PDC transfer). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 645 * PDCMODE: PDC-oriented Mode 0: Disables PDC transfer 1: Enables PDC transfer. In this case, UNRE and OVRE flags in the MCI Mode Register (MCI_SR) are deactivated after the PDC transfer has been completed. * BLKLEN: Data Block Length This field determines the size of the data block. This field is also accessible in the MCI Block Register (MCI_BLKR). Bits 16 and 17 must be set to 0 if PDCFBYTE is disabled. Note: In SDIO Byte mode, BLKLEN field is not used. 646 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.9.3 MCI Data Timeout Register Name: MCI_DTOR Address: 0xFFFA8008 Access: Read/write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 7 6 5 4 3 2 1 0 - DTOMUL DTOCYC * DTOCYC: Data Timeout Cycle Number Defines a number of Master Clock cycles with DTOMUL. * DTOMUL: Data Timeout Multiplier These fields determine the maximum number of Master Clock cycles that the MCI waits between two data block transfers. It equals (DTOCYC x Multiplier). Multiplier is defined by DTOMUL as shown in the following table: DTOMUL Multiplier 0 0 0 1 0 0 1 16 0 1 0 128 0 1 1 256 1 0 0 1024 1 0 1 4096 1 1 0 65536 1 1 1 1048576 If the data time-out set by DTOCYC and DTOMUL has been exceeded, the Data Time-out Error flag (DTOE) in the MCI Status Register (MCI_SR) raises. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 647 36.9.4 MCI SDCard/SDIO Register Name: MCI_SDCR Address: 0xFFFA800C Access: Read/write 31 30 29 28 27 26 25 24 - - - - - - - - 23 22 21 20 19 18 17 16 - - - - - - - - 15 14 13 12 11 10 9 8 - - - - - - - - 1 7 6 5 4 3 2 SDCBUS - - - - - * SDCSEL: SDCard/SDIO Slot SDCSEL SDCard/SDIO Slot 0 0 Slot A is selected. 0 1 Slot B is selected 1 0 Reserved 1 1 Reserved * SDCBUS: SDCard/SDIO Bus Width 0: 1-bit data bus 1: 4-bit data bus 648 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 0 SDCSEL 36.9.5 MCI Argument Register Name: MCI_ARGR Address: 0xFFFA8010 Access: Read/write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 ARG 23 22 21 20 ARG 15 14 13 12 ARG 7 6 5 4 ARG * ARG: Command Argument SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 649 36.9.6 MCI Command Register Name: MCI_CMDR Address: 0xFFFA8014 Access: Write-only 31 30 29 28 27 26 - - - - - - 23 22 21 20 19 - - 15 14 13 12 11 - - - MAXLAT OPDCMD 6 5 4 3 7 18 TRTYP 25 24 IOSPCMD 17 TRDIR RSPTYP 10 16 TRCMD 9 8 SPCMD 2 1 0 CMDNB This register is write-protected while CMDRDY is 0 in MCI_SR. If an Interrupt command is sent, this register is only writeable by an interrupt response (field SPCMD). This means that the current command execution cannot be interrupted or modified. * CMDNB: Command Number MultiMedia Card bus command numbers are defined in the MultiMedia Card specification. * RSPTYP: Response Type RSP Response Type 0 0 No response. 0 1 48-bit response. 1 0 136-bit response. 1 1 Reserved. * SPCMD: Special Command SPCMD Command 0 0 0 Not a special CMD. 0 0 1 Initialization CMD: 74 clock cycles for initialization sequence. 0 1 0 Synchronized CMD: Wait for the end of the current data block transfer before sending the pending command. 0 1 1 Reserved. 1 0 0 Interrupt command: Corresponds to the Interrupt Mode (CMD40). 1 0 1 Interrupt response: Corresponds to the Interrupt Mode (CMD40). * OPDCMD: Open Drain Command 0: Push pull command 1: Open drain command * MAXLAT: Max Latency for Command to Response 0: 5-cycle max latency 1: 64-cycle max latency 650 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * TRCMD: Transfer Command TRCMD Transfer Type 0 0 No data transfer 0 1 Start data transfer 1 0 Stop data transfer 1 1 Reserved * TRDIR: Transfer Direction 0: Write 1: Read * TRTYP: Transfer Type TRTYP Transfer Type 0 0 0 MMC/SDCard Single Block 0 0 1 MMC/SDCard Multiple Block 0 1 0 MMC Stream 0 1 1 Reserved 1 0 0 SDIO Byte 1 0 1 SDIO Block 1 1 0 Reserved 1 1 1 Reserved * IOSPCMD: SDIO Special Command IOSPCMD SDIO Special Command Type 0 0 Not a SDIO Special Command 0 1 SDIO Suspend Command 1 0 SDIO Resume Command 1 1 Reserved SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 651 36.9.7 MCI Block Register Name: MCI_BLKR Address: 0xFFFA8018 Access: Read/write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 BLKLEN 23 22 21 20 BLKLEN 15 14 13 12 BCNT 7 6 5 4 BCNT * BCNT: MMC/SDIO Block Count - SDIO Byte Count This field determines the number of data byte(s) or block(s) to transfer. The transfer data type and the authorized values for BCNT field are determined by the TRTYP field in the MCI Command Register (MCI_CMDR): TRTYP Type of Transfer BCNT Authorized Values From 1 to 65535: Value 0 corresponds to an infinite block transfer. 0 0 1 MMC/SDCard Multiple Block 1 0 0 SDIO Byte 1 0 1 SDIO Block Other values - From 1 to 512 bytes: Value 0 corresponds to a 512-byte transfer. Values from 0x200 to 0xFFFF are forbidden. From 1 to 511 blocks: Value 0 corresponds to an infinite block transfer. Values from 0x200 to 0xFFFF are forbidden. Reserved. Warning: In SDIO Byte and Block modes, writing to the 7 last bits of BCNT field, is forbidden and may lead to unpredictable results. * BLKLEN: Data Block Length This field determines the size of the data block. This field is also accessible in the MCI Mode Register (MCI_MR). Bits 16 and 17 must be set to 0 if PDCFBYTE is disabled. Note: In SDIO Byte mode, BLKLEN field is not used. 652 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.9.8 MCI Response Register Name: MCI_RSPR Address: 0xFFFA8020 Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 RSP 23 22 21 20 RSP 15 14 13 12 RSP 7 6 5 4 RSP * RSP: Response Note: The response register can be read by N accesses at the same MCI_RSPR or at consecutive addresses (0x20 to 0x2C). N depends on the size of the response. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 653 36.9.9 MCI Receive Data Register Name: MCI_RDR Address: 0xFFFA8030 Access: Read-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 DATA 23 22 21 20 DATA 15 14 13 12 DATA 7 6 5 4 DATA * DATA: Data to Read 654 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.9.10 MCI Transmit Data Register Name: MCI_TDR Address: 0xFFFA8034 Access: Write-only 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 DATA 23 22 21 20 DATA 15 14 13 12 DATA 7 6 5 4 DATA * DATA: Data to Write SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 655 36.9.11 MCI Status Register Name: MCI_SR Address: 0xFFFA8040 Access: Read-only 31 30 29 28 27 26 25 24 UNRE OVRE - - - - - - 23 22 21 20 19 18 17 16 - DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE 15 14 13 12 11 10 9 8 TXBUFE RXBUFF - - - - SDIOIRQB SDIOIRQA 7 6 5 4 3 2 1 0 ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY * CMDRDY: Command Ready 0: A command is in progress. 1: The last command has been sent. Cleared when writing in the MCI_CMDR. * RXRDY: Receiver Ready 0: Data has not yet been received since the last read of MCI_RDR. 1: Data has been received since the last read of MCI_RDR. * TXRDY: Transmit Ready 0: The last data written in MCI_TDR has not yet been transferred in the Shift Register. 1: The last data written in MCI_TDR has been transferred in the Shift Register. * BLKE: Data Block Ended This flag must be used only for Write Operations. 0: A data block transfer is not yet finished. Cleared when reading the MCI_SR. 1: A data block transfer has ended, including the CRC16 Status transmission. In PDC mode (PDCMODE=1), the flag is set when the CRC Status of the last block has been transmitted (TXBUFE already set). Otherwise (PDCMODE=0), the flag is set for each transmitted CRC Status. Refer to the MMC or SD Specification for more details concerning the CRC Status. * DTIP: Data Transfer in Progress 0: No data transfer in progress. 1: The current data transfer is still in progress, including CRC16 calculation. Cleared at the end of the CRC16 calculation. 656 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * NOTBUSY: MCI Not Busy This flag must be used only for Write Operations. A block write operation uses a simple busy signalling of the write operation duration on the data (DAT0) line: during a data transfer block, if the card does not have a free data receive buffer, the card indicates this condition by pulling down the data line (DAT0) to LOW. The card stops pulling down the data line as soon as at least one receive buffer for the defined data transfer block length becomes free. The NOTBUSY flag allows to deal with these different states. 0: The MCI is not ready for new data transfer. Cleared at the end of the card response. 1: The MCI is ready for new data transfer. Set when the busy state on the data line has ended. This corresponds to a free internal data receive buffer of the card. Refer to the MMC or SD Specification for more details concerning the busy behavior. * ENDRX: End of RX Buffer 0: The Receive Counter Register has not reached 0 since the last write in MCI_RCR or MCI_RNCR. 1: The Receive Counter Register has reached 0 since the last write in MCI_RCR or MCI_RNCR. * ENDTX: End of TX Buffer 0: The Transmit Counter Register has not reached 0 since the last write in MCI_TCR or MCI_TNCR. 1: The Transmit Counter Register has reached 0 since the last write in MCI_TCR or MCI_TNCR. Note: BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only transferred from the PDC to the MCI Controller. * RXBUFF: RX Buffer Full 0: MCI_RCR or MCI_RNCR has a value other than 0. 1: Both MCI_RCR and MCI_RNCR have a value of 0. * TXBUFE: TX Buffer Empty 0: MCI_TCR or MCI_TNCR has a value other than 0. 1: Both MCI_TCR and MCI_TNCR have a value of 0. Note: BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only transferred from the PDC to the MCI Controller. * RINDE: Response Index Error 0: No error. 1: A mismatch is detected between the command index sent and the response index received. Cleared when writing in the MCI_CMDR. * RDIRE: Response Direction Error 0: No error. 1: The direction bit from card to host in the response has not been detected. * RCRCE: Response CRC Error 0: No error. 1: A CRC7 error has been detected in the response. Cleared when writing in the MCI_CMDR. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 657 * RENDE: Response End Bit Error 0: No error. 1: The end bit of the response has not been detected. Cleared when writing in the MCI_CMDR. * RTOE: Response Time-out Error 0: No error. 1: The response time-out set by MAXLAT in the MCI_CMDR has been exceeded. Cleared when writing in the MCI_CMDR. * DCRCE: Data CRC Error 0: No error. 1: A CRC16 error has been detected in the last data block. Cleared by reading in the MCI_SR. * DTOE: Data Time-out Error 0: No error. 1: The data time-out set by DTOCYC and DTOMUL in MCI_DTOR has been exceeded. Cleared by reading in the MCI_SR. * OVRE: Overrun 0: No error. 1: At least one 8-bit received data has been lost (not read). Cleared when sending a new data transfer command. * UNRE: Underrun 0: No error. 1: At least one 8-bit data has been sent without valid information (not written). Cleared when sending a new data transfer command. * SDIOIRQA: SDIO Interrupt for Slot A 0: No interrupt detected on SDIO Slot A. 1: A SDIO Interrupt on Slot A has reached. Cleared when reading the MCI_SR. * SDIOIRQB: SDIO Interrupt for Slot B 0: No interrupt detected on SDIO Slot B. 1: A SDIO Interrupt on Slot B has reached. Cleared when reading the MCI_SR. * RXBUFF: RX Buffer Full 0: MCI_RCR or MCI_RNCR has a value other than 0. 1: Both MCI_RCR and MCI_RNCR have a value of 0. * TXBUFE: TX Buffer Empty 0: MCI_TCR or MCI_TNCR has a value other than 0. 1: Both MCI_TCR and MCI_TNCR have a value of 0. 658 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.9.12 MCI Interrupt Enable Register Name: MCI_IER Address: 0xFFFA8044 Access: Write-only 31 30 29 28 27 26 25 24 UNRE OVRE - - - - - - 23 22 21 20 19 18 17 16 - DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE 15 14 13 12 11 10 9 8 TXBUFE RXBUFF - - - - SDIOIRQB SDIOIRQA 7 6 5 4 3 2 1 0 ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY * CMDRDY: Command Ready Interrupt Enable * RXRDY: Receiver Ready Interrupt Enable * TXRDY: Transmit Ready Interrupt Enable * BLKE: Data Block Ended Interrupt Enable * DTIP: Data Transfer in Progress Interrupt Enable * NOTBUSY: Data Not Busy Interrupt Enable * ENDRX: End of Receive Buffer Interrupt Enable * ENDTX: End of Transmit Buffer Interrupt Enable * SDIOIRQA: SDIO Interrupt for Slot A Interrupt Enable * SDIOIRQB: SDIO Interrupt for Slot B Interrupt Enable * RXBUFF: Receive Buffer Full Interrupt Enable * TXBUFE: Transmit Buffer Empty Interrupt Enable * RINDE: Response Index Error Interrupt Enable * RDIRE: Response Direction Error Interrupt Enable * RCRCE: Response CRC Error Interrupt Enable * RENDE: Response End Bit Error Interrupt Enable * RTOE: Response Time-out Error Interrupt Enable * DCRCE: Data CRC Error Interrupt Enable * DTOE: Data Time-out Error Interrupt Enable SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 659 * OVRE: Overrun Interrupt Enable * UNRE: Underrun Interrupt Enable 0: No effect. 1: Enables the corresponding interrupt. 660 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.9.13 MCI Interrupt Disable Register Name: MCI_IDR Address: 0xFFFA8048 Access: Write-only 31 30 29 28 27 26 25 24 UNRE OVRE - - - - - - 23 22 21 20 19 18 17 16 - DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE 15 14 13 12 11 10 9 8 TXBUFE RXBUFF - - - - SDIOIRQB SDIOIRQA 7 6 5 4 3 2 1 0 ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY * CMDRDY: Command Ready Interrupt Disable * RXRDY: Receiver Ready Interrupt Disable * TXRDY: Transmit Ready Interrupt Disable * BLKE: Data Block Ended Interrupt Disable * DTIP: Data Transfer in Progress Interrupt Disable * NOTBUSY: Data Not Busy Interrupt Disable * ENDRX: End of Receive Buffer Interrupt Disable * ENDTX: End of Transmit Buffer Interrupt Disable * SDIOIRQA: SDIO Interrupt for Slot A Interrupt Disable * SDIOIRQB: SDIO Interrupt for Slot B Interrupt Disable * RXBUFF: Receive Buffer Full Interrupt Disable * TXBUFE: Transmit Buffer Empty Interrupt Disable * RINDE: Response Index Error Interrupt Disable * RDIRE: Response Direction Error Interrupt Disable * RCRCE: Response CRC Error Interrupt Disable * RENDE: Response End Bit Error Interrupt Disable * RTOE: Response Time-out Error Interrupt Disable * DCRCE: Data CRC Error Interrupt Disable * DTOE: Data Time-out Error Interrupt Disable SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 661 * OVRE: Overrun Interrupt Disable * UNRE: Underrun Interrupt Disable 0: No effect. 1: Disables the corresponding interrupt. 662 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 36.9.14 MCI Interrupt Mask Register Name: MCI_IMR Address: 0xFFFA804C Access: Read-only 31 30 29 28 27 26 25 24 UNRE OVRE - - - - - - 23 22 21 20 19 18 17 16 - DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE 15 14 13 12 11 10 9 8 TXBUFE RXBUFF - - - - SDIOIRQB SDIOIRQA 7 6 5 4 3 2 1 0 ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY * CMDRDY: Command Ready Interrupt Mask * RXRDY: Receiver Ready Interrupt Mask * TXRDY: Transmit Ready Interrupt Mask * BLKE: Data Block Ended Interrupt Mask * DTIP: Data Transfer in Progress Interrupt Mask * NOTBUSY: Data Not Busy Interrupt Mask * ENDRX: End of Receive Buffer Interrupt Mask * ENDTX: End of Transmit Buffer Interrupt Mask * SDIOIRQA: SDIO Interrupt for Slot A Interrupt Mask * SDIOIRQB: SDIO Interrupt for Slot B Interrupt Mask * RXBUFF: Receive Buffer Full Interrupt Mask * TXBUFE: Transmit Buffer Empty Interrupt Mask * RINDE: Response Index Error Interrupt Mask * RDIRE: Response Direction Error Interrupt Mask * RCRCE: Response CRC Error Interrupt Mask * RENDE: Response End Bit Error Interrupt Mask * RTOE: Response Time-out Error Interrupt Mask * DCRCE: Data CRC Error Interrupt Mask * DTOE: Data Time-out Error Interrupt Mask SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 663 * OVRE: Overrun Interrupt Mask * UNRE: Underrun Interrupt Mask 0: The corresponding interrupt is not enabled. 1: The corresponding interrupt is enabled. 664 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37. Ethernet MAC 10/100 (EMAC) 37.1 Description The EMAC module implements a 10/100 Ethernet MAC compatible with the IEEE 802.3 standard using an address checker, statistics and control registers, receive and transmit blocks, and a DMA interface. The address checker recognizes four specific 48-bit addresses and contains a 64-bit hash register for matching multicast and unicast addresses. It can recognize the broadcast address of all ones, copy all frames, and act on an external address match signal. The statistics register block contains registers for counting various types of event associated with transmit and receive operations. These registers, along with the status words stored in the receive buffer list, enable software to generate network management statistics compatible with IEEE 802.3. 37.2 Block Diagram Figure 37-1. EMAC Block Diagram Address Checker APB Slave Register Interface Statistics Registers MDIO Control Registers DMA Interface RX FIFO TX FIFO Ethernet Receive MII/RMII AHB Master Ethernet Transmit SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 665 37.3 Functional Description The MACB has several clock domains: System bus clock (AHB and APB): DMA and register blocks Transmit clock: transmit block Receive clock: receive and address checker blocks The only system constraint is 160 MHz for the system bus clock, above which MDC would toggle at above 2.5 MHz. The system bus clock must run at least as fast as the receive clock and transmit clock (25 MHz at 100 Mbps, and 2.5 MHZ at 10 Mbps). Figure 37-1 illustrates the different blocks of the EMAC module. The control registers drive the MDIO interface, setup up DMA activity, start frame transmission and select modes of operation such as full- or half-duplex. The receive block checks for valid preamble, FCS, alignment and length, and presents received frames to the address checking block and DMA interface. The transmit block takes data from the DMA interface, adds preamble and, if necessary, pad and FCS, and transmits data according to the CSMA/CD (carrier sense multiple access with collision detect) protocol. The start of transmission is deferred if CRS (carrier sense) is active. If COL (collision) becomes active during transmission, a jam sequence is asserted and the transmission is retried after a random back off. CRS and COL have no effect in full duplex mode. The DMA block connects to external memory through its AHB bus interface. It contains receive and transmit FIFOs for buffering frame data. It loads the transmit FIFO and empties the receive FIFO using AHB bus master operations. Receive data is not sent to memory until the address checking logic has determined that the frame should be copied. Receive or transmit frames are stored in one or more buffers. Receive buffers have a fixed length of 128 bytes. Transmit buffers range in length between 0 and 2047 bytes, and up to 128 buffers are permitted per frame. The DMA block manages the transmit and receive framebuffer queues. These queues can hold multiple frames. 37.3.1 Clock Synchronization module in the EMAC requires that the bus clock (hclk) runs at the speed of the macb_tx/rx_clk at least, which is 25 MHz at 100 Mbps, and 2.5 MHz at 10 Mbps. 37.3.2 Memory Interface Frame data is transferred to and from the EMAC through the DMA interface. All transfers are 32-bit words and may be single accesses or bursts of 2, 3 or 4 words. Burst accesses do not cross sixteen-byte boundaries. Bursts of 4 words are the default data transfer; single accesses or bursts of less than four words may be used to transfer data at the beginning or the end of a buffer. The DMA controller performs six types of operation on the bus. In order of priority, these are: 1. 666 Receive buffer manager write 2. Receive buffer manager read 3. Transmit data DMA read 4. Receive data DMA write 5. Transmit buffer manager read 6. Transmit buffer manager write SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.3.2.1 FIFO The FIFO depths are 128 bytes for receive and 128 bytes for transmit and are a function of the system clock speed, memory latency and network speed. Data is typically transferred into and out of the FIFOs in bursts of four words. For receive, a bus request is asserted when the FIFO contains four words and has space for 28 more. For transmit, a bus request is generated when there is space for four words, or when there is space for 27 words if the next transfer is to be only one or two words. Thus the bus latency must be less than the time it takes to load the FIFO and transmit or receive three words (112 bytes) of data. At 100 Mbit/s, it takes 8960 ns to transmit or receive 112 bytes of data. In addition, six master clock cycles should be allowed for data to be loaded from the bus and to propagate through the FIFOs. For a 133 MHz master clock this takes 45 ns, making the bus latency requirement 8915 ns. 37.3.2.2 Receive Buffers Received frames, including CRC/FCS optionally, are written to receive buffers stored in memory. Each receive buffer is 128 bytes long. The start location for each receive buffer is stored in memory in a list of receive buffer descriptors at a location pointed to by the receive buffer queue pointer register. The receive buffer start location is a word address. For the first buffer of a frame, the start location can be offset by up to three bytes depending on the value written to bits 14 and 15 of the network configuration register. If the start location of the buffer is offset the available length of the first buffer of a frame is reduced by the corresponding number of bytes. Each list entry consists of two words, the first being the address of the receive buffer and the second being the receive status. If the length of a receive frame exceeds the buffer length, the status word for the used buffer is written with zeroes except for the "start of frame" bit and the offset bits, if appropriate. Bit zero of the address field is written to one to show the buffer has been used. The receive buffer manager then reads the location of the next receive buffer and fills that with receive frame data. The final buffer descriptor status word contains the complete frame status. Refer to Table 37-1 for details of the receive buffer descriptor list. Table 37-1. Receive Buffer Descriptor Entry Bit Function Word 0 31:2 Address of beginning of buffer 1 Wrap - marks last descriptor in receive buffer descriptor list. 0 Ownership - needs to be zero for the EMAC to write data to the receive buffer. The EMAC sets this to one once it has successfully written a frame to memory. Software has to clear this bit before the buffer can be used again. Word 1 31 Global all ones broadcast address detected 30 Multicast hash match 29 Unicast hash match 28 External address match 27 Reserved for future use 26 Specific address register 1 match 25 Specific address register 2 match 24 Specific address register 3 match 23 Specific address register 4 match SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 667 Table 37-1. Receive Buffer Descriptor Entry (Continued) Bit Function 22 Type ID match 21 VLAN tag detected (i.e., type id of 0x8100) 20 Priority tag detected (i.e., type id of 0x8100 and null VLAN identifier) 19:17 VLAN priority (only valid if bit 21 is set) 16 Concatenation format indicator (CFI) bit (only valid if bit 21 is set) 15 End of frame - when set the buffer contains the end of a frame. If end of frame is not set, then the only other valid status are bits 12, 13 and 14. 14 Start of frame - when set the buffer contains the start of a frame. If both bits 15 and 14 are set, then the buffer contains a whole frame. 13:12 Receive buffer offset - indicates the number of bytes by which the data in the first buffer is offset from the word address. Updated with the current values of the network configuration register. If jumbo frame mode is enabled through bit 3 of the network configuration register, then bits 13:12 of the receive buffer descriptor entry are used to indicate bits 13:12 of the frame length. 11:0 Length of frame including FCS (if selected). Bits 13:12 are also used if jumbo frame mode is selected. To receive frames, the buffer descriptors must be initialized by writing an appropriate address to bits 31 to 2 in the first word of each list entry. Bit zero must be written with zero. Bit one is the wrap bit and indicates the last entry in the list. The start location of the receive buffer descriptor list must be written to the receive buffer queue pointer register before setting the receive enable bit in the network control register to enable receive. As soon as the receive block starts writing received frame data to the receive FIFO, the receive buffer manager reads the first receive buffer location pointed to by the receive buffer queue pointer register. If the filter block then indicates that the frame should be copied to memory, the receive data DMA operation starts writing data into the receive buffer. If an error occurs, the buffer is recovered. If the current buffer pointer has its wrap bit set or is the 1024th descriptor, the next receive buffer location is read from the beginning of the receive descriptor list. Otherwise, the next receive buffer location is read from the next word in memory. There is an 11-bit counter to count out the 2048 word locations of a maximum length, receive buffer descriptor list. This is added with the value originally written to the receive buffer queue pointer register to produce a pointer into the list. A read of the receive buffer queue pointer register returns the pointer value, which is the queue entry currently being accessed. The counter is reset after receive status is written to a descriptor that has its wrap bit set or rolls over to zero after 1024 descriptors have been accessed. The value written to the receive buffer pointer register may be any word-aligned address, provided that there are at least 2048 word locations available between the pointer and the top of the memory. Section 3.6 of the AMBA 2.0 specification states that bursts should not cross 1K boundaries. As receive buffer manager writes are bursts of two words, to ensure that this does not occur, it is best to write the pointer register with the least three significant bits set to zero. As receive buffers are used, the receive buffer manager sets bit zero of the first word of the descriptor to indicate used. If a receive error is detected the receive buffer currently being written is recovered. Previous buffers are not recovered. Software should search through the used bits in the buffer descriptors to find out how many frames have been received. It should be checking the start-of-frame and end-offrame bits, and not rely on the value returned by the receive buffer queue pointer register which changes continuously as more buffers are used. For CRC errored frames, excessive length frames or length field mismatched frames, all of which are counted in the statistics registers, it is possible that a frame fragment might be stored in a sequence of receive buffers. Software can detect this by looking for start of frame bit set in a buffer following a buffer with no end of frame bit set. 668 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 For a properly working Ethernet system, there should be no excessively long frames or frames greater than 128 bytes with CRC/FCS errors. Collision fragments are less than 128 bytes long. Therefore, it is a rare occurrence to find a frame fragment in a receive buffer. If bit zero is set when the receive buffer manager reads the location of the receive buffer, then the buffer has already been used and cannot be used again until software has processed the frame and cleared bit zero. In this case, the DMA block sets the buffer not available bit in the receive status register and triggers an interrupt. If bit zero is set when the receive buffer manager reads the location of the receive buffer and a frame is being received, the frame is discarded and the receive resource error statistics register is incremented. A receive overrun condition occurs when bus was not granted in time or because HRESP was not OK (bus error). In a receive overrun condition, the receive overrun interrupt is asserted and the buffer currently being written is recovered. The next frame received with an address that is recognized reuses the buffer. If bit 17 of the network configuration register is set, the FCS of received frames shall not be copied to memory. The frame length indicated in the receive status field shall be reduced by four bytes in this case. 37.3.2.3 Transmit Buffer Frames to be transmitted are stored in one or more transmit buffers. Transmit buffers can be between 0 and 2047 bytes long, so it is possible to transmit frames longer than the maximum length specified in IEEE Standard 802.3. Zero length buffers are allowed. The maximum number of buffers permitted for each transmit frame is 128. The start location for each transmit buffer is stored in memory in a list of transmit buffer descriptors at a location pointed to by the transmit buffer queue pointer register. Each list entry consists of two words, the first being the byte address of the transmit buffer and the second containing the transmit control and status. Frames can be transmitted with or without automatic CRC generation. If CRC is automatically generated, pad is also automatically generated to take frames to a minimum length of 64 bytes. Table 37-2 on page 670 defines an entry in the transmit buffer descriptor list. To transmit frames, the buffer descriptors must be initialized by writing an appropriate byte address to bits 31 to 0 in the first word of each list entry. The second transmit buffer descriptor is initialized with control information that indicates the length of the buffer, whether or not it is to be transmitted with CRC and whether the buffer is the last buffer in the frame. After transmission, the control bits are written back to the second word of the first buffer along with the "used" bit and other status information. Bit 31 is the "used" bit which must be zero when the control word is read if transmission is to happen. It is written to one when a frame has been transmitted. Bits 27, 28 and 29 indicate various transmit error conditions. Bit 30 is the "wrap" bit which can be set for any buffer within a frame. If no wrap bit is encountered after 1024 descriptors, the queue pointer rolls over to the start in a similar fashion to the receive queue. The transmit buffer queue pointer register must not be written while transmit is active. If a new value is written to the transmit buffer queue pointer register, the queue pointer resets itself to point to the beginning of the new queue. If transmit is disabled by writing to bit 3 of the network control, the transmit buffer queue pointer register resets to point to the beginning of the transmit queue. Note that disabling receive does not have the same effect on the receive queue pointer. Once the transmit queue is initialized, transmit is activated by writing to bit 9, the Transmit Start bit of the network control register. Transmit is halted when a buffer descriptor with its used bit set is read, or if a transmit error occurs, or by writing to the transmit halt bit of the network control register. (Transmission is suspended if a pause frame is received while the pause enable bit is set in the network configuration register.) Rewriting the start bit while transmission is active is allowed. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 669 Transmission control is implemented with a Tx_go variable which is readable in the transmit status register at bit location 3. The Tx_go variable is reset when: transmit is disabled a buffer descriptor with its ownership bit set is read a new value is written to the transmit buffer queue pointer register bit 10, tx_halt, of the network control register is written there is a transmit error such as too many retries or a transmit underrun. To set tx_go, write to bit 9, tx_start, of the network control register. Transmit halt does not take effect until any ongoing transmit finishes. If a collision occurs during transmission of a multi-buffer frame, transmission automatically restarts from the first buffer of the frame. If a "used" bit is read midway through transmission of a multi-buffer frame, this is treated as a transmit error. Transmission stops, tx_er is asserted and the FCS is bad. If transmission stops due to a transmit error, the transmit queue pointer resets to point to the beginning of the transmit queue. Software needs to re-initialize the transmit queue after a transmit error. If transmission stops due to a "used" bit being read at the start of the frame, the transmission queue pointer is not reset and transmit starts from the same transmit buffer descriptor when the transmit start bit is written Table 37-2. Transmit Buffer Descriptor Entry Bit Function Word 0 31:0 Byte Address of buffer Word 1 Used. Needs to be zero for the EMAC to read data from the transmit buffer. The EMAC sets this to one for the first buffer of a frame once it has been successfully transmitted. 31 Software has to clear this bit before the buffer can be used again. Note: This bit is only set for the first buffer in a frame unlike receive where all buffers have the Used bit set once used. 30 Wrap. Marks last descriptor in transmit buffer descriptor list. 29 Retry limit exceeded, transmit error detected 28 Transmit underrun, occurs either when hresp is not OK (bus error) or the transmit data could not be fetched in time or when buffers are exhausted in mid frame. 27 Buffers exhausted in mid frame 26:17 Reserved 16 No CRC. When set, no CRC is appended to the current frame. This bit only needs to be set for the last buffer of a frame. 15 Last buffer. When set, this bit indicates the last buffer in the current frame has been reached. 14:11 Reserved 10:0 Length of buffer 37.3.3 Transmit Block This block transmits frames in accordance with the Ethernet IEEE 802.3 CSMA/CD protocol. Frame assembly starts by adding preamble and the start frame delimiter. Data is taken from the transmit FIFO a word at a time. Data is transmitted least significant nibble first. If necessary, padding is added to increase the frame length to 60 bytes. CRC is calculated as a 32-bit polynomial. This is inverted and appended to the end of the frame, taking the frame length to a minimum of 64 bytes. If the No CRC bit is set in the second word of the last buffer descriptor of a transmit frame, neither pad nor CRC are appended. In full-duplex mode, frames are transmitted immediately. Back-to-back frames are transmitted at least 96 bit times apart to guarantee the interframe gap. 670 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 In half-duplex mode, the transmitter checks carrier sense. If asserted, it waits for it to de-assert and then starts transmission after the interframe gap of 96 bit times. If the collision signal is asserted during transmission, the transmitter transmits a jam sequence of 32 bits taken from the data register and then retry transmission after the back off time has elapsed. The back-off time is based on an XOR of the 10 least significant bits of the data coming from the transmit FIFO and a 10-bit pseudo random number generator. The number of bits used depends on the number of collisions seen. After the first collision, 1 bit is used, after the second 2, and so on up to 10. Above 10, all 10 bits are used. An error is indicated and no further attempts are made if 16 attempts cause collisions. If transmit DMA underruns, bad CRC is automatically appended using the same mechanism as jam insertion and the tx_er signal is asserted. For a properly configured system, this should never happen. If the back pressure bit is set in the network control register in half duplex mode, the transmit block transmits 64 bits of data, which can consist of 16 nibbles of 1011 or in bit-rate mode 64 1s, whenever it sees an incoming frame to force a collision. This provides a way of implementing flow control in half-duplex mode. 37.3.4 Pause Frame Support The start of an 802.3 pause frame is as follows: Table 37-3. Start of an 802.3 Pause Frame Destination Address Source Address Type (Mac Control Frame) Pause Opcode Pause Time 0x0180C2000001 6 bytes 0x8808 0x0001 2 bytes The network configuration register contains a receive pause enable bit (13). If a valid pause frame is received, the pause time register is updated with the frame's pause time, regardless of its current contents and regardless of the state of the configuration register bit 13. An interrupt (12) is triggered when a pause frame is received, assuming it is enabled in the interrupt mask register. If bit 13 is set in the network configuration register and the value of the pause time register is non-zero, no new frame is transmitted until the pause time register has decremented to zero. The loading of a new pause time, and hence the pausing of transmission, only occurs when the EMAC is configured for full-duplex operation. If the EMAC is configured for half-duplex, there is no transmission pause, but the pause frame received interrupt is still triggered. A valid pause frame is defined as having a destination address that matches either the address stored in specific address register 1 or matches 0x0180C2000001 and has the MAC control frame type ID of 0x8808 and the pause opcode of 0x0001. Pause frames that have FCS or other errors are treated as invalid and are discarded. Valid pause frames received increment the Pause Frame Received statistic register. The pause time register decrements every 512 bit times (i.e., 128 rx_clks in nibble mode) once transmission has stopped. For test purposes, the register decrements every rx_clk cycle once transmission has stopped if bit 12 (retry test) is set in the network configuration register. If the pause enable bit (13) is not set in the network configuration register, then the decrementing occurs regardless of whether transmission has stopped or not. An interrupt (13) is asserted whenever the pause time register decrements to zero (assuming it is enabled in the interrupt mask register). 37.3.5 Receive Block The receive block checks for valid preamble, FCS, alignment and length, presents received frames to the DMA block and stores the frames destination address for use by the address checking block. If, during frame reception, the frame is found to be too long or rx_er is asserted, a bad frame indication is sent to the DMA block. The DMA block then ceases sending data to memory. At the end of frame reception, the receive block indicates to the DMA block whether the frame is good or bad. The DMA block recovers the current receive buffer if the frame was bad. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 671 The receive block signals the register block to increment the alignment error, the CRC (FCS) error, the short frame, long frame, jabber error, the receive symbol error statistics and the length field mismatch statistics. The enable bit for jumbo frames in the network configuration register allows the EMAC to receive jumbo frames of up to 10240 bytes in size. This operation does not form part of the IEEE802.3 specification and is disabled by default. When jumbo frames are enabled, frames received with a frame size greater than 10240 bytes are discarded. 37.3.6 Address Checking Block The address checking (or filter) block indicates to the DMA block which receive frames should be copied to memory. Whether a frame is copied depends on what is enabled in the network configuration register, the state of the external match pin, the contents of the specific address and hash registers and the frame's destination address. In this implementation of the EMAC, the frame's source address is not checked. Provided that bit 18 of the Network Configuration register is not set, a frame is not copied to memory if the EMAC is transmitting in half duplex mode at the time a destination address is received. If bit 18 of the Network Configuration register is set, frames can be received while transmitting in half-duplex mode. Ethernet frames are transmitted a byte at a time, least significant bit first. The first six bytes (48 bits) of an Ethernet frame make up the destination address. The first bit of the destination address, the LSB of the first byte of the frame, is the group/individual bit: this is One for multicast addresses and Zero for unicast. The All Ones address is the broadcast address, and a special case of multicast. The EMAC supports recognition of four specific addresses. Each specific address requires two registers, specific address register bottom and specific address register top. Specific address register bottom stores the first four bytes of the destination address and specific address register top contains the last two bytes. The addresses stored can be specific, group, local or universal. The destination address of received frames is compared against the data stored in the specific address registers once they have been activated. The addresses are deactivated at reset or when their corresponding specific address register bottom is written. They are activated when specific address register top is written. If a receive frame address matches an active address, the frame is copied to memory. The following example illustrates the use of the address match registers for a MAC address of 21:43:65:87:A9:CB. Preamble 55 SFD D5 DA (Octet0 - LSB) 21 DA(Octet 1) 43 DA(Octet 2) 65 DA(Octet 3) 87 DA(Octet 4) A9 DA (Octet5 - MSB) CB SA (LSB) 00 SA 00 SA 00 SA 00 SA 00 SA (MSB) 43 SA (LSB) 21 672 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 The sequence above shows the beginning of an Ethernet frame. Byte order of transmission is from top to bottom as shown. For a successful match to specific address 1, the following address matching registers must be set up: Base address + 0x98 0x87654321 (Bottom) Base address + 0x9C 0x0000CBA9 (Top) And for a successful match to the Type ID register, the following should be set up: Base address + 0xB8 0x00004321 37.3.7 Broadcast Address The broadcast address of 0xFFFFFFFFFFFF is recognized if the `no broadcast' bit in the network configuration register is zero. 37.3.8 Hash Addressing The hash address register is 64 bits long and takes up two locations in the memory map. The least significant bits are stored in hash register bottom and the most significant bits in hash register top. The unicast hash enable and the multicast hash enable bits in the network configuration register enable the reception of hash matched frames. The destination address is reduced to a 6-bit index into the 64-bit hash register using the following hash function. The hash function is an exclusive or of every sixth bit of the destination address. hash_index[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47] hash_index[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46] hash_index[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45] hash_index[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44] hash_index[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43] hash_index[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42] da[0] represents the least significant bit of the first byte received, that is, the multicast/unicast indicator, and da[47] represents the most significant bit of the last byte received. If the hash index points to a bit that is set in the hash register, then the frame is matched according to whether the frame is multicast or unicast. A multicast match is signalled if the multicast hash enable bit is set. da[0] is 1 and the hash index points to a bit set in the hash register. A unicast match is signalled if the unicast hash enable bit is set. da[0] is 0 and the hash index points to a bit set in the hash register. To receive all multicast frames, the hash register should be set with all ones and the multicast hash enable bit should be set in the network configuration register. 37.3.9 Copy All Frames (or Promiscuous Mode) If the copy all frames bit is set in the network configuration register, then all non-errored frames are copied to memory. For example, frames that are too long, too short, or have FCS errors or rx_er asserted during reception are discarded and all others are received. Frames with FCS errors are copied to memory if bit 19 in the network configuration register is set. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 673 37.3.10 Type ID Checking The contents of the type_id register are compared against the length/type ID of received frames (i.e., bytes 13 and 14). Bit 22 in the receive buffer descriptor status is set if there is a match. The reset state of this register is zero which is unlikely to match the length/type ID of any valid Ethernet frame. Note: A type ID match does not affect whether a frame is copied to memory. 37.3.11 VLAN Support An Ethernet encoded 802.1Q VLAN tag looks like this: Table 37-4. 802.1Q VLAN Tag TPID (Tag Protocol Identifier) 16 bits TCI (Tag Control Information) 16 bits 0x8100 First 3 bits priority, then CFI bit, last 12 bits VID The VLAN tag is inserted at the 13th byte of the frame, adding an extra four bytes to the frame. If the VID (VLAN identifier) is null (0x000), this indicates a priority-tagged frame. The MAC can support frame lengths up to 1536 bytes, 18 bytes more than the original Ethernet maximum frame length of 1518 bytes. This is achieved by setting bit 8 in the network configuration register. The following bits in the receive buffer descriptor status word give information about VLAN tagged frames: Bit 21 set if receive frame is VLAN tagged (i.e., type id of 0x8100) Bit 20 set if receive frame is priority tagged (i.e., type id of 0x8100 and null VID). (If bit 20 is set bit 21 is set also.) Bit 19, 18 and 17 set to priority if bit 21 is set Bit 16 set to CFI if bit 21 is set 37.3.12 PHY Maintenance The register EMAC_MAN enables the EMAC to communicate with a PHY by means of the MDIO interface. It is used during auto-negotiation to ensure that the EMAC and the PHY are configured for the same speed and duplex configuration. The PHY maintenance register is implemented as a shift register. Writing to the register starts a shift operation which is signalled as complete when bit two is set in the network status register (about 2000 MCK cycles later when bit ten is set to zero, and bit eleven is set to one in the network configuration register). An interrupt is generated as this bit is set. During this time, the MSB of the register is output on the MDIO pin and the LSB updated from the MDIO pin with each MDC cycle. This causes transmission of a PHY management frame on MDIO. Reading during the shift operation returns the current contents of the shift register. At the end of management operation, the bits have shifted back to their original locations. For a read operation, the data bits are updated with data read from the PHY. It is important to write the correct values to the register to ensure a valid PHY management frame is produced. The MDIO interface can read IEEE 802.3 clause 45 PHYs as well as clause 22 PHYs. To read clause 45 PHYs, bits[31:28] should be written as 0x0011. For a description of MDC generation, see the network configuration register in the "Network Control Register" on page 680. 37.3.13 Media Independent Interface The Ethernet MAC is capable of interfacing to both RMII and MII Interfaces. The RMII bit in the EMAC_USRIO register controls the interface that is selected. When this bit is set, the RMII interface is selected, else the MII interface is selected. 674 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 The MII and RMII interface are capable of both 10Mb/s and 100Mb/s data rates as described in the IEEE 802.3u standard. The signals used by the MII and RMII interfaces are described in Table 37-5. Table 37-5. Pin Configuration Pin Name MII RMII ETXCK_EREFCK ETXCK: Transmit Clock EREFCK: Reference Clock ECRS ECRS: Carrier Sense ECOL ECOL: Collision Detect ERXDV ERXDV: Data Valid ECRSDV: Carrier Sense/Data Valid ERX0-ERX3 ERX0-ERX3: 4-bit Receive Data ERX0-ERX1: 2-bit Receive Data ERXER ERXER: Receive Error ERXER: Receive Error ERXCK ERXCK: Receive Clock ETXEN ETXEN: Transmit Enable ETXEN: Transmit Enable ETX0-ETX3 ETX0-ETX3: 4-bit Transmit Data ETX0-ETX1: 2-bit Transmit Data ETXER ETXER: Transmit Error The intent of the RMII is to provide a reduced pin count alternative to the IEEE 802.3u MII. It uses 2 bits for transmit (ETX0 and ETX1) and two bits for receive (ERX0 and ERX1). There is a Transmit Enable (ETXEN), a Receive Error (ERXER), a Carrier Sense (ECRS_DV), and a 50 MHz Reference Clock (ETXCK_EREFCK) for 100Mb/s data rate. 37.3.13.1 RMII Transmit and Receive Operation The same signals are used internally for both the RMII and the MII operations. The RMII maps these signals in a more pin-efficient manner. The transmit and receive bits are converted from a 4-bit parallel format to a 2-bit parallel scheme that is clocked at twice the rate. The carrier sense and data valid signals are combined into the ECRSDV signal. This signal contains information on carrier sense, FIFO status, and validity of the data. Transmit error bit (ETXER) and collision detect (ECOL) are not used in RMII mode. 37.4 Programming Interface 37.4.1 Initialization 37.4.1.1 Configuration Initialization of the EMAC configuration (e.g., loop-back mode, frequency ratios) must be done while the transmit and receive circuits are disabled. See the description of the network control register and network configuration register earlier in this document. To change loop-back mode, the following sequence of operations must be followed: 1. Write to network control register to disable transmit and receive circuits. 2. Write to network control register to change loop-back mode. 3. Write to network control register to re-enable transmit or receive circuits. Note: These writes to network control register cannot be combined in any way. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 675 37.4.1.2 Receive Buffer List Receive data is written to areas of data (i.e., buffers) in system memory. These buffers are listed in another data structure that also resides in main memory. This data structure (receive buffer queue) is a sequence of descriptor entries as defined in "Receive Buffer Descriptor Entry" on page 667. It points to this data structure. Figure 37-2. Receive Buffer List Receive Buffer 0 Receive Buffer Queue Pointer (MAC Register) Receive Buffer 1 Receive Buffer N Receive Buffer Descriptor List (In memory) (In memory) To create the list of buffers: 1. Allocate a number (n) of buffers of 128 bytes in system memory. 2. Allocate an area 2n words for the receive buffer descriptor entry in system memory and create n entries in this list. Mark all entries in this list as owned by EMAC, i.e., bit 0 of word 0 set to 0. 3. If less than 1024 buffers are defined, the last descriptor must be marked with the wrap bit (bit 1 in word 0 set to 1). 4. Write address of receive buffer descriptor entry to EMAC register receive_buffer queue pointer. 5. The receive circuits can then be enabled by writing to the address recognition registers and then to the network control register. 37.4.1.3 Transmit Buffer List Transmit data is read from areas of data (the buffers) in system memory These buffers are listed in another data structure that also resides in main memory. This data structure (Transmit Buffer Queue) is a sequence of descriptor entries (as defined in Table 37-2 on page 670) that points to this data structure. To create this list of buffers: 676 1. Allocate a number (n) of buffers of between 1 and 2047 bytes of data to be transmitted in system memory. Up to 128 buffers per frame are allowed. 2. Allocate an area 2n words for the transmit buffer descriptor entry in system memory and create N entries in this list. Mark all entries in this list as owned by EMAC, i.e., bit 31 of word 1 set to 0. 3. If fewer than 1024 buffers are defined, the last descriptor must be marked with the wrap bit -- bit 30 in word 1 set to 1. 4. Write address of transmit buffer descriptor entry to EMAC register transmit_buffer queue pointer. 5. The transmit circuits can then be enabled by writing to the network control register. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.4.1.4 Address Matching The EMAC register-pair hash address and the four specific address register-pairs must be written with the required values. Each register-pair comprises a bottom register and top register, with the bottom register being written first. The address matching is disabled for a particular register-pair after the bottom-register has been written and reenabled when the top register is written. See "Address Checking Block" on page 672. for details of address matching. Each register-pair may be written at any time, regardless of whether the receive circuits are enabled or disabled. 37.4.1.5 Interrupts There are 14 interrupt conditions that are detected within the EMAC. These are ORed to make a single interrupt. Depending on the overall system design, this may be passed through a further level of interrupt collection (interrupt controller). On receipt of the interrupt signal, the CPU enters the interrupt handler (Refer to the Interrupt Controller). To ascertain which interrupt has been generated, read the interrupt status register. Note that this register clears itself when read. At reset, all interrupts are disabled. To enable an interrupt, write to interrupt enable register with the pertinent interrupt bit set to 1. To disable an interrupt, write to interrupt disable register with the pertinent interrupt bit set to 1. To check whether an interrupt is enabled or disabled, read interrupt mask register: if the bit is set to 1, the interrupt is disabled. 37.4.1.6 Transmitting Frames To set up a frame for transmission: 1. Enable transmit in the network control register. 2. Allocate an area of system memory for transmit data. This does not have to be contiguous, varying byte lengths can be used as long as they conclude on byte borders. 3. Set up the transmit buffer list. 4. Set the network control register to enable transmission and enable interrupts. 5. Write data for transmission into these buffers. 6. Write the address to transmit buffer descriptor queue pointer. 7. Write control and length to word one of the transmit buffer descriptor entry. 8. Write to the transmit start bit in the network control register. 37.4.1.7 Receiving Frames When a frame is received and the receive circuits are enabled, the EMAC checks the address and, in the following cases, the frame is written to system memory: if it matches one of the four specific address registers. if it matches the hash address function. if it is a broadcast address (0xFFFFFFFFFFFF) and broadcasts are allowed. if the EMAC is configured to copy all frames. The register receive buffer queue pointer points to the next entry (see Table 37-1 on page 667) and the EMAC uses this as the address in system memory to write the frame to. Once the frame has been completely and successfully received and written to system memory, the EMAC then updates the receive buffer descriptor entry with the reason for the address match and marks the area as being owned by software. Once this is complete an interrupt receive complete is set. Software is then responsible for handling the data in the buffer and then releasing the buffer by writing the ownership bit back to 0. If the EMAC is unable to write the data at a rate to match the incoming frame, then an interrupt receive overrun is set. If there is no receive buffer available, i.e., the next buffer is still owned by software, the interrupt receive buffer not available is set. If the frame is not successfully received, a statistic register is incremented and the frame is discarded without informing software. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 677 37.5 Ethernet MAC 10/100 (EMAC) User Interface Table 37-6. Register Mapping Offset Register Name Access Reset 0x00 Network Control Register EMAC_NCR Read/Write 0 0x04 Network Configuration Register EMAC_NCFG Read/Write 0x800 0x08 Network Status Register EMAC_NSR Read-only - 0x0C Reserved - - - 0x10 Reserved - - - 0x14 Transmit Status Register EMAC_TSR Read/Write 0x0000_0000 0x18 Receive Buffer Queue Pointer Register EMAC_RBQP Read/Write 0x0000_0000 0x1C Transmit Buffer Queue Pointer Register EMAC_TBQP Read/Write 0x0000_0000 0x20 Receive Status Register EMAC_RSR Read/Write 0x0000_0000 0x24 Interrupt Status Register EMAC_ISR Read/Write 0x0000_0000 0x28 Interrupt Enable Register EMAC_IER Write-only - 0x2C Interrupt Disable Register EMAC_IDR Write-only - 0x30 Interrupt Mask Register EMAC_IMR Read-only 0x0000_3FFF 0x34 Phy Maintenance Register EMAC_MAN Read/Write 0x0000_0000 0x38 Pause Time Register EMAC_PTR Read/Write 0x0000_0000 0x3C Pause Frames Received Register EMAC_PFR Read/Write 0x0000_0000 0x40 Frames Transmitted Ok Register EMAC_FTO Read/Write 0x0000_0000 0x44 Single Collision Frames Register EMAC_SCF Read/Write 0x0000_0000 0x48 Multiple Collision Frames Register EMAC_MCF Read/Write 0x0000_0000 0x4C Frames Received Ok Register EMAC_FRO Read/Write 0x0000_0000 0x50 Frame Check Sequence Errors Register EMAC_FCSE Read/Write 0x0000_0000 0x54 Alignment Errors Register EMAC_ALE Read/Write 0x0000_0000 0x58 Deferred Transmission Frames Register EMAC_DTF Read/Write 0x0000_0000 0x5C Late Collisions Register EMAC_LCOL Read/Write 0x0000_0000 0x60 Excessive Collisions Register EMAC_ECOL Read/Write 0x0000_0000 0x64 Transmit Underrun Errors Register EMAC_TUND Read/Write 0x0000_0000 0x68 Carrier Sense Errors Register EMAC_CSE Read/Write 0x0000_0000 0x6C Receive Resource Errors Register EMAC_RRE Read/Write 0x0000_0000 0x70 Receive Overrun Errors Register EMAC_ROV Read/Write 0x0000_0000 0x74 Receive Symbol Errors Register EMAC_RSE Read/Write 0x0000_0000 0x78 Excessive Length Errors Register EMAC_ELE Read/Write 0x0000_0000 0x7C Receive Jabbers Register EMAC_RJA Read/Write 0x0000_0000 0x80 Undersize Frames Register EMAC_USF Read/Write 0x0000_0000 0x84 SQE Test Errors Register EMAC_STE Read/Write 0x0000_0000 0x88 Received Length Field Mismatch Register EMAC_RLE Read/Write 0x0000_0000 678 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 37-6. Register Mapping (Continued) Offset Register Name Access Reset 0x90 Hash Register Bottom [31:0] Register EMAC_HRB Read/Write 0x0000_0000 0x94 Hash Register Top [63:32] Register EMAC_HRT Read/Write 0x0000_0000 0x98 Specific Address 1 Bottom Register EMAC_SA1B Read/Write 0x0000_0000 0x9C Specific Address 1 Top Register EMAC_SA1T Read/Write 0x0000_0000 0xA0 Specific Address 2 Bottom Register EMAC_SA2B Read/Write 0x0000_0000 0xA4 Specific Address 2 Top Register EMAC_SA2T Read/Write 0x0000_0000 0xA8 Specific Address 3 Bottom Register EMAC_SA3B Read/Write 0x0000_0000 0xAC Specific Address 3 Top Register EMAC_SA3T Read/Write 0x0000_0000 0xB0 Specific Address 4 Bottom Register EMAC_SA4B Read/Write 0x0000_0000 0xB4 Specific Address 4 Top Register EMAC_SA4T Read/Write 0x0000_0000 0xB8 Type ID Checking Register EMAC_TID Read/Write 0x0000_0000 0xC0 User Input/Output Register EMAC_USRIO Read/Write 0x0000_0000 0xC8-0xFC Reserved - - - SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 679 37.5.1 Network Control Register Name: EMAC_NCR Address: 0xFFFC4000 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 THALT 9 TSTART 8 BP 7 WESTAT 6 INCSTAT 5 CLRSTAT 4 MPE 3 TE 2 RE 1 LLB 0 LB * LB: Loopback Asserts the loopback signal to the PHY. * LLB: Loopback local Connects txd to rxd, tx_en to rx_dv, forces full duplex and drives rx_clk and tx_clk with pclk divided by 4. rx_clk and tx_clk may glitch as the EMAC is switched into and out of internal loop back. It is important that receive and transmit circuits have already been disabled when making the switch into and out of internal loop back. * RE: Receive enable When set, enables the EMAC to receive data. When reset, frame reception stops immediately and the receive FIFO is cleared. The receive queue pointer register is unaffected. * TE: Transmit enable When set, enables the Ethernet transmitter to send data. When reset transmission, stops immediately, the transmit FIFO and control registers are cleared and the transmit queue pointer register resets to point to the start of the transmit descriptor list. * MPE: Management port enable Set to one to enable the management port. When zero, forces MDIO to high impedance state and MDC low. * CLRSTAT: Clear statistics registers This bit is write only. Writing a one clears the statistics registers. * INCSTAT: Increment statistics registers This bit is write only. Writing a one increments all the statistics registers by one for test purposes. * WESTAT: Write enable for statistics registers Setting this bit to one makes the statistics registers writable for functional test purposes. * BP: Back Pressure If set in half duplex mode, forces collisions on all received frames. 680 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * TSTART: Start transmission Writing one to this bit starts transmission. * THALT: Transmit Halt Writing one to this bit halts transmission as soon as any ongoing frame transmission ends. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 681 37.5.2 Network Configuration Register Name: EMAC_NCFG Address: 0xFFFC4004 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 IRXFCS 18 EFRHD 17 DRFCS 16 RLCE 14 13 PAE 12 RTY 11 10 9 - 8 BIG 5 NBC 4 CAF 3 JFRAME 2 - 1 FD 0 SPD 15 RBOF 7 UNI 6 MTI CLK * SPD: Speed Set to 1 to indicate 100 Mbit/s operation, 0 for 10 Mbit/s. The value of this pin is reflected on the speed pin. * FD: Full Duplex If set to 1, the transmit block ignores the state of collision and carrier sense and allows receive while transmitting. Also controls the half_duplex pin. * CAF: Copy All Frames When set to 1, all valid frames are received. * JFRAME: Jumbo Frames Set to one to enable jumbo frames of up to 10240 bytes to be accepted. * NBC: No Broadcast When set to 1, frames addressed to the broadcast address of all ones are not received. * MTI: Multicast Hash Enable When set, multicast frames are received when the 6-bit hash function of the destination address points to a bit that is set in the hash register. * UNI: Unicast Hash Enable When set, unicast frames are received when the 6-bit hash function of the destination address points to a bit that is set in the hash register. * BIG: Receive 1536 Bytes Frames Setting this bit means the EMAC receives frames up to 1536 bytes in length. Normally, the EMAC would reject any frame above 1518 bytes. 682 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * CLK: MDC Clock Divider Set according to system clock speed. This determines by what number system clock is divided to generate MDC. For conformance with 802.3, MDC must not exceed 2.5MHz (MDC is only active during MDIO read and write operations). CLK MDC 00 MCK divided by 8 (MCK up to 20 MHz) 01 MCK divided by 16 (MCK up to 40 MHz) 10 MCK divided by 32 (MCK up to 80 MHz) 11 MCK divided by 64 (MCK up to 160 MHz) * RTY: Retry Test Must be set to zero for normal operation. If set to one, the back off between collisions is always one slot time. Setting this bit to one helps testing the too many retries condition. Also used in the pause frame tests to reduce the pause counters decrement time from 512 bit times, to every rx_clk cycle. * PAE: Pause Enable When set, transmission pauses when a valid pause frame is received. * RBOF: Receive Buffer Offset Indicates the number of bytes by which the received data is offset from the start of the first receive buffer. RBOF Offset 00 No offset from start of receive buffer 01 One-byte offset from start of receive buffer 10 Two-byte offset from start of receive buffer 11 Three-byte offset from start of receive buffer * RLCE: Receive Length field Checking Enable When set, frames with measured lengths shorter than their length fields are discarded. Frames containing a type ID in bytes 13 and 14 -- length/type ID = 0600 -- are not be counted as length errors. * DRFCS: Discard Receive FCS When set, the FCS field of received frames are not be copied to memory. * EFRHD: Enable Frames to be received in half-duplex mode while transmitting. * IRXFCS: Ignore RX FCS When set, frames with FCS/CRC errors are not rejected and no FCS error statistics are counted. For normal operation, this bit must be set to 0. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 683 37.5.3 Network Status Register Name: EMAC_NSR Address: 0xFFFC4008 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 IDLE 1 MDIO 0 - * MDIO Returns status of the mdio_in pin. Use the PHY maintenance register for reading managed frames rather than this bit. * IDLE 0: The PHY logic is running. 1: The PHY management logic is idle (i.e., has completed). 684 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.4 Transmit Status Register Name: EMAC_TSR Address: 0xFFFC4014 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 UND 5 COMP 4 BEX 3 TGO 2 RLE 1 COL 0 UBR This register, when read, provides details of the status of a transmit. Once read, individual bits may be cleared by writing 1 to them. It is not possible to set a bit to 1 by writing to the register. * UBR: Used Bit Read Set when a transmit buffer descriptor is read with its used bit set. Cleared by writing a one to this bit. * COL: Collision Occurred Set by the assertion of collision. Cleared by writing a one to this bit. * RLE: Retry Limit exceeded Cleared by writing a one to this bit. * TGO: Transmit Go If high transmit is active. * BEX: Buffers exhausted mid frame If the buffers run out during transmission of a frame, then transmission stops, FCS shall be bad and tx_er asserted. Cleared by writing a one to this bit. * COMP: Transmit Complete Set when a frame has been transmitted. Cleared by writing a one to this bit. * UND: Transmit Underrun Set when transmit DMA was not able to read data from memory, either because the bus was not granted in time, because a not OK hresp(bus error) was returned or because a used bit was read midway through frame transmission. If this occurs, the transmitter forces bad CRC. Cleared by writing a one to this bit. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 685 37.5.5 Receive Buffer Queue Pointer Register Name: EMAC_RBQP Address: 0xFFFC4018 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 - 0 - ADDR 23 22 21 20 ADDR 15 14 13 12 ADDR 7 6 5 4 ADDR This register points to the entry in the receive buffer queue (descriptor list) currently being used. It is written with the start location of the receive buffer descriptor list. The lower order bits increment as buffers are used up and wrap to their original values after either 1024 buffers or when the wrap bit of the entry is set. Reading this register returns the location of the descriptor currently being accessed. This value increments as buffers are used. Software should not use this register for determining where to remove received frames from the queue as it constantly changes as new frames are received. Software should instead work its way through the buffer descriptor queue checking the used bits. Receive buffer writes also comprise bursts of two words and, as with transmit buffer reads, it is recommended that bit 2 is always written with zero to prevent a burst crossing a 1K boundary, in violation of section 3.6 of the AMBA specification. * ADDR: Receive buffer queue pointer address Written with the address of the start of the receive queue, reads as a pointer to the current buffer being used. 686 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.6 Transmit Buffer Queue Pointer Register Name: EMAC_TBQP Address: 0xFFFC401C Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 - 0 - ADDR 23 22 21 20 ADDR 15 14 13 12 ADDR 7 6 5 4 ADDR This register points to the entry in the transmit buffer queue (descriptor list) currently being used. It is written with the start location of the transmit buffer descriptor list. The lower order bits increment as buffers are used up and wrap to their original values after either 1024 buffers or when the wrap bit of the entry is set. This register can only be written when bit 3 in the transmit status register is low. As transmit buffer reads consist of bursts of two words, it is recommended that bit 2 is always written with zero to prevent a burst crossing a 1K boundary, in violation of section 3.6 of the AMBA specification. * ADDR: Transmit buffer queue pointer address Written with the address of the start of the transmit queue, reads as a pointer to the first buffer of the frame being transmitted or about to be transmitted. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 687 37.5.7 Receive Status Register Name: EMAC_RSR Address: 0xFFFC4020 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 OVR 1 REC 0 BNA This register, when read, provides details of the status of a receive. Once read, individual bits may be cleared by writing 1 to them. It is not possible to set a bit to 1 by writing to the register. * BNA: Buffer Not Available An attempt was made to get a new buffer and the pointer indicated that it was owned by the processor. The DMA rereads the pointer each time a new frame starts until a valid pointer is found. This bit is set at each attempt that fails even if it has not had a successful pointer read since it has been cleared. Cleared by writing a one to this bit. * REC: Frame Received One or more frames have been received and placed in memory. Cleared by writing a one to this bit. * OVR: Receive Overrun The DMA block was unable to store the receive frame to memory, either because the bus was not granted in time or because a not OK hresp(bus error) was returned. The buffer is recovered if this happens. Cleared by writing a one to this bit. 688 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.8 Interrupt Status Register Name: EMAC_ISR Address: 0xFFFC4024 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 PTZ 12 PFR 11 HRESP 10 ROVR 9 - 8 - 7 TCOMP 6 TXERR 5 RLE 4 TUND 3 TXUBR 2 RXUBR 1 RCOMP 0 MFD * MFD: Management Frame Done The PHY maintenance register has completed its operation. Cleared on read. * RCOMP: Receive Complete A frame has been stored in memory. Cleared on read. * RXUBR: Receive Used Bit Read Set when a receive buffer descriptor is read with its used bit set. Cleared on read. * TXUBR: Transmit Used Bit Read Set when a transmit buffer descriptor is read with its used bit set. Cleared on read. * TUND: Ethernet Transmit Buffer Underrun The transmit DMA did not fetch frame data in time for it to be transmitted or hresp returned not OK. Also set if a used bit is read mid-frame or when a new transmit queue pointer is written. Cleared on read. * RLE: Retry Limit Exceeded Cleared on read. * TXERR: Transmit Error Transmit buffers exhausted in mid-frame - transmit error. Cleared on read. * TCOMP: Transmit Complete Set when a frame has been transmitted. Cleared on read. * ROVR: Receive Overrun Set when the receive overrun status bit gets set. Cleared on read. * HRESP: Hresp not OK Set when the DMA block sees a bus error. Cleared on read. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 689 * PFR: Pause Frame Received Indicates a valid pause has been received. Cleared on a read. * PTZ: Pause Time Zero Set when the pause time register, 0x38 decrements to zero. Cleared on a read. 690 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.9 Interrupt Enable Register Name: EMAC_IER Address: 0xFFFC4028 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 PTZ 12 PFR 11 HRESP 10 ROVR 9 - 8 - 7 TCOMP 6 TXERR 5 RLE 4 TUND 3 TXUBR 2 RXUBR 1 RCOMP 0 MFD * MFD: Management Frame sent Enable management done interrupt. * RCOMP: Receive Complete Enable receive complete interrupt. * RXUBR: Receive Used Bit Read Enable receive used bit read interrupt. * TXUBR: Transmit Used Bit Read Enable transmit used bit read interrupt. * TUND: Ethernet Transmit Buffer Underrun Enable transmit underrun interrupt. * RLE: Retry Limit Exceeded Enable retry limit exceeded interrupt. * TXERR Enable transmit buffers exhausted in mid-frame interrupt. * TCOMP: Transmit Complete Enable transmit complete interrupt. * ROVR: Receive Overrun Enable receive overrun interrupt. * HRESP: Hresp not OK Enable Hresp not OK interrupt. * PFR: Pause Frame Received Enable pause frame received interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 691 * PTZ: Pause Time Zero Enable pause time zero interrupt. 692 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.10 Interrupt Disable Register Name: EMAC_IDR Address: 0xFFFC402C Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 PTZ 12 PFR 11 HRESP 10 ROVR 9 - 8 - 7 TCOMP 6 TXERR 5 RLE 4 TUND 3 TXUBR 2 RXUBR 1 RCOMP 0 MFD * MFD: Management Frame sent Disable management done interrupt. * RCOMP: Receive Complete Disable receive complete interrupt. * RXUBR: Receive Used Bit Read Disable receive used bit read interrupt. * TXUBR: Transmit Used Bit Read Disable transmit used bit read interrupt. * TUND: Ethernet Transmit Buffer Underrun Disable transmit underrun interrupt. * RLE: Retry Limit Exceeded Disable retry limit exceeded interrupt. * TXERR Disable transmit buffers exhausted in mid-frame interrupt. * TCOMP: Transmit Complete Disable transmit complete interrupt. * ROVR: Receive Overrun Disable receive overrun interrupt. * HRESP: Hresp not OK Disable Hresp not OK interrupt. * PFR: Pause Frame Received Disable pause frame received interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 693 * PTZ: Pause Time Zero Disable pause time zero interrupt. 694 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.11 Interrupt Mask Register Name: EMAC_IMR Address: 0xFFFC4030 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 PTZ 12 PFR 11 HRESP 10 ROVR 9 - 8 - 7 TCOMP 6 TXERR 5 RLE 4 TUND 3 TXUBR 2 RXUBR 1 RCOMP 0 MFD * MFD: Management Frame sent Management done interrupt masked. * RCOMP: Receive Complete Receive complete interrupt masked. * RXUBR: Receive Used Bit Read Receive used bit read interrupt masked. * TXUBR: Transmit Used Bit Read Transmit used bit read interrupt masked. * TUND: Ethernet Transmit Buffer Underrun Transmit underrun interrupt masked. * RLE: Retry Limit Exceeded Retry limit exceeded interrupt masked. * TXERR Transmit buffers exhausted in mid-frame interrupt masked. * TCOMP: Transmit Complete Transmit complete interrupt masked. * ROVR: Receive Overrun Receive overrun interrupt masked. * HRESP: Hresp not OK Hresp not OK interrupt masked. * PFR: Pause Frame Received Pause frame received interrupt masked. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 695 * PTZ: Pause Time Zero Pause time zero interrupt masked. 696 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.12 PHY Maintenance Register Name: EMAC_MAN Address: 0xFFFC4034 Access: Read/Write 31 30 29 SOF 28 27 26 RW 23 PHYA 22 15 14 21 13 25 24 17 16 PHYA 20 REGA 19 18 CODE 12 11 10 9 8 3 2 1 0 DATA 7 6 5 4 DATA * DATA For a write operation this is written with the data to be written to the PHY. After a read operation this contains the data read from the PHY. * CODE: Must be written to 10. Reads as written. * REGA: Register Address Specifies the register in the PHY to access. * PHYA: PHY Address * RW: Read/Write 10 is read; 01 is write. Any other value is an invalid PHY management frame * SOF: Start of frame Must be written 01 for a valid frame. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 697 37.5.13 Pause Time Register Name: EMAC_PTR Address: 0xFFFC4038 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 PTIME 7 6 5 4 PTIME * PTIME: Pause Time Stores the current value of the pause time register which is decremented every 512 bit times. 698 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.14 Hash Register Bottom Name: EMAC_HRB Address: 0xFFFC4090 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 ADDR 23 22 21 20 ADDR 15 14 13 12 ADDR 7 6 5 4 ADDR * ADDR: Bits 31:0 of the hash address register. See "Hash Addressing" on page 673. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 699 37.5.15 Hash Register Top Name: EMAC_HRT Address: 0xFFFC4094 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 ADDR 23 22 21 20 ADDR 15 14 13 12 ADDR 7 6 5 4 ADDR * ADDR: Bits 63:32 of the hash address register. See "Hash Addressing" on page 673. 700 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.16 Specific Address 1 Bottom Register Name: EMAC_SA1B Address: 0xFFFC4098 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 ADDR 23 22 21 20 ADDR 15 14 13 12 ADDR 7 6 5 4 ADDR * ADDR Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 701 37.5.17 Specific Address 1 Top Register Name: EMAC_SA1T Address: 0xFFFC409C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 ADDR 7 6 5 4 ADDR * ADDR The most significant bits of the destination address, that is bits 47 to 32. 702 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.18 Specific Address 2 Bottom Register Name: EMAC_SA2B Address: 0xFFFC40A0 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 ADDR 23 22 21 20 ADDR 15 14 13 12 ADDR 7 6 5 4 ADDR * ADDR Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 703 37.5.19 Specific Address 2 Top Register Name: EMAC_SA2T Address: 0xFFFC40A4 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 ADDR 7 6 5 4 ADDR * ADDR The most significant bits of the destination address, that is bits 47 to 32. 704 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.20 Specific Address 3 Bottom Register Name: EMAC_SA3B Address: 0xFFFC40A8 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 ADDR 23 22 21 20 ADDR 15 14 13 12 ADDR 7 6 5 4 ADDR * ADDR Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 705 37.5.21 Specific Address 3 Top Register Name: EMAC_SA3T Address: 0xFFFC40AC Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 ADDR 7 6 5 4 ADDR * ADDR The most significant bits of the destination address, that is bits 47 to 32. 706 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.22 Specific Address 4 Bottom Register Name: EMAC_SA4B Address: 0xFFFC40B0 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 ADDR 23 22 21 20 ADDR 15 14 13 12 ADDR 7 6 5 4 ADDR * ADDR Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 707 37.5.23 Specific Address 4 Top Register Name: EMAC_SA4T Address: 0xFFFC40B4 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 ADDR 7 6 5 4 ADDR * ADDR The most significant bits of the destination address, that is bits 47 to 32. 708 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.24 Type ID Checking Register Name: EMAC_TID Address: 0xFFFC40B8 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 TID 7 6 5 4 TID * TID: Type ID checking For use in comparisons with received frames TypeID/Length field. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 709 37.5.25 User Input/Output Register Name: EMAC_USRIO Address: 0xFFFC40C0 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 CLKEN 0 RMII * RMII When set, this bit enables the RMII operation mode. When reset, it selects the MII mode. * CLKEN When set, this bit enables the transceiver input clock. Setting this bit to 0 reduces power consumption when the treasurer is not used. 710 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26 EMAC Statistic Registers These registers reset to zero on a read and stick at all ones when they count to their maximum value. They should be read frequently enough to prevent loss of data. The receive statistics registers are only incremented when the receive enable bit is set in the network control register. To write to these registers, bit 7 must be set in the network control register. The statistics register block contains the following registers. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 711 37.5.26.1 Pause Frames Received Register Name: EMAC_PFR Address: 0xFFFC403C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 FROK 7 6 5 4 FROK * FROK: Pause Frames received OK A 16-bit register counting the number of good pause frames received. A good frame has a length of 64 to 1518 (1536 if bit 8 set in network configuration register) and has no FCS, alignment or receive symbol errors. 712 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.2 Frames Transmitted OK Register Name: EMAC_FTO Address: 0xFFFC4040 Access: Read/Write 31 - 30 - 29 - 28 - 23 22 21 20 27 - 26 - 25 - 24 - 19 18 17 16 11 10 9 8 3 2 1 0 FTOK 15 14 13 12 FTOK 7 6 5 4 FTOK * FTOK: Frames Transmitted OK A 24-bit register counting the number of frames successfully transmitted, i.e., no underrun and not too many retries. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 713 37.5.26.3 Single Collision Frames Register Name: EMAC_SCF Address: 0xFFFC4044 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 SCF 7 6 5 4 SCF * SCF: Single Collision Frames A 16-bit register counting the number of frames experiencing a single collision before being successfully transmitted, i.e., no underrun. 714 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.4 Multicollision Frames Register Name: EMAC_MCF Address: 0xFFFC4048 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 MCF 7 6 5 4 MCF * MCF: Multicollision Frames A 16-bit register counting the number of frames experiencing between two and fifteen collisions prior to being successfully transmitted, i.e., no underrun and not too many retries. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 715 37.5.26.5 Frames Received OK Register Name: EMAC_FRO Address: 0xFFFC404C Access: Read/Write 31 - 30 - 29 - 28 - 23 22 21 20 27 - 26 - 25 - 24 - 19 18 17 16 11 10 9 8 3 2 1 0 FROK 15 14 13 12 FROK 7 6 5 4 FROK * FROK: Frames Received OK A 24-bit register counting the number of good frames received, i.e., address recognized and successfully copied to memory. A good frame is of length 64 to 1518 bytes (1536 if bit 8 set in network configuration register) and has no FCS, alignment or receive symbol errors. 716 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.6 Frames Check Sequence Errors Register Name: EMAC_FCSE Address: 0xFFFC4050 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 FCSE * FCSE: Frame Check Sequence Errors An 8-bit register counting frames that are an integral number of bytes, have bad CRC and are between 64 and 1518 bytes in length (1536 if bit 8 set in network configuration register). This register is also incremented if a symbol error is detected and the frame is of valid length and has an integral number of bytes. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 717 37.5.26.7 Alignment Errors Register Name: EMAC_ALE Address: 0xFFFC4054 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 ALE * ALE: Alignment Errors An 8-bit register counting frames that are not an integral number of bytes long and have bad CRC when their length is truncated to an integral number of bytes and are between 64 and 1518 bytes in length (1536 if bit 8 set in network configuration register). This register is also incremented if a symbol error is detected and the frame is of valid length and does not have an integral number of bytes. 718 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.8 Deferred Transmission Frames Register Name: EMAC_DTF Address: 0xFFFC4058 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 DTF 7 6 5 4 DTF * DTF: Deferred Transmission Frames A 16-bit register counting the number of frames experiencing deferral due to carrier sense being active on their first attempt at transmission. Frames involved in any collision are not counted nor are frames that experienced a transmit underrun. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 719 37.5.26.9 Late Collisions Register Name: EMAC_LCOL Address: 0xFFFC405C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 LCOL * LCOL: Late Collisions An 8-bit register counting the number of frames that experience a collision after the slot time (512 bits) has expired. A late collision is counted twice; i.e., both as a collision and a late collision. 720 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.10 Excessive Collisions Register Name: EMAC_ECOL Address: 0xFFFC4060 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 EXCOL * EXCOL: Excessive Collisions An 8-bit register counting the number of frames that failed to be transmitted because they experienced 16 collisions. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 721 37.5.26.11 Transmit Underrun Errors Register Name: EMAC_TUND Address: 0xFFFC4064 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 TUND * TUND: Transmit Underruns An 8-bit register counting the number of frames not transmitted due to a transmit DMA underrun. If this register is incremented, then no other statistics register is incremented. 722 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.12 Carrier Sense Errors Register Name: EMAC_CSE Address: 0xFFFC4068 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 CSE * CSE: Carrier Sense Errors An 8-bit register counting the number of frames transmitted where carrier sense was not seen during transmission or where carrier sense was deasserted after being asserted in a transmit frame without collision (no underrun). Only incremented in half-duplex mode. The only effect of a carrier sense error is to increment this register. The behavior of the other statistics registers is unaffected by the detection of a carrier sense error. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 723 37.5.26.13 Receive Resource Errors Register Name: EMAC_RRE Address: 0xFFFC406C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 14 13 12 11 10 9 8 3 2 1 0 RRE 7 6 5 4 RRE * RRE: Receive Resource Errors A 16-bit register counting the number of frames that were address matched but could not be copied to memory because no receive buffer was available. 724 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.14 Receive Overrun Errors Register Name: EMAC_ROV Address: 0xFFFC4070 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 ROVR * ROVR: Receive Overrun An 8-bit register counting the number of frames that are address recognized but were not copied to memory due to a receive DMA overrun. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 725 37.5.26.15 Receive Symbol Errors Register Name: EMAC_RSE Address: 0xFFFC4074 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 RSE * RSE: Receive Symbol Errors An 8-bit register counting the number of frames that had rx_er asserted during reception. Receive symbol errors are also counted as an FCS or alignment error if the frame is between 64 and 1518 bytes in length (1536 if bit 8 is set in the network configuration register). If the frame is larger, it is recorded as a jabber error. 726 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.16 Excessive Length Errors Register Name: EMAC_ELE Address: 0xFFFC4078 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 EXL * EXL: Excessive Length Errors An 8-bit register counting the number of frames received exceeding 1518 bytes (1536 if bit 8 set in network configuration register) in length but do not have either a CRC error, an alignment error nor a receive symbol error. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 727 37.5.26.17 Receive Jabbers Register Name: EMAC_RJA Address: 0xFFFC407C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 RJB * RJB: Receive Jabbers An 8-bit register counting the number of frames received exceeding 1518 bytes (1536 if bit 8 set in network configuration register) in length and have either a CRC error, an alignment error or a receive symbol error. 728 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.18 Undersize Frames Register Name: EMAC_USF Address: 0xFFFC4080 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 USF * USF: Undersize frames An 8-bit register counting the number of frames received less than 64 bytes in length but do not have either a CRC error, an alignment error or a receive symbol error. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 729 37.5.26.19 SQE Test Errors Register Name: EMAC_STE Address: 0xFFFC4084 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 SQER * SQER: SQE test errors An 8-bit register counting the number of frames where col was not asserted within 96 bit times (an interframe gap) of tx_en being deasserted in half duplex mode. 730 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 37.5.26.20 Received Length Field Mismatch Register Name: EMAC_RLE Address: 0xFFFC4088 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 RLFM * RLFM: Receive Length Field Mismatch An 8-bit register counting the number of frames received that have a measured length shorter than that extracted from its length field. Checking is enabled through bit 16 of the network configuration register. Frames containing a type ID in bytes 13 and 14 (i.e., length/type ID 0x0600) are not counted as length field errors, neither are excessive length frames. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 731 38. USB Device Port (UDP) 38.1 Description The USB Device Port (UDP) is compliant with the Universal Serial Bus (USB) V2.0 full-speed device specification. Each endpoint can be configured in one of several USB transfer types. It can be associated with one or two banks of a dual-port RAM used to store the current data payload. If two banks are used, one DPR bank is read or written by the processor, while the other is read or written by the USB device peripheral. This feature is mandatory for isochronous endpoints. Thus the device maintains the maximum bandwidth (1M bytes/s) by working with endpoints with two banks of DPR. Table 38-1. USB Endpoint Description Endpoint Number Mnemonic Dual-Bank(1) Max. Endpoint Size Endpoint Type 0 EP0 No 64 Control/Bulk/Interrupt 1 EP1 Yes 64 Bulk/Iso/Interrupt 2 EP2 Yes 64 Bulk/Iso/Interrupt 3 EP3 No 64 Control/Bulk/Interrupt 4 EP4 Yes 512 Bulk/Iso/Interrupt EP5 Yes 512 Bulk/Iso/Interrupt 5 Note: 1. The Dual-Bank function provides two banks for an endpoint. This feature is used for ping-pong mode. Suspend and resume are automatically detected by the USB device, which notifies the processor by raising an interrupt. Depending on the product, an external signal can be used to send a wake up to the USB host controller. 38.2 Block Diagram Figure 38-1. Block Diagram Atmel Bridge MCK APB to MCU Bus UDPCK USB Device txoen U s e r I n t e r f a c e udp_int external_resume 732 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 W r a p p e r Dual Port RAM FIFO W r a p p e r eopn Serial Interface Engine 12 MHz SIE Suspend/Resume Logic Master Clock Domain Recovered 12 MHz Domain txd rxdm rxd rxdp Embedded USB Transceiver DP DM Access to the UDP is via the APB bus interface. Read and write to the data FIFO are done by reading and writing 8-bit values to APB registers. The UDP peripheral requires two clocks: one peripheral clock used by the Master Clock domain (MCK) and a 48 MHz clock (UDPCK) used by the 12 MHz domain. A USB 2.0 full-speed pad is embedded and controlled by the Serial Interface Engine (SIE). The signal external_resume is optional. It allows the UDP peripheral to wake up once in system mode. The host is then notified that the device asks for a resume. This optional feature must be also negotiated with the host during the enumeration. 38.3 Product Dependencies For further details on the USB Device hardware implementation, see the specific Product Properties document. The USB physical transceiver is integrated into the product. The bidirectional differential signals DP and DM are available from the product boundary. One I/O line may be used by the application to check that VBUS is still available from the host. Self-powered devices may use this entry to be notified that the host has been powered off. In this case, the pull-up on DP must be disabled in order to prevent feeding current to the host. The application should disconnect the transceiver, then remove the pull-up. 38.3.1 I/O Lines DP and DM are not controlled by any PIO controllers. The embedded USB physical transceiver is controlled by the USB device peripheral. To reserve an I/O line to check VBUS, the programmer must first program the PIO controller to assign this I/O in input PIO mode. 38.3.2 Power Management The USB device peripheral requires a 48 MHz clock. This clock must be generated by a PLL with an accuracy of 0.25%. Thus, the USB device receives two clocks from the Power Management Controller (PMC): the master clock, MCK, used to drive the peripheral user interface, and the UDPCK, used to interface with the bus USB signals (recovered 12 MHz domain). WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any read/write operations to the UDP registers including the UDP_TXCV register. 38.3.3 Interrupt The USB device interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling the USB device interrupt requires programming the AIC before configuring the UDP. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 733 38.4 Typical Connection Figure 38-2. Board Schematic to Interface Device Peripheral PIO 5V Bus Monitoring 27 K 47 K REXT DDM 2 1 3 Type B 4 Connector DDP REXT 38.4.1 USB Device Transceiver The USB device transceiver is embedded in the product. A few discrete components are required as follows: the application detects all device states as defined in chapter 9 of the USB specification; to reduce power consumption the host is disconnected for line termination. VBUS monitoring 38.4.2 VBUS Monitoring VBUS monitoring is required to detect host connection. VBUS monitoring is done using a standard PIO with internal pull-up disabled. When the host is switched off, it should be considered as a disconnect, the pull-up must be disabled in order to prevent powering the host through the pull-up resistor. When the host is disconnected and the transceiver is enabled, then DDP and DDM are floating. This may lead to over consumption. A solution is to enable the integrated pull-down by disabling the transceiver (TXVDIS = 1) and then remove the pull-up (PUON = 0). A termination serial resistor must be connected to DP and DM. The resistor value is defined in the electrical specification of the product (REXT). 734 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 38.5 Functional Description 38.5.1 USB V2.0 Full-speed Introduction The USB V2.0 full-speed provides communication services between host and attached USB devices. Each device is offered with a collection of communication flows (pipes) associated with each endpoint. Software on the host communicates with a USB device through a set of communication flows. Figure 38-3. Example of USB V2.0 Full-speed Communication Control USB Host V2.0 Software Client 1 Software Client 2 Data Flow: Control Transfer EP0 Data Flow: Isochronous In Transfer USB Device 2.0 EP1 Block 1 Data Flow: Isochronous Out Transfer EP2 Data Flow: Control Transfer EP0 Data Flow: Bulk In Transfer USB Device 2.0 EP4 Block 2 Data Flow: Bulk Out Transfer EP5 USB Device endpoint configuration requires that in the first instance Control Transfer must be EP0. The Control Transfer endpoint EP0 is always used when a USB device is first configured (USB v. 2.0 specifications). 38.5.1.1 USB V2.0 Full-speed Transfer Types A communication flow is carried over one of four transfer types defined by the USB device. Table 38-2. USB Communication Flow Transfer Direction Bandwidth Supported Endpoint Size Error Detection Retrying Bidirectional Not guaranteed 8, 16, 32, 64 Yes Automatic Isochronous Unidirectional Guaranteed 512 Yes No Interrupt Unidirectional Not guaranteed 64 Yes Yes Bulk Unidirectional Not guaranteed 8, 16, 32, 64 Yes Yes Control 38.5.1.2 USB Bus Transactions Each transfer results in one or more transactions over the USB bus. There are three kinds of transactions flowing across the bus in packets: 1. Setup Transaction 2. Data IN Transaction 3. Data OUT Transaction SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 735 38.5.1.3 USB Transfer Event Definitions As indicated below, transfers are sequential events carried out on the USB bus. Table 38-3. USB Transfer Events Setup transaction Data IN transactions Status OUT transaction Control Transfers (1) (3) Setup transaction Data OUT transactions Status IN transaction Setup transaction Status IN transaction Interrupt IN Transfer (device toward host) Interrupt OUT Transfer (host toward device) Isochronous IN Transfer(2) (device toward host) Isochronous OUT Transfer(2) (host toward device) Bulk IN Transfer (device toward host) Bulk OUT Transfer (host toward device) Notes: 1. 2. 3. Data IN transaction Data IN transaction Data OUT transaction Data OUT transaction Data IN transaction Data IN transaction Data OUT transaction Data OUT transaction Data IN transaction Data IN transaction Data OUT transaction Data OUT transaction Control transfer must use endpoints with no ping-pong attributes. Isochronous transfers must use endpoints with ping-pong attributes. Control transfers can be aborted using a stall handshake. A status transaction is a special type of host-to-device transaction used only in a control transfer. The control transfer must be performed using endpoints with no ping-pong attributes. According to the control sequence (read or write), the USB device sends or receives a status transaction. 736 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 38-4. Control Read and Write Sequences Setup Stage Control Read Setup TX Setup Stage Control Write No Data Control Notes: 1. 2. Setup TX Data Stage Data OUT TX Status Stage Data OUT TX Data Stage Data IN TX Setup Stage Status Stage Setup TX Status IN TX Status IN TX Status Stage Data IN TX Status OUT TX During the Status IN stage, the host waits for a zero length packet (Data IN transaction with no data) from the device using DATA1 PID. Refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0, for more information on the protocol layer. During the Status OUT stage, the host emits a zero length packet to the device (Data OUT transaction with no data). SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 737 38.5.2 Handling Transactions with USB V2.0 Device Peripheral 38.5.2.1 Setup Transaction Setup is a special type of host-to-device transaction used during control transfers. Control transfers must be performed using endpoints with no ping-pong attributes. A setup transaction needs to be handled as soon as possible by the firmware. It is used to transmit requests from the host to the device. These requests are then handled by the USB device and may require more arguments. The arguments are sent to the device by a Data OUT transaction which follows the setup transaction. These requests may also return data. The data is carried out to the host by the next Data IN transaction which follows the setup transaction. A status transaction ends the control transfer. When a setup transfer is received by the USB endpoint: The USB device automatically acknowledges the setup packet? RXSETUP is set in the UDP_CSRx An endpoint interrupt is generated while the RXSETUP is not cleared. This interrupt is carried out to the microcontroller if interrupts are enabled for this endpoint. Thus, firmware must detect the RXSETUP polling the UDP_CSRx or catching an interrupt, read the setup packet in the FIFO, then clear the RXSETUP. RXSETUP cannot be cleared before the setup packet has been read in the FIFO. Otherwise, the USB device would accept the next Data OUT transfer and overwrite the setup packet in the FIFO. Figure 38-5. Setup Transaction Followed by a Data OUT Transaction Setup Received USB Bus Packets Setup PID Data Setup RXSETUP Flag Setup Handled by Firmware ACK PID Data OUT PID Data OUT Data OUT PID Data OUT ACK PID Cleared by Firmware Set by USB Device Peripheral RX_Data_BKO (UDP_CSRx) 738 NAK PID Interrupt Pending Set by USB Device FIFO (DPR) Content Data Out Received XX SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Data Setup XX Data OUT 38.5.2.2 Data IN Transaction Data IN transactions are used in control, isochronous, bulk and interrupt transfers and conduct the transfer of data from the device to the host. Data IN transactions in isochronous transfer must be done using endpoints with pingpong attributes. Using Endpoints Without Ping-pong Attributes To perform a Data IN transaction using a non ping-pong endpoint: 1. The application checks if it is possible to write in the FIFO by polling TXPKTRDY in the endpoint's UDP_CSRx (TXPKTRDY must be cleared). 2. The application writes the first packet of data to be sent in the endpoint's FIFO, writing zero or more byte values in the endpoint's UDP_FDRx, 3. The application notifies the USB peripheral it has finished by setting the TXPKTRDY in the endpoint's UDP_CSRx. 4. The application is notified that the endpoint's FIFO has been released by the USB device when TXCOMP in the endpoint's UDP_CSRx has been set. Then an interrupt for the corresponding endpoint is pending while TXCOMP is set. 5. The microcontroller writes the second packet of data to be sent in the endpoint's FIFO, writing zero or more byte values in the endpoint's UDP_FDRx, 6. The microcontroller notifies the USB peripheral it has finished by setting the TXPKTRDY in the endpoint's UDP_CSRx. 7. The application clears the TXCOMP in the endpoint's UDP_CSRx. After the last packet has been sent, the application must clear TXCOMP once this has been set. TXCOMP is set by the USB device when it has received an ACK PID signal for the Data IN packet. An interrupt is pending while TXCOMP is set. Warning: TX_COMP must be cleared after TX_PKTRDY has been set. Note: Figure 38-6. Refer to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0, for more information on the Data IN protocol layer. Data IN Transfer for Non Ping-pong Endpoint Prevous Data IN TX USB Bus Packets Data IN PID Microcontroller Load Data in FIFO Data IN 1 ACK PID Data IN PID NAK PID Data is Sent on USB Bus Data IN PID Data IN 2 ACK PID TXPKTRDY Flag (UDP_CSRx) Set by the firmware Cleared by Hw Cleared by Hw Set by the firmware Interrupt Pending Interrupt Pending TXCOMP Flag (UDP_CSRx) Payload in FIFO Cleared by Firmware DPR access by the firmware FIFO (DPR) Content Data IN 1 Load In Progress DPR access by the hardware Cleared by Firmware Data IN 2 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 739 Using Endpoints With Ping-pong Attribute The use of an endpoint with ping-pong attributes is necessary during isochronous transfer. This also allows handling the maximum bandwidth defined in the USB specification during bulk transfer. To be able to guarantee a constant or the maximum bandwidth, the microcontroller must prepare the next data payload to be sent while the current one is being sent by the USB device. Thus two banks of memory are used. While one is available for the microcontroller, the other one is locked by the USB device. Figure 38-7. Bank Swapping Data IN Transfer for Ping-pong Endpoints Microcontroller 1st Data Payload USB Device Write Bank 0 Endpoint 1 USB Bus Read Read and Write at the Same Time 2nd Data Payload Bank 1 Endpoint 1 Bank 0 Endpoint 1 Bank 0 Endpoint 1 Bank 1 Endpoint 1 3rd Data Payload Bank 0 Endpoint 1 Data IN Packet 1st Data Payload Data IN Packet 2nd Data Payload Data IN Packet 3rd Data Payload When using a ping-pong endpoint, the following procedures are required to perform Data IN transactions: 740 1. The microcontroller checks if it is possible to write in the FIFO by polling TXPKTRDY to be cleared in the endpoint's UDP_CSRx. 2. The microcontroller writes the first data payload to be sent in the FIFO (Bank 0), writing zero or more byte values in the endpoint's UDP_FDRx. 3. The microcontroller notifies the USB peripheral it has finished writing in Bank 0 of the FIFO by setting the TXPKTRDY in the endpoint's UDP_CSRx. 4. Without waiting for TXPKTRDY to be cleared, the microcontroller writes the second data payload to be sent in the FIFO (Bank 1), writing zero or more byte values in the endpoint's UDP_FDRx. 5. The microcontroller is notified that the first Bank has been released by the USB device when TXCOMP in the endpoint's UDP_CSRx is set. An interrupt is pending while TXCOMP is being set. 6. Once the microcontroller has received TXCOMP for the first Bank, it notifies the USB device that it has prepared the second Bank to be sent, raising TXPKTRDY in the endpoint's UDP_CSRx. 7. At this step, Bank 0 is available and the microcontroller can prepare a third data payload to be sent. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 38-8. Data IN Transfer for Ping-pong Endpoint Microcontroller Load Data IN Bank 0 USB Bus Packets Data IN PID TXPKTRDY Flag (UDP_MCSRx) Microcontroller Load Data IN Bank 1 USB Device Send Bank 0 ACK PID Data IN Microcontroller Load Data IN Bank 0 USB Device Send Bank 1 Data IN PID Cleared by USB Device, Data Payload Fully Transmitted FIFO (DPR) Written by Microcontroller Bank 0 FIFO (DPR) Bank 1 ACK PID Set by Firmware, Data Payload Written in FIFO Bank 1 Interrupt Pending Set by Firmware, Data Payload Written in FIFO Bank 0 TXCOMP Flag (UDP_CSRx) Data IN Set by USB Device Set by USB Device Interrupt Cleared by Firmware Written by Microcontroller Read by USB Device Written by Microcontroller Read by USB Device Warning: There is software critical path due to the fact that once the second bank is filled, the driver has to wait for TX_COMP to set TX_PKTRDY. If the delay between receiving TX_COMP is set and TX_PKTRDY is set too long, some Data IN packets may be NACKed, reducing the bandwidth. Warning: TX_COMP must be cleared after TX_PKTRDY has been set. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 741 38.5.2.3 Data OUT Transaction Data OUT transactions are used in control, isochronous, bulk and interrupt transfers and conduct the transfer of data from the host to the device. Data OUT transactions in isochronous transfers must be done using endpoints with ping-pong attributes. Data OUT Transaction Without Ping-pong Attributes To perform a Data OUT transaction, using a non ping-pong endpoint: 1. The host generates a Data OUT packet. 2. This packet is received by the USB device endpoint. While the FIFO associated to this endpoint is being used by the microcontroller, a NAK PID is returned to the host. Once the FIFO is available, data are written to the FIFO by the USB device and an ACK is automatically carried out to the host. 3. The microcontroller is notified that the USB device has received a data payload polling RX_DATA_BK0 in the endpoint's UDP_CSRx. An interrupt is pending for this endpoint while RX_DATA_BK0 is set. 4. The number of bytes available in the FIFO is made available by reading RXBYTECNT in the endpoint's UDP_CSRx. 5. The microcontroller carries out data received from the endpoint's memory to its memory. Data received is available by reading the endpoint's UDP_FDRx. 6. The microcontroller notifies the USB device that it has finished the transfer by clearing RX_DATA_BK0 in the endpoint's UDP_CSRx. 7. A new Data OUT packet can be accepted by the USB device. Figure 38-9. USB Bus Packets Data OUT Transfer for Non Ping-pong Endpoints Host Sends Data Payload Microcontroller Transfers Data Host Sends the Next Data Payload Data OUT PID ACK PID Data OUT 1 RX_DATA_BK0 (UDP_CSRx) Data OUT2 PID NAK PID Data OUT PID Data OUT2 ACK PID Interrupt Pending Set by USB Device FIFO (DPR) Content Data OUT2 Host Resends the Next Data Payload Data OUT 1 Written by USB Device Data OUT 1 Microcontroller Read Cleared by Firmware, Data Payload Written in FIFO Data OUT 2 Written by USB Device An interrupt is pending while the flag RX_DATA_BK0 is set. Memory transfer between the USB device, the FIFO and microcontroller memory can not be done after RX_DATA_BK0 has been cleared. Otherwise, the USB device would accept the next Data OUT transfer and overwrite the current Data OUT packet in the FIFO. 742 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Using Endpoints With Ping-pong Attributes During isochronous transfer, using an endpoint with ping-pong attributes is obligatory. To be able to guarantee a constant bandwidth, the microcontroller must read the previous data payload sent by the host, while the current data payload is received by the USB device. Thus two banks of memory are used. While one is available for the microcontroller, the other one is locked by the USB device. Figure 38-10. Bank Swapping in Data OUT Transfers for Ping-pong Endpoints Microcontroller USB Device Write USB Bus Read Data IN Packet Bank 0 Endpoint 1 1st Data Payload Bank 0 Endpoint 1 Bank 1 Endpoint 1 Data IN Packet nd 2 Data Payload Bank 1 Endpoint 1 Bank 0 Endpoint 1 3rd Data Payload Write and Read at the Same Time 1st Data Payload 2nd Data Payload Data IN Packet 3rd Data Payload Bank 0 Endpoint 1 When using a ping-pong endpoint, the following procedures are required to perform Data OUT transactions: 1. The host generates a Data OUT packet. 2. This packet is received by the USB device endpoint. It is written in the endpoint's FIFO Bank 0. 3. The USB device sends an ACK PID packet to the host. The host can immediately send a second Data OUT packet. It is accepted by the device and copied to FIFO Bank 1. 4. The microcontroller is notified that the USB device has received a data payload, polling RX_DATA_BK0 in the endpoint's UDP_CSRx. An interrupt is pending for this endpoint while RX_DATA_BK0 is set. 5. The number of bytes available in the FIFO is made available by reading RXBYTECNT in the endpoint's UDP_CSRx. 6. The microcontroller transfers out data received from the endpoint's memory to the microcontroller's memory. Data received is made available by reading the endpoint's UDP_FDRx. 7. The microcontroller notifies the USB peripheral device that it has finished the transfer by clearing RX_DATA_BK0 in the endpoint's UDP_CSRx. 8. A third Data OUT packet can be accepted by the USB peripheral device and copied in the FIFO Bank 0. 9. If a second Data OUT packet has been received, the microcontroller is notified by the flag RX_DATA_BK1 set in the endpoint's UDP_CSRx. An interrupt is pending for this endpoint while RX_DATA_BK1 is set. 10. The microcontroller transfers out data received from the endpoint's memory to the microcontroller's memory. Data received is available by reading the endpoint's UDP_FDRx. 11. The microcontroller notifies the USB device it has finished the transfer by clearing RX_DATA_BK1 in the endpoint's UDP_CSRx. 12. A fourth Data OUT packet can be accepted by the USB device and copied in the FIFO Bank 0. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 743 Figure 38-11. Data OUT Transfer for Ping-pong Endpoint Microcontroller Reads Data 1 in Bank 0, Host Sends Second Data Payload Host Sends First Data Payload USB Bus Packets Data OUT PID RX_DATA_BK0 Flag (UDP_CSRx) Data OUT 1 Data OUT PID Data OUT 2 Set by USB Device, Data Payload Written in FIFO Endpoint Bank 0 ACK PID Data OUT 3 A P Cleared by Firmware Set by USB Device, Data Payload Written in FIFO Endpoint Bank 1 Interrupt Pending Data OUT1 Data OUT 1 Data OUT 3 Write by USB Device Read By Microcontroller Write In Progress FIFO (DPR) Bank 1 Data OUT 2 Write by USB Device Note: Data OUT PID Cleared by Firmware Interrupt Pending RX_DATA_BK1 Flag (UDP_CSRx) FIFO (DPR) Bank 0 ACK PID Microcontroller Reads Data2 in Bank 1, Host Sends Third Data Payload Data OUT 2 Read By Microcontroller An interrupt is pending while the RX_DATA_BK0 or RX_DATA_BK1 flag is set. Warning: When RX_DATA_BK0 and RX_DATA_BK1 are both set, there is no way to determine which one to clear first. Thus the software must keep an internal counter to be sure to clear alternatively RX_DATA_BK0 then RX_DATA_BK1. This situation may occur when the software application is busy elsewhere and the two banks are filled by the USB host. Once the application comes back to the USB driver, the two flags are set. 744 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 38.5.2.4 Stall Handshake A stall handshake can be used in one of two distinct occasions. (For more information on the stall handshake, refer to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0.) A functional stall is used when the halt feature associated with the endpoint is set. (Refer to Chapter 9 of the Universal Serial Bus Specification, Rev 2.0, for more information on the halt feature.) To abort the current request, a protocol stall is used, but uniquely with control transfer. The following procedure generates a stall packet: 1. The microcontroller sets the FORCESTALL flag in the UDP_CSRx endpoint's register. 2. The host receives the stall packet. 3. The microcontroller is notified that the device has sent the stall by polling the STALLSENT to be set. An endpoint interrupt is pending while STALLSENT is set. The microcontroller must clear STALLSENT to clear the interrupt. When a setup transaction is received after a stall handshake, STALLSENT must be cleared in order to prevent interrupts due to STALLSENT being set. Figure 38-12. Stall Handshake (Data IN Transfer) USB Bus Packets Data IN PID Stall PID Cleared by Firmware FORCESTALL Set by Firmware Interrupt Pending Cleared by Firmware STALLSENT Set by USB Device Figure 38-13. Stall Handshake (Data OUT Transfer) USB Bus Packets Data OUT PID Data OUT Stall PID Set by Firmware FORCESTALL Interrupt Pending STALLSENT Cleared by Firmware Set by USB Device SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 745 38.5.2.5 Transmit Data Cancellation Some endpoints have dual banks whereas some endpoints have only one bank. The procedure to cancel transmission data held in these banks is described below. To see the organization of dual-bank availability refer to Table 38-1 "USB Endpoint Description". Endpoints Without Dual Banks There are two possibilities: In one case, TXPKTRDY field in UDP_CSR has already been set. In the other instance, TXPKTRDY is not set. TXPKTRDY is not set: Reset the endpoint to clear the FIFO (pointers). (See, Section 38.6.9 "UDP Reset Endpoint Register".) TXPKTRDY has already been set: Clear TXPKTRDY so that no packet is ready to be sent Reset the endpoint to clear the FIFO (pointers). (See, Section 38.6.9 "UDP Reset Endpoint Register".) Endpoints With Dual Banks There are two possibilities: In one case, TXPKTRDY field in UDP_CSR has already been set. In the other instance, TXPKTRDY is not set. TXPKTRDY is not set: 746 Reset the endpoint to clear the FIFO (pointers). (See, Section 38.6.9 "UDP Reset Endpoint Register".) TXPKTRDY has already been set: Clear TXPKTRDY and read it back until actually read at 0. Set TXPKTRDY and read it back until actually read at 1. Clear TXPKTRDY so that no packet is ready to be sent. Reset the endpoint to clear the FIFO (pointers). (See, Section 38.6.9 "UDP Reset Endpoint Register".) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 38.5.3 Controlling Device States A USB device has several possible states. Refer to Chapter 9 of the Universal Serial Bus Specification, Rev 2.0. Figure 38-14. USB Device State Diagram Attached Hub Reset or Deconfigured Hub Configured Bus Inactive Suspended Powered Bus Activity Power Interruption Reset Bus Inactive Suspended Default Bus Activity Reset Address Assigned Bus Inactive Suspended Address Bus Activity Device Deconfigured Device Configured Bus Inactive Configured Suspended Bus Activity Movement from one state to another depends on the USB bus state or on standard requests sent through control transactions via the default endpoint (endpoint 0). After a period of bus inactivity, the USB device enters Suspend Mode. Accepting Suspend/Resume requests from the USB host is mandatory. Constraints in Suspend Mode are very strict for bus-powered applications; devices may not consume more than 500 A on the USB bus. While in Suspend Mode, the host may wake up a device by sending a resume signal (bus activity) or a USB device may send a wake up request to the host, e.g., waking up a PC by moving a USB mouse. The wake up feature is not mandatory for all devices and must be negotiated with the host. 38.5.3.1 Not Powered State Self powered devices can detect 5V VBUS using a PIO as described in the typical connection section. When the device is not connected to a host, device power consumption can be reduced by disabling MCK for the UDP, disabling UDPCK and disabling the transceiver. DDP and DDM lines are pulled down by 330 K resistors. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 747 38.5.3.2 Entering Attached State When no device is connected, the USB DP and DM signals are tied to GND by 15 K pull-down resistors integrated in the hub downstream ports. When a device is attached to a hub downstream port, the device connects a 1.5 K pull-up resistor on DP. The USB bus line goes into IDLE state, DP is pulled up by the device 1.5 K resistor to 3.3V and DM is pulled down by the 15 K resistor of the host. To enable integrated pull-up, the PUON bit in the UDP_TXVC register must be set. Warning: To write to the UDP_TXVC register, MCK clock must be enabled on the UDP. This is done in the Power Management Controller. After pull-up connection, the device enters the powered state. In this state, the UDPCK and MCK must be enabled in the Power Management Controller. The transceiver can remain disabled. 38.5.3.3 From Powered State to Default State After its connection to a USB host, the USB device waits for an end-of-bus reset. The unmaskable flag ENDBUSRES is set in the register UDP_ISR and an interrupt is triggered. Once the ENDBUSRES interrupt has been triggered, the device enters Default State. In this state, the UDP software must: Enable the default endpoint, setting the EPEDS flag in the UDP_CSR[0] register and, optionally, enabling the interrupt for endpoint 0 by writing 1 to the UDP_IER. The enumeration then begins by a control transfer. Configure the interrupt mask register which has been reset by the USB reset detection Enable the transceiver clearing the TXVDIS flag in the UDP_TXVC register. In this state UDPCK and MCK must be enabled. Warning: Each time an ENDBUSRES interrupt is triggered, the Interrupt Mask Register and UDP_CSR registers have been reset. 38.5.3.4 From Default State to Address State After a set address standard device request, the USB host peripheral enters the address state. Warning: Before the device enters in address state, it must achieve the Status IN transaction of the control transfer, i.e., the UDP device sets its new address once the TXCOMP flag in the UDP_CSR[0] register has been received and cleared. To move to address state, the driver software sets the FADDEN flag in the UDP_GLB_STAT register, sets its new address, and sets the FEN bit in the UDP_FADDR. 38.5.3.5 From Address State to Configured State Once a valid Set Configuration standard request has been received and acknowledged, the device enables endpoints corresponding to the current configuration. This is done by setting the EPEDS and EPTYPE fields in the UDP_CSRx and, optionally, enabling corresponding interrupts in the UDP_IER. 38.5.3.6 Entering in Suspend State When a Suspend (no bus activity on the USB bus) is detected, the RXSUSP signal in the UDP_ISR is set. This triggers an interrupt if the corresponding bit is set in the UDP_IMR. This flag is cleared by writing to the UDP_ICR. Then the device enters Suspend Mode. In this state bus powered devices must drain less than 500 A from the 5V VBUS. As an example, the microcontroller switches to slow clock, disables the PLL and main oscillator, and goes into Idle Mode. It may also switch off other devices on the board. The USB device peripheral clocks can be switched off. Resume event is asynchronously detected. MCK and UDPCK can be switched off in the Power Management controller and the USB transceiver can be disabled by setting the TXVDIS field in the UDP_TXVC register. 748 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Warning: Read, write operations to the UDP registers are allowed only if MCK is enabled for the UDP peripheral. Switching off MCK for the UDP peripheral must be one of the last operations after writing to the UDP_TXVC and acknowledging the RXSUSP. 38.5.3.7 Receiving a Host Resume In suspend mode, a resume event on the USB bus line is detected asynchronously, transceiver and clocks are disabled (however the pull-up shall not be removed). Once the resume is detected on the bus, the WAKEUP signal in the UDP_ISR is set. It may generate an interrupt if the corresponding bit in the UDP_IMR is set. This interrupt may be used to wake up the core, enable PLL and main oscillators and configure clocks. Warning: Read, write operations to the UDP registers are allowed only if MCK is enabled for the UDP peripheral. MCK for the UDP must be enabled before clearing the WAKEUP bit in the UDP_ICR and clearing TXVDIS in the UDP_TXVC register. 38.5.3.8 Sending a Device Remote Wakeup In Suspend state it is possible to wake up the host sending an external resume. The device must wait at least 5 ms after being entered in suspend before sending an external resume. The device has 10 ms from the moment it starts to drain current and it forces a K state to resume the host. The device must force a K state from 1 to 15 ms to resume the host To force a K state to the bus (DM at 3.3V and DP tied to GND), it is possible to use a transistor to connect a pullup on DM. The K state is obtained by disabling the pull-up on DP and enabling the pull-up on DM. This should be under the control of the application. Figure 38-15. Board Schematic to Drive a K State 3V3 PIO 0: Force Wake UP (K State) 1: Normal Mode 1.5 K DM SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 749 38.6 USB Device Port (UDP) User Interface WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any read/write operations to the UDP registers, including the UDP_TXVC register. Table 38-4. Register Mapping Offset Register Name Access Reset 0x000 Frame Number Register UDP_FRM_NUM Read-only 0x0000_0000 0x004 Global State Register UDP_GLB_STAT Read/Write 0x0000_0000 0x008 Function Address Register UDP_FADDR Read/Write 0x0000_0100 0x00C Reserved - - - 0x010 Interrupt Enable Register UDP_IER Write-only - 0x014 Interrupt Disable Register UDP_IDR Write-only - 0x018 Interrupt Mask Register UDP_IMR Read-only 0x0000_1200 0x01C Interrupt Status Register UDP_ISR Read-only -(1) 0x020 Interrupt Clear Register UDP_ICR Write-only - 0x024 Reserved - - - 0x028 Reset Endpoint Register UDP_RST_EP Read/Write 0x0000_0000 0x02C Reserved - - - 0x030 + 0x4 * (ept_num - 1) Endpoint Control and Status Register UDP_CSR Read/Write 0x0000_0000 0x050 + 0x4 * (ept_num - 1) Endpoint FIFO Data Register UDP_FDR Read/Write 0x0000_0000 0x070 Reserved - - - Read/Write 0x0000_0100 - - (2) 0x074 Transceiver Control Register UDP_TXVC 0x078-0xFC Reserved - Notes: 750 1. Reset values are not defined for UDP_ISR. 2. See Warning above the "Register Mapping" on this page. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 38.6.1 UDP Frame Number Register Name: UDP_FRM_NUM Address: 0xFFFA4000 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 FRM_OK 16 FRM_ERR 15 - 14 - 13 - 12 - 11 - 10 9 FRM_NUM 8 7 6 5 4 3 2 1 0 FRM_NUM * FRM_NUM[10:0]: Frame Number as Defined in the Packet Field Formats This 11-bit value is incremented by the host on a per frame basis. This value is updated at each start of frame. Value Updated at the SOF_EOP (Start of Frame End of Packet). * FRM_ERR: Frame Error This bit is set at SOF_EOP when the SOF packet is received containing an error. This bit is reset upon receipt of SOF_PID. * FRM_OK: Frame OK This bit is set at SOF_EOP when the SOF packet is received without any error. This bit is reset upon receipt of SOF_PID (Packet Identification). In the Interrupt Status Register, the SOF interrupt is updated upon receiving SOF_PID. This bit is set without waiting for EOP. Note: In the 8-bit Register Interface, FRM_OK is bit 4 of FRM_NUM_H and FRM_ERR is bit 3 of FRM_NUM_L. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 751 38.6.2 UDP Global State Register Name: UDP_GLB_STAT Address: 0xFFFA4004 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 8 - - 7 - 6 - 5 - 4 - 3 RSMINPR 2 - 1 CONFG 0 FADDEN This register is used to get and set the device state as specified in Chapter 9 of the USB Serial Bus Specification, Rev.2.0. * FADDEN: Function Address Enable Read: 0: Device is not in address state. 1: Device is in address state. Write: 0: No effect, only a reset can bring back a device to the default state. 1: Sets device in address state. This occurs after a successful Set Address request. Beforehand, the UDP_FADDR must have been initialized with Set Address parameters. Set Address must complete the Status Stage before setting FADDEN. Refer to chapter 9 of the Universal Serial Bus Specification, Rev. 2.0 for more details. * CONFG: Configured Read: 0: Device is not in configured state. 1: Device is in configured state. Write: 0: Sets device in a non configured state 1: Sets device in configured state. The device is set in configured state when it is in address state and receives a successful Set Configuration request. Refer to Chapter 9 of the Universal Serial Bus Specification, Rev. 2.0 for more details. * RSMINPR: Resume Interrupt Request Read: 0: No effect. 1: The pin "send_resume" is set to one. A Send Resume request has been detected and the device can send a Remote Wake Up. 752 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 38.6.3 UDP Function Address Register Name: UDP_FADDR Address: 0xFFFA4008 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 8 - FEN 7 - 6 5 4 3 FADD 2 1 0 * FADD[6:0]: Function Address Value The Function Address Value must be programmed by firmware once the device receives a set address request from the host, and has achieved the status stage of the no-data control sequence. Refer to the Universal Serial Bus Specification, Rev. 2.0 for more information. After power up or reset, the function address value is set to 0. * FEN: Function Enable Read: 0: Function endpoint disabled. 1: Function endpoint enabled. Write: 0: Disables function endpoint. 1: Default value. The Function Enable bit (FEN) allows the microcontroller to enable or disable the function endpoints. The microcontroller sets this bit after receipt of a reset from the host. Once this bit is set, the USB device is able to accept and transfer data packets from and to the host. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 753 38.6.4 UDP Interrupt Enable Register Name: UDP_IER Address: 0xFFFA4010 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 WAKEUP 12 - 11 SOFINT 10 EXTRSM 9 8 RXRSM RXSUSP 7 6 5 EP5INT 4 EP4INT 3 EP3INT 2 EP2INT 1 EP1INT 0 EP0INT * EP0INT: Enable Endpoint 0 Interrupt * EP1INT: Enable Endpoint 1 Interrupt * EP2INT: Enable Endpoint 2Interrupt * EP3INT: Enable Endpoint 3 Interrupt * EP4INT: Enable Endpoint 4 Interrupt * EP5INT: Enable Endpoint 5 Interrupt 0: No effect. 1: Enables corresponding Endpoint Interrupt. * RXSUSP: Enable UDP Suspend Interrupt 0: No effect. 1: Enables UDP Suspend Interrupt. * RXRSM: Enable UDP Resume Interrupt 0: No effect. 1: Enables UDP Resume Interrupt. * EXTRSM: Enable External Resume Interrupt 0: No effect. 1: Enables External Resume Interrupt. * SOFINT: Enable Start Of Frame Interrupt 0: No effect. 1: Enables Start Of Frame Interrupt. 754 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * WAKEUP: Enable UDP bus Wakeup Interrupt 0: No effect. 1: Enables USB bus Interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 755 38.6.5 UDP Interrupt Disable Register Name: UDP_IDR Address: 0xFFFA4014 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 WAKEUP 12 - 11 SOFINT 10 EXTRSM 9 8 RXRSM RXSUSP 7 6 5 EP5INT 4 EP4INT 3 EP3INT 2 EP2INT 1 EP1INT 0 EP0INT * EP0INT: Disable Endpoint 0 Interrupt * EP1INT: Disable Endpoint 1 Interrupt * EP2INT: Disable Endpoint 2 Interrupt * EP3INT: Disable Endpoint 3 Interrupt * EP4INT: Disable Endpoint 4 Interrupt * EP5INT: Disable Endpoint 5 Interrupt 0: No effect. 1: Disables corresponding Endpoint Interrupt. * RXSUSP: Disable UDP Suspend Interrupt 0: No effect. 1: Disables UDP Suspend Interrupt. * RXRSM: Disable UDP Resume Interrupt 0: No effect. 1: Disables UDP Resume Interrupt. * EXTRSM: Disable External Resume Interrupt 0: No effect. 1: Disables External Resume Interrupt. * SOFINT: Disable Start Of Frame Interrupt 0: No effect. 1: Disables Start Of Frame Interrupt 756 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * WAKEUP: Disable USB Bus Interrupt 0: No effect. 1: Disables USB Bus Wakeup Interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 757 38.6.6 UDP Interrupt Mask Register Name: UDP_IMR Address: 0xFFFA4018 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 WAKEUP 12 BIT12 11 SOFINT 10 EXTRSM 9 8 RXRSM RXSUSP 7 6 5 EP5INT 4 EP4INT 3 EP3INT 2 EP2INT 1 EP1INT 0 EP0INT * EP0INT: Mask Endpoint 0 Interrupt * EP1INT: Mask Endpoint 1 Interrupt * EP2INT: Mask Endpoint 2 Interrupt * EP3INT: Mask Endpoint 3 Interrupt * EP4INT: Mask Endpoint 4 Interrupt * EP5INT: Mask Endpoint 5 Interrupt 0: Corresponding Endpoint Interrupt is disabled. 1: Corresponding Endpoint Interrupt is enabled. * RXSUSP: Mask UDP Suspend Interrupt 0: UDP Suspend Interrupt is disabled. 1: UDP Suspend Interrupt is enabled. * RXRSM: Mask UDP Resume Interrupt. 0: UDP Resume Interrupt is disabled. 1: UDP Resume Interrupt is enabled. * EXTRSM: Mask External Resume Interrupt 0: UDP External Resume Interrupt is disabled. 1: UDP External Resume Interrupt is enabled. * SOFINT: Mask Start Of Frame Interrupt 0: Start of Frame Interrupt is disabled. 1: Start of Frame Interrupt is enabled. * BIT12: UDP_IMR Bit 12 Bit 12 of UDP_IMR cannot be masked and is always read at 1. 758 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * WAKEUP: USB Bus WAKEUP Interrupt 0: USB Bus Wakeup Interrupt is disabled. 1: USB Bus Wakeup Interrupt is enabled. Note: When the USB block is in suspend mode, the application may power down the USB logic. In this case, any USB HOST resume request that is made must be taken into account and, thus, the reset value of the RXRSM bit of the register UDP_IMR is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 759 38.6.7 UDP Interrupt Status Register Name: UDP_ISR Address: 0xFFFA401C Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 WAKEUP 12 ENDBUSRES 11 SOFINT 10 EXTRSM 9 8 RXRSM RXSUSP 7 6 5 EP5INT 4 EP4INT 3 EP3INT 2 EP2INT 1 EP1INT 0 EP0INT * EP0INT: Endpoint 0 Interrupt Status * EP1INT: Endpoint 1 Interrupt Status * EP2INT: Endpoint 2 Interrupt Status * EP3INT: Endpoint 3 Interrupt Status * EP4INT: Endpoint 4 Interrupt Status * EP5INT: Endpoint 5 Interrupt Status 0: No Endpoint0 Interrupt pending. 1: Endpoint0 Interrupt has been raised. Several signals can generate this interrupt. The reason can be found by reading UDP_CSR0: RXSETUP set to 1 RX_DATA_BK0 set to 1 RX_DATA_BK1 set to 1 TXCOMP set to 1 STALLSENT set to 1 EP0INT is a sticky bit. Interrupt remains valid until EP0INT is cleared by writing in the corresponding UDP_CSR0 bit. * RXSUSP: UDP Suspend Interrupt Status 0: No UDP Suspend Interrupt pending. 1: UDP Suspend Interrupt has been raised. The USB device sets this bit when it detects no activity for 3ms. The USB device enters Suspend mode. 760 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * RXRSM: UDP Resume Interrupt Status 0: No UDP Resume Interrupt pending. 1 =UDP Resume Interrupt has been raised. The USB device sets this bit when a UDP resume signal is detected at its port. After reset, the state of this bit is undefined, the application must clear this bit by setting the RXRSM flag in the UDP_ICR. * EXTRSM: UDP External Resume Interrupt Status 0: No UDP External Resume Interrupt pending. 1: UDP External Resume Interrupt has been raised. * SOFINT: Start of Frame Interrupt Status 0: No Start of Frame Interrupt pending. 1: Start of Frame Interrupt has been raised. This interrupt is raised each time a SOF token has been detected. It can be used as a synchronization signal by using isochronous endpoints. * ENDBUSRES: End of BUS Reset Interrupt Status 0: No End of Bus Reset Interrupt pending. 1: End of Bus Reset Interrupt has been raised. This interrupt is raised at the end of a UDP reset sequence. The USB device must prepare to receive requests on the endpoint 0. The host starts the enumeration, then performs the configuration. * WAKEUP: UDP Resume Interrupt Status 0: No Wakeup Interrupt pending. 1: A Wakeup Interrupt (USB Host Sent a RESUME or RESET) occurred since the last clear. After reset the state of this bit is undefined, the application must clear this bit by setting the WAKEUP flag in the UDP_ICR. . SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 761 38.6.8 UDP Interrupt Clear Register Name: UDP_ICR Address: 0xFFFA4020 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 WAKEUP 12 ENDBUSRES 11 SOFINT 10 EXTRSM 9 RXRSM 8 RXSUSP 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 - * RXSUSP: Clear UDP Suspend Interrupt 0: No effect. 1: Clears UDP Suspend Interrupt. * RXRSM: Clear UDP Resume Interrupt 0: No effect. 1: Clears UDP Resume Interrupt. * EXTRSM: Clear UDP External Resume Interrupt 0: No effect. 1: Clears UDP External Resume Interrupt. * SOFINT: Clear Start Of Frame Interrupt 0: No effect. 1: Clears Start Of Frame Interrupt. * ENDBUSRES: Clear End of Bus Reset Interrupt 0: No effect. 1: Clears End of Bus Reset Interrupt. * WAKEUP: Clear Wakeup Interrupt 0: No effect. 1: Clears Wakeup Interrupt. 762 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 38.6.9 UDP Reset Endpoint Register Name: UDP_RST_EP Address: 0xFFFA4028 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 8 - - 7 6 5 EP5 4 EP4 3 EP3 2 EP2 1 EP1 0 EP0 * EP0: Reset Endpoint 0 * EP1: Reset Endpoint 1 * EP2: Reset Endpoint 2 * EP3: Reset Endpoint 3 * EP4: Reset Endpoint 4 * EP5: Reset Endpoint 5 This flag is used to reset the FIFO associated with the endpoint and the bit RXBYTECOUNT in the register UDP_CSRx.It also resets the data toggle to DATA0. It is useful after removing a HALT condition on a BULK endpoint. Refer to Chapter 5.8.5 in the USB Serial Bus Specification, Rev.2.0. Warning: This flag must be cleared at the end of the reset. It does not clear UDP_CSRx flags. 0: No reset. 1: Forces the corresponding endpoint FIF0 pointers to 0, therefore RXBYTECNT field is read at 0 in UDP_CSRx. Resetting the endpoint is a two-step operation: 1. Set the corresponding EPx field. 2. Clear the corresponding EPx field. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 763 38.6.10 UDP Endpoint Control and Status Register Name: UDP_CSRx [x = 0..5] Address: 0xFFFA402C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 25 RXBYTECNT 24 23 22 21 20 19 18 17 16 RXBYTECNT 15 EPEDS 14 - 13 - 12 - 11 DTGLE 10 9 EPTYPE 8 7 6 5 4 3 STALLSENT ISOERROR 2 1 0 RXSETUP RX_DATA_BK0 TXCOMP DIR RX_DATA_BK1 FORCESTALL TXPKTRDY WARNING: Due to synchronization between MCK and UDPCK, the software application must wait for the end of the write operation before executing another write by polling the bits which must be set/cleared. //! Clear flags of UDP UDP_CSR register and waits for synchronization #define Udp_ep_clr_flag(pInterface, endpoint, flags) { \ pInterface->UDP_CSR[endpoint] &= ~(flags); \ while ( (pInterface->UDP_CSR[endpoint] & (flags)) == (flags) ); \ } //! Set flags of UDP UDP_CSR register and waits for synchronization #define Udp_ep_set_flag(pInterface, endpoint, flags) { \ pInterface->UDP_CSR[endpoint] |= (flags); \ while ( (pInterface->UDP_CSR[endpoint] & (flags)) != (flags) ); \ } Note: In a preemptive environment, set or clear the flag and wait for a time of 1 UDPCK clock cycle and 1peripheral clock cycle. However, RX_DATA_BLK0, TXPKTRDY, RX_DATA_BK1 require wait times of 3 UDPCK clock cycles and 3 peripheral clock cycles before accessing DPR. * TXCOMP: Generates an IN Packet with Data Previously Written in the DPR This flag generates an interrupt while it is set to one. Write (Cleared by the firmware): 0: Clear the flag, clear the interrupt. 1: No effect. Read (Set by the USB peripheral): 0: Data IN transaction has not been acknowledged by the Host. 1: Data IN transaction is achieved, acknowledged by the Host. After having issued a Data IN transaction setting TXPKTRDY, the device firmware waits for TXCOMP to be sure that the host has acknowledged the transaction. 764 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * RX_DATA_BK0: Receive Data Bank 0 This flag generates an interrupt while it is set to one. Write (Cleared by the firmware): 0: Notify USB peripheral device that data have been read in the FIFO's Bank 0. 1: To leave the read value unchanged. Read (Set by the USB peripheral): 0: No data packet has been received in the FIFO's Bank 0. 1: A data packet has been received, it has been stored in the FIFO's Bank 0. When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to the microcontroller memory. The number of bytes received is available in RXBYTCENT field. Bank 0 FIFO values are read through the UDP_FDRx. Once a transfer is done, the device firmware must release Bank 0 to the USB peripheral device by clearing RX_DATA_BK0. After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before accessing DPR. * RXSETUP: Received Setup This flag generates an interrupt while it is set to one. Read: 0: No setup packet available. 1: A setup data packet has been sent by the host and is available in the FIFO. Write: 0: Device firmware notifies the USB peripheral device that it has read the setup data in the FIFO. 1: No effect. This flag is used to notify the USB device firmware that a valid Setup data packet has been sent by the host and successfully received by the USB device. The USB device firmware may transfer Setup data from the FIFO by reading the UDP_FDRx to the microcontroller memory. Once a transfer has been done, RXSETUP must be cleared by the device firmware. Ensuing Data OUT transaction is not accepted while RXSETUP is set. * STALLSENT: Stall Sent (Control, Bulk Interrupt Endpoints)/ISOERROR (Isochronous Endpoints) This flag generates an interrupt while it is set to one. STALLSENT: This ends a STALL handshake. Read: 0: The host has not acknowledged a STALL. 1: Host has acknowledged the stall. Write: 0: Resets the STALLSENT flag, clears the interrupt. 1: No effect. This is mandatory for the device firmware to clear this flag. Otherwise the interrupt remains. Refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the STALL handshake. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 765 ISOERROR: A CRC error has been detected in an isochronous transfer. Read: 0: No error in the previous isochronous transfer. 1: CRC error has been detected, data available in the FIFO are corrupted. Write: 0: Resets the ISOERROR flag, clears the interrupt. 1: No effect. * TXPKTRDY: Transmit Packet Ready This flag is cleared by the USB device. This flag is set by the USB device firmware. Read: 0: There is no data to send. 1: The data is waiting to be sent upon reception of token IN. Write: 0: Can be used in the procedure to cancel transmission data. (See, Section 38.5.2.5 "Transmit Data Cancellation" on page 746) 1: A new data payload has been written in the FIFO by the firmware and is ready to be sent. This flag is used to generate a Data IN transaction (device to host). Device firmware checks that it can write a data payload in the FIFO, checking that TXPKTRDY is cleared. Transfer to the FIFO is done by writing in the UDP_FDRx. Once the data payload has been transferred to the FIFO, the firmware notifies the USB device setting TXPKTRDY to one. USB bus transactions can start. TXCOMP is set once the data payload has been received by the host. After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before accessing DPR. * FORCESTALL: Force Stall (used by Control, Bulk and Isochronous Endpoints) Read: 0: Normal state. 1: Stall state. Write: 0: Return to normal state. 1: Send STALL to the host. Refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the STALL handshake. Control endpoints: During the data stage and status stage, this bit indicates that the microcontroller cannot complete the request. Bulk and interrupt endpoints: This bit notifies the host that the endpoint is halted. The host acknowledges the STALL, device firmware is notified by the STALLSENT flag. 766 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * RX_DATA_BK1: Receive Data Bank 1 (only used by endpoints with ping-pong attributes) This flag generates an interrupt while it is set to one. Write (Cleared by the firmware): 0: Notifies USB device that data have been read in the FIFO's Bank 1. 1: To leave the read value unchanged. Read (Set by the USB peripheral): 0: No data packet has been received in the FIFO's Bank 1. 1: A data packet has been received, it has been stored in FIFO's Bank 1. When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to microcontroller memory. The number of bytes received is available in RXBYTECNT field. Bank 1 FIFO values are read through UDP_FDRx. Once a transfer is done, the device firmware must release Bank 1 to the USB device by clearing RX_DATA_BK1. After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before accessing DPR. * DIR: Transfer Direction (only available for control endpoints) Read/Write 0: Allows Data OUT transactions in the control data stage. 1: Enables Data IN transactions in the control data stage. Refer to Chapter 8.5.3 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the control data stage. This bit must be set before UDP_CSRx/RXSETUP is cleared at the end of the setup stage. According to the request sent in the setup data packet, the data stage is either a device to host (DIR = 1) or host to device (DIR = 0) data transfer. It is not necessary to check this bit to reverse direction for the status stage. * EPTYPE[2:0]: Endpoint Type Read/Write 000 Control 001 Isochronous OUT 101 Isochronous IN 010 Bulk OUT 110 Bulk IN 011 Interrupt OUT 111 Interrupt IN * DTGLE: Data Toggle Read-only 0: Identifies DATA0 packet. 1: Identifies DATA1 packet. Refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0 for more information on DATA0, DATA1 packet definitions. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 767 * EPEDS: Endpoint Enable Disable Read: 0: Endpoint disabled. 1: Endpoint enabled. Write: 0: Disables endpoint. 1: Enables endpoint. Control endpoints are always enabled. Reading or writing this field has no effect on control endpoints. Note: After reset, all endpoints are configured as control endpoints (zero). * RXBYTECNT[10:0]: Number of Bytes Available in the FIFO Read-only When the host sends a data packet to the device, the USB device stores the data in the FIFO and notifies the microcontroller. The microcontroller can load the data from the FIFO by reading RXBYTECENT bytes in the UDP_FDRx. 768 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 38.6.11 UDP FIFO Data Register Name: UDP_FDRx [x = 0..5] Address: 0xFFFA404C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 8 - - 7 6 5 4 3 2 1 0 FIFO_DATA * FIFO_DATA[7:0]: FIFO Data Value The microcontroller can push or pop values in the FIFO through this register. RXBYTECNT in the corresponding UDP_CSRx is the number of bytes to be read from the FIFO (sent by the host). The maximum number of bytes to write is fixed by the Max Packet Size in the Standard Endpoint Descriptor. It can not be more than the physical memory size associated to the endpoint. Refer to the Universal Serial Bus Specification, Rev. 2.0 for more information. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 769 38.6.12 UDP Transceiver Control Register Name: UDP_TXVC Address: 0xFFFA4074 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 8 PUON TXVDIS 7 - 6 - 5 - 4 - 3 - 2 - 1 0 - - WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any read/write operations to the UDP registers including the UDP_TXVC register. * TXVDIS: Transceiver Disable When UDP is disabled, power consumption can be reduced significantly by disabling the embedded transceiver. This can be done by setting TXVDIS field. To enable the transceiver, TXVDIS must be cleared. * PUON: Pull-up On 0: The 1.5K integrated pull-up on DP is disconnected. 1: The 1.5 K integrated pull-up on DP is connected. Note: 770 If the USB pull-up is not connected on DP, the user should not write in any UDP register other than the UDP_TXVC register. This is because if DP and DM are floating at 0, or pulled down, then SE0 is received by the device with the consequence of a USB Reset. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 39. USB Host Port (UHP) 39.1 Description The USB Host Port (UHP) interfaces the USB with the host application. It handles Open HCI protocol (Open Host Controller Interface) as well as USB v2.0 Full-speed and Low-speed protocols. The USB Host Port integrates a root hub and transceivers on downstream ports. It provides several high-speed half-duplex serial communication ports at a baud rate of 12 Mbit/s. Up to 127 USB devices (printer, camera, mouse, keyboard, disk, etc.) and the USB hub can be connected to the USB host in the USB "tiered star" topology. The USB Host Port controller is fully compliant with the OpenHCI specification. The USB Host Port User Interface (registers description) can be found in the Open HCI Rev 1.0 Specification available on www.hp.com. The standard OHCI USB stack driver can be easily ported to Atmel's architecture in the same way all existing class drivers run without hardware specialization. This means that all standard class devices are automatically detected and available to the user application. As an example, integrating an HID (Human Interface Device) class driver provides a plug & play feature for all USB keyboards and mouses. 39.2 Block Diagram Figure 39-1. Block Diagram HCI Slave Block AHB Slave OHCI Registers OHCI Root Hub Registers List Processor Block Control ED & TD Regsisters Root Hub and Host SIE Embedded USB v2.0 Full-speed Transceiver PORT S/M USB transceiver DP DM PORT S/M USB transceiver DP DM AHB HCI Master Block Data FIFO 64 x 8 Master uhp_int MCK UHPCK Access to the USB host operational registers is achieved through the AHB bus slave interface. The OpenHCI host controller initializes master DMA transfers through the ASB bus master interface as follows: Fetches endpoint descriptors and transfer descriptors Access to endpoint data from system memory Access to the HC communication area Write status and retire transfer Descriptor Memory access errors (abort, misalignment) lead to an "UnrecoverableError" indicated by the corresponding flag in the host controller operational registers. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 771 The USB root hub is integrated in the USB host. Several USB downstream ports are available. The number of downstream ports can be determined by the software driver reading the root hub's operational registers. Device connection is automatically detected by the USB host port logic. USB physical transceivers are integrated in the product and driven by the root hub's ports. Over current protection on ports can be activated by the USB host controller. Atmel's standard product does not dedicate pads to external over current protection. 39.3 Product Dependencies 39.3.1 I/O Lines DPs and DMs are not controlled by any PIO controllers. The embedded USB physical transceivers are controlled by the USB host controller. 39.3.2 Power Management The USB host controller requires a 48 MHz clock. This clock must be generated by a PLL with a correct accuracy of 0.25%. Thus the USB device peripheral receives two clocks from the Power Management Controller (PMC): the master clock MCK used to drive the peripheral user interface (MCK domain) and the UHPCLK 48 MHz clock used to interface with the bus USB signals (Recovered 12 MHz domain). 39.3.3 Interrupt The USB host interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling USB host interrupts requires programming the AIC before configuring the UHP. 772 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 39.4 Functional Description Please refer to the Open Host Controller Interface Specification for USB Release 1.0.a. 39.4.1 Host Controller Interface There are two communication channels between the Host Controller and the Host Controller Driver. The first channel uses a set of operational registers located on the USB Host Controller. The Host Controller is the target for all communications on this channel. The operational registers contain control, status and list pointer registers. They are mapped in the memory mapped area. Within the operational register set there is a pointer to a location in the processor address space named the Host Controller Communication Area (HCCA). The HCCA is the second communication channel. The host controller is the master for all communication on this channel. The HCCA contains the head pointers to the interrupt Endpoint Descriptor lists, the head pointer to the done queue and status information associated with start-of-frame processing. The basic building blocks for communication across the interface are Endpoint Descriptors (ED, 4 double words) and Transfer Descriptors (TD, 4 or 8 double words). The host controller assigns an Endpoint Descriptor to each endpoint in the system. A queue of Transfer Descriptors is linked to the Endpoint Descriptor for the specific endpoint. Figure 39-2. USB Host Communication Channels Device Enumeration Open HCI Operational Registers Host Controller Communications Area Mode Interrupt 0 HCCA Interrupt 1 Status Interrupt 2 ... Event Interrupt 31 Frame Int ... Ratio Control Bulk ... Done Device Register in Memory Space = Transfer Descriptor Shared RAM = Endpoint Descriptor SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 773 39.4.2 Host Controller Driver Figure 39-3. USB Host Drivers User Application User Space Kernel Drivers Mini Driver Class Driver Class Driver HUB Driver USB Driver Host Controller Driver Hardware Host Controller Hardware USB Handling is done through several layers as follows: 39.5 Host controller hardware and serial engine: Transmits and receives USB data on the bus. Host controller driver: Drives the Host controller hardware and handles the USB protocol. USB Bus driver and hub driver: Handles USB commands and enumeration. Offers a hardware independent interface. Mini driver: Handles device specific commands. Class driver: Handles standard devices. This acts as a generic driver for a class of devices, for example the HID driver. Typical Connection Figure 39-4. Board Schematic to Interface UHP Device Controller 5V 0.20A Type A Connector 10F HDMA or HDMB HDPA or HDPB 100nF 10nF REXT REXT A termination serial resistor must be connected to HDP and HDM. The resistor value is defined in the electrical specification of the product (REXT). 774 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 40. Image Sensor Interface (ISI) 40.1 Overview The Image Sensor Interface (ISI) connects a CMOS-type image sensor to the processor and provides image capture in various formats. It does data conversion, if necessary, before the storage in memory through DMA. The ISI supports color CMOS image sensor and grayscale image sensors with a reduced set of functionalities. In grayscale mode, the data stream is stored in memory without any processing and so is not compatible with the LCD controller. Internal FIFOs on the preview and codec paths are used to store the incoming data. The RGB output on the preview path is compatible with the LCD controller. This module outputs the data in RGB format (LCD compatible) and has scaling capabilities to make it compliant to the LCD display resolution (See Table 40-3 on page 778). Several input formats such as preprocessed RGB or YCbCr are supported through the data bus interface. It supports two modes of synchronization: 1. The hardware with ISI_VSYNC and ISI_HSYNC signals 2. The International Telecommunication Union Recommendation ITU-R BT.656-4 Start-of-Active-Video (SAV) and End-of-Active-Video (EAV) synchronization sequence. Using EAV/SAV for synchronization reduces the pin count (ISI_VSYNC, ISI_HSYNC not used). The polarity of the synchronization pulse is programmable to comply with the sensor signals. Table 40-1. I/O Description Signal Direction Description ISI_VSYNC IN Vertical Synchronization ISI_HSYNC IN Horizontal Synchronization ISI_DATA[11..0] IN Sensor Pixel Data ISI_MCK OUT ISI_PCK IN Figure 40-1. Master Clock Provided to the Image Sensor Pixel Clock Provided by the Image Sensor ISI Connection Example Image Sensor Image Sensor Interface data[11..0] ISI_DATA[11..0] CLK ISI_MCK PCLK ISI_PCK VSYNC ISI_VSYNC HSYNC ISI_HSYNC SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 775 Block Diagram Hsync/Len Vsync/Fen Image Sensor Interface Block Diagram Timing Signals Interface CCIR-656 Embedded Timing Decoder(SAV/EAV) CMOS sensor Pixel input up to 12 bit YCbCr 4:2:2 8:8:8 RGB 5:6:5 CMOS sensor pixel clock input 40.3 Config Registers Camera Interrupt Controller Camera Interrupt Request Line From Rx buffers Pixel Clock Domain APB Interface APB bus Figure 40-2. APB Clock Domain AHB Clock Domain Frame Rate Clipping + Color Conversion YCC to RGB Pixel Sampling Module Clipping + Color Conversion RGB to YCC 2-D Image Scaler Pixel Formatter Packed Formatter Rx Direct Display FIFO Core Video Arbiter Rx Direct Capture FIFO Camera AHB Master Interface Scatter Mode Support AHB bus 40.2 codec_on Functional Description The Image Sensor Interface (ISI) supports direct connection to the ITU-R BT. 601/656 8-bit mode compliant sensors and up to 12-bit grayscale sensors. It receives the image data stream from the image sensor on the 12-bit data bus. This module receives up to 12 bits for data, the horizontal and vertical synchronizations and the pixel clock. The reduced pin count alternative for synchronization is supported for sensors that embed SAV (start of active video) and EAV (end of active video) delimiters in the data stream. The Image Sensor Interface interrupt line is generally connected to the Advanced Interrupt Controller and can trigger an interrupt at the beginning of each frame and at the end of a DMA frame transfer. If the SAV/EAV synchronization is used, an interrupt can be triggered on each delimiter event. For 8-bit color sensors, the data stream received can be in several possible formats: YCbCr 4:2:2, RGB 8:8:8, RGB 5:6:5 and may be processed before the storage in memory. The data stream may be sent on both preview path and codec path if the bit CODEC_ON in the ISI_CR1 is one. To optimize the bandwidth, the codec path should be enabled only when a capture is required. In grayscale mode, the input data stream is stored in memory without any processing. The 12-bit data, which represent the grayscale level for the pixel, is stored in memory one or two pixels per word, depending on the GS_MODE bit in the ISI_CR2 register. The data is stored via the preview path without any treatment (scaling, color conversion,...). The size of the sensor must be programmed in the fields IM_VSIZE and IM_HSIZE in the ISI_CR2 register.The programming of the preview path register (ISI_PSIZE) is not necessary. The codec datapath is not available when grayscale image is selected. A frame rate counter allows users to capture all frames or 1 out of every 2 to 8 frames. 776 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 40.3.1 Data Timing The two data timings using horizontal and vertical synchronization and EAV/SAV sequence synchronization are shown in Figure 40-3 and Figure 40-4. In the VSYNC/HSYNC synchronization, the valid data is captured with the active edge of the pixel clock (ISI_PCK), after SFD lines of vertical blanking and SLD pixel clock periods delay programmed in the control register. The ITU-RBT.656-4 defines the functional timing for an 8-bit wide interface. There are two timing reference signals, one at the beginning of each video data block SAV (0xFF000080) and one at the end of each video data block EAV(0xFF00009D). Only data sent between EAV and SAV is captured. Horizontal blanking and vertical blanking are ignored. Use of the SAV and EAV synchronization eliminates the ISI_VSYNC and ISI_HSYNC signals from the interface, thereby reducing the pin count. In order to retrieve both frame and line synchronization properly, at least one line of vertical blanking is mandatory. Figure 40-3. HSYNC and VSYNC Synchronization Frame ISI_VSYNC 1 line ISI_HSYNC ISI_PCK DATA[7..0] Figure 40-4. Y Cb Y Cr Y Cb Y Cr Y Cb Y Cr SAV and EAV Sequence Synchronization ISII_PCK DATA[7..0] FF 00 00 SAV 80 Y Cb Y Cr Y Cb Y Cr Active Video Y Y Cr Y Cb FF 00 00 EAV 9D 40.3.2 Data Ordering The RGB color space format is required for viewing images on a display screen preview, and the YCbCr color space format is required for encoding. All the sensors do not output the YCbCr or RGB components in the same order. The ISI allows the user to program the same component order as the sensor, reducing software treatments to restore the right format. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 777 Table 40-2. Data Ordering in YCbCr Mode Mode Byte 0 Byte 1 Byte 2 Byte 3 Default Cb(i) Y(i) Cr(i) Y(i+1) Mode1 Cr(i) Y(i) Cb(i) Y(i+1) Mode2 Y(i) Cb(i) Y(i+1) Cr(i) Mode3 Y(i) Cr(i) Y(i+1) Cb(i) Table 40-3. Mode RGB Format in Default Mode, RGB_CFG = 00, No Swap Byte D7 D6 D5 D4 D3 D2 D1 D0 Byte 0 R7(i) R6(i) R5(i) R4(i) R3(i) R2(i) R1(i) R0(i) Byte 1 G7(i) G6(i) G5(i) G4(i) G3(i) G2(i) G1(i) G0(i) Byte 2 B7(i) B6(i) B5(i) B4(i) B3(i) B2(i) B1(i) B0(i) Byte 3 R7(i+1) R6(i+1) R5(i+1) R4(i+1) R3(i+1) R2(i+1) R1(i+1) R0(i+1) Byte 0 R4(i) R3(i) R2(i) R1(i) R0(i) G5(i) G4(i) G3(i) Byte 1 G2(i) G1(i) G0(i) B4(i) B3(i) B2(i) B1(i) B0(i) Byte 2 R4(i+1) R3(i+1) R2(i+1) R1(i+1) R0(i+1) G5(i+1) G4(i+1) G3(i+1) Byte 3 G2(i+1) G1(i+1) G0(i+1) B4(i+1) B3(i+1) B2(i+1) B1(i+1) B0(i+1) RGB 8:8:8 RGB 5:6:5 Table 40-4. Mode RGB Format, RGB_CFG = 10 (Mode 2), No Swap Byte D7 D6 D5 D4 D3 D2 D1 D0 Byte 0 G2(i) G1(i) G0(i) R4(i) R3(i) R2(i) R1(i) R0(i) Byte 1 B4(i) B3(i) B2(i) B1(i) B0(i) G5(i) G4(i) G3(i) Byte 2 G2(i+1) G1(i+1) G0(i+1) R4(i+1) R3(i+1) R2(i+1) R1(i+1) R0(i+1) Byte 3 B4(i+1) B3(i+1) B2(i+1) B1(i+1) B0(i+1) G5(i+1) G4(i+1) G3(i+1) RGB 5:6:5 Table 40-5. Mode RGB Format in Default Mode, RGB_CFG = 00, Swap Activated Byte D7 D6 D5 D4 D3 D2 D1 D0 Byte 0 R0(i) R1(i) R2(i) R3(i) R4(i) R5(i) R6(i) R7(i) Byte 1 G0(i) G1(i) G2(i) G3(i) G4(i) G5(i) G6(i) G7(i) Byte 2 B0(i) B1(i) B2(i) B3(i) B4(i) B5(i) B6(i) B7(i) Byte 3 R0(i+1) R1(i+1) R2(i+1) R3(i+1) R4(i+1) R5(i+1) R6(i+1) R7(i+1) Byte 0 G3(i) G4(i) G5(i) R0(i) R1(i) R2(i) R3(i) R4(i) Byte 1 B0(i) B1(i) B2(i) B3(i) B4(i) G0(i) G1(i) G2(i) Byte 2 G3(i+1) G4(i+1) G5(i+1) R0(i+1) R1(i+1) R2(i+1) R3(i+1) R4(i+1) Byte 3 B0(i+1) B1(i+1) B2(i+1) B3(i+1) B4(i+1) G0(i+1) G1(i+1) G2(i+1) RGB 8:8:8 RGB 5:6:5 The RGB 5:6:5 input format is processed to be displayed as RGB 5:5:5 format, compliant with the 16-bit mode of the LCD controller. 778 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 40.3.3 Clocks The sensor master clock (ISI_MCK) can be generated either by the Advanced Power Management Controller (APMC) through a Programmable Clock output or by an external oscillator connected to the sensor. None of the sensors embeds a power management controller, so providing the clock by the APMC is a simple and efficient way to control power consumption of the system. Care must be taken when programming the system clock. The ISI has two clock domains, the system bus clock and the pixel clock provided by sensor. The two clock domains are not synchronized, but the system clock must be faster than pixel clock. 40.3.4 Preview Path 40.3.4.1 Scaling, Decimation (Subsampling) This module resizes captured 8-bit color sensor images to fit the LCD display format. The resize module performs only downscaling. The same ratio is applied for both horizontal and vertical resize, then a fractional decimation algorithm is applied. The decimation factor is a multiple of 1/16 and values 0 to 15 are forbidden. Table 40-6. Decimation Factor Dec value 0->15 16 17 18 19 ... 124 125 126 127 Dec Factor X 1 1.063 1.125 1.188 ... 7.750 7.813 7.875 7.938 Table 40-7. Decimation and Scaler Offset Values INPUT 352*288 640*480 800*600 1280*1024 1600*1200 2048*1536 F NA 16 20 32 40 51 F 16 32 40 64 80 102 F 16 26 33 56 66 85 F 16 53 66 113 133 170 OUTPUT VGA 640*480 QVGA 320*240 CIF 352*288 QCIF 176*144 Example: Input 1280*1024 Output = 640*480 Hratio = 1280/640 = 2 Vratio = 1024/480 = 2.1333 The decimation factor is 2 so 32/16. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 779 Figure 40-5. Resize Examples 1280 32/16 decimation 640 1024 480 1280 56/16 decimation 352 1024 288 40.3.4.2 Color Space Conversion This module converts YCrCb or YUV pixels to RGB color space. Clipping is performed to ensure that the samples value do not exceed the allowable range. The conversion matrix is defined below and is fully programmable: C0 0 C1 Y - Y off R G = C 0 - C 2 - C 3 x C b - C boff B C0 C4 0 C r - C roff Example of programmable value to convert YCrCb to RGB: R = 1.164 ( Y - 16 ) + 1.596 ( C r - 128 ) G = 1.164 ( Y - 16 ) - 0.813 ( C r - 128 ) - 0.392 ( C b - 128 ) B = 1.164 ( Y - 16 ) + 2.107 ( C b - 128 ) An example of programmable value to convert from YUV to RGB: R = Y + 1.596 V G = Y - 0.394 U - 0.436 V B = Y + 2.032 U 40.3.4.3 Memory Interface Preview datapath contains a data formatter that converts 8:8:8 pixel to RGB 5:5:5 format compliant with 16-bit format of the LCD controller. In general, when converting from a color channel with more bits to one with fewer bits, formatter module discards the lower-order bits. Example: Converting from RGB 8:8:8 to RGB 5:6:5, it discards the three LSBs from the red and blue channels, and two LSBs from the green channel. When grayscale mode is enabled, two memory format are supported. One mode supports 2 pixels per word, and the other mode supports 1 pixel per word. 780 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 40-8. Grayscale Memory Mapping Configuration for 12-bit Data GS_MODE DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0] 0 P_0[11:4] P_0[3:0], 0000 P_1[11:4] P_1[3:0], 0000 1 P_0[11:4] P_0[3:0], 0000 0 0 40.3.4.4 FIFO and DMA Features Both preview and codec datapaths contain FIFOs, asynchronous buffers that are used to safely transfer formatted pixels from Pixel clock domain to AHB clock domain. A video arbiter is used to manage FIFO thresholds and triggers a relevant DMA request through the AHB master interface. Thus, depending on FIFO state, a specified length burst is asserted. Regarding AHB master interface, it supports Scatter DMA mode through linked list operation. This mode of operation improves flexibility of image buffer location and allows the user to allocate two or more frame buffers. The destination frame buffers are defined by a series of Frame Buffer Descriptors (FBD). Each FBD controls the transfer of one entire frame and then optionally loads a further FBD to switch the DMA operation at another frame buffer address. The FBD is defined by a series of two words. The first one defines the current frame buffer address, and the second defines the next FBD memory location. This DMA transfer mode is only available for preview datapath and is configured in the ISI_PPFBD register that indicates the memory location of the first FBD. The primary FBD is programmed into the camera interface controller. The data to be transferred described by an FBD requires several burst access. In the example below, the use of two ping-pong frame buffers is described. 40.3.4.5 Example The first FBD, stored at address 0x30000, defines the location of the first frame buffer. Destination Address: frame buffer ID0 0x02A000 Next FBD address: 0x30010 Second FBD, stored at address 0x30010, defines the location of the second frame buffer. Destination Address: frame buffer ID1 0x3A000 Transfer width: 32 bit Next FBD address: 0x30000, wrapping to first FBD. Using this technique, several frame buffers can be configured through the linked list. Figure 40-6 illustrates a typical three frame buffer application. Frame n is mapped to frame buffer 0, frame n+1 is mapped to frame buffer 1, frame n+2 is mapped to Frame buffer 2, further frames wrap. A codec request occurs, and the full-size 4:2:2 encoded frame is stored in a dedicated memory space. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 781 Figure 40-6. Three Frame Buffers Application and Memory Mapping Codec Done Codec Request frame n-1 frame n frame n+1 frame n+2 frame n+3 frame n+4 Memory Space Frame Buffer 3 Frame Buffer 0 LCD Frame Buffer 1 ISI config Space 4:2:2 Image Full ROI 40.3.5 Codec Path 40.3.5.1 Color Space Conversion Depending on user selection, this module can be bypassed so that input YCrCb stream is directly connected to the format converter module. If the RGB input stream is selected, this module converts RGB to YCrCb color space with the formulas given below: Y Cr = C0 C1 C2 Cb -C6 -C7 C8 C3 -C4 -C5 Y off R x G + Cr off B Cb off An example of coefficients are given below: Y = 0.257 R + 0.504 G + 0.098 B + 16 C = 0.439 R - 0.368 G - 0.071 B + 128 r C b = - 0.148 R - 0.291 G + 0.439 B + 128 40.3.5.2 Memory Interface Dedicated FIFO are used to support packed memory mapping. YCrCb pixel components are sent in a single 32-bit word in a contiguous space (packed). Data is stored in the order of natural scan lines. Planar mode is not supported. 40.3.5.3 DMA Features Unlike preview datapath, codec datapath DMA mode does not support linked list operation. Only the CODEC_DMA_ADDR is used to configure the frame buffer base address. 782 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 40.4 Image Sensor Interface (ISI) User Interface Table 40-9. Register Mapping Offset Register Name Access Reset 0x00 ISI Control 1 Register ISI_CR1 Read/Write 0x00000002 0x04 ISI Control 2 Register ISI_CR2 Read/Write 0x00000000 0x08 ISI Status Register ISI_SR Read-only 0x00000000 0x0C ISI Interrupt Enable Register ISI_IER Write-only - 0x10 ISI Interrupt Disable Register ISI_IDR Write-only - 0x14 ISI Interrupt Mask Register ISI_IMR Read-only 0x00000000 0x18 Reserved - - - 0x1C Reserved - - - 0x20 ISI Preview Size Register ISI_PSIZE Read/Write 0x00000000 0x24 ISI Preview Decimation Factor Register ISI_PDECF Read/Write 0x00000010 0x28 ISI Preview Primary FBD Register ISI_PPFBD Read/Write 0x00000000 0x2C ISI Codec DMA Base Address Register ISI_CDBA Read/Write 0x00000000 0x30 ISI CSC YCrCb To RGB Set 0 Register ISI_Y2R_SET0 Read/Write 0x6832cc95 0x34 ISI CSC YCrCb To RGB Set 1 Register ISI_Y2R_SET1 Read/Write 0x00007102 0x38 ISI CSC RGB To YCrCb Set 0 Register ISI_R2Y_SET0 Read/Write 0x01324145 0x3C ISI CSC RGB To YCrCb Set 1 Register ISI_R2Y_SET1 Read/Write 0x01245e38 0x40 ISI CSC RGB To YCrCb Set 2 Register ISI_R2Y_SET2 Read/Write 0x01384a4b 0x44-0xF8 Reserved - - - 0xFC Reserved - - - Note: Several parts of the ISI controller use the pixel clock provided by the image sensor (ISI_PCK). Thus the user must first program the image sensor to provide this clock (ISI_PCK) before programming the Image Sensor Controller. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 783 40.4.1 ISI Control 1 Register Name: ISI_CR1 Address: 0xFFFC0000 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 SFD 23 22 21 20 SLD 15 CODEC_ON 14 7 CRC_SYNC 6 EMB_SYNC 13 12 FULL 11 - 10 9 FRATE 8 5 - 4 PIXCLK_POL 3 VSYNC_POL 2 HSYNC_POL 1 ISI_DIS 0 ISI_RST THMASK * ISI_RST: Image sensor interface reset Write-only. Refer to bit SOFTRST in Section 40.4.3 "ISI Status Register" on page 788 for soft reset status. 0: No action 1: Resets the image sensor interface. * ISI_DIS: Image sensor disable: 0: Enable the image sensor interface. 1: Finish capturing the current frame and then shut down the module. * HSYNC_POL: Horizontal synchronization polarity 0: HSYNC active high 1: HSYNC active low * VSYNC_POL: Vertical synchronization polarity 0: VSYNC active high 1: VSYNC active low * PIXCLK_POL: Pixel clock polarity 0: Data is sampled on rising edge of pixel clock 1: Data is sampled on falling edge of pixel clock * EMB_SYNC: Embedded synchronization 0: Synchronization by HSYNC, VSYNC 1: Synchronization by embedded synchronization sequence SAV/EAV * CRC_SYNC: Embedded synchronization 0: No CRC correction is performed on embedded synchronization 1: CRC correction is performed. if the correction is not possible, the current frame is discarded and the CRC_ERR is set in the status register. 784 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * FRATE: Frame rate [0..7] 0: All the frames are captured, else one frame every FRATE+1 is captured. * FULL: Full mode is allowed 1: Both codec and preview datapaths are working simultaneously * THMASK: Threshold mask 0: 4, 8 and 16 AHB bursts are allowed 1: 8 and 16 AHB bursts are allowed 2: Only 16 AHB bursts are allowed * CODEC_ON: Enable the codec path enable bit Write-only. 0: The codec path is disabled 1: The codec path is enabled and the next frame is captured. Refer to bit CDC_PND in "ISI Status Register" on page 788. * SLD: Start of Line Delay SLD pixel clock periods to wait before the beginning of a line. * SFD: Start of Frame Delay SFD lines are skipped at the beginning of the frame. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 785 40.4.2 ISI Control 2 Register Name: ISI_CR2 Address: 0xFFFC0004 Access: Read/Write 31 30 29 RGB_CFG 23 28 27 - 26 25 IM_HSIZE 24 20 19 18 17 16 YCC_SWAP 22 21 IM_HSIZE 15 COL_SPACE 14 RGB_SWAP 13 GRAYSCALE 12 RGB_MODE 11 GS_MODE 10 9 IM_VSIZE 8 7 6 5 4 3 2 1 0 IM_VSIZE * IM_VSIZE: Vertical size of the Image sensor [0..2047] Vertical size = IM_VSIZE + 1 * GS_MODE 0: 2 pixels per word 1: 1 pixel per word * RGB_MODE: RGB input mode 0: RGB 8:8:8 24 bits 1: RGB 5:6:5 16 bits * GRAYSCALE 0: Grayscale mode is disabled 1: Input image is assumed to be grayscale coded * RGB_SWAP 0: D7 -> R7 1: D0 -> R7 The RGB_SWAP has no effect when the grayscale mode is enabled. * COL_SPACE: Color space for the image data 0: YCbCr 1: RGB * IM_HSIZE: Horizontal size of the Image sensor [0..2047] Horizontal size = IM_HSIZE + 1 786 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * YCC_SWAP: Defines the YCC image data YCC_SWAP Byte 0 Byte 1 Byte 2 Byte 3 00: Default Cb(i) Y(i) Cr(i) Y(i+1) 01: Mode1 Cr(i) Y(i) Cb(i) Y(i+1) 10: Mode2 Y(i) Cb(i) Y(i+1) Cr(i) 11: Mode3 Y(i) Cr(i) Y(i+1) Cb(i) * RGB_CFG: Defines RGB pattern when RGB_MODE is set to 1 RGB_CFG Byte 0 Byte 1 Byte 2 Byte 3 00: Default R/G(MSB) G(LSB)/B R/G(MSB) G(LSB)/B 01: Mode1 B/G(MSB) G(LSB)/R B/G(MSB) G(LSB)/R 10: Mode2 G(LSB)/R B/G(MSB) G(LSB)/R B/G(MSB) 11: Mode3 G(LSB)/B R/G(MSB) G(LSB)/B R/G(MSB) If RGB_MODE is set to RGB 8:8:8, then RGB_CFG = 0 implies RGB color sequence, else it implies BGR color sequence. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 787 40.4.3 ISI Status Register Name: ISI_SR Address: 0xFFFC0008 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 FR_OVR 8 FO_C_EMP 7 FO_P_EMP 6 FO_P_OVF 5 FO_C_OVF 4 CRC_ERR 3 CDC_PND 2 SOFTRST 1 DIS 0 SOF * SOF: Start of frame 0: No start of frame has been detected. 1: A start of frame has been detected. * DIS: Image Sensor Interface disable 0: The image sensor interface is enabled. 1: The image sensor interface is disabled and stops capturing data. The DMA controller and the core can still read the FIFOs. * SOFTRST: Software reset 0: Software reset not asserted or not completed. 1: Software reset has completed successfully. * CDC_PND: Codec request pending 0: No request asserted. 1: A codec request is pending. If a codec request is asserted during a frame, the CDC_PND bit rises until the start of a new frame. The capture is completed when the flag FO_C_EMP = 1. * CRC_ERR: CRC synchronization error 0: No crc error in the embedded synchronization frame (SAV/EAV) 1: The CRC_SYNC is enabled in the control register and an error has been detected and not corrected. The frame is discarded and the ISI waits for a new one. * FO_C_OVF: FIFO codec overflow 0: No overflow 1: An overrun condition has occurred in input FIFO on the codec path. The overrun happens when the FIFO is full and an attempt is made to write a new sample to the FIFO. 788 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * FO_P_OVF: FIFO preview overflow 0: No overflow 1: An overrun condition has occurred in input FIFO on the preview path. The overrun happens when the FIFO is full and an attempt is made to write a new sample to the FIFO. * FO_P_EMP 0:The DMA has not finished transferring all the contents of the preview FIFO. 1:The DMA has finished transferring all the contents of the preview FIFO. * FO_C_EMP 0: The DMA has not finished transferring all the contents of the codec FIFO. 1: The DMA has finished transferring all the contents of the codec FIFO. * FR_OVR: Frame rate overrun 0: No frame overrun. 1: Frame overrun, the current frame is being skipped because a vsync signal has been detected while flushing FIFOs. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 789 40.4.4 ISI Interrupt Enable Register Name: ISI_IER Address: 0xFFFC000C Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 FR_OVR 8 FO_C_EMP 7 FO_P_EMP 6 FO_P_OVF 5 FO_C_OVF 4 CRC_ERR 3 - 2 SOFTRST 1 DIS 0 SOF * SOF: Start of Frame 1: Enables the Start of Frame interrupt. * DIS: Image Sensor Interface disable 1: Enables the DIS interrupt. * SOFTRST: Soft Reset 1: Enables the Soft Reset Completion interrupt. * CRC_ERR: CRC synchronization error 1: Enables the CRC_SYNC interrupt. * FO_C_OVF: FIFO codec Overflow 1: Enables the codec FIFO overflow interrupt. * FO_P_OVF: FIFO preview Overflow 1: Enables the preview FIFO overflow interrupt. * FO_P_EMP 1: Enables the preview FIFO empty interrupt. * FO_C_EMP 1: Enables the codec FIFO empty interrupt. * FR_OVR: Frame overrun 1: Enables the Frame overrun interrupt. 790 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 40.4.5 ISI Interrupt Disable Register Name: ISI_IDR Address: 0xFFFC0010 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 FR_OVR 8 FO_C_EMP 7 FO_P_EMP 6 FO_P_OVF 5 FO_C_OVF 4 CRC_ERR 3 - 2 SOFTRST 1 DIS 0 SOF * SOF: Start of Frame 1: Disables the Start of Frame interrupt. * DIS: Image Sensor Interface disable 1: Disables the DIS interrupt. * SOFTRST 1: Disables the soft reset completion interrupt. * CRC_ERR: CRC synchronization error 1: Disables the CRC_SYNC interrupt. * FO_C_OVF: FIFO codec overflow 1: Disables the codec FIFO overflow interrupt. * FO_P_OVF: FIFO preview overflow 1: Disables the preview FIFO overflow interrupt. * FO_P_EMP 1: Disables the preview FIFO empty interrupt. * FO_C_EMP 1: Disables the codec FIFO empty interrupt. * FR_OVR 1: Disables frame overrun interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 791 40.4.6 ISI Interrupt Mask Register Name: ISI_IMR Address: 0xFFFC0014 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 FR_OVR 8 FO_C_EMP 7 FO_P_EMP 6 FO_P_OVF 5 FO_C_OVF 4 CRC_ERR 3 - 2 SOFTRST 1 DIS 0 SOF * SOF: Start of Frame 0: The Start of Frame interrupt is disabled. 1: The Start of Frame interrupt is enabled. * DIS: Image sensor interface disable 0: The DIS interrupt is disabled. 1: The DIS interrupt is enabled. * SOFTRST 0: The soft reset completion interrupt is enabled. 1: The soft reset completion interrupt is disabled. * CRC_ERR: CRC synchronization error 0: The CRC_SYNC interrupt is disabled. 1: The CRC_SYNC interrupt is enabled. * FO_C_OVF: FIFO codec overflow 0: The codec FIFO overflow interrupt is disabled. 1: The codec FIFO overflow interrupt is enabled. * FO_P_OVF: FIFO preview overflow 0: The preview FIFO overflow interrupt is disabled. 1: The preview FIFO overflow interrupt is enabled. * FO_P_EMP 0: The preview FIFO empty interrupt is disabled. 1: The preview FIFO empty interrupt is enabled. 792 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 * FO_C_EMP 0: The codec FIFO empty interrupt is disabled. 1: The codec FIFO empty interrupt is enabled. * FR_OVR: Frame Rate Overrun 0: The frame overrun interrupt is disabled. 1: The frame overrun interrupt is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 793 40.4.7 ISI Preview Register Name: ISI_PSIZE Address: 0xFFFC0020 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 23 22 21 20 19 18 17 11 - 10 - 9 3 2 1 24 PREV_HSIZE 16 PREV_HSIZE 15 - 14 - 13 - 12 - 7 6 5 4 PREV_VSIZE * PREV_VSIZE: Vertical size for the preview path Vertical Preview size = PREV_VSIZE + 1 (480 max only in RGB mode). * PREV_HSIZE: Horizontal size for the preview path Horizontal Preview size = PREV_HSIZE + 1 (640 max only in RGB mode). 794 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 8 PREV_VSIZE 0 40.4.8 ISI Preview Decimation Factor Register Name: ISI_PDECF Address: 0xFFFC0024 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 6 5 4 3 2 1 0 DEC_FACTOR * DEC_FACTOR: Decimation factor DEC_FACTOR is 8-bit width, range is from 16 to 255. Values from 0 to 16 do not perform any decimation. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 795 40.4.9 ISI Preview Primary FBD Register Name: ISI_PPFBD Address: 0xFFFC0028 Access: Read/Write 31 30 29 28 27 PREV_FBD_ADDR 26 25 24 23 22 21 20 19 PREV_FBD_ADDR 18 17 16 15 14 13 12 11 PREV_FBD_ADDR 10 9 8 7 6 5 4 3 PREV_FBD_ADDR 2 1 0 * PREV_FBD_ADDR: Base address for preview frame buffer descriptor Written with the address of the start of the preview frame buffer queue, reads as a pointer to the current buffer being used. The frame buffer is forced to word alignment. 796 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 40.4.10 ISI Codec DMA Base Address Register Name: ISI_CDBA Address: 0xFFFC002C Access: Read/Write 31 30 29 28 27 CODEC_DMA_ADDR 26 25 24 23 22 21 20 19 CODEC_DMA_ADDR 18 17 16 15 14 13 12 11 CODEC_DMA_ADDR 10 9 8 7 6 5 4 3 CODEC_DMA_ADDR 2 1 0 * CODEC_DMA_ADDR: Base address for codec DMA This register contains codec datapath start address of buffer location. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 797 40.4.11 ISI Color Space Conversion YCrCb to RGB Set 0 Register Name: ISI_Y2R_SET0 Address: 0xFFFC0030 Access: Read/Write 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 C3 23 22 21 20 C2 15 14 13 12 C1 7 6 5 4 C0 * C0: Color Space Conversion Matrix Coefficient C0 C0 element, default step is 1/128, ranges from 0 to 1.9921875 * C1: Color Space Conversion Matrix Coefficient C1 C1 element, default step is 1/128, ranges from 0 to 1.9921875 * C2: Color Space Conversion Matrix Coefficient C2 C2 element, default step is 1/128, ranges from 0 to 1.9921875 * C3: Color Space Conversion Matrix Coefficient C3 C3 element default step is 1/128, ranges from 0 to 1.9921875 798 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 40.4.12 ISI Color Space Conversion YCrCb to RGB Set 1 Register Name: ISI_Y2R_SET1 Address: 0xFFFC0034 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 Cboff 13 Croff 12 Yoff 11 - 10 - 9 - 8 C4 C4 * C4: Color Space Conversion Matrix coefficient C4 C4 element default step is 1/128, ranges from 0 to 3.9921875 * Yoff: Color Space Conversion Luminance default offset 0: No offset 1: Offset = 128 * Croff: Color Space Conversion Red Chrominance default offset 0: No offset 1: Offset = 16 * Cboff: Color Space Conversion Blue Chrominance default offset 0: No offset 1: Offset = 16 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 799 40.4.13 ISI Color Space Conversion RGB to YCrCb Set 0 Register Name: ISI_R2Y_SET0 Address: 0xFFFC0038 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 Roff 23 22 21 20 19 18 17 16 11 10 9 8 3 2 1 0 C2 15 14 13 12 C1 7 6 5 4 C0 * C0: Color Space Conversion Matrix coefficient C0 C0 element default step is 1/256, from 0 to 0.49609375 * C1: Color Space Conversion Matrix coefficient C1 C1 element default step is 1/128, from 0 to 0.9921875 * C2: Color Space Conversion Matrix coefficient C2 C2 element default step is 1/512, from 0 to 0.2480468875 * Roff: Color Space Conversion Red component offset 0: No offset 1: Offset = 16 800 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 40.4.14 ISI Color Space Conversion RGB to YCrCb Set 1 Register Name: ISI_R2Y_SET1 Address: 0xFFFC003C Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 Goff 23 22 21 20 19 18 17 16 11 10 9 8 3 2 1 0 C5 15 14 13 12 C4 7 6 5 4 C3 * C3: Color Space Conversion Matrix coefficient C3 C0 element default step is 1/128, ranges from 0 to 0.9921875 * C4: Color Space Conversion Matrix coefficient C4 C1 element default step is 1/256, ranges from 0 to 0.49609375 * C5: Color Space Conversion Matrix coefficient C5 C1 element default step is 1/512, ranges from 0 to 0.2480468875 * Goff: Color Space Conversion Green component offset 0: No offset 1: Offset = 128 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 801 40.4.15 ISI Color Space Conversion RGB to YCrCb Set 2 Register Name: ISI_R2Y_SET2 Address: 0xFFFC0040 Access: Read/Write 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 Boff 23 22 21 20 19 18 17 16 11 10 9 8 3 2 1 0 C8 15 14 13 12 C7 7 6 5 4 C6 * C6: Color Space Conversion Matrix coefficient C6 C6 element default step is 1/512, ranges from 0 to 0.2480468875 * C7: Color Space Conversion Matrix coefficient C7 C7 element default step is 1/256, ranges from 0 to 0.49609375 * C8: Color Space Conversion Matrix coefficient C8 C8 element default step is 1/128, ranges from 0 to 0.9921875 * Boff: Color Space Conversion Blue component offset 0: No offset 1: Offset = 128 802 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41. Analog-to-Digital Converter (ADC) 41.1 Description The ADC is based on a Successive Approximation Register (SAR) 10-bit Analog-to-Digital Converter (ADC). It also integrates an 4-to-1 analog multiplexer, making possible the analog-to-digital conversions of 4 analog lines. The conversions extend from 0V to ADVREF. The ADC supports an 8-bit or 10-bit resolution mode, and conversion results are reported in a common register for all channels, as well as in a channel-dedicated register. Software trigger, external trigger on rising edge of the ADTRG pin or internal triggers from Timer Counter output(s) are configurable. The ADC also integrates a Sleep Mode and a conversion sequencer and connects with a PDC channel. These features reduce both power consumption and processor intervention. Finally, the user can configure ADC timings, such as Startup Time and Sample & Hold Time. 41.2 Block Diagram Figure 41-1. Analog-to-Digital Converter Block Diagram Timer Counter Channels PMC MCK ADC Controller Trigger Selection ADTRG Control Logic ADC Interrupt AIC ADC cell VDDANA ADVREF ASB AD- Dedicated Analog Inputs PDC ADUser Interface AD- AD- Analog Inputs Multiplexed with I/O lines PIO Peripheral Bridge Successive Approximation Register Analog-to-Digital Converter APB AD- AD- GND 41.3 Signal Description Table 41-1. ADC Pin Description Pin Name Description VDDANA Analog power supply ADVREF Reference voltage AD0-AD3 Analog input channels ADTRG External trigger SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 803 41.4 Product Dependencies 41.4.1 Power Management The ADC is automatically clocked after the first conversion in Normal Mode. In Sleep Mode, the ADC clock is automatically stopped after each conversion. As the logic is small and the ADC cell can be put into Sleep Mode, the Power Management Controller has no effect on the ADC behavior. 41.4.2 Interrupt Sources The ADC interrupt line is connected on one of the internal sources of the Advanced Interrupt Controller. Using the ADC interrupt requires the AIC to be programmed first. 41.4.3 Analog Inputs The analog input pins can be multiplexed with PIO lines. In this case, the assignment of the ADC input is automatically done as soon as the corresponding channel is enabled by writing the register ADC_CHER. By default, after reset, the PIO line is configured as input with its pull-up enabled and the ADC input is connected to the GND. 41.4.4 I/O Lines The pin ADTRG may be shared with other peripheral functions through the PIO Controller. In this case, the PIO Controller should be set accordingly to assign the pin ADTRG to the ADC function. 41.4.5 Timer Triggers Timer Counters may or may not be used as hardware triggers depending on user requirements. Thus, some or all of the timer counters may be non-connected. 41.4.6 Conversion Performances For performance and electrical characteristics of the ADC, see the DC Characteristics section. 804 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41.5 Functional Description 41.5.1 Analog-to-Digital Conversion The ADC uses the ADC Clock to perform conversions. Converting a single analog value to a 10-bit digital data requires Sample and Hold Clock cycles as defined in the field SHTIM of the "ADC Mode Register" on page 811 and 10 ADC Clock cycles. The ADC Clock frequency is selected in the PRESCAL field of the Mode Register (ADC_MR). The ADC clock range is between MCK/2, if PRESCAL is 0, and MCK/128, if PRESCAL is set to 63 (0x3F). PRESCAL must be programmed in order to provide an ADC clock frequency according to the parameters given in the Product definition section. 41.5.2 Conversion Reference The conversion is performed on a full range between 0V and the reference voltage pin ADVREF. Analog inputs between these voltages convert to values based on a linear conversion. 41.5.3 Conversion Resolution The ADC supports 8-bit or 10-bit resolutions. The 8-bit selection is performed by setting the bit LOWRES in the ADC Mode Register (ADC_MR). By default, after a reset, the resolution is the highest and the DATA field in the data registers is fully used. By setting the bit LOWRES, the ADC switches in the lowest resolution and the conversion results can be read in the eight lowest significant bits of the data registers. The two highest bits of the DATA field in the corresponding ADC_CDR and of the LDATA field in the ADC_LCDR read 0. Moreover, when a PDC channel is connected to the ADC, 10-bit resolution sets the transfer request sizes to 16-bit. Setting the bit LOWRES automatically switches to 8-bit data transfers. In this case, the destination buffers are optimized. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 805 41.5.4 Conversion Results When a conversion is completed, the resulting 10-bit digital value is stored in the Channel Data Register (ADC_CDR) of the current channel and in the ADC Last Converted Data Register (ADC_LCDR). The channel EOC bit in the Status Register (ADC_SR) is set and the DRDY is set. In the case of a connected PDC channel, DRDY rising triggers a data transfer request. In any case, either EOC and DRDY can trigger an interrupt. Reading one of the ADC_CDR registers clears the corresponding EOC bit. Reading ADC_LCDR clears the DRDY bit and the EOC bit corresponding to the last converted channel. Figure 41-2. EOCx and DRDY Flag Behavior Write the ADC_CR with START = 1 Read the ADC_CDRx Write the ADC_CR with START = 1 CHx (ADC_CHSR) EOCx (ADC_SR) Conversion Time DRDY (ADC_SR) 806 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Conversion Time Read the ADC_LCDR If the ADC_CDR is not read before further incoming data is converted, the corresponding Overrun Error (OVRE) flag is set in the Status Register (ADC_SR). In the same way, new data converted when DRDY is high sets the bit GOVRE (General Overrun Error) in ADC_SR. The OVRE and GOVRE flags are automatically cleared when ADC_SR is read. Figure 41-3. GOVRE and OVREx Flag Behavior Read ADC_SR ADTRG CH0 (ADC_CHSR) CH1 (ADC_CHSR) ADC_LCDR Undefined Data ADC_CDR0 Undefined Data ADC_CDR1 EOC0 (ADC_SR) EOC1 (ADC_SR) Data B Data A Data C Data A Data C Undefined Data Data B Conversion Conversion Conversion Read ADC_CDR0 Read ADC_CDR1 GOVRE (ADC_SR) DRDY (ADC_SR) OVRE0 (ADC_SR) Warning: If the corresponding channel is disabled during a conversion or if it is disabled and then reenabled during a conversion, its associated data and its corresponding EOC and OVRE flags in ADC_SR are unpredictable. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 807 41.5.5 Conversion Triggers Conversions of the active analog channels are started with a software or a hardware trigger. The software trigger is provided by writing the Control Register (ADC_CR) with the bit START at 1. The hardware trigger can be one of the TIOA outputs of the Timer Counter channels, or the external trigger input of the ADC (ADTRG). The hardware trigger is selected with the field TRGSEL in the Mode Register (ADC_MR). The selected hardware trigger is enabled with the bit TRGEN in the Mode Register (ADC_MR). If a hardware trigger is selected, the start of a conversion is detected at each rising edge of the selected signal. If one of the TIOA outputs is selected, the corresponding Timer Counter channel must be programmed in Waveform Mode. Only one start command is necessary to initiate a conversion sequence on all the channels. The ADC hardware logic automatically performs the conversions on the active channels, then waits for a new request. The Channel Enable (ADC_CHER) and Channel Disable (ADC_CHDR) Registers enable the analog channels to be enabled or disabled independently. If the ADC is used with a PDC, only the transfers of converted data from enabled channels are performed and the resulting data buffers should be interpreted accordingly. Warning: Enabling hardware triggers does not disable the software trigger functionality. Thus, if a hardware trigger is selected, the start of a conversion can be initiated either by the hardware or the software trigger. 41.5.6 Sleep Mode and Conversion Sequencer The ADC Sleep Mode maximizes power saving by automatically deactivating the ADC when it is not being used for conversions. Sleep Mode is selected by setting the bit SLEEP in the Mode Register ADC_MR. The SLEEP mode is automatically managed by a conversion sequencer, which can automatically process the conversions of all channels at lowest power consumption. When a start conversion request occurs, the ADC is automatically activated. As the analog cell requires a start-up time, the logic waits during this time and starts the conversion on the enabled channels. When all conversions are complete, the ADC is deactivated until the next trigger. Triggers occurring during the sequence are not taken into account. The conversion sequencer allows automatic processing with minimum processor intervention and optimized power consumption. Conversion sequences can be performed periodically using a Timer/Counter output. The periodic acquisition of several samples can be processed automatically without any intervention of the processor via the PDC. Note: The reference voltage pins always remain connected in normal mode as in sleep mode. 41.5.7 ADC Timings Each ADC has its own minimal Startup Time that is programmed through the field STARTUP in the Mode Register ADC_MR. In the same way, a minimal Sample and Hold Time is necessary for the ADC to guarantee the best converted final value between two channels selection. This time has to be programmed through the bitfield SHTIM in the Mode Register ADC_MR. Warning: No input buffer amplifier to isolate the source is included in the ADC. This must be taken into consideration to program a precise value in the SHTIM field. See the section, ADC Characteristics in the product datasheet. 808 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41.6 Analog-to-Digital Converter (ADC) User Interface Table 41-2. Register Mapping Offset Register Name Access Reset 0x00 Control Register ADC_CR Write-only - 0x04 Mode Register ADC_MR Read/Write 0x00000000 0x08 Reserved - - - 0x0C Reserved - - - 0x10 Channel Enable Register ADC_CHER Write-only - 0x14 Channel Disable Register ADC_CHDR Write-only - 0x18 Channel Status Register ADC_CHSR Read-only 0x00000000 0x1C Status Register ADC_SR Read-only 0x000C0000 0x20 Last Converted Data Register ADC_LCDR Read-only 0x00000000 0x24 Interrupt Enable Register ADC_IER Write-only - 0x28 Interrupt Disable Register ADC_IDR Write-only - 0x2C Interrupt Mask Register ADC_IMR Read-only 0x00000000 0x30 Channel Data Register 0 ADC_CDR0 Read-only 0x00000000 0x34 Channel Data Register 1 ADC_CDR1 Read-only 0x00000000 ... ... ... ... Channel Data Register 3 ADC_CDR3 Read-only 0x00000000 Reserved - - - ... 0x40 0x44-0xFC SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 809 41.6.1 ADC Control Register Name: ADC_CR Address: 0xFFFE0000 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 START 0 SWRST * SWRST: Software Reset 0: No effect. 1: Resets the ADC simulating a hardware reset. * START: Start Conversion 0: No effect. 1: Begins analog-to-digital conversion. 810 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41.6.2 ADC Mode Register Name: ADC_MR Address: 0xFFFE0004 Access: Read/Write 31 - 30 - 29 - 28 - 27 23 - 22 21 20 19 STARTUP 15 14 13 12 26 25 24 18 17 16 11 10 9 8 3 2 TRGSEL 1 0 TRGEN SHTIM PRESCAL 7 - 6 - 5 SLEEP 4 LOWRES * TRGEN: Trigger Enable TRGEN Selected TRGEN 0 Hardware triggers are disabled. Starting a conversion is only possible by software. 1 Hardware trigger selected by TRGSEL field is enabled. * TRGSEL: Trigger Selection TRGSEL Selected TRGSEL 0 0 0 TIO Output of the Timer Counter Channel 0 0 0 1 TIO Output of the Timer Counter Channel 1 0 1 0 TIO Output of the Timer Counter Channel 2 0 1 1 Reserved 1 0 0 Reserved 1 0 1 Reserved 1 1 0 External trigger 1 1 1 Reserved * LOWRES: Resolution LOWRES Selected Resolution 0 10-bit resolution 1 8-bit resolution * SLEEP: Sleep Mode SLEEP Selected Mode 0 Normal Mode 1 Sleep Mode * PRESCAL: Prescaler Rate Selection ADCClock = MCK / ((PRESCAL+1) * 2) SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 811 * STARTUP: Start Up Time Startup Time = (STARTUP+1) * 8 / ADCClock * SHTIM: Sample & Hold Time Sample & Hold Time = SHTIM/ADCClock 812 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41.6.3 ADC Channel Enable Register Name: ADC_CHER Address: 0xFFFE0010 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 CH3 2 CH2 1 CH1 0 CH0 * CHx: Channel x Enable 0: No effect. 1: Enables the corresponding channel. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 813 41.6.4 ADC Channel Disable Register Name: ADC_CHDR Address: 0xFFFE0014 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 CH3 2 CH2 1 CH1 0 CH0 * CHx: Channel x Disable 0: No effect. 1: Disables the corresponding channel. Warning: If the corresponding channel is disabled during a conversion or if it is disabled then reenabled during a conversion, its associated data and its corresponding EOC and OVRE flags in ADC_SR are unpredictable. 814 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41.6.5 ADC Channel Status Register Name: ADC_CHSR Address: 0xFFFE0018 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 CH3 2 CH2 1 CH1 0 CH0 * CHx: Channel x Status 0: Corresponding channel is disabled. 1: Corresponding channel is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 815 41.6.6 ADC Status Register Name: ADC_SR Address: 0xFFFE001C Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 RXBUFF 18 ENDRX 17 GOVRE 16 DRDY 15 - 14 - 13 - 12 - 11 OVRE3 10 OVRE2 9 OVRE1 8 OVRE0 7 - 6 - 5 - 4 - 3 EOC3 2 EOC2 1 EOC1 0 EOC0 * EOCx: End of Conversion x 0: Corresponding analog channel is disabled, or the conversion is not finished. 1: Corresponding analog channel is enabled and conversion is complete. * OVREx: Overrun Error x 0: No overrun error on the corresponding channel since the last read of ADC_SR. 1: There has been an overrun error on the corresponding channel since the last read of ADC_SR. * DRDY: Data Ready 0: No data has been converted since the last read of ADC_LCDR. 1: At least one data has been converted and is available in ADC_LCDR. * GOVRE: General Overrun Error 0: No General Overrun Error occurred since the last read of ADC_SR. 1: At least one General Overrun Error has occurred since the last read of ADC_SR. * ENDRX: End of RX Buffer 0: The Receive Counter Register has not reached 0 since the last write in ADC_RCR or ADC_RNCR. 1: The Receive Counter Register has reached 0 since the last write in ADC_RCR or ADC_RNCR. * RXBUFF: RX Buffer Full 0: ADC_RCR or ADC_RNCR have a value other than 0. 1: Both ADC_RCR and ADC_RNCR have a value of 0. 816 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41.6.7 ADC Last Converted Data Register Name: ADC_LCDR Address: 0xFFFE0020 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 7 6 5 4 3 2 1 8 LDATA 0 LDATA * LDATA: Last Data Converted The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conversion is completed. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 817 41.6.8 ADC Interrupt Enable Register Name: ADC_IER Address: 0xFFFE0024 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 RXBUFF 18 ENDRX 17 GOVRE 16 DRDY 15 - 14 - 13 - 12 - 11 OVRE3 10 OVRE2 9 OVRE1 8 OVRE0 7 - 6 - 5 - 4 - 3 EOC3 2 EOC2 1 EOC1 0 EOC0 * EOCx: End of Conversion Interrupt Enable x * OVREx: Overrun Error Interrupt Enable x * DRDY: Data Ready Interrupt Enable * GOVRE: General Overrun Error Interrupt Enable * ENDRX: End of Receive Buffer Interrupt Enable * RXBUFF: Receive Buffer Full Interrupt Enable 0: No effect. 1: Enables the corresponding interrupt. 818 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41.6.9 ADC Interrupt Disable Register Name: ADC_IDR Address: 0xFFFE0028 Access: Write-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 RXBUFF 18 ENDRX 17 GOVRE 16 DRDY 15 - 14 - 13 - 12 - 11 OVRE3 10 OVRE2 9 OVRE1 8 OVRE0 7 - 6 - 5 - 4 - 3 EOC3 2 EOC2 1 EOC1 0 EOC0 * EOCx: End of Conversion Interrupt Disable x * OVREx: Overrun Error Interrupt Disable x * DRDY: Data Ready Interrupt Disable * GOVRE: General Overrun Error Interrupt Disable * ENDRX: End of Receive Buffer Interrupt Disable * RXBUFF: Receive Buffer Full Interrupt Disable 0: No effect. 1: Disables the corresponding interrupt. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 819 41.6.10 ADC Interrupt Mask Register Name: ADC_IMR Address: 0xFFFE002C Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 RXBUFF 18 ENDRX 17 GOVRE 16 DRDY 15 - 14 - 13 - 12 - 11 OVRE3 10 OVRE2 9 OVRE1 8 OVRE0 7 - 6 - 5 - 4 - 3 EOC3 2 EOC2 1 EOC1 0 EOC0 * EOCx: End of Conversion Interrupt Mask x * OVREx: Overrun Error Interrupt Mask x * DRDY: Data Ready Interrupt Mask * GOVRE: General Overrun Error Interrupt Mask * ENDRX: End of Receive Buffer Interrupt Mask * RXBUFF: Receive Buffer Full Interrupt Mask 0: The corresponding interrupt is disabled. 1: The corresponding interrupt is enabled. 820 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 41.6.11 ADC Channel Data Register Name: ADC_CDRx Address: 0xFFFE0030 Access: Read-only 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 7 6 5 4 3 2 1 8 DATA 0 DATA * DATA: Converted Data The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conversion is completed. The Convert Data Register (CDR) is only loaded if the corresponding analog channel is enabled. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 821 42. Electrical Characteristics 42.1 Absolute Maximum Ratings Table 42-1. Absolute Maximum Ratings* Operating Temperature (Industrial)................-40C to +85C *NOTICE: Storage Temperature....................................-60C to +150C Voltage on Input Pins with Respect to Ground....-0.3V to VDDIO + 0.3V (+ 4V max) Maximum Operating Voltage (VDDCORE, VDDPLL and VDDBU)...............................2.0V Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum Operating Voltage (VDDIOM and VDDIOP)..................................................4.0V Total DC Output Current on all I/O lines.....................350 mA 42.2 DC Characteristics The following characteristics are applicable to the operating temperature range: TA = -40C to 85C, unless otherwise specified. Table 42-2. DC Characteristics Symbol Parameter Conditions VDDCORE DC Supply Core Min Typ Max Unit 1.65 1.8 1.95 V VDDBU DC Supply Backup 1.65 1.8 1.95 V VDDPLL DC Supply PLL 1.65 1.8 1.95 V VDDIOM DC Supply Memory I/Os 1.65/3.0 1.8/3.3 1.95/3.6 V VDDIOP0 DC Supply Peripheral I/Os 3.0 3.3 3.6 V VDDIOP1 DC Supply Peripheral I/Os 1.65 1.8/2.5/3.3 3.6 V VDDANA DC Supply Analog 3.0 3.3 3.6 V VIL Input Low-level Voltage VIH Input High-level Voltage VOL VOH 822 VDDIO from 3.0V to 3.6V -0.3 0.8 V VDDIO from 1.65V to 1.95V -0.3 0.3 x VDDIO V 2 VDDIO + 0.3 V 0.7 x VDDIO VDDIO + 0.3 V IO Max, VDDIO from 3.0V to 3.6V 0.4 V CMOS (IO < 0.3 mA) VDDIO from 1.65V to 1.95V 0.1 V TTL (IO Max) VDDIO from 1.65V to 1.95V 0.4 V VDDIO from 3.0V to 3.6V VDDIO from 1.65V to 1.95V Output Low-level Voltage Output High-level Voltage IO Max, VDDIO from 3.0V to 3.6V VDDIO - 0.4 V CMOS (IO < 0.3 mA) VDDIO from 1.65V to 1.95V VDDIO - 0.1 V TTL (IO Max) VDDIO from 1.65V to 1.95V VDDIO - 0.4 V SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 42-2. DC Characteristics (Continued) Symbol Parameter RPULLUP Pull-up Resistance IO Output Current Conditions Min Typ Max Unit PA0-PA31 PB0-PB31 PC0-PC3 NRTST and NRST 50 100 180 k PC4-PC31 VDDIOM in 1.8V range 240 1000 k PC4-PC31 VDDIOM in 3.3V range 50 350 k PA0-PA31 PB0-PB31 PC0-PC3 8 mA PC4-PC31 in 3.3V range 2 mA PC4-PC31 in 1.8V range 4 mA On VDDCORE = 1.8V, MCK = 0 Hz, excluding POR TA = 25C 500 A All inputs driven TMS, TDI, TCK, TA = 85C NRST = 1 ISC Static Current Table 42-3. Symbol Parameter Threshold Level Vhys Hysteresis IDD Current Consumption Table 42-4. Symbol TA = 25C All inputs driven WKUP = 0 TA = 85C 2 A 20 Brownout Detector Characteristics VBOT- tSTART On VDDBU = 1.8V, Logic cells consumption, excluding POR 5000 Conditions Min Typ Max Unit 1.52 1.55 1.58 V Vhys = VBOT+ - VBOT- 50 65 mV BOD on (GPNVMbit[1] is set) 12 18 A 1 A 200 s BOD off (GPNVMbit[1] is cleared) Startup Time 100 DC Flash Characteristics Parameter Conditions Min Max Unit tPU Power-up delay 30 s ISTDBY Standby current 20 A Read at maximum frequency (access time = 60 ns) VDDCORE = 1.8V 13.0 mA Write VDDCORE = 1.8V 7.0 mA ICC Active current SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 823 42.3 Power Consumption Typical power consumption of PLLs, Slow Clock and Main Oscillator. Power consumption of power supply in four different modes: Active, Idle, Ultra Low-power and Backup. Power consumption by peripheral: calculated as the difference in current measurement after having enabled then disabled the corresponding clock. 42.3.1 Power Consumption versus Modes The values in Table 42-5 and Table 42-6 on page 825 are estimated values of the power consumption with operating conditions as follows: VDDIOM = VDDIOP = 3.3V VDDPLL = 1.8V VDDCORE = VDDBU = 1.8V TA = 25C There is no consumption on the I/Os of the device Figure 42-1. Measures Schematics VDDBU AMP1 VDDCORE AMP2 These figures represent the power consumption estimated on the power supplies. Table 42-5. Power Consumption for Different Modes Mode Conditions Consumption Unit 130 mA 17 mA 600 A 5 A ARM Core clock is 180 MHz. Active MCK is 90 MHz. All peripheral clocks deactivated. onto AMP2 Idle state, waiting an interrupt. Idle All peripheral clocks deactivated. onto AMP2 ARM Core clock is 500 Hz. Ultra low power All peripheral clocks deactivated. onto AMP2 Backup 824 Device only VDDBU powered onto AMP1 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 42-6. Power Consumption by Peripheral in Active Mode Peripheral Consumption PIO Controller 10 USART 30 UHP 14 UDP 20 ADC 17 TWI 21 SPI 10 MCI 30 SSC 20 Timer Counter Channels 6 ISI 8 EMAC 88 Unit A/MHz 42.4 I/O Characteristics Criteria used to define the maximum frequency of the I/Os: Output duty cycle (40%-60%) Minimum output swing: 100 mV to VDDIO - 100 mV Addition of rising and falling time inferior to 75% of the period Table 42-7. Symbol fmax I/O Characteristics Parameter Conditions VDDIOP0 powered pins frequency 3.3V domain(1) 3.3V domain (1) 2.5V domain (2) 1.8V domain (3) VDDIOP1 powered pins frequency Notes: 1. VDDIOP from 3.0V to 3.6V 2. VDDIOP from 2.3V to 2.7V 3. VDDIOP from 1.65V to 1.95V 42.5 Clock Characteristics Min Max Unit Max. external cap. load = 40 pF 83.3 MHz Max. external cap. load = 40 pF 83.3 MHz Max. external cap. load = 30 pF 71.4 MHz Max. external cap. load = 20 pF 50 MHz 42.5.1 Processor Clock Characteristics Table 42-8. Processor Clock Waveform Parameters Symbol Parameter Conditions 1/(tCPPCK) Processor Clock Frequency 1/(tCPPCK) Processor Clock Frequency Min Max Unit VDDCORE = 1.65V, TA = 85C 160 MHz VDDCORE = 1.8V, TA = 85C 180 MHz SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 825 42.5.2 Master Clock Characteristics Table 42-9. Symbol Master Clock Waveform Parameters Parameter Conditions 1/(tCPMCK) Master Clock Frequency 1/(tCPMCK) Master Clock Frequency Min Max Unit VDDCORE = 1.65V , TA = 85C 80 MHz VDDCORE = 1.8V, TA = 85C 90 MHz Max Unit 50 MHz 42.5.3 XIN Clock Characteristics Table 42-10. XIN Clock Electrical Characteristics Symbol Parameter 1/(tCPXIN) XIN Clock Frequency Conditions Min tCPXIN XIN Clock Period tCHXIN XIN Clock High Half-period 0.4 x tCPXIN 0.6 x tCPXIN ns tCLXIN XIN Clock Low Half-period 0.4 x tCPXIN 0.6 x tCPXIN ns 25 pF 1000 k 1.8 V CIN XIN Input Capacitance RIN XIN Pull-down Resistor VIN VIN Voltage 42.6 20 ns Main Oscillator in Bypass mode (i.e., when MOSCEN = 0 and OSCBYPASS = 1 in the CKGR_MOR). See "PMC Clock Generator Main Oscillator Register". Crystal Oscillator Characteristics The following characteristics are applicable to the operating temperature range: TA = -40C to 85C and worst case of power supply, unless otherwise specified. 42.6.1 32 kHz Oscillator Characteristics Table 42-11. Symbol 32 kHz Oscillator Characteristics Parameter 1/(tCP32KHz) Crystal Oscillator Frequency CCRYSTAL32 Load Capacitance CLEXT32(2) External Load Capacitance Conditions Min Crystal @ 32.768 kHz pF CCRYSTAL32 = 12.5 pF 17 pF 40 60 % CCRYSTAL32 = 6 pF 300 ms CCRYSTAL32 = 12.5 pF 900 ms CCRYSTAL32 = 6 pF 600 ms CCRYSTAL32 = 12.5 pF 1200 ms 1. RS is the equivalent series resistance. 2. CLEXT32 is determined by taking into account internal, parasitic and package load capacitance. Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 12.5 pF Startup Time SAM9XE Series [DATASHEET] kHz 4 RS = 100 k(1) 826 6 Unit CCRYSTAL32 = 6 pF RS = 50 k(1) Notes: Max 32.768 Duty Cycle tSTART Typ Figure 42-2. 32 kHz Oscillator Schematic SAM9XE XIN32 XOUT32 GNDBU CCRYSTAL32 CLEXT32 Table 42-12. Symbol ESR CLEXT32 Crystal Characteristics Parameter Conditions Min Typ Max Unit 50 100 k 1 3 fF 0.8 1.7 pF Max Unit Equivalent Series Resistor Rs Motional Capacitance Cm CSHUNT Crystal @ 32.768 kHz Shunt Capacitance 42.6.2 RC Oscillator Characteristics Table 42-13. RC Oscillator Characteristics Symbol Parameter 1/(tCPRCz) Crystal Oscillator Frequency 22 42 kHz Duty Cycle 45 55 % 75 s tSTART Conditions Min Typ Startup Time 42.6.3 Slow Clock Selection Table 42-14. Slow Clock Selection OSCSEL Signal State Slow Clock Startup Time 0 Internal RC Oscillator 200 s 1 External 32768 Hz Crystal 1200 ms SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 827 42.6.4 Main Oscillator Characteristics Table 42-15. Symbol Main Oscillator Characteristics Parameter Conditions 1/(tCPMAIN) Crystal Oscillator Frequency CCRYSTAL Crystal Load Capacitance CLEXT(6) External Load Capacitance Max Unit 3 16 20 MHz 17.5 pF CCRYSTAL = 12.5 pF(5) (5) CCRYSTAL = 17.5 pF tSTART 30 Startup Time IDD STDBY VDDPLL = 1.65-1.95 V 3 pF 13 pF 50 70 CSHUNT = 3 pF, 1/(tCPMAIN) = 3 MHz 14.5 CSHUNT = 7 pF, 1/(tCPMAIN) = 8 MHz 4 CSHUNT = 7 pF, 1/(tCPMAIN) = 16 MHz 1.4 CSHUNT = 7 pF, 1/(tCPMAIN) = 20 MHz 1 1 @ 3 MHz 15 @ 8 MHz 30 @ 16 MHz 50 @ 20 MHz 50 Drive Level @ 3 MHz(1) 150 250 (2) 150 250 (3) 300 450 @ 20 MHz(4) 400 550 Current Dissipation @ 16 MHz 1. 2. 3. 4. 5. 6. A RS = 100 to 200 ; CSHUNT = 2.0 to 2.5 pF; Cm = 2 to 1.5 fF (typ, worst case) using 1 k serial resistor on XOUT. RS = 50 to 100 ; CSHUNT = 2.0 to 2.5 pF; Cm = 4 to 3 fF (typ, worst case). RS = 25 to 50 ; CSHUNT = 2.5 to 3.0 pF; Cm = 7 to 5 fF (typ, worst case). RS = 20 to 50 ; CSHUNT = 3.2 to 4.0 pF; Cm = 10 to 8 fF (typ, worst case). Additional user load capacitance should be subtracted from CLEXT. CLEXT is determined by taking into account internal, parasitic and package load capacitance. Figure 42-3. A W @ 8 MHz IDD ON % ms Standby Current Consumption Standby mode PON Main Oscillator Schematic SAM9XE XIN XOUT GNDPLL 1K CCRYSTAL CLEXT 828 Typ 12.5 Duty Cycle Notes: Min SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 CLEXT 42.6.5 Crystal Characteristics Table 42-16. Symbol ESR Crystal Characteristics Parameter Conditions Min Typ Max Fundamental @ 3 MHz 200 Fundamental @ 8 MHz 100 Fundamental @ 16 MHz 80 Fundamental @ 20 MHz 50 Equivalent Series Resistor Rs Cm CSHUNT Unit Motional Capacitance 8 fF Shunt Capacitance 7 pF Max Unit 42.6.6 PLL Characteristics Table 42-17. Symbol fOUT PLLA Characteristics(1) Parameter Conditions Min Field CKGR_PLL.OUTA = 00 80 160 MHz Field CKGR_PLL.OUTA = 10 150 220 MHz 1 32 MHz 4.5 mA 1 A Max Unit 130 MHz 5 (1) MHz 1.2 mA 1 A 1 ms Output Frequency fIN Input Frequency IPLL Current Consumption Active mode @ 240 MHz Note: 1. Startup time depends on PLL RC filter. A calculation tool is provided by Atmel. Symbol PLLB Characteristics Parameter Conditions Min Output Frequency Field CKGR_PLL.OUTA = 01 70 fIN Input Frequency IPLL Current Consumption 1 Active mode @ 130 MHz tSTART Note: 3.6 Standby mode Table 42-18. fOUT Typ Standby mode Startup TIme Typ 1. The embedded filter is optimized for a 2 MHz input frequency. DIVB must be selected to meet this requirement. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 829 42.7 ADC Characteristics Table 42-19. Channel Conversion Time and ADC Clock Parameter Conditions ADC Clock Frequency 10-bit resolution mode Startup Time Return from Idle mode Track and Hold Acquisition Time (TTH) ADC Clock = 5 MHz Conversion Time ADC Clock = 5 MHz Throughput Rate ADC Clock = 5 MHz Note: Min Typ Max Unit 5 MHz 15 s (1) s 1.2 2 s 312 ksps 1. In worst case, the Track-and-Hold Acquisition Time is given by: TTH (s) = 1.2 + (0.09 x ZIN)(k) In case of very high input impedance, this value must be respected in order to guarantee the correct converted value. An internal input current buffer supplies the current required for the low input impedance (1 mA max). To achieve optimal performance of the ADC, the analog power supply VDDANA and the ADVREF input voltage must be decoupled with a 4.7 F capacitor in parallel with a 100 nF capacitor. Table 42-20. External Voltage Reference Input Parameter Conditions ADVREF Input Voltage Range Min Typ Max Unit VDDANA V 220 A 300 620 A Typ Max Unit ADVREF V 1 A 12 14 pF Typ Max Unit 2.4 ADVREF Average Current Current Consumption on VDDANA Table 42-21. Analog Inputs Parameter Min Input Voltage Range 0 Input Leakage Current Input Capacitance Table 42-22. Symbol Transfer Characteristics Parameter Min Resolution INL Integral Non-linearity DNL Differential Non-linearity 10 -0.9 bit 2 LSB +1 LSB EO Offset Error 2 LSB EG Gain Error 2 LSB 830 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 42.8 USB Transceiver Characteristics Table 42-23. Symbol USB Electrical Characteristics Parameter Conditions Min Typ Max Unit 0.8 V Input Levels VIL Low Level VIH High Level VDI Differential Input Sensitivity VCM Differential Input Common Mode Range CIN Transceiver Capacitance Capacitance to ground on each line Ilkg Hi-Z State Data Line Leakage 0V < VIN < 3.3V Recommended External USB Series Resistor In series with each USB pin with 5% REXT |(D+) - (D-)| 2.0 V 0.2 V 0.8 - 10 2.5 V 9.18 pF + 10 A 27 Output Levels VOL Low Level Output Measured with RL of 1.425 k tied to 3.6V 0.0 0.3 V VOH High Level Output Measured with RL of 14.25 k tied to GND 2.8 3.6 V VCRS Output Signal Crossover Voltage Measure conditions described in Figure 42-1 1.3 2.0 V Pull-up and Pull-down Resistor RPUI Bus Pull-up Resistor on Upstream Port (idle bus) 0.900 1.575 k RPUA Bus Pull-up Resistor on Upstream Port (upstream port receiving) 1.425 3.090 k RPD Bus Pull-down resistor 14.25 24.8 k 200 A 150 A IVDDIO Current Consumption VDDIO IVDDCORE 42.9 Current Consumption VDDCORE Transceiver enabled in input mode DDP = 1 and DDM = 0 Core Power Supply POR Characteristics Table 42-24. Symbol Power-On-Reset Characteristics Parameter Conditions Min Typ Max Unit VT+ Threshold Voltage Rising Minimum Slope of +2.0V/200ms 1.35 1.50 1.59 V VT- Threshold Voltage Falling 1.25 1.30 1.40 V tRST Reset Time 100 200 350 s SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 831 42.10 Embedded Flash Characteristics The maximum operating frequency given in Table 42-26 is limited by the Embedded Flash access time when the processor is fetching code out of it. The table provides the device maximum operating frequency defined by the value of field EEFC_FMR.FWS. This field defines the number of wait states required to access the Embedded Flash Memory. Table 42-25. Maximum MCK Frequency vs. Embedded Flash Wait States Maximum MCK Frequency (MHz) EEFC_FMR.FWS Conditions VDDCORE = 1.8V VDDCORE = 1.65V 0 19 17 1 40 36 60 48 3 76 62 4 90 80 2 Table 42-26. TA = 85C AC Flash Characteristics Parameter Conditions Min Max Unit Per page including auto-erase 4 ms Per page without auto-erase 2 ms Program Cycle Time Full Chip Erase 10 ms 42.11 SMC Timings 42.11.1 Timing Conditions SMC timings are given in worst case conditions (1.65V/3.0V, TA = 85C). Timings are given assuming a capacitance load on data, control and address pads as defined in Table 42-27. Table 42-27. Capacitance Load Supply CLOAD Max 3.3V 50 pF 1.8V 30 pF In the following tables tCPMCK represents the MCK period. 832 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 42.11.2 Read Timings Table 42-28. SMC Read Signals - NRD Controlled (READ_MODE = 1) Min Symbol Parameter 1.8V VDDIOM Supply 3.3V VDDIOM Supply Unit NO HOLD SETTINGS (nrd hold = 0) SMC1 Data Setup before NRD High 12.6 12.61 ns SMC2 Data Hold after NRD High -7.2 -7.2 ns HOLD SETTINGS (nrd hold 0) SMC3 Data Setup before NRD High 9 9 ns SMC4 Data Hold after NRD High 0 0 ns HOLD or NO HOLD SETTINGS (nrd hold 0, nrd hold = 0) SMC5 NBS0/A0, NBS1, NBS2/A1, NBS3, A2-A25 Valid before NRD High (nrd setup + nrd pulse) x tCPMCK -3.0 (nrd setup + nrd pulse) x tCPMCK -3.1 ns SMC6 NCS low before NRD High (nrd setup + nrd pulse - ncs rd setup) x tCPMCK -7.1 (nrd setup + nrd pulse - ncs rd setup) x tCPMCK -7.2 ns SMC7 NRD Pulse Width nrd pulse x tCPMCK -0.3 nrd pulse x tCPMCK -0.3 ns 3.3V VDDIOM Supply Unit Table 42-29. SMC Read Signals - NCS Controlled (READ_MODE= 0) Min Symbol Parameter 1.8V VDDIOM Supply NO HOLD SETTINGS (ncs rd hold = 0) SMC8 Data Setup before NCS High 8 7.8 ns SMC9 Data Hold after NCS High 0 0 ns 6.6 6.4 ns 0 0 ns (ncs rd setup + ncs rd pulse) x tCPMCK -3.3 (ncs rd setup + ncs rd pulse) x tCPMCK -3.4 ns HOLD SETTINGS (ncs rd hold 0) SMC10 Data Setup before NCS High SMC11 Data Hold after NCS High HOLD or NO HOLD SETTINGS (ncs rd hold 0, ncs rd hold = 0) SMC12 NBS0/A0, NBS1, NBS2/A1, NBS3, A2-A25 valid before NCS High SMC13 NRD low before NCS High (ncs rd setup + ncs rd pulse - nrd setup) x tCPMCK -0.9 (ncs rd setup + ncs rd pulse - nrd setup) x tCPMCK -0.9 ns SMC14 NCS Pulse Width ncs rd pulse length x tCPMCK -7.7 ncs rd pulse length x tCPMCK -7.7 ns SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 833 42.11.3 Write Timings Table 42-30. SMC Write Signals - NWE Controlled (Write_Mode = 1) Min Symbol Parameter 1.8V VDDIOM Supply 3.3V VDDIOM Supply Unit HOLD or NO HOLD SETTINGS (nwe hold 0, nwe hold = 0) nwe pulse x tCPMCK - 1 nwe pulse x tCPMCK - 0.99 ns NWE Pulse Width nwe pulse x tCPMCK - 1.7 nwe pulse x tCPMCK - 1.7 ns SMC17 NBS0/A0 NBS1, NBS2/A1, NBS3, A2-A25 valid before NWE low nwe setup x tCPMCK - 2.8 nwe setup x tCPMCK - 2.7 ns SMC18 NCS low before NWE high (nwe setup - ncs rd setup + nwe pulse) x tCPMCK - 1.2 (nwe setup - ncs rd setup + nwe pulse) x tCPMCK - 1.2 ns nwe hold x tCPMCK - 2.8 nwe hold x tCPMCK - 5.6 ns (nwe hold - ncs wr hold) x tCPMCK 1.4 (nwe hold - ncs wr hold) x tCPMCK 1.4 ns 3.2 ns SMC15 Data Out Valid before NWE High SMC16 HOLD SETTINGS (nwe hold 0) SMC19 NWE High to Data OUT, NBS0/A0 NBS1, NBS2/A1, NBS3, A2-A25 change SMC20 NWE High to NCS Inactive (1) NO HOLD SETTINGS (nwe hold = 0) SMC21 Note: NWE High to Data OUT, NBS0/A0 NBS1, NBS2/A1, NBS3, A2-A25, NCS change(1) 3.3 1. hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "ncs wr hold length" or "NWE hold length". Table 42-31. SMC Write NCS Controlled (WRITE_MODE=0) Min Symbol Parameter 1.8V VDDIOM Supply 3.3V VDDIOM Supply Unit SMC22 Data Out Valid before NCS High ncs wr pulse x tCPMCK - 1.2 ncs wr pulse x tCPMCK - 5.8 ns SMC23 NCS Pulse Width ncs wr pulse x tCPMCK - 1.13 ncs wr pulse x tCPMCK - 1.12 ns SMC24 NBS0/A0 NBS1, NBS2/A1, NBS3, A2-A25 valid before NCS low ncs wr setup x tCPMCK - 1.7 ncs wr setup x tCPMCK - 3.0 ns SMC25 NWE low before NCS high (ncs wr setup - nwe setup + ncs pulse) x tCPMCK - 1.13 (ncs wr setup - nwe setup + ncs pulse) x tCPMCK - 1.12 ns SMC26 NCS High to Data Out, NBS0/A0, NBS1, NBS2/A1, NBS3, A2-A25, change ncs wr hold x tCPMCK - 3.3 ncs wr hold x tCPMCK - 3.4 ns SMC27 NCS High to NWE Inactive (ncs wr hold - nwe hold) x tCPMCK 0.91 (ncs wr hold - nwe hold) x tCPMCK 0.88 ns 834 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 42-4. SMC Timings - NCS Controlled Read and Write SMC12 SMC12 SMC26 SMC24 A0/A1/NBS[3:0]/A2-A25 SMC13 SMC13 NRD SMC14 NCS SMC14 SMC9 SMC8 SMC10 SMC23 SMC11 SMC22 SMC26 D0 - D15 SMC27 SMC25 NWE NCS Controlled READ with NO HOLD Figure 42-5. NCS Controlled READ with HOLD NCS Controlled WRITE SMC Timings - NRD Controlled Read and NWE Controlled Write SMC21 SMC17 SMC5 SMC5 SMC17 SMC19 A0/A1/NBS[3:0]/A2-A25 SMC6 SMC21 SMC6 SMC18 SMC18 SMC20 NCS NRD SMC7 SMC7 SMC1 SMC2 SMC15 SMC21 SMC3 SMC4 SMC15 SMC19 D0 - D31 NWE SMC16 NRD Controlled READ with NO HOLD NWE Controlled WRITE with NO HOLD SMC16 NRD Controlled READ with HOLD NWE Controlled WRITE with HOLD SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 835 42.12 SDRAMC 42.12.1 Timing Conditions SDRAMC timings are given in worst case conditions (1.65V/3.0V, TA = 85C). Timings are given assuming a capacitance load on data, control and address pads as defined in Table 42-32, as well as the SDCK pad as defined in Table 42-33. Table 42-32. Capacitance Load on Data, Control and Address Pads Table 42-33. Supply CLOAD Max 3.3V 50 pF 1.8V 30 pF Capacitance Load on SDCK Pad Supply CLOAD Max 3.3V 10 pF 1.8V 10 pF 42.12.2 Timing Figures Table 42-34. SDRAM Characteristics Timings Standard Parameter Supply Min SDRAM Controller Clock Frequency Control/Address/Data In Setup(1)(2) PC100 Control/Address/Data In Hold (1)(2) 3.3V Control/Address/Data In Hold 1 ns 3.3V 1.5 ns 0.8 ns 1.8V 836 1. 2. 3. Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 MHz ns 1 ns 6/8(3) 2.5 Control is the set of following signals: SDCKE, SDCS, RAS, CAS, SDA10, BAx, DQMx, and SDWE Address is the set of A0-A9, A11-A13 133 MHz with CAS Latency = 3, 100 MHz with CAS Latency = 2 SAM9XE Series [DATASHEET] (3) 1.5 Data Out Access time after SDCK rising Notes: ns 133/100 (1)(2) Data Out change time after SDCK rising ns 3.0 SDRAM Controller Clock Frequency Control/Address/Data In Hold MHz 5.4 Data Out change time after SDCK rising Mobile SDRAM ns 133 (1)(2) (1)(2) ns 3 Data Out Access time after SDCK rising Control/Address/Data In Setup MHz ns SDRAM Controller Clock Frequency PC133 100 6 Data Out change time after SDCK rising (1)(2) Unit 2 Data Out Access time after SDCK rising Control/Address/Data In Setup Max ns ns 42.13 EMAC Timings Table 42-35. EMAC Signals Relative to EMDC Symbol Parameter Min Max Unit EMAC1 Setup for EMDIO from EMDC rising 29.4 ns EMAC2 Hold for EMDIO from EMDC rising 0 ns EMAC3 EMDIO toggling from EMDC falling 0 4.3 ns Min Max Unit 42.13.1 MII Mode Table 42-36. EMAC MII Specific Signals Symbol Parameter EMAC4 Setup for ECOL from ETXCK rising 0 ns EMAC5 Hold for ECOL from ETXCK rising 1.2 ns EMAC6 Setup for ECRS from ETXCK rising 0.9 ns EMAC7 Hold for ECRS from ETXCK rising 0 ns EMAC8 ETXER toggling from ETXCK rising 15.6 ns EMAC9 ETXEN toggling from ETXCK rising 14.8 ns EMAC10 ETX toggling from ETXCK rising 15.5 ns EMAC11 Setup for ERX from ERXCK 0 ns EMAC12 Hold for ERX from ERXCK 4.3 ns EMAC13 Setup for ERXER from ERXCK 0 ns EMAC14 Hold for ERXER from ERXCK 4.1 ns EMAC15 Setup for ERXDV from ERXCK 0 ns EMAC16 Hold for ERXDV from ERXCK 3.7 ns SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 837 Figure 42-6. EMAC MII Mode EMDC EMAC1 EMAC3 EMAC2 EMDIO EMAC4 EMAC5 EMAC6 EMAC7 ECOL ECRS ETXCK EMAC8 ETXER EMAC9 ETXEN EMAC10 ETX[3:0] ERXCK EMAC11 EMAC12 ERX[3:0] EMAC13 EMAC14 EMAC15 EMAC16 ERXER ERXDV 838 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 42.13.2 RMII Mode Table 42-37. EMAC RMII Specific Signals Symbol Parameter Min Max Unit EMAC21 ETXEN toggling from EREFCK rising 13.5 16 ns EMAC22 ETX toggling from EREFCK rising 12.3 15.5 ns EMAC23 Setup for ERX from EREFCK 0 ns EMAC24 Hold for ERX from EREFCK 1.3 ns EMAC25 Setup for ERXER from EREFCK 0 ns EMAC26 Hold for ERXER from EREFCK 1.2 ns EMAC27 Setup for ECRSDV from EREFCK 0.9 ns EMAC28 Hold for ECRSDV from EREFCK 0 ns Figure 42-7. EMAC RMII Mode EREFCK EMAC21 ETXEN EMAC22 ETX[1:0] EMAC23 EMAC24 ERX[1:0] EMAC25 EMAC26 EMAC27 EMAC28 ERXER ECRSDV SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 839 42.14 Peripheral Timings 42.14.1 SPI 42.14.1.1 Maximum SPI Frequency The following formulas give maximum SPI frequency in Master read and write modes and in Slave read and write modes. Master Write Mode The SPI is only sending data to a slave device such as an LCD, for example. The limit is given by SPI2 (or SPI5) timing. Since it gives a maximum frequency above the maximum pad speed (see Section 42.6 "Crystal Oscillator Characteristics"), the maximum SPI frequency is the one from the pad. Master Read Mode 1 f SPCK Max = -----------------------------------------------------SPI 0 ( orSPI 3 ) + t valid tvalid is the slave time response to output data after deleting an SPCK edge. For a non-volatile memory with tvalid (or tV) = 12 ns Max, fSPCKMax = 37.7 MHz @ VDDIO = 3.3V. Slave Read Mode In slave mode, SPCK is the input clock for the SPI. The max SPCK frequency is given by setup and hold timings SPI7/SPI8(or SPI10/SPI11). Since this gives a frequency well above the pad limit, the limit in slave read mode is given by SPCK pad. Slave Write Mode 1 f SPCK Max = -----------------------------------------------------------------------------2x ( S PI 6max ( orSPI 9max ) + t su ) For 3.3V I/O domain and SPI6, fSPCKMax = 18.7 MHz. tsu is the setup time from the master before sampling data. 42.14.1.2 SPI Timings SPI timings are given assuming a capacitance load on MISO, SPCK and MOSI as defined in Table 42-38. Table 42-38. Capacitance Load for MISO, SPCK and MOSI Corner Figure 42-8. Supply Max 1.8V/3.3V 20 pF SPI Master Mode 1 and 2 SPCK SPI0 MISO SPI2 MOSI 840 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 SPI1 Figure 42-9. SPI Master Mode 0 and 3 SPCK SPI3 SPI4 MISO SPI5 MOSI Figure 42-10. SPI Slave Mode 0 and 3 SPCK SPI6 MISO SPI7 SPI8 SPI10 SPI11 MOSI Figure 42-11. SPI Slave Mode 1 and 2 SPCK SPI9 MISO MOSI SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 841 Table 42-39. Symbol SPICLK 842 SPI Timings Parameter Conditions Min SPCK frequency Max Unit 47 MHz SPI0 MISO Setup time before SPCK rises 5.8 + 0.5 x tCPMCK 15.4 + 0.5 x tCPMC ns SPI1 MISO Hold time after SPCK rises 5.14 + 0.5 x tCPMCK 14.5 + 0.5 x tCPMC ns SPI2 SPCK rising to MOSI -0.16 0.44 ns SPI3 MISO Setup time before SPCK falls 5.72 + 0.5 x tCPMCK 15.7 + 0.5 x tCPMCK ns SPI4 MISO Hold time after SPCK falls 4.7 + 0.5 x tCPMCK 14.8 +0.5 x tCPMCK ns SPI5 SPCK falling to MOSI 0.091 0.15 ns SPI6 SPCK falling to MISO 5.33 18.55 ns SPI7 MOSI Setup time before SPCK rises 1.41 ns SPI8 MOSI Hold time after SPCK rises 0 ns SPI9 SPCK rising to MISO 5.33 SPI10 MOSI Setup time before SPCK falls 1.41 ns SPI11 MOSI Hold time after SPCK falls 0 ns SPI12 NPCS0 setup to SPCK rising 0 ns SPI13 NPCS0 hold after SPCK falling 7.02 ns SPI14 NPCS0 setup to SPCK falling 0 ns SPI15 NPCS0 hold after SPCK rising 4.97 ns SPI16 NPCS0 falling to MISO valid SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Master Mode Slave Mode 14.7 14.7 ns ns 42.14.2 ISI Figure 42-12. ISI Timing Diagram ISI1 VSYNC ISI7 HSYNC ISI2 ISI5 ISI6 PIXCLK DATA[7:0] Valid Data ISI3 Table 42-40. Symbol Valid Data Valid Data ISI4 ISI Timings Parameter Peripheral Supply Min Max Unit ISI1 VSYNC to HSYNC 1.62 ns ISI2 HSYNC to PIXCLK 1.86 ns ISI3 DATA setup time -0.9 ns ISI4 DATA hold time 3.96 ns ISI5 PIXCLK high time -0.14 ns ISI6 PIXCLK low time 0.29 ns ISI7 PIXCLK frequency ISI1 VSYNC to HSYNC 1.56 ns ISI2 HSYNC to PIXCLK 1.95 ns ISI3 DATA setup time -1.02 ns ISI4 DATA hold time 4.14 ns ISI5 PIXCLK high time -0.1 ns ISI6 PIXCLK low time 0.25 ns ISI7 PIXCLK frequency ISI1 VSYNC to HSYNC 1.67 ns ISI2 HSYNC to PIXCLK -2.26 ns ISI3 DATA setup time -1.33 ns ISI4 DATA hold time 4.56 ns ISI5 PIXCLK high time -0.01 ns ISI6 PIXCLK low time 0.15 ns ISI7 PIXCLK frequency 3.3V 74.8 2.5V 69.8 1.8V 64.4 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 MHz MHz MHz 843 42.14.3 SSC 42.14.3.1 Timing Conditions SSC timings are given in worst case conditions (1.65V/3.0V, TA = 85C). . Table 42-41. Capacitance Load Supply CLOAD Max 3.3V 30 pF 1.8V 20 pF 42.14.3.2 Timing Extraction Figure 42-13. SSC Transmitter, TK and TF as Output TK (CKI = 0) TK (CKI = 1) SSC0 TF/TD Figure 42-14. SSC Transmitter, TK as Input and TF as Output TK (CKI = 0) TK (CKI = 1) SSC1 TF/TD 844 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 42-15. SSC Transmitter, TK as Output and TF as Input TK (CKI = 0) TK (CKI = 1) SSC2 SSC3 TF SSC4 TD Figure 42-16. SSC Transmitter, TK and TF as Input TK (CKI = 1) TK (CKI = 0) SSC5 SSC6 TF SSC7 TD Figure 42-17. SSC Receiver RK and RF as Input RK (CKI = 0) RK (CKI = 1) SSC8 SSC9 RF/RD SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 845 Figure 42-18. SSC Receiver, RK as Input and RF as Output RK (CKI = 1) RK (CKI = 0) SSC8 SSC9 RD SSC10 RF Figure 42-19. SSC Receiver, RK and RF as Output RK (CKI = 1) RK (CKI = 0) SSC11 RD SSC13 RF Figure 42-20. SSC Receiver, RK as Output and RF as Input RK (CKI = 0) RK (CKI = 1) SSC11 RF/RD 846 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 SSC12 SSC12 Table 42-42. Symbol SSC Timings Parameter Conditions Min Max Unit 2.66 ns Transmitter SSC0 TK edge to TF/TD (TK output, TF output) 0.17 SSC1 TK edge to TF/TD (TK input, TF output) 6.4 ns SSC2 TF setup time before TK edge (TK output) 6.1 - tCPMCK ns SSC3 TF hold time after TK edge (TK output) tCPMCK - 5.77 ns SSC4 TK edge to TF/TD (TK output, TF input) 0.78 + (2 x tCPMCK) SSC5 TF setup time before TK edge (TK input) 0 ns SSC6 TF hold time after TK edge (TK input) tCPMCK ns SSC7 TK edge to TF/TD (TK input, TF input) 7 + (3 x tCPMCK) 2.8 + (2 x tCPMCK) 18 + (3 x tCPMCK) ns ns Receiver SSC8 RF/RD setup time before RK edge (RK input) SSC9 RF/RD hold time after RK edge (RK input) SSC10 RK edge to RF (RK input) SSC11 RF/RD setup time before RK edge (RK output) SSC12 RF/RD hold time after RK edge (RK output) SSC13 RK edge to RF (RK output) 0 ns tCPMCK ns 4.7 24.2 ns 14.7 - tCPMCK ns tCPMCK - 5.3 ns 0 0.8 ns Figure 42-21. Min and Max Access Time of Output Signals TK (CKI =1) TK (CKI =0) SSC0min SSC0max TF/TD SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 847 42.14.4 MCI The PDC interface block controls all data routing between the external data bus, internal MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the MMC/SD module (inner system) and the application (user programming). These timings are given for a 25 pF load, corresponding to 1 MMC/SD Card. Figure 42-22. MCI Timing Diagram MCI1 CLK MCI2 MCI3 CMD_DAT Input MCI4 MCI5 CMD_DAT Output Shaded areas are not valid Table 42-43. Symbol MCI1 MCI Timings Parameter CLK frequency at Data transfer Mode Conditions Min CLOAD = 25 pf 25 CLOAD = 100 pf 20 CLOAD = 250 pf 20 CLK frequency at Identification Mode 848 Max 400 Unit MHz kHz CLK Low time CLOAD = 100 pf 10 ns CLK High time CLOAD = 100 pf 10 ns CLK Rise time CLOAD = 100 pf 10 ns CLK Fall time CLOAD = 100 pf 10 ns CLK Low time CLOAD = 250 pf 50 ns CLK High time CLOAD = 250 pf 50 ns CLK Rise time CLOAD = 250 pf 50 ns CLK Fall time CLOAD = 250 pf 50 ns MCI2 Input hold time 3 ns MCI3 Input setup time 3 ns MCI4 Output change after CLK rising 5 ns MCI5 Output valid before CLK rising 5 ns SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 42.14.5 UDP Figure 42-23. USB Data Signal Rise and Fall Times Rise Time Fall Time 90% VCRS 10% Differential Data Lines 10% tr tf REXT = 27 ohms fOSC = 6 MHz/750 kHz Buffer Table 42-44. Symbol In Full Speed Parameter Conditions tr Transition Rise Time CLOAD = 50 pf tf Transition Fall Time CLOAD = 50 pf trfm CLOAD Rise/Fall time Matching Min Typ Max Unit 4 20 ns 4 20 ns 90 111.11 % SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 849 43. Mechanical Characteristics 43.1 SAM9XE Package Drawings Figure 43-1. Table 43-1. 217-ball LFBGA Package Drawing Soldering Information (Substrate Level) Ball Land 0.43 mm +/- 0.05 Soldering Mask Opening 0.30 mm +/- 0.05 Table 43-2. Device and 217-ball LFBGA Package Maximum Weight 450 mg Table 43-3. 217-ball LFBGA Package Characteristics Moisture Sensitivity Level Table 43-4. 3 Package Reference JEDEC Drawing Reference MO-205 JESD97 Classification e1 850 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Figure 43-2. 208-lead PQFP Package Drawing Table 43-5. Device and 208-lead PQFP Package Maximum Weight 5.5 Table 43-6. g 208-lead PQFP Package Characteristics Moisture Sensitivity Level Table 43-7. 3 Package Reference JEDEC Drawing Reference MS-022 JESD97 Classification e3 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 851 43.2 Soldering Profile Table 43-8 gives the recommended soldering profile from J-STD-20. Table 43-8. Soldering Profile Profile Feature Green Package Average Ramp-up Rate (217C to Peak) 3C/sec. max. Preheat Temperature 175C 25C 180 sec. max. Temperature Maintained Above 217C 60 sec. to 150 sec. Time within 5C of Actual Peak Temperature 20 sec. to 40 sec. Peak Temperature Range 260 +0 C Ramp-down Rate 6C/sec. max. Time 25C to Peak Temperature 8 min. max. Note: It is recommended to apply a soldering temperature higher than 250C A maximum of three reflow passes is allowed per component. 852 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 44. Marking All devices are marked with the Atmel logo and the ordering code. Additional marking may be in one of the following formats: YYWW V XXXXXXXXX ARM where "YY": manufactory year "WW": manufactory week "V": revision "XXXXXXXXX": lot number SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 853 45. Ordering Information Table 45-1. Ordering Information Ordering Code MRL Package AT91SAM9XE256B-CU B LFBGA217 AT91SAM9XE512B-QU B PQFP208 AT91SAM9XE512B-CU B LFBGA217 (1) AT91SAM9XE128-QU A PQFP208 AT91SAM9XE128-CU(1) A LFBGA217 (1) A PQFP208 (1) A LFBGA217 (1) AT91SAM9XE512-QU A PQFP208 AT91SAM9XE512-CU(1) A LFBGA217 AT91SAM9XE256-QU AT91SAM9XE256-CU Note: 854 Carrier Type Operating Temperature Range Tray Industrial -40C to 85C 1. This ordering code is obsolete. Contact your local Atmel sales representative for more information. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 46. Errata 46.1 SAM9XE128/256/512 Errata - Revision A and Revision B Parts 46.1.1 Analog-to-Digital Converter (ADC) 46.1.1.1 ADC: Sleep Mode If Sleep mode is activated while there is no activity (no conversion is being performed), it will take effect only after a conversion occurs. Problem Fix/Workaround To activate sleep mode as soon as possible, it is recommended to write successively, ADC Mode Register (SLEEP) then ADC Control Register (START bit field), in order to start an analog-to-digital conversion and then put ADC into sleep mode at the end of this conversion. 46.1.2 Error Correction Code Controller (ECC) 46.1.2.1 ECC: Computation with a 1 clock cycle long NRD/NWE pulse If the SMC is programmed with NRD/NWE pulse length equal to 1 clock cycle, HECC can't compute the parity. Problem/Fix Workaround It is recommended to program SMC with a value higher than 1. 46.1.2.2 ECC: Incomplete parity status when error in ECC parity When a single correctable error is detected in ECC value, the error is located in ECC Parity register's field which contains a 1 in the 24 least significant bits except when the error is located in the 12th or the 24th bit. In this case these bits are always stuck at 0. A Single correctable error is detected but it is impossible to correct it. Problem/Fix Workaround None. 46.1.2.3 ECC: 1-bit ECC per 512 Words 1-bit ECC per 512 words is not functional. Problem/Fix Workaround Perform the ECC computation by software. 46.1.2.4 ECC: Unsupported hardware ECC on 16-bit NAND Flash Hardware ECC on 16-bit NAND Flash is not supported. Problem/Fix Workaround Perform the ECC by software. 46.1.3 MultiMedia Card Interface (MCI) 46.1.3.1 MCI: Busy signal of R1b responses is not taken in account The busy status of the card during the response (R1b) is ignored for the commands CMD7, CMD28, CMD29, CMD38, CMD42, CMD56. Additionally, for commands CMD42 and CMD56 a conflict can occur on data line0 if the MCI sends data to the card while the card is still busy. The behavior is correct for CMD12 command (STOP_TRANSFER). Problem Fix/Workaround None SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 855 46.1.3.2 MCI: SDIO Interrupt does not work with slots other than A If there is 1-bit data bus width on slots other than slot A, the SDIO interrupt can not be captured. The sample is made on the wrong data line. Problem Fix/Workaround None 46.1.3.3 MCI: Data Write Operation and number of bytes The Data Write operation with a number of bytes less than 12 is impossible. Problem Fix/Workaround The PDC counters must always be equal to 12 bytes for data transfers lower than 12 bytes. The BLKLEN or BCNT field are used to specify the real count number. 46.1.3.4 MCI: Flag Reset is not correct in half duplex mode In half duplex mode, the reset of the flags ENDRX, RXBUFF, ENDTX and TXBUFE can be incorrect. These flags are reset correctly after a PDC channel enable. Problem Fix/Workaround Enable the interrupts related to ENDRX, ENDTX, RXBUFF and TXBUFE only after enabling the PDC channel by writing PDC_TXTEN or PDC_RXTEN. 46.1.3.5 MCI: Small Block Reading In case of a read of a small block (i.e., 5 bytes) by the READ_SINGLE_BLOCK command (CMD17), the DATA FSM may not perform correctly. This occurs if the read transfer is done before the response start bit is sent by the card. It leads to erratic behavior of the NOTBUSY flag and to a false data time-out error, DTOE. Problem Fix/Workaround None. 46.1.3.6 MCI: old SDCard Compatibility Busy line is sampled 2 clock cycles after the command End Bit when the R1B response type is expected. This timing is not strictly defined in SD mode. This timing is defined with MMC specification 4.1. (R1b Busy Timing) Problem Fix/Workaround None. 46.1.4 Reset Controller (RSTC) 46.1.4.1 RSTC: Reset Type Status is wrong at power-up RSTTYP status in the Reset Controller Status Register is wrong at power-up. It should be "0" (General Reset) but it is "5" (Brownout Reset). The value is the same if Brownout and Brownout Reset are enabled or not. The BODSTS bit remains correct. Problem Fix/Workaround None. 856 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 46.1.5 Static Memory Controller (SMC) 46.1.5.1 SMC: Chip Select Parameters Modification The user must not change the configuration parameters of an SMC Chip Select (Setup, Pulse, Cycle, Mode) if accesses are performed on this CS during the modification. For example, the modification of the Chip Select 0 (CS0) parameters, while fetching the code from a memory connected on this CS0, may lead to unpredictable behavior. Problem Fix/Workaround The code used to modify the parameters of an SMC Chip Select can be executed from the internal RAM or from a memory connected to another Chip Select. 46.1.6 Serial Peripheral Interface (SPI) 46.1.6.1 SPI: Bad Serial Clock Generation on second chip_select when SCBR = 1, CPOL = 1 and NCPHA = 0 If the SPI is used in the following configuration: master mode CPOL = 1 and NCPHA = 0 multiple chip selects used with one transfer with baud rate (SCBR) equal to 1 (i.e., when serial clock frequency equals the system clock frequency) and the other transfers set with SCBR not equal to 1 transmit with the slowest chip select and then with the fastest one, then an additional pulse will be generated on output SPCK during the second transfer. Problem Fix/Workaround Do not use a multiple Chip Select configuration where at least one SCRx register is configured with SCBR = 1 and the others differ from 1 if CPHA = 0 and CPOL = 1. If all chip selects are configured with baud rate = 1, the issue does not appear. 46.1.6.2 SPI: Software Reset must be Written Twice If a software reset (SWRST in the SPI control register) is performed, the SPI may not work properly (the clock is enabled before the chip select.) Problem Fix/Workaround The SPI Control Register field SWRST (Software Reset) needs to be written twice to be correctly set. 46.1.6.3 SPI: Inaccurate RHR.PCS in Variable Mode When the SPI is configured in master mode, connected to four slaves and the variable peripheral mode is selected, the PCS field in the SPI_RDR does not accurately tell which slave the received data came from if all Chip Selects are used consecutively. Problem Fix/Workaround Use DLYBCT field of the SPI Chip Select Register to include a delay between two consecutive transfers. 46.1.7 Serial Synchronous Controller (SSC) 46.1.7.1 SSC: Transmitter Limitations in Slave Mode If TK is programmed as output and TF is programmed as input, it is impossible to emit data when start of edge (rising or falling) of synchro with a Start Delay equal to zero. Problem Fix/Workaround None. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 857 46.1.7.2 SSC: Delay on TD (transmit data signal) When: TCMR.START = Receive Start TCMR.STTDLY is more than ZERO RCMR.START = Start on falling edge/Start on Rising edge/Start on any edge RFMR.FSOS = None (input) Unexpected delay from 2 to 3 system clock cycles is added to TD output. TD should be synchronized on serial clock edge but is actually output a few cycles of SSC clock later. Problem Fix/Workaround None. 46.1.7.3 SSC: Data sent without any frame synchro When SSC is configured with the following conditions: RF is in input, TD is synchronized on a receive START (any condition: START field = 2 to 7) TF toggles at each start of data transfer Transmit STTDLY = 0 Check TD and TF after a receive START The data is sent but there is no toggle of the TF line Problem/Fix Workaround Transmit STTDLY must be other than 0. 46.1.7.4 SSC: Last RK Clock Cycle when RK outputs a clock during data transfer When the SSC receiver is used with the following conditions: the internal clock divider is used (CKS = 0 and DIV different from 0) RK pin set as output and provides the clock during data transfer (CKO = 2) data sampled on RK falling edge (CKI = 0) At the end of the data, the RK pin is set in high impedance which might be seen as an unexpected clock cycle. Problem Fix/Workaround Enable the pull-up on RK pin. 46.1.7.5 SSC: First RK Clock Cycle when RK outputs a clock during data transfer When the SSC receiver is used with the following conditions: RX clock is divided clock (CKS =0 and DIV different from 0) RK pin set as output and provides the clock during data transfer (CKO = 2) data sampled on RK falling edge (CKI =0) The first clock cycle time generated by the RK pin is equal to MCK /(2 x (value +1)). Problem Fix/Workaround None. 46.1.8 Two-wire Interface (TWI) 46.1.8.1 TWI: Software Reset The RXRDY Flag is not reset when a software reset is performed. Problem Fix/Workaround None. 858 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 46.1.8.2 TWI: Overrun in Master Read Mode When the shift register and the receive holding register (RHR) are full and TWI reads new data, then an overrun error occurs. Problem Fix/Workaround None. 46.1.9 USB Host Port (UHP) 46.1.9.1 UHP: Non-ISO IN transfers Conditions: Consider the following sequence: 1. The Host controller issues an IN token. 2. The Device provides the IN data in a short packet. 3. The Host controller writes the received data to the system memory. 4. The Host controller is now supposed to carry out two Write transactions (TD status write and TD retirement write) to the system memory in order to complete the status update. 5. The Host controller raises the request for the first write transaction. By the time the transaction is completed, a frame boundary is crossed. 6. After completing the first write transaction, the Host controller skips the second write transaction. Consequence: When this defect manifests itself, the Host controller re-attempts the same IN token. Problem Fix/Workaround This problem can be avoided if the system guarantees that the status update can be completed within the same frame. 46.1.9.2 UHP: ISO OUT Transfers Conditions: Consider the following sequence: 1. The Host controller sends an ISO OUT token after fetching 16 bytes of data from the system memory. 2. When the Host controller is sending the ISO OUT data, because of system latencies, remaining bytes of the packet are not available. This results in a buffer underrun condition. 3. While there is an underrun condition, if the Host controller is in the process of bit-stuffing, it causes the Host controller to hang. Consequence: After the failure condition, the Host controller stops sending the SOF. This causes the connected device to go into suspend state. Problem Fix/Workaround This problem can be avoided if the system can guarantee that no buffer underrun occurs during the transfer. 46.1.9.3 UHP: Remote Wakeup Event Conditions: When a Remote Wakeup event occurs on a downstream port, the OHCI Host controller begins sending resume signaling to the device. The Host controller is supposed to send this resume signaling for 20 ms. However, if the driver sets the HcControl, HCFS into USBOPERATIONAL state during the resume event, then the Host controller terminates sending the resume signal with an EOP to the device. Consequence: If the Device does not recognize the resume (<20 ms) event, then the Device will remain in suspend state. Problem Fix/Workaround Host stack can do a port resume after it sets the HcControl, HCFS to USBOPERATIONAL. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 859 46.1.10 Universal Synchronous Asycnchronous Receiver Transmitter (USART) 46.1.10.1 USART: Slave Synchronous Mode Limitation on synchronous mode external clock is MCK/9. Problem Fix/Workaround None. 46.1.10.2 USART: Number of Errors Register (US_NER) ISO7816 error number The Number of Errors Register always returns 0 instead of the ISO7816 error number. It is not part of the ISO7816 protocol. Problem Fix/Workaround None. 46.1.11 Fast Flash Programming Interface (FFPI) 46.1.11.1 FFPI: Usage of a clock on XIN to speed up programming not functional The usage of a clock on XIN allowing to speed up the programming is not functional. Problem Fix/Workaround A crystal, in the range 3 MHz to 20 MHz, must be connected between XIN and XOUT. The crystal must fit the characteristics defined in Section 42.6.4 "Main Oscillator Characteristics". 860 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 47. Revision History In the tables that follow the most recent version of the document appears first. Table 47-1. Date Revision History SAM9XE Series Datasheet Revision 6254E Changes General formatting and editorial changes throughout "MPU" changed to "MCU" in document title Product name "AT91SAM9XE" updated to "SAM9XE" "Description" Added table "SAM9XE Embedded Internal Memories Configuration" Section 1. "Block Diagram" Figure 1-1 "SAM9XE Series Block Diagram": updated System Controller contents Section 3. "Package and Pinout" Updated first sentence Section 4. "Power Considerations" Added Section 4.2 "Power Sequence Requirements" Section 6. "Processor and Architecture" Table 6-3, "Masters to Slaves Access": updated access for slaves 2 and 3 Section 7. "Memories" Figure 7-1 "Memory Mapping": two blocks "MATRIX" and "CCFG" replaced with single "MATRIX" block Section 9. "Peripherals" Section 9.4.9 "Ethernet 10/100 MAC": deleted "control of alarm and update time/calendar data in" from end of last bullet 20-Nov-15 Section 12. "SAM9XE Boot Program" Section 12.4.3 "USB Device Port": removed reference to "Windows XP" Section 15. "Real-time Timer (RTT)" Section 15.3 "Functional Description": instances of "32.768 Hz" corrected to "32768 Hz" Section 18. "Shutdown Controller (SHDWC)" Acronym `SHDWN' updated to `SHDWC' Section 19. "Enhanced Embedded Flash Controller (EEFC)" Removed offsets from register description sections (offsets are provided in Table 19-3, "Register Mapping") Section 20. "SAM9XE Bus Matrix" Section 20.5.4 "Bus Matrix Master Remap Control Register": deleted reset value line Section 20.6.1 "EBI Chip Select Assignment Register": deleted reset value line Section 21. "SAM9XE External Bus Interface" Section 21.6.6.2 "CFCE1 and CFCE2 Signals": "DBW field in the corresponding Chip Select Register" corrected to "DBW field in the corresponding SMC MODE Register" Section 23. "SDRAM Controller (SDRAMC)" Table 23-8, "Register Mapping": access "Read" corrected to "Read/Write" for SDRAMC_MDR Removed reset value in Section 23.6.1 "SDRAMC Mode Register", Section 23.6.2 "SDRAMC Refresh Timer Register", Section 23.6.3 "SDRAMC Configuration Register", and Section 23.6.4 "SDRAMC Low Power Register" (reset values provided in Table 23-8, "Register Mapping") SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 861 Table 47-1. Date Revision History SAM9XE Series Datasheet Revision 6254E (Continued) Changes Section 24. "Error Correction Code Controller (ECC)" Table 24-1, "Register Mapping": removed reset value from ECC_CTRL (register is write-only) Section 25. "Peripheral DMA Controller (PDC)" Table 25-1, "Register Mapping": removed reset value from PERIPH_PTCR (register is write-only) Section 27. "Power Management Controller (PMC)" Table 27-3, "Register Mapping": for PMC_PLLICPR, access "Write-only" corrected to "Read/Write" Section 27.9.17 "PLL Charge Pump Current Register": access "Write-only" corrected to "Read/Write" Section 28. "Advanced Interrupt Controller (AIC)" Removed reset value from following register descriptions (reset values provided in Table 28-2, "Register Mapping"): - Section 28.8.2 "AIC Source Mode Register" - Section 28.8.3 "AIC Source Vector Register" - Section 28.8.4 "AIC Interrupt Vector Register" - Section 28.8.5 "AIC FIQ Vector Register" - Section 28.8.6 "AIC Interrupt Status Register" - Section 28.8.7 "AIC Interrupt Pending Register" - Section 28.8.8 "AIC Interrupt Mask Register" - Section 28.8.9 "AIC Core Interrupt Status Register" - Section 28.8.15 "AIC Spurious Interrupt Vector Register" - Section 28.8.16 "AIC Debug Control Register" 20-Nov-15 Section 32. "Two-wire Interface (TWI)" Table 32-4, "Register Mapping": removed reset value from TWI_THR (register is write-only) Removed reset value from register description sections (reset values provided in Table 32-4, "Register Mapping") Section 33. "Universal Synchronous Asynchronous Receiver Transceiver (USART)" Section 33.6.3 "Synchronous and Asynchronous Modes": removed three sections "Manchester Encoder", "Manchester Decoder", and "Radio Interface: Manchester Encoded USART Application" Table 33-5, "Possible Values for the Fi/Di Ratio": in top row, replaced "774" with "744" Table 33-10, "IrDA Baud Rate Error": in header row, added "bit/s" to Baud Rate and added "s" to Pulse Time Table 33-13, "Register Mapping": removed Manchester Encoder Decoder Register (offset 0x0050 now reserved); added reset value for US_MR, US_CSR, and US_NER Section 33.7.1 "USART Control Register": updated RSTSTA bit description Section 33.7.2 "USART Mode Register": removed MAN bit (bit 29) Removed MANE bits (bits 20 and 24) in Section 33.7.3 "USART Interrupt Enable Register", Section 33.7.4 "USART Interrupt Disable Register", and Section 33.7.5 "USART Interrupt Mask Register" Section 33.7.6 "USART Channel Status Register": removed MANERR bit (bit 24) Section 33.7.12 "USART FI DI RATIO Register": removed reset value (reset values provided in Table 33-13, "Register Mapping") Removed section "USART Manchester Configuration Register" Section 34. "Synchronous Serial Controller (SSC)" Section 34.6.1.1 "Clock Divider": at end of section, deleted untitled Table 35-2 Section 35. "Timer Counter (TC)" Reformatted Figure 35-10 "WAVSEL = 10 With Trigger" (now displays previously hidden content) 862 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Table 47-1. Date Revision History SAM9XE Series Datasheet Revision 6254E (Continued) Changes Section 40. "Image Sensor Interface (ISI)" Table 40-9, "Register Mapping": - ISI_IER and ISI_IDR: changed access from "Read/Write" to "Write-only"; removed reset value - ISI_IMR: change access from "Read/Write" to "Read-only" Removed reset value from register description sections (reset values are provided in Table 40-9, "Register Mapping") Section 40.4.4 "ISI Interrupt Enable Register" and Section 40.4.5 "ISI Interrupt Disable Register": change access from "Read/Write" to "Write-only" Section 40.4.6 "ISI Interrupt Mask Register": change access from "Read/Write" to "Read-only" Section 42. "Electrical Characteristics" Section 42.6.3 "Slow Clock Selection": updated to remove text redundant with text in Section 26.5 "Slow Clock Selection" Updated Section 42.9 "Core Power Supply POR Characteristics" (transferred two sections "Power-up Sequence" and "Power-down Sequence" to Section 4.2 "Power Sequence Requirements") Table 42-17, "PLLA Characteristics(1)": updated conditions for parameter "Output Frequency" Table 42-28, "SMC Read Signals - NRD Controlled (READ_MODE = 1)": removed empty "Max" (1.8V / 1.3V) columns 20-Nov-15 Table 42-29, "SMC Read Signals - NCS Controlled (READ_MODE= 0)": removed empty "Max" (1.8V / 1.3V) columns Table 42-30, "SMC Write Signals - NWE Controlled (Write_Mode = 1)": removed empty "Max" (1.8V / 1.3V) columns Table 42-31, "SMC Write NCS Controlled (WRITE_MODE=0)": removed empty "Max" (1.8V / 1.3V) columns Added Section 42.14.1.1 "Maximum SPI Frequency" Added Table 42-38, "Capacitance Load for MISO, SPCK and MOSI" Table 42-39, "SPI Timings": deleted footnote "CLOAD is 8 pF for MISO and 6 pF for SPCK and MOSI." Updated Figure 42-22 "MCI Timing Diagram" Migrated previous section 46.1 "Marking" to Section 44. "Marking" Section 45. "Ordering Information" Table 45-1, "Ordering Information": package "BGA217" updated to "LFBGA217"; replaced column "Package Type" with "Carrier Type" Section 46. "Errata" Added Section 46.1.2.2 "ECC: Incomplete parity status when error in ECC parity" Added Section 46.1.2.3 "ECC: 1-bit ECC per 512 Words" Added Section 46.1.2.4 "ECC: Unsupported hardware ECC on 16-bit NAND Flash" Added Section 46.1.11.1 "FFPI: Usage of a clock on XIN to speed up programming not functional" SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 863 Table 47-2. Doc. Ref. 6254D Revision History AT91SAM9XE Series Revision 6254D Changes Changed title to AT91SAM9XE Series from AT91SAM9XE128/256/512. Removed Preliminary status. Reformatted the datasheet using the new template. Section "Description" now precedes section "Features". "Description" Changed `AT91SAM9XE128/256/512' to `AT91SAM9XE series' throughout. 29-Oct-14 Section 46. "Errata" Section 46.1 "SAM9XE128/256/512 Errata - Revision A and Revision B Parts": added Revision B to title. Section 45. "Ordering Information" Added new ordering codes for MRL B parts. Added note after Table 45-1, "Ordering Information" with information on obsolete ordering codes. Doc Rev. 6254C Comments Change Request Ref. (1) Overview: Table 2-1, "Signal Description List", PCKx, DBGU, AIC, PIOC, USART, SSC, TC, SPI, TWI voltage references removed. Cross reference referring to PIO Multiplexing added to these signals. 6401 Table 9-3, "Multiplexing on PIO Controller B", PB16 to PB21, Peripheral A column updated. Table 9-4, "Multiplexing on PIO Controller C", PC0 to PC3, Power Supply column updated. Figure 7-1 "Memory Mapping", GPBR addresses changed. Section 5.1 "ERASE Pin", ERASE pin is powered by VDDIOP0 rail. Section 6.2.2 "Matrix Slaves" and Section 6.2.3 "Masters to Slaves Access" Slave order changed in Table 6-2 and Table 6-3 6767 6927 Section 7.1.4 "ROM Topology" and Figure 7-2 "ROM Boot Memory Map", added PA3. Section 7.1.4.1 "Fast Flash Programming Interface", added PA3. Table 7-1, added PGMEN3 and PA3. Table 2-1, "Signal Description List", PGMEN[3:0] replaces PGMEN[2:0]. Section 8.2 "Reset Controller", added: "At reset the NRST pin is an output". Section 7.2.5 "I/O Drive Selection", added to datasheet. 6768 GLobal: KB rewritten as -Kbyte or Kbytes, MB as Mbytes or -Mbyte (conform to style guide; lit 3363B) techpubs/rfo EFC: Section 19.3.3.2 "Write Commands", added consraint on partial programming mode below Figure 19-7 "Example of Partial Page Programming". 6826 EMAC: Section 37. "Ethernet MAC 10/100 (EMAC)" WOL bit description and other related text removed from section. 864 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 6789 Doc Rev. 6254C Change Request Ref. (1) Comments (Continued) FFPI: Figure 13-1 "Parallel Programming Interface" and Figure 13-4 "Serial Programming", removed VDDFLASH, TST is connected to VDDBU, added PGMEN3. 6863 Table 13-1, "Signal Description List" and Table 13-17, "Signal Description List", removed VDDFLASH, added Backup Power supply, TST is connected to by VDDBU, added PGMEN3. Section 13.2.3 "Entering Programming Mode" and Section 13.3.2 "Entering Serial Programming Mode", removed VDDFLASH from algorithm. MATRIX: Section 20.6.1 "EBI Chip Select Assignment Register", bitfield [17:16] changed to EBI_DRIVE, replaces VDDIOMSEL. 6768 SHDWC: Section 18.6.3 "Shutdown Status Register", bitfield 16 contains RTTWK. 6583 SMC: Table 22-8, "Register Mapping", SMC_CYCLE reset is 0x00030003. 6742 Section 22.8.6 "Reset Values of Timing Parameters", replaced redundant Table 23-5 with ref. to Table 228. Electrical Characteristics: Table 42-2, "DC Characteristics", Min pull up resistance values updated. IO output current for PA0-PA31 PB0-PB31 PC0-PC3 is 8 mA. 6602 rfo Table 42-5, "Power Consumption for Different Modes", Active mode updated: "all peripheral clocks deactivated". Footnote (1) removed from title. 6343 Section 42.9 "Core Power Supply POR Characteristics", updated this section. 6883 Table 42-25, "Maximum MCK Frequency vs. Embedded Flash Wait States", updated. 6386 Table 42-18, "PLLB Characteristics", startup time added. Table 42-24, "Power-On-Reset Characteristics", irrelevant rows removed. 6957 Section 43.9 "Power-up Sequence", instructions updated. schematic removed. 6957/6963 Section "", instructions updated. Section 42.11.1 "Timing Conditions", updated: SMC timings are given in worst case conditions. rfo Table 42-27, updated: Corner removed from capacitance load table. Section 42.12.1 "Timing Conditions", updated: SDRAMC timings are given in worst case conditions. Table 42-32 and Table 42-32 updated: Corner removed from capacitance load tables. Section 42.14.3.1 "Timing Conditions", updated: SSC timings are given in worst case conditions. Table 42-41 updated: Corner removed from capacitance load table. "SPI", Figure 42-8, Figure 42-9, Figure 42-10, Figure 42-11, confusing titles to SPI timing diagrams simplified. 6872/6766 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 865 Doc Rev. 6254C Comments (Continued) Change Request Ref. (1) Errata: Section 46.1.2 "Error Correction Code Controller (ECC)", "ECC: Computation with a 1 clock cycle long NRD/NWE pulse", added to errata. 6465/6889 Section 46.1.3 "MultiMedia Card Interface (MCI)" 6889 "MCI: Data Timeout Error Flag", removed from errata. "MCI: Small Block Reading", added to errata. "MCI: old SDCard Compatibility", added to errata. "RSTC: Reset During SDRAM Accesses", removed from errata. 6889 Section 46.1.6 "Serial Peripheral Interface (SPI)" 6889 "SPI: Baudrate Set to 1", removed from errata. "SPI: Inaccurate RHR.PCS in Variable Mode", added to errata. Section 46.1.7 "Serial Synchronous Controller (SSC)" "SSC: Periodic Transmission Limitations in Master Mode", removed from errata. 6889 "SSC: Clock is Transmitted before the SSC is Enabled, removed from errata. 6889 "SSC: Delay on TD (transmit data signal)", added to errata. 6889 "SSC: Data sent without any frame synchro", added to errata. 6465/6889 Section 46.1.8 "Two-wire Interface (TWI)" 6889 "TWI: Software Reset", added to errata. "TWI: Overrun in Master Read Mode", added to errata. Section 46.1.10 "Universal Synchronous Asycnchronous Receiver Transmitter (USART)" Doc. Rev 6254B "USART: Slave Synchronous Mode", added to errata. 6889 "USART: Number of Errors Register (US_NER) ISO7816 error number", added to errata. 6465/6889 Comments Change Request Ref. (1) Overview: "Features", "Ethernet MAC 10/100 Base-T", 128-byte FIFOs (typo corrected). 5800 Debug Unit (DBGU), added "mode for general purpose two-sire UART serial communication" 5846 Section 9.4.9 "Ethernet 10/100 MAC", 128-byte FIFOs (typo corrected). 5800 Section 8.13 "Chip Identification", SAM9XE512 chip ID is 0x329AA3A0. Removed former Section 5.2 "Power Consumption". Table 2-1, "Signal Description List", comment column updated in certain instances and "PIO Controller PIOA / PIOB / PIOC", has a foot note added to its comments column. SHDWN is active Low. rfo Section 5. "I/O Line Considerations", unneeded paragraphs removed. rfo "Features", "Additional Embedded Memories" Fast Read Time: 45 ns. 866 "Features" "Four Universal Synchronous/Asynchronous Receiver Transmitters (USART)", added Manchester Encoding/Decoding, 5930 Section 1. "Block Diagram", 2nd and 3rd paragraphs improved. rfo SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Doc. Rev 6254B Comments (Continued) Change Request Ref. (1) Section 5.3 "Shutdown Logic Pins", updated with external pull-up requirement. rfo Debug and Test Section 11.5 "JTAG Port Pins", added to Debug and Test. rfo Boot Program: Section 12.4.4 "In-Application Programming (IAP) Feature", added to datasheet. 6190 AIC: Section 28.6.3 "Interrupt Sources", Interrupt Source 1, OR-wiring description updated. Section 28.7.5 "Protect Mode", enabling Debug Control Protect Mode in AIC_DCR register updated. 5191 5193 Qualified/Internal on ATP DBGU: Section 29.1 "Description", added to second paragraph; "...two-pin UART can be used as stand-alone..." 5846 ECC: Section 24.4.3 "ECC Status Register 1" and Section 24.4.4 "ECC Status Register 2", ECCERRx renamed as MULERRx on bitfields, 2, 18, 22, 26, 30. 5542 Section 24.4.1 "ECC Control Register", added new bitfield: SRST 5543 EEFC: Section 19.4.2 "EEFC Flash Command Register", updated FARG bit field description 5302 ISI: Section 40.4.7 "ISI Preview Register", updated PREV_VSIZE and PREV_HSIZE with RGB only comments PMC: Section 27.7 "Programming Sequence", steps 5 and 6: "By default PRES parameter is set to 0....." 5596 RSTC: Section 14.3.4.5 "Software Reset" PERRST must be used with PROCRST, except for debug purposes. 5436 SMC: Section 22.8.5 "Coding Timing Parameters", "Effective Value" column under "Permitted Range" updated in Table 22-4 on page 206. 5604 Section 22.9.3.1 "User Procedure", instructions regarding configuration parameters of SMC Chip Select added. 5621 TWI: Section 32.5.1 "I/O Lines", TWD and TWCK open drain status and condition updated. Programmer interdiction added to TWD and TWCK. 5343 rfo Section 32.7.6 "TWI Status Register", GACC bit description updated. 5773 USART: Manchester Encoding/Decoding is available in this implementation of the USART (not visible in 6254A). 5930 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 867 Doc. Rev 6254B Comments (Continued) Change Request Ref. (1) Electrical Characteristics: Table 42-11, "32 kHz Oscillator Characteristics" 5335 Table 42-15, "Main Oscillator Characteristics", updated Typ values for CLEXT, 5345 updated Startup Time parameter, VDDPLL = 1.65V to 1.95V. 5789 Section 42.7 "ADC Characteristics", section added to datasheet 5562 Table 42-2, "DC Characteristics", VVDDIOM Condition column cleared. 5800 Section 42.9 "Core Power Supply POR Characteristics", added to datasheet. 5298 & 5923/6189 Table 42-25, "Maximum MCK Frequency vs. Embedded Flash Wait States" FWS rows 5, 6 removed, Read Operations column removed, values assigned to Max MCK Frequency columns 5924 Table 42-17, "PLLA Characteristics(1)" FOUT Min &M ax updated Table 42-10, "XIN Clock Electrical Characteristics", line added for VIN. 6049 Section 42.5 "Clock Characteristics", Section 42.11 "SMC Timings", Section 42.12 "SDRAMC", 6167 Section 42.13 "EMAC Timings", Section 42.14 "Peripheral Timings", added to datasheet. rfo Table 42-21, "Analog Inputs", ADC input capacitance is 12 pF TYP, 14 pF MAX. 6242 Mechanical Characteristics: Table 43-1, "Soldering Information (Substrate Level)," on page 850, updated title. 5288 Errata: Section 46.1 "SAM9XE128/256/512 Errata - Revision A and Revision B Parts" 5922 Former Errata - Revision B parts replaced and become Errata - Revision A parts. Former Errata - Revision A parts removed from Errata Section 46.1.3.2 "MCI: SDIO Interrupt does not work with slots other than A", syntax updated. Section 46.2.6.1 "SSC: Clock is Transmitted before the SSC is Enabled", added to SSC errata. Section 46.1.6.1 "SPI: Bad Serial Clock Generation on second chip_select when SCBR = 1, CPOL = 1 and NCPHA = 0", added to SPI errata. Section 46.1.6.2 "SPI: Software Reset must be Written Twice", added to SPI errata. 868 6169 5439 rfo Section 46.1.4 "Reset Controller (RSTC)", added to errata. 5958 5925 Section 46.1.5 "Static Memory Controller (SMC)", added to errata. 6085 Section 46.1.5 "Static Memory Controller (SMC)" added to errata. 5642 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 Doc. Rev 6254A Change Request Ref. Comments First issue. Unqualified version on ATP: 02-Mar-07/Qualified on 01-Feb-08 Product specific parts updated in this version before qualification. Section 46.1 "SAM9XE128/256/512 Errata - Revision A and Revision B Parts" added to Errata section prod specs Section 46.2.6.3 "SDRAMC: JEDEC Standard Compatability", added. 4220 Section 46.2.2.1 "Matrix: FIXED_PRIORITY Functionality", added. 4232 Section 21.5.4 "Bus Matrix Master Remap Control Register", removed RCB5, RCB4, RCB3, RCB2 4283 Section 21.7.3 "8-bit NAND Flash", removed reference to NANDOE and NANDWE multiplexing from Section 21.7.3.1 "Software Configuration - 8-bit NAND Flash" 4374 Section 10. "ARM926EJ-S Processor", removed Tightly-Coupled Memory Interface chapter. 4403 Section 46.2.14.5 "USART: TXD signal is floating in Modem and Hardware Handshaking modes" and Section 46.2.14.6 "USART: DCD is active High instead of Low." added to Errata. 4722 5293 Section 5.1 "Power Supplies", added caution on "constraints at startup". 5290 Section 42.2 "DC Characteristics"updated VOL and VOH in Table 42-2 on page 822. 4731 Temperature Junction info removed. Section 7.2.1 "Matrix Masters", Section 7.2.2 "Matrix Slaves", Section 7.2.3 "Masters to Slaves Access", master and slave identification lists updated. 5284 EBI, EMAC and Peripheral Timings: TBD Section 6.5 "PIO Controllers", first line updated w/Schmitt trigger detail. Section 6.8 "Slow Clock Selection" table moved to Electrical Characteristics, Table 42-14 on page 827 Table 7-3, "AT91SAM9XE128/256/512 Masters to Slaves Access," on page 20, master/slave relations updated Section 8.1.6.1 "GPNVMBit[3] = 0, Boot on Embedded ROM", some lines deleted. review Section 8.2.4 "Error Corrected Code Controller" replaced to correspond to actual ECC installation. Figure 9-3 on page 34, /3 divider removed. Figure 11-1 "Debug and Test Block Diagram"and Figure 11-1 "Debug and Test Pin List", NTRST pin added Section 2-1 "AT91SAM9XE128/256/512 Block Diagram", ICache is 16 Kbytes 4265 Section 6.8 "Slow Clock Selection", OSCEL tied to GNDBU or VDDBU Section 8.1.6 "Boot Strategies" typo on GPNVMBit[3] fixed. Section 9-1 "AT91SAM9XE128/256/512 System Controller Block Diagram", "security bit" and "gpnvm" signals redefined from Embedded Flash. Table 12-3, "Large Crystal Table (MHz) OSCSEL = 1," on page 80, 1.367667 frequency added. Section 12.3 "Device Initialization" in the sub list, Step c. (OSCEL = 1 and bypass mode) added. Section 39.5 "Typical Connection", figure and text updated to correspond to on chip conditions. Section 39.2 "Block Diagram", removed warning on pull-down connection. Note: 1. "rfo" indicates changes requested during document review and approval loop. SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 869 Table of Contents Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. Package and Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 3.2 3.3 3.4 4. Embedded Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 External Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 System Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brownout Detector and Power-on Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shutdown Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Management Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Periodic Interval Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Real-time Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General-purpose Back-up Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Advanced Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Debug Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 33 33 33 34 34 34 34 34 35 35 35 36 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.1 9.2 i 18 19 21 22 System Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 9. ARM926EJ-S Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bus Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Debug and Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.1 7.2 8. ERASE Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 I/O Line Drive Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Shutdown Logic Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Processor and Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1 6.2 6.3 6.4 7. Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power Sequence Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 I/O Line Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 5.2 5.3 6. 12 12 14 14 Power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 4.2 5. 208-pin PQFP Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208-pin PQFP Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217-ball LFBGA Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217-ball LFBGA Package Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Peripheral Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 9.3 9.4 Peripheral Signals Multiplexing on I/O Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Embedded Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10. ARM926EJ-S Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 10.1 10.2 10.3 10.4 10.5 10.6 10.7 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ARM9EJ-S Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CP15 Coprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Management Unit (MMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Caches and Write Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bus Interface Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 47 48 57 59 61 63 11. SAM9XE Debug and Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 11.1 11.2 11.3 11.4 11.5 11.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Debug and Test Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG Port Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 65 66 67 68 69 12. SAM9XE Boot Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 12.1 12.2 12.3 12.4 12.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAM-BA Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware and Software Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 79 80 82 86 13. Fast Flash Programming Interface (FFPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 13.1 13.2 13.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Parallel Fast Flash Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Serial Fast Flash Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 14. Reset Controller (RSTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 14.1 14.2 14.3 14.4 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Controller (RSTC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 102 103 112 15. Real-time Timer (RTT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 15.1 15.2 15.3 15.4 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Real-time Timer (RTT) User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 116 116 118 16. Periodic Interval Timer (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 16.1 16.2 16.3 16.4 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Periodic Interval Timer (PIT) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 123 124 125 17. Watch Dog Timer (WDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 17.1 17.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 ii 17.3 17.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Watchdog Timer (WDT) User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 18. Shutdown Controller (SHDWC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 18.1 18.2 18.3 18.4 18.5 18.6 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/O Lines Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shutdown Controller (SHDWC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 138 138 138 139 140 19. Enhanced Embedded Flash Controller (EEFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 19.1 19.2 19.3 19.4 Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Enhanced Embedded Flash Controller (EEFC) User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 20. SAM9XE Bus Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 20.1 20.2 20.3 20.4 20.5 20.6 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Bus Granting Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bus Matrix (MATRIX) User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Configuration User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 159 159 160 162 167 21. SAM9XE External Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 21.1 21.2 21.3 21.4 21.5 21.6 21.7 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/O Lines Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Implementation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 170 171 173 176 177 184 22. Static Memory Controller (SMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 22.10 22.11 22.12 22.13 22.14 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/O Lines Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiplexed Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connection to External Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard Read and Write Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Automatic Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Float Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slow Clock Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asynchronous Page Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Static Memory Controller (SMC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 193 193 194 194 195 195 199 207 210 214 220 222 225 23. SDRAM Controller (SDRAMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 23.1 iii Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 23.2 23.3 23.4 23.5 23.6 I/O Lines Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SDRAM Controller (SDRAMC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 232 234 236 243 24. Error Correction Code Controller (ECC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 24.1 24.2 24.3 24.4 24.5 24.6 24.7 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error Correction Code Controller (ECC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Registers for 1 ECC for a page of 512/1024/2048/4096 bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . Registers for 1 ECC per 512 bytes for a page of 512/2048/4096 bytes, 8-bit word . . . . . . . . . . . . Registers for 1 ECC per 256 bytes for a page of 512/2048/4096 bytes, 8-bit word . . . . . . . . . . . . 254 254 255 259 270 272 280 25. Peripheral DMA Controller (PDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 25.1 25.2 25.3 25.4 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral DMA Controller (PDC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 297 298 300 26. Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 26.1 26.2 26.3 26.4 26.5 26.6 26.7 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generator Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slow Clock Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slow Clock RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slow Clock Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Divider and PLL Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 311 312 312 312 312 314 27. Power Management Controller (PMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 Master Clock Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 Processor Clock Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 USB Clock Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 Peripheral Clock Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 Programmable Clock Output Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 Programming Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 Clock Switching Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 Power Management Controller (PMC) User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 28. Advanced Interrupt Controller (AIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 Application Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 AIC Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 I/O Line Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Advanced Interrupt Controller (AIC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 29. Debug Unit (DBGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 iv 29.1 29.2 29.3 29.4 29.5 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UART Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Debug Unit (DBGU) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 378 379 379 386 30. Parallel Input/Output Controller (PIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 30.1 30.2 30.3 30.4 30.5 30.6 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 I/O Lines Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 Parallel Input/Output Controller (PIO) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 31. Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Peripheral Interface (SPI) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 442 443 443 444 444 453 32. Two-wire Interface (TWI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 32.1 32.2 32.3 32.4 32.5 32.6 32.7 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-wire Interface (TWI) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 466 467 467 468 468 491 33. Universal Synchronous Asynchronous Receiver Transceiver (USART) . . . . . . . . . 506 33.1 33.2 33.3 33.4 33.5 33.6 33.7 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 Application Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 I/O Lines Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 Universal Synchronous Asynchronous Receiver Transceiver (USART) User Interface . . . . . . . . 534 34. Synchronous Serial Controller (SSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 34.1 34.2 34.3 34.4 34.5 34.6 34.7 34.8 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 Application Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Pin Name List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 SSC Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567 Synchronous Serial Controller (SSC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 35. Timer Counter (TC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 v SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 35.1 35.2 35.3 35.4 35.5 35.6 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Name List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer Counter (TC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 595 596 596 597 609 36. MultiMedia Card Interface (MCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Name List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bus Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MultiMedia Card Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SD/SDIO Card Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MultiMedia Card Interface (MCI) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 630 631 631 631 632 634 642 643 37. Ethernet MAC 10/100 (EMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 37.1 37.2 37.3 37.4 37.5 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675 Ethernet MAC 10/100 (EMAC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 38. USB Device Port (UDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 38.1 38.2 38.3 38.4 38.5 38.6 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . USB Device Port (UDP) User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 732 733 734 735 750 39. USB Host Port (UHP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 39.1 39.2 39.3 39.4 39.5 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 771 772 773 774 40. Image Sensor Interface (ISI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 40.1 40.2 40.3 40.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 Image Sensor Interface (ISI) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 41. Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 41.1 41.2 41.3 41.4 41.5 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 803 803 804 805 SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 vi 41.6 Analog-to-Digital Converter (ADC) User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809 42. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822 42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8 42.9 42.10 42.11 42.12 42.13 42.14 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/O Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . USB Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Core Power Supply POR Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Embedded Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMC Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SDRAMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMAC Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822 822 824 825 825 826 830 831 831 832 832 836 837 840 43. Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 43.1 43.2 SAM9XE Package Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 Soldering Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852 44. Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 45. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854 46. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 46.1 SAM9XE128/256/512 Errata - Revision A and Revision B Parts . . . . . . . . . . . . . . . . . . . . . . . . . . 855 47. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i vii SAM9XE Series [DATASHEET] Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15 ARM Connected Logo XXXXXX Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com (c) 2015 Atmel Corporation. / Rev.: Atmel-6254E-ATARM-SAM9XE-Datasheet_20-Nov-15. Atmel(R), Atmel logo and combinations thereof, Enabling Unlimited Possibilities(R), and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM(R), ARM Connected(R) logo, and others are the registered trademarks or trademarks of ARM Ltd. Windows(R) is registered trademark of Microsoft Corporation in the US and/or other countries. Other terms and product names may be trademarks of others. DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade. Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Atmel: AT91SAM9XE256B-CU AT91SAM9XE512B-CU AT91SAM9XE512B-QU