1 of 61 REV: 030607
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.
GENERAL DESCRIPTION
The DS3151 (single), DS3152 (dual), DS3153
(triple), and DS3154 (quad) line interface units (LIUs)
perform the functions necessary for interfacing at the
physical layer to DS3, E3, or STS-1 lines. Each LIU
has independent receive and transmit paths and a
built-in jitter attenuator.
APPLICATIONS
SONET/SDH and PDH Multiplexers
Digital Cross-Connects
Access Concentrators
ATM and Frame Relay Equipment
Routers
PBXs
DSLAMs
CSUs/DSUs
FUNCTIONAL DIAGRAM
FEATURES
Single, Dual, Triple, or Quad Integrated
Transmitter, Receiver, and Jitter Attenuators for
DS3, E3, and STS-1
Each Port Independently Configurable
Perform Receive Clock/ Data Recovery and
Transmit Waveshaping
Hardware or CPU Bus Configuration Options
Jitter Attenuators can be Placed in Either the
Receive or Transmit Paths
Interface to 75Ω Coaxial Cable at Lengths Up to
380m (DS3), 440m (E3), or 360m (STS-1)
Use 1:2 Transformers on Tx and Rx
Require Minimal External Components
Local and Remote Loopbacks
Low-Power 3.3V Operation (5V Tolerant I/O)
Industrial Temperature Ra nge: -40°C to +85°C
Small Package: 144-Pin, 13mm x 13mm
Thermally Enhanced CSBGA
IEEE 1149.1 JTAG Support
Features continued on page 5.
ORDERING INFORMATION
PART LIUs TEMP RANGE PIN-PACKAGE
DS3151 1 0°C to +70°C 144 TE-CSBGA
DS3151N 1 -40°C to +85°C 144 TE-CSBGA
DS3152 2 0°C to +70°C 144 TE-CSBGA
DS3152N 2 -40°C to +85°C 144 TE-CSBGA
DS3153 3 0°C to +70°C 144 TE-CSBGA
DS3153N 3 -40°C to +85°C 144 TE-CSBGA
DS3154 4 0°C to +70°C 144 TE-CSBGA
DS3154N 4 -40°C to +85°C 144 TE-CSBGA
RXP
RXN
TXP
TXN
CL
K
DAT
A
CL
K
DAT
A
LINE IN
DS3, E3,
OR STS-1
LINE OUT
DS3, E3,
OR STS-1
RECEIVE
CLOCK
A
ND DATA
TRANSMIT
CLOCK
A
ND DATA
EACH LIU
STATUS
CONTROL
Dallas
Semiconductor
DS315x
DS3151/DS3152/DS3153/DS3154
Single/Dual/Triple/Quad
DS3/E3/STS-1 LIUs
www.maxim-ic.com
DEMO KIT AVAILABLE
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
2 of 61
TABLE OF CONTENTS
1. DETAILED DESCRIPTION.................................................................................................5
2. APPLICATIONS .................................................................................................................7
3. HARDWARE MODE AND CPU BUS MODE......................................................................8
4. PIN DESCRIPTIONS ........................................................................................................10
5. REGISTER DESCRIPTIONS............................................................................................15
6. RECEIVER........................................................................................................................22
7. TRANSMITTER ................................................................................................................25
8. DIAGNOSTICS.................................................................................................................28
9. JITTER ATTENUATOR....................................................................................................29
10. RESET LOGIC..................................................................................................................30
11. TRANSFORMERS............................................................................................................31
12. JTAG TEST ACCESS PORT AND BOUNDARY SCAN..................................................32
13. ELECTRICAL CHARACTERISTICS................................................................................37
14. PIN ASSIGNMENTS.........................................................................................................46
15. PACKAGE INFORMATION..............................................................................................59
16. THERMAL INFORMATION ..............................................................................................60
17. REVISION HISTORY........................................................................................................61
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
3 of 61
LIST OF FIGURES
Figure 1-1. External Connections...............................................................................................................7
Figure 2-1. 4-Port Unchannelized DS3/E3 Card.........................................................................................7
Figure 3-1. Hardware Mode Block Diagram ...............................................................................................8
Figure 3-2. CPU Bus Mode Block Diagram................................................................................................9
Figure 5-1. Status Register Logic.............................................................................................................16
Figure 6-1. Receiver Jitter Tolerance .......................................................................................................24
Figure 7-1. E3 Waveform Template .........................................................................................................27
Figure 7-2. DS3 AIS Structure..................................................................................................................28
Figure 8-1. PRBS Output with Normal RCLK Operation ..........................................................................29
Figure 8-2. PRBS Output with Inverted RCLK Operation.........................................................................29
Figure 9-1. Jitter Attenuation/Jitter Transfer.............................................................................................30
Figure 12-1. JTAG Block Diagram............................................................................................................32
Figure 12-2. JTAG TAP Controller State Machine....................................................................................33
Figure 13-1. Transmitter Framer Interface Timing Diagram.....................................................................38
Figure 13-2. Receiver Framer Interface Timing Diagram.........................................................................39
Figure 13-3. CPU Bus Timing Diagram (Nonmultiplexed)........................................................................41
Figure 13-4. CPU Bus Timing Diagram (Multiplexed)...............................................................................43
Figure 13-5. JTAG Timing Diagram..........................................................................................................45
Figure 14-1. DS3151 Hardware Mode Pin Assignment............................................................................51
Figure 14-2. DS3151 CPU Bus Mode Pin Assignment.............................................................................52
Figure 14-3. DS3152 Hardware Mode Pin Assignment............................................................................53
Figure 14-4. DS3152 CPU Bus Mode Pin Assignment.............................................................................54
Figure 14-5. DS3153 Hardware Mode Pin Assignment............................................................................55
Figure 14-6. DS3153 CPU Bus Mode Pin Assignment.............................................................................56
Figure 14-7. DS3154 Hardware Mode Pin Assignment............................................................................57
Figure 14-8. DS3154 CPU Bus Mode Pin Assignment.............................................................................58
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
4 of 61
LIST OF TABLES
Table 1-A. Applicable Telecommunications Standards..............................................................................6
Table 4-A. Active I/O Pins—Hardware and CPU Bus Modes...................................................................10
Table 4-B. Transmitter Pin Descriptions...................................................................................................11
Table 4-C. Receiver Pin Descriptions.......................................................................................................12
Table 4-D. Global Pin Descriptions ..........................................................................................................13
Table 4-E. JTAG and Test Pin Descriptions.............................................................................................14
Table 4-F. Transmitter Data Select Options.............................................................................................14
Table 4-G. Receiver PRBS Pattern Select Options..................................................................................14
Table 5-A. Register Map...........................................................................................................................15
Table 7-A. DS3 Waveform Template........................................................................................................26
Table 7-B. DS3 Waveform Test Parameters and Limits...........................................................................26
Table 7-C. STS-1 Waveform Template ....................................................................................................26
Table 7-D. STS-1 Waveform Test Parameters and Limits .......................................................................27
Table 7-E. E3 Waveform Test Parameters and Limits .............................................................................27
Table 11-A. Transformer Characteristics..................................................................................................31
Table 11-B. Recommended Transformers ...............................................................................................31
Table 12-A. JTAG Instruction Codes........................................................................................................35
Table 12-B. JTAG ID Code.......................................................................................................................35
Table 13-A. Recommended DC Operating Conditions.............................................................................37
Table 13-B. DC Characteristics................................................................................................................37
Table 13-C. Framer Interface Timing .......................................................................................................38
Table 13-D. Receiver Input Characteristics—DS3 and STS-1 Modes .....................................................39
Table 13-E. Receiver Input Characteristics—E3 Mode............................................................................39
Table 13-F. Transmitter Output Characteristics—DS3 and STS-1 Modes...............................................40
Table 13-G. Transmitter Output Characteristics—E3 Mode.....................................................................40
Table 13-H. CPU Bus Timing ...................................................................................................................40
Table 13-I. JTAG Interface Timing ...........................................................................................................45
Table 14-A. Pin Assignments Sorted by Signal Name .............................................................................46
Table 14-B. Pin Assignments Sorted by Pin Number...............................................................................48
Table 16-A. Thermal Properties, Natural Convection...............................................................................60
Table 16-B. Theta-JA (θJA) vs. Airflow......................................................................................................60
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
5 of 61
FEATURES (continued)
Receiver
AGC/equalizer block handles from 0 to 15dB of cable loss
Loss-of-lock (LOL) PLL status indication
Interfaces directly to a DSX monitor signal (~20dB flat loss) using built-in prea mp
Digital and analog loss-of-signal (LOS) d etectors (ANSI T1.231 and ITU G.775)
Optional B3ZS/HDB3 decoder
Line-code violation output pin and counter
Binary or bipolar framer interface
On-board 215 - 1 and 223 - 1 PRBS detector
Clock inversion for gluel ess interfacing
Tri-state clock and data outputs su pport protection switching applications
Per-channel power-down control
Transmitter
Binary or bipolar framer interface
Gapped clock capable up to 51.84MHz
Wide 50 ±20% transmit clock duty cycl e
Clock inversion for gluel ess interfacing
Optional B3ZS/HDB3 encoder
On-board 215 - 1 and 223 - 1 PRBS generator
Complete DS3 AIS generator (ANSI T1.1 07)
Unframed all-ones generator (E3 AIS)
Line build-out (LBO) control
Tri-state line driver outputs support protection switching applications
Per-channel power-down control
Output driver monitor
1. DETAILED DESCRIPTION
The DS3151 (single), DS3152 (dual), DS3153 (triple), and DS3154 (quad) LIUs perform the functions necessary
for interfacing at the physical layer to DS3, E3, or STS-1 lines. Each LIU has independent receive and transmit
paths and a built-in jitter attenuator. The receiver performs clock and data recovery from a B3ZS- or HDB3-coded
alternate mark inversion (AMI) signal and monitors for loss of the incoming signal. The receiver optionally performs
B3ZS/HDB3 decoding and outputs the recovered data in either binary or bipolar format. The transmitter accepts
data in either binary or bipolar format, optionally performs B3ZS/HDB3 encoding, and drives standard pulse-shape
waveforms onto 75Ω coaxial cable. The jitter attenuator can be mapped into the receiver data path, mapped into
the transmitter data path, or be disabled. The DS315x LIUs conform to the telecommunications standards listed in
Table 1-A. Figure 1-1 shows the exte rnal components required for prope r operation.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
6 of 61
Table 1-A. Applicable Telecommunications Standards
SPECIFICATION SPECIFICATION TITLE
ANSI
T1.102-1993 Digital Hierarchy—Electrical Interfaces
T1.107-1995 Digital Hierarchy—Formats Specification
T1.231-1997 Digital Hierar chy—Layer 1 In-Service Digital Transmission Performance Monitoring
T1.404-1994 Network-to-Customer Installation—DS3 Metallic Interface Specification
ITU-T
G.703 Physical/Electrical Characteristics of Hierarchical Digital Interface s, 1991
G.751 Digital Multiplex Equipment Operatin g at the Third -Order Bit Rate of 34,368kbps and the
Fourth-Order Bit Rate of 139,264kbps and Using Positive Justification, 1993
G.775 Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defe ct Detection and Clearance
Criteria, November 1994
G.823 The Control of Jitter and Wander within Digital Networks that are Based on the 2048kbps
Hierarchy, 1993
G.824 The Control of Jitter and Wander within Digital Networks that are Based on the 1544kbps
Hierarchy, 1993
O.151 Error Performance Measu ring Equipment Operating at the Primary Rate and Above,
October 1992 ETSI
ETS 300 686 Business TeleComm unications; 34Mbps and 140Mb ps Digital Leased Lines (D34U,
D34S, D140U, and D140S); Network Interface Presentation, 1996
ETS 300 687 Business TeleComm unications; 34Mbps Digital Leased Lines (D34U and D34S);
Connection Characteristics, 1996
ETS EN 300 689 Acce ss and Terminals (AT); 34Mbps Digital Leased Lines (D34U and D34S); Terminal
equipment interface, July 2001
TBR 24 Business TeleComm unications; 34Mbps Digital Unstructured and Structured Lease Lines;
Attachment Requirements for Term inal Equipment Interface, 1997
TELCORDIA
GR-253-CORE SONET Transport Systems: Common Generic Criteria, Issue 2, December 1995
GR-499-CORE Transport Systems Gen eric Requirements (TSGR): Common Requirements, Issue 1,
December 1998
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
7 of 61
Figure 1-1. External Connections
2. APPLICATIONS
Figure 2-1. 4-Port Unchannelized DS3/E3 Card
Shorthand Notations. The notation “DS315x” throughout this data sheet refers to either the DS3151, DS3152,
DS3153, or DS3154. This data sheet is the specification for all four parts. The LIUs on the DS315x are identical.
For brevity, this document uses the pin name and register name shorthand “NAMEn,” where “n” stands in place of
the LIU port number. For example, on the DS3154 quad LIU, TCLKn is shorthand notation for pins TCLK1, TCLK2,
TCLK3, and TCLK4 on LIU ports 1, 2, 3, and 4, respectively. This document also uses generic pin and register
names such as TCLK (without a number suffix) when describing LIU operation. When working with a specific LIU
on the DS315x devices, generi c nam es like TCLK should be converted to actual pin names, such as TCLK1.
DS3144
QUAD
DS3/E3
FRAMER
BACKPLANE
DS3154
QUAD
DS3/E3/STS-1
LIU
1:2ct
1:2ct
0.05μF
TRANSMIT
RECEIVE
TXP
TXN
RXP
RXN
0.01
μ
F3.3V
POWER
PLANE
GROUND
PLANE
VDD
EACH LIU
0.1
μ
F1
μ
F
330
Ω
(1%)
0.05μF 330
Ω
(1%)
0.01
μ
F0.1
μ
F1
μ
F
0.01
μ
F0.1
μ
F1
μ
F
VDD
VDD
VSS
VSS
VSS
Dallas
Semiconductor
DS315x
(OPTIONAL)
(OPTIONAL)
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
8 of 61
3. HARDWARE MODE AND CPU BUS MODE
The DS315x can operate in either hardware mode or CPU bus mode. In hardware mode, pulling configuration input
pins high or low does all configuration, and all status information is reported on status output pins. Internal registers
are not accessible in hardware mode. The device is configured for hardware mode when the HW pin is wired high
(HW = 1).
In CPU bus mode, most of the configuration and status pins used in hardware mode are reassigned to be address,
data, and control lines that provide a glueless interface to an 8-bit microprocessor bus. Through the CPU bus, an
external processor can access a set of internal registers. Setting configuration register bits high or low can do
configuration, and status information can be read from status register bits. Events indicated by status register bits
can also activate the interrupt output pin (INT), if configured to do so by a set of interrupt-enable bits. A few
configuration and status pins are active in hardware mode and CPU bus mode to support specialized applications,
such as protection switching. The device is configured for CPU bus mode when the HW pin is wired low (HW = 0).
With the exception of the HW pin, configuration and status pins available in hardware mode have corresponding
register bits in the CPU bus mode. The hardware mode pins and the CPU bus mode register bits have identical
names and functions, with the exception that all register bits are active high. For example, LOS is indicated by the
receiver on the RLOS pin (active low) in hardware mode and the RLOS register bit (active high) in CPU bus mode.
The few configuration input pins that are active in CPU bus mode also have corresponding register bits. In these
cases, the actual configuration is the logical OR of pin assertion and register bit assertion. For example, the
transmitter output driver is tri-stated if the TTS pin is asserted (i.e., low) or the TTS register bit is asserted (high).
Figure 3-1 and Figure 3-2 show block diagrams of the DS315x in hardware mode and in CPU bus mode. Table 4-A
lists the pins that are active in each mode.
Figure 3-1. Hardware Mode Block Diagram
A
nalog
Local
Loopback
Preamp
Automatic
Gain
Control
+
Adaptive
Equalizer
ALOS
Clock &
Data
Recovery
Line Driver
Waveshaping
Clock
Invert
RXPn
RXNn
TXPn
TXNn
T
TSn
PRBSn
TLBOn
TCINV
TPOSn/TDATn
TCLKn
TNEGn
E3Mn
RNEGn/RLCVn
RCLKn
RPOSn/RDATn
LOSn
RMONn
Power
Supply
TDSAn,
TDSBn
B3ZS/
HDB3
Encoder AIS, 100100…,
PRBS Pattern
Generation
Mux
Mux
Mux
PRBS
Detector
B3ZS/HDB3
Decode
r
Digital LOS
Detector
squelch
Jitter Attenuato
r
(can be placed in either the receive path or the transmit path)
Driver
Monitor
Loopback Control
T
DM
n
LLBn
VDD
VSS
TJAn TBIN
RCINV
Remote
Loopback
Global
Configuration STSn
Output
Drivers,
Clock
Invert
R
TSn
RBINRJAn
HW
H
IZ
Digital
Local
Loopback
RLBn
R
ST
Clock Mux
T3MCLK E3MCLK STMCLK
Dallas
Semiconductor
DS315x
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
9 of 61
Figure 3-2. CPU Bus Mode Block Diagram
T
TSn
PRBSn
TCLKn
TNEGn
RCLKn
R
TSn
HW
H
IZ
MOT
C
S
W
R/R/
W
R
D/
D
S
A
[5:0]
D[7:0]
I
NT
A
LE
R
ST
A
nalog
Local
Loopback
Preamp
Clock &
Data
Recovery
Line Driver
Waveshaping
Clock
Invert
RXPn
RXNn
TXPn
TXNn
LOSn
Power
Supply
B3ZS/
HDB3
Encoder
Mux
Mux
PRBS
Detector
B3ZS/HDB3
Decoder
Digital LOS
Detector
squelch
Jitter Attenuato
r
(can be placed in either the receive path or the transmit path)
Driver
Monitor
Loopback Control
T
DM
n
VDD
VSS
Remote
Loopback
CPU Bus
Interface
and
Global
Configuration
Output
Drivers,
Clock
Invert
Digital
Local
Loopback
Automatic
Gain
Control
+
Adaptive
Equalizer
ALOS
STMCLK
Clock Mux
E3MCLK T3MCLK
TPOSn/TDATn
RNEGn/RLCVn
RPOSn/RDATn
AIS, 100100…,
PRBS Pattern
Generation
Mux
Dallas
Semiconductor
DS315x
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
10 of 61
4. PIN DESCRIPTIONS
Table 4-A. Active I/O Pins—Hardware and CPU Bus Modes
NAME TYPE FUNCTION HARDWARE
MODE CPU BUS
MODE
TRANSMITTER
TCLKn I Transmitter Clock Active Active
TPOSn/TDATn I Transmitter Positive AMI/Transmitter Data Active Active
TNEGn I Transmitter Negative AMI Active Active
TXPn, TXNn O Transmitter Analog Outputs Active Active
TTSn I Transmitter Tri-State Enable Active Active
TDMn O Transmitter Driver Monitor Output Active Active
TDSAn, TDSBn I Transmitter Data Select Active
TLBOn I Transmitter Line Build-Out Enable Active
TJAn I Transmitter Jitter Attenuator Enable Active
RECEIVER
RXPn, RXNn I Receiver Analog Inputs Active Active
RCLKn O Receiver Clock Active Active
RPOSn/RDATn O Receiver Positive AMI/Receiver Data Active Active
RNEGn/RLCVn O Receiver Negative AMI/Line-Code Violation Active Active
RTSn I Receiver Tri-State Enable Active Active
RLOSn O Receiver LOS Output Active Active
RMONn I Receiver Monitor Enable Active
RJAn I Receiver Jitter Attenuator Enable Active
GLOBAL
HIZ I High-Z Enable Active Active
RST I Reset Enable Active Active
HW I Hardwired Mode Enable Active Active
T3MCLK I T3 Master Clock (44.736MHz ±20ppm) Active Active
E3MCLK I E3 Master Clock (34.368MHz ±20ppm) Active Active
STMCLK I STS-1 Master Clock (51.840 MHz ±20ppm) Active Active
PRBSn O PRBS Detector Output Active Active
LLBn, RLBn I Local Loopback, Remote Loopback Se lect Active
E3Mn, STSn I E3 Mode Enable, STS-1 Mode Enable Active
RBIN I Receiver Binary Interface Enable Active
TBIN I Transmitter Binary Interface Enable Active
RCINV I Receiver Clock Invert Active
TCINV I Transmitter Clock Invert Active
MOT I Motorola CPU Bus Enable Active
ALE I Address Latch Enable Active
CS I Chip Select Active
WR / R/W I Write Enable / Read/Write Select Active
RD/DS I Rea d Ena ble/D ata Strobe Active
A[5:0] I Address Bus Active
D[7:0] I/O Data Bus Active
INT O Interrupt Output Active
Note: In CPU bus mode, status/control pins are replaced by register bits. See Register Map in Section 5. For pin names of the form PINn,
n = LIU# = 1, 2, 3, or 4. PIN1 is on LIU 1, PIN2 is on LIU 2, etc.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
11 of 61
Table 4-B. Transmitter Pin Descriptions
NAME I/O FUNCTION
TCLKn I
Transmitter Clock. A DS3 (44.736MHz ±20ppm), E3 (34.36 8MHz ±2 0ppm), or STS-1 (51.840MHz
±20ppm) clock should be appli ed at this signal. Data to be transmitted is clocked into the device at
TPOS/TDAT and TNEG either on the rising edge of TCLK (TCINV = 0) or the falling edge of TCLK
(TCINV = 1). See Section 7 for additional details.
TPOSn/
TDATn I
Transmitter Positive AMI/Transmitter Data. When the trans mitter is configured to have a bipolar
interface (TBIN = 0), a positive pulse is transmitted on the line when TPOS is high. When the
transmitter is configured to have a binary interface (TBIN = 1), the data on TDAT is transmitted after
B3ZS or HDB3 encoding. TPOS/TDAT is sampled either on the rising ed ge of TCLK (TCINV = 0) or
on the falling edge of TCLK (TCINV = 1).
TNEGn I
Transmitter Negative AMI. When the transmitt er is configured to have a bipolar interface ( TBIN = 0), a
negative pulse is transmitted on the line when TNEG is high. When the transmitter is configured to
have a binary interface (TBIN = 1), TNEG is ignored and should be wired either high or low. TNEG is
sampled either on the rising edge of TCLK (TCINV = 0) or on the falling edge of T CLK (TCINV = 1).
TXPn,
TXNn O3 Transmitter Analog Outputs. These different ial AMI outputs are coupled to the outbound 75Ω coaxial
cable through a 2:1 step-down transformer (Figure 1-1). These outputs can be tri-stated using the TTS
pin or the TTS or TPS configuration bits.
TTSn I
Transmitter Tri-State Enable (Active Low). TTS tri-states the transmitter outputs (TXP and TXN). This
feature supports applications requiring LIU redundancy. Transmitter outputs from multiple LIUs can be
wire-ORed together, eliminating external switches. The transmitter continues to operate internally
when TTS is active.
0 = tri-state the transmitter output driver
1 = enable the transmitter output driver
TDMn O Transmitter Driver Monitor (Active Low, Open Drain). TDM reports the status of the transmit driver
monitor. When the transmit driver monitor detects a faulty transmitter, TDM is driven lo w. TDM
requires an external pullup to VDD.
TDSAn,
TDSBn I Transmitter Data Select. These inputs select the source of the transmit data. See T able 4-F for details.
TLBOn I
Transmitter Line Build-Out Enable. TLBO indicates cable length for waveform shaping i n DS3 and
STS-1 modes. TLBO is ignored for E3 mode and should be wired high or low.
0 = cable length 225ft
1 = cable length < 225ft
TJAn I
Transmitter Jitter Attenuator Enable
0 = remove jitter attenuator from the transmitter path
1 = insert jitter attenuator into the transmitter path
(Note that TJA = 1 takes precedence over RJ A = 1.)
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
12 of 61
Table 4-C. Receiver Pin Descriptions
NAME I/O FUNCTION
RXPn,
RXNn I Receiver Analog Inputs. These differential AMI inputs are coupled to the inbo und 75Ω coaxial cable
through a 1:2 step-up transformer (Figure 1-1).
RCLKn O3
Receiver Clock. T he recovered clock is output on the RCLK pin. Recover ed data is output on the
RPOS/RDAT and RNEG/RLCV pins on the falling e dg e of RCLK (RCINV = 0) or the rising edge of
RCLK (RCINV = 1). During a loss of signal (RLOS = 0), the RCLK outp ut sign al is derived from the
LIU’s master clock.
RPOSn/
RDATn O3
Receiver Positive AMI/Receiver Data. When the receiver is configured to have a bipolar interface
(RBIN = 0), RPOS pulses high for each positive AMI pulse received. When the receiver is
configured to have a binary i nterface (RBIN = 1), RDAT outputs decoded binar y data. RPOS/RDAT
is updated either on the falling edge of RCLK (RCINV = 0) or the rising edge of RCLK (RCINV = 1).
RNEGn/
RLCVn O3
Receiver Negative AMI/Line-Code Violation. When the receiver is configured to have a bipolar
interface (RBIN = 0), RNEG pulses high for each negative AMI pulse received. W hen the receiver is
configured to have a binary interface (RBIN = 1), RLCV pulses high to flag code violations. See
Section 6 for further details on code violations. RNEG/RLCV is updated either on the falling edge of
RCLK (RCINV = 0) or the rising edge of RCLK (RCINV = 1).
RTSn I
Receiver Tri-State Enable (Active Low). RTS tri-states the RPOS/RDAT, RNEG/RLCV, and RCLK
receiver outputs. This feature supports applications requirin g LIU redundancy. Receiver outputs
from multiple LIUs can be wire-ORed together, eliminating the need for external s witches or muxes.
The receiver continues to operate inter nally when RTS is low.
0 = tri-state the receiver outputs
1 = enable the receiver outputs
RLOSn O
Receiver Loss of Signal (Active Low, Open Drain). RLOS is asserted upon detection of 175 ±75
consecutive zeros in the receive data stream. RLOS is deasserted when there are no excessive
zero occurrences over a span of 175 ±75 clock periods. An excessive zero occurrence is defined as
three or more consecutive zeros in the DS3 and STS-1 modes or four or more zeros in the E3
mode. See Section 6 for additional deta ils.
RMONn I
Receive Monitor-Preamp Enable. RMON determines whether or not the receiver’s preamp is
enabled to provide flat gain to the incoming signal before the AGC/equalizer block processes it. This
feature should be enabled when the device is being used to monitor signals that have been
resistively attenuated by a monitor jack.
0 = disable the monitor preamp
1 = enable the monitor pr eamp
RJAn I
Receiver Jitter Attenuator Enable
0 = remove jitter attenuator from the receiver path
1 = insert jitter attenuator into the receiv er path
(Note that TJA = 1 takes precedence over RJ A = 1.)
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
13 of 61
Table 4-D. Global Pin Descriptions
NAME I/O FUNCTION
HIZ IPU High-Z Enable Input (Active Lo w, Open Drain)
0 = tri-state all output pins (Note that the JTRST pin must be low.)
1 = normal operation
RST IPU
Reset Input (Active Low, Open Drain, Internal 10kΩ Pullup to VDD). When this global asynchronous
reset is pulled low, the internal circuitry is reset and the internal registers (C PU bus mode) are forced
to their default values. The device is held in reset as long as RST is low. RST should be held low for
at least two master clock cycles.
HW I
Hardwired Mode Select
0 = CPU bus mode
1 = hardwired mode
See Section 3 for details.
T3MCLK I
T3 Master Clock. A transmission-qualit y DS3 (44.736MHz ±20ppm, low jitter) clock should be applied
at this pin. Wiring T3MCLK high forces LIUs in DS3 mode to use TCLK for receiver clock and data
recovery.
E3MCLK I
E3 Master Clock. A transmission-qualit y E3 (34.368MHz ±20ppm, low jitter) clock should be applied
at this pin. Wiring E3MCLK high forces LIUs in E3 mode to use TCLK for receiver clock and data
recovery.
STMCLK I
STS-1 Master Clock. A transmission-quality STS-1 (51.840MHz ±20ppm, low jitter) clock should b e
applied at this pin. Wiring STMCLK high forces LIUs in STS-1 mode to use TCLK for receiver cl ock
and data recovery.
PRBSn O
PRBS Detector Output. This signal reports the status of the PRBS detector. See Section 8 for further
details.
LLBn,
RLBn I
Local Loopback Select, Remote Loopback Select
{LLB, RLB} = 00 = no loopback
01 = remote loopback
10 = analog local loopback
11 = digital local loopb ack
E3Mn I
E3 Mode Enable
0 = DS3 operation
1 = E3 or STS-1 operation
STSn I
STS-1 Mode Enable
When E3M = 1,
0 = E3 operation
1 = STS-1 operation
When E3M = 0, STS selects the DS3 AIS pattern.
RBIN I
Receiver Binary Framer-Interface Ena bl e
0 = Receiver framer interface is bipolar o n th e RPOS and RNEG pins. The B3ZS/HDB3 decoder is
disabled.
1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indic ating line-code
violations. The B3ZS/HDB3 encod er is en abled.
TBIN I
Transmitter Binary Framer-Interface Enabl e
0 = Transmitter framer interface is bipolar on the TP OS and T NEG pins. T he B3ZS/HDB3 encoder is
disabled.
1 = Transmitter framer interface is binary on the TDAT pin. (TNEG is ignored and should be wired
low.) The B3ZS/HDB3 encoder is enabled.
RCINV I
Receiver Clock Invert
0 = RPOS/RDAT and RNEG/RLCV update on the fall ing edge of RCLK.
1 = RPOS/RDAT and RNEG/RLCV update on the risi ng edge of RCLK.
TCINV I
Transmitter Clock Invert
0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.
1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.
MOT I
Motorola Bus Mode Enable
0 = Intel bus mode
1 = Motorola bus mode
ALE I
Address Latch Enable. This signa l controls a latch on the A[5:0] inputs. In nonmultiplex ed bus
applications, ALE should be wired high to make the latch transparent. In multiplexe d bus
applications, A[5:0] should be wired to D[5:0]. The falling edge of ALE latches the ad dress.
CS I Chip Select (Active Low). CS must be asserted in order to read or write internal registers.
WR / R/W I Write Enable (Active Low) or Read/Write Select. In Intel bus mode (MOT = 0), WR is asserted to
write internal re
g
isters. In Motorola bus mode
(
MOT = 1
)
, R/
W
determines the t
yp
e of bus
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
14 of 61
NAME I/O FUNCTION
transaction, with R/W = 1 indicating a read and R/W = 0 indicating a write.
RD/DS I Read Enable (Active Low) or Data Strobe (Active Low). In Intel bus mode (MOT = 0), RD is asserted
to read internal registers. In Motorola bus mode (MOT = 1), the rising edge of DS writes data to
internal registers.
A[5:0] I
Address Bus. These inputs specif y the address of the internal register to be access ed. A5 is not
present on the DS3152. A5 and A4 are not present on the DS3151.
D[7:0] I/O
Data Bus. These bidirectional lines are inputs during writes to internal registers. They are outputs
during reads from internal registers.
INT O Interrupt Output (Active Low, Open Drain). This pin is forced low in response to one or more
unmasked, active interrupt sources within the device. INT remains low until the interrupt is serviced or
masked.
VDD P
Positive Supply. 3.3V ±5%. All VDD signals should b e wired together.
VSS P Ground Reference. All VSS signals should be wired togeth er.
Table 4-E. JTAG and Test Pin Descriptions
NAME I/O FUNCTION
JTCLK I
JTAG IEEE 1149.1 Test Serial Clock. JT CLK shifts data into JTDI on the rising edge and out of
JTDO on the falling edge. If boundary scan is not used, JTCLK should be pulled high.
JTDI IPU JTAG IEEE 1149.1 Test Serial-Data Input (Internal 10kΩ Pullup). Test instructions and data are
clocked in on this pin on the rising edg e of JTCLK. If boundary scan is not used, JTDI should be left
unconnected or pulled high.
JTDO O
JTAG IEEE 1149.1 Test Serial-Data Output. Test instructions and data are clocked out on this pin on
the falling edge of JTCLK.
JTRST IPU JTAG IEEE 1149.1 T est Reset (Internal 10kΩ Pullup). This pin is used to asynchronously reset the
test access port (TAP) controller. If boundary scan is not used, JTRST can be held low or high.
JTMS IPU JTAG IEEE 1149.1 Test Mode Select (Internal 10kΩ P ullup). This pin is sampled on the rising edge
of JTCLK and is used to place the port into the various defined IEEE 1149.1 states. If boundary scan
is not used, JTMS should be left unconnected or pulled high.
TEST IPU Factory Test Pin. Leave unconnected or wire high for normal operation.
Note 1: Pin type I = input pin. Pin type O = output pin. Pin type P = power-supply pin.
Note 2: Pin type O3 is an output that can be tri-stated.
Note 3: Pin type IPU is an input with an internal 10kΩ pullup.
Note 4: For pin names of the form PINn, n = LIU# = 1, 2, 3, or 4. PIN1 is on LIU 1, PIN2 is on LIU 2, etc.
Note 5: Section 14 shows hardware mode and CPU bus mode pin assignments.
Table 4-F. Transmitter Data Select Options
TDSA TDSB E3M STS Tx MODE TRANSMIT DATA SELECTED
0 0 X X Any Normal data as input at TPOS and TNEG
0 1 0 0 DS3
0 1 1 0 E3
0 1 1 1 STS-1 Unframed all ones
0 1 0 1 DS3 DS3 AIS per ANSI T1.107 (Figure 7- 2)
1 0 X X Any Unframed 100100… pattern
1 1 1 0 E3 223 - 1 PRBS pattern per ITU O.151
1 1 0 X DS3
1 1 1 1 STS-1 215 - 1 PRBS pattern per ITU O.151
Note 1: This coding of the TDSA, TDSB, E3M, and STS bits allows AIS generation to be enabled by holding TDSA = 0 and changing TDSB
from 0 to 1. The type of DS3 AIS signal is selected by the STS bit with E3M = 0.
Note 2: If E3M and/or STS are changed when {TDSA,TDSB} 00, TDSA and TDSB must both be cleared to 0. After they are cleared, TDSA
and TDSB can be configured to transmit a pattern in the new operating mode.
Table 4-G. Receiver PRBS Pattern Select Options
E3M STS Rx MODE RECEIVER PRBS PATTERN SELECTED
1 0 E3 223 - 1 PRBS pattern per ITU O.151
0 X DS3
1 1 STS-1 215 - 1 PRBS pattern per ITU O.151
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
15 of 61
5. REGISTER DESCRIPTIONS
When the DS315x is configured in CPU bus mode (HW = 0), the registers shown in Table 5-A are accessible
through the CPU bus interface. All registers for the LIU ports are forced to their default values during an internal
power-on reset or when the RST pin is driven low. Setting an LIU’s RST bit high forces all registers for that LIU to
their default values. All register bits marked “—” must be written 0 and ignored when read. The TEST registers
must be left at their reset value of 00h for normal operation.
On the DS3153, only registers for LIUs 1, 2, and 3 are available. Writes into LIU 4 address space are ignored.
Reads from LIU 4 address space return all zeros. On the DS3152, address line A5 is not present, limiting the
address space to the LIU 1 and 2 registers. On the DS3151, address lines A5 and A4 are not present, limiting the
address space to the LIU 1 registers.
Table 5-A. Register Map
ADDRESS REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
LIU 1
00h GCR1 E3M STS LLB RLB TDSA TDSB — RST
01h TCR1 TBIN TCINV TJA TPD TTS TLBO
02h RCR1 ITU RBIN RCINV RJA RPD RTS RMON RCVUD
03h SR1 TDM PRBS RLOL RLOS
04h SRL1 TDML PRBSL PBERL RCVL RLOLL RLOSL
05h SRIE1 TDMIE PRBSIE PBERIE RCVIE RLOLIE RLOSIE
06h RCVL1 RCV[7] RCV[6] RCV[5] RCV[4] RCV[3] RCV[2] RCV[1] RCV[0]
07h RCVH1 RCV[15] RCV[14] RCV[13] RCV[12] RCV[11] RCV[10] RCV[9] RCV[8]
08h–0Fh TEST — — — — — — —
LIU 2
10h GCR2 E3M STS LLB RLB TDSA TDSB -- RST
11h TCR2 TBIN TCINV TJA TPD TTS TLBO --
12h RCR2 ITU RBIN RCINV RJA RPD RTS RMON RCVUD
13h SR2 TDM PRBS RLOL RLOS
14h SRL2 TDML PRBSL PBERL RCVL RLOLL RLOSL
15h SRIE2 TDMIE PRBSIE PBERIE RCVIE RLOLIE RLOSIE
16h RCVL2 RCV[7] RCV[6] RCV[5] RCV[4] RCV[3] RCV[2] RCV[1] RCV[0]
17h RCVH2 RCV[15] RCV[14] RCV[13] RCV[12] RCV[11] RCV[10] RCV[9] RCV[8]
18h–1Fh TEST — — — — — — —
LIU 3
20h GCR3 E3M STS LLB RLB TDSA TDSB — RST
21h TCR3 TBIN TCINV TJA TPD TTS TLBO
22h RCR3 ITU RBIN RCINV RJA RPD RTS RMON RCVUD
23h SR3 TDM PRBS RLOL RLOS
24h SRL3 TDML PRBSL PBERL RCVL RLOLL RLOSL
25h SRIE3 TDMIE PRBSIE PBERIE RCVIE RLOLIE RLOSIE
26h RCVL3 RCV[7] RCV[6] RCV[5] RCV[4] RCV[3] RCV[2] RCV[1] RCV[0]
27h RCVH3 RCV[15] RCV[14] RCV[13] RCV[12] RCV[11] RCV[10] RCV[9] RCV[8]
28h–2Fh TEST — — — — — — —
LIU 4
30h GCR4 E3M STS LLB RLB TDSA TDSB — RST
31h TCR4 TBIN TCINV TJA TPD TTS TLBO
32h RCR4 ITU RBIN RCINV RJA RPD RTS RMON RCVUD
33h SR4 TDM PRBS RLOL RLOS
34h SRL4 TDML PRBSL PBERL RCVL RLOLL RLOSL
35h SRIE4 TDMIE PRBSIE PBERIE RCVIE RLOLIE RLOSIE
36h RCVL4 RCV[7] RCV[6] RCV[5] RCV[4] RCV[3] RCV[2] RCV[1] RCV[0]
37h RCVH4 RCV[15] RCV[14] RCV[13] RCV[12] RCV[11] RCV[10] RCV[9] RCV[8]
38h–3Fh TEST — — — — — — —
Note 1: Underlined bits are read-only; all other bits are read-write.
Note 2: The registers are named REGn, where n = the LIU number (1, 2, 3, or 4).
Note 3: The bit names are the same for each LI U register set.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
16 of 61
Status Register Description
The status registers have two types of status bits. Real-time status bits—located in the SRn registers—indicate the
state of a signal at the time it was read. Latched status bits—located in the SRLn registers—are set when a signal
changes state (low-to-high, high-to-low, or both, depending on the bit) and cleared when written with a logic 1
value. After clearing, latched status bits remain cleared until the signal changes state again. Interrupt-enable bits—
located in the SRIEn registers—control whether o r not the INT pin is driven low when latched register bits are set.
Figure 5-1. Status Register Logic
Register Name: GCRn
Register Description: Global Configuration Register
Register Address: 00h, 10h, 20h, 30h
Bit 7 6 5 4 3 2 1 0
Name E3M STS LLB RLB TDSA TDSB RST
Default 0 0 0 0 0 0 0
Bit 7: E3 Mode Enable (E3M)
0 = DS3 operation
1 = E3 or STS-1 operation
Bit 6: STS-1 Mode Enable (STS)
When E3M = 1,
0 = E3 operation
1 = STS-1 operation
When E3M = 0, STS selects the DS3 AIS pattern (Table 4-F).
Bits 5, 4: Local Loopback, Remote Loopbac k Select (LLB, RLB)
00 = no loopback
01 = remote loopback
10 = analog local loopba ck
11 = digital local loopback
Bits 3, 2: Transmitter Data Select (TDSA, TDSB). See Table 4-F for details.
Bit 0: Reset (RST). When this bit is high, the digital logic of the LIU is held in reset and all registers for that LIU
(except the RST bit) are forced to their default values. RST is cleared to 0 at power-up and when the RST pin is
activated.
0 = normal operation
1 = reset LIU
W
R
W
R
EVENT
LATCHED STATUS REGISTER
SET ON EVENT DETECT CLEAR
ON WRITE LOGIC 1
INT ENABLE
REGISTER
SR
SRL
I
NT
OTHER INT
SOURCE
REAL-TIME STATUS
LATCHED STATUS
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
17 of 61
Register Name: TCRn
Register Description: Transmitter Configuration Register
Register Address: 01h, 11h, 21h, 31h
Bit 7 6 5 4 3 2 1 0
Name — TBIN TCINV TJA TPD TTS TLBO
Default 0 0 0 0 0 1 0
Bit 6: Transmitter Binar y Interface Enable (TBIN)
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder is
disabled.
1 = Transmitter framer interface is bina ry on the TDAT pin. The B3ZS/HDB3 encoder is enabled.
Bit 5: Transmitter Clock Invert (TCINV)
0 = TPOS/TDAT and TNEG are sample d on the rising edge of TCLK.
1 = TPOS/TDAT and TNEG are sample d on the falling edge of TCLK.
Bit 4: Transmitter Jitter Attenu ator Enable (TJA)
0 = Remove jitter attenuator from the transmitter path.
1 = Insert jitter attenuator into the transmitter path.
Bit 3: Transmitter Power-Down Enable (TPD)
0 = enable the transmitter
1 = power-down the transmitter (output driver tri-stated)
Bit 2: Transmitter Tri-State Enable (TTS). This bit is set to 1 on reset, which tri-states the transmitter TXP and
TXN pins. The transmitter circuitry is left powered up in this mode. The TTS input pin is inverted and logically ORed
with this bit.
0 = enable the transmitter output driver
1 = tri-state the transmitter output driver
Bit 1: Transmitter Line Build-Out (TLBO). TLBO indicates cable length for waveform shaping in DS3 and STS-1
modes. TLBO is ignored in E3 mode.
0 = cable length 225ft
1 = cable length < 225ft
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
18 of 61
Register Name: RCRn
Register Description: Receiver Configuration Regis ter
Register Address: 02h, 12h, 22h, 32h
Bit 7 6 5 4 3 2 1 0
Name ITU RBIN RCINV RJA RPD RTS RMON RCVUD
Default 0 0 0 0 0 1 0 0
Bit 7: ITU CV Mode (ITU). This bit controls what types of bipolar violations (BPVs) are flagged as code violations
on the RLCV pin and counted in the RCV register. It also controls whether or no t excessive zero (EXZ) events are
flagged and counted. An EXZ event is the occurrence of a third consecutive zero (DS3 or STS-1 modes) or fourth
consecutive zero (E3 mode) in a seq uence of zeros.
0 = In all three modes (DS3, E3, and STS-1) BPVs that are not part of a valid codeword are flagged and
counted. EXZ events are also flagged and cou nted.
1 = In DS3 and STS-1 modes, BPVs that are not part of valid codewords are flagged and counted. In E3
mode, BPVs that are the same polarity as the last BPV are flagged and counted. EXZ events are not
flagged and counted in any mode.
Bit 6: Receiver Binary Interface Enable (RBIN)
0 = Receiver framer interface is bi polar on the RPOS and RNEG pins. The B3ZS /HDB3 decoder is
disabled.
1 = Receiver framer interface is binary o n the RDAT pin with the RLCV pin indicating line-code violations.
The B3ZS/HDB3 encoder is enabled.
Bit 5: Receiver Clock Invert (RCINV)
0 = RPOS/RDAT and RNEG/RLCV are sampled on the falling edge of RCLK.
1 = RPOS/RDAT and RNEG/RLCV are sampled on the risi ng edge of RCLK.
Bit 4: Receiver Jitter Attenuator Enable (RJA). (Note that TJA = 1 takes preceden ce over RJA = 1.)
0 = remove jitter attenuator from the receiver path
1 = insert jitter attenuator into the receiver path
Bit 3: Receiver Power-Down Enable (RPD)
0 = enable the receiver
1 = power-down the receiv er (RPOS/RDAT, RNEG/RLCV, and RCLK tri-stated)
Bit 2: Receiver Tri-State Enable (RTS). This signal is set to 1 on reset, which tri-states the receiver RPOS/RDAT,
RNEG/RLCV, and RCLK pins. The recei ver is left powered up in this mode. The RTS pin is inverted and logically
ORed with this bit.
0 = enable the receiver outputs
1 = tri-state the receiver outputs (RPO S/RDAT, RNEG/RLCV, and RCLK)
Bit 1: Receiver Monitor Preamp Enable (RMON)
0 = disable the monitor preamp
1 = enable the monitor preamp
Bit 0: Receive Code-Violation Counter Update ( RCVUD). When this control bit transitions from low to high, the
RCVLn and RCVHn registers are loaded with the current code -violation count, and the internal code -violation
counter is cle ared.
01 = Update RCV registers a nd clear internal code-violation co unter
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
19 of 61
Register Name: SRn
Register Description: Status Register
Register Address: 03h, 13h, 23h, 33h
Bit 7 6 5 4 3 2 1 0
Name — TDM PRBS RLOL RLOS
Default — 0 0 — — 1 1
Bit 5: Transmitter Driver Monitor (TDM). This read-only status bit indicates the current state of the transmit driver
monitor.
0 = the transmitter is operating normally
1 = the transmitter has a fault condition
Bit 4: PRBS Detector Output (PRBS). This read-only status bit indicates the current state of the receiver’s PRBS
detector. See Table 4-G for the expected PRBS pattern.
0 = in sync with expected pattern
1 = out of sync, expected pattern not detected
Bit 1: Receiver Loss of Lock (RLOL). This read-only status bit indicates the current state of the receiver clock
recovery PLL.
0 = the receiver PLL is locked onto the in coming signal
1 = the receiver PLL is not locked o nto the incoming signal
Bit 0: Receiver Loss of Signal (RLOS). This read-only status bit indicates the current state of the receiver loss-of-
signal detector.
0 = signal present
1 = loss of signal
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
20 of 61
Register Name: SRLn
Register Description: Status Register Latched
Register Address: 04h, 14h, 24h, 34h
Bit 7 6 5 4 3 2 1 0
Name — TDML PRBSL PBERL RCVL RLOLL RLOSL
Default 0 0 0 0 0 0
Bit 5: Transmitter Driver Monitor Latched (TDML). This latched status bit is set to one when the TDM status bit
changes state (low to high or high to low). TDML is cleared when the host processor writes a one to it and is not set
again until TDM changes state again. When TDML is set, it can cause a hardware interrupt to occur if the TDMIE
interrupt-enable bit is set to one. The interrupt is cleared when TDML is cleared or TDMIE is set to zero.
Bit 4: PRBS Detector Output Latched (PRBSL). This latched status bit is set to one when the PRBS status bit
changes state (low to high or high to low). PRBSL is cleared when the host processor writes a one to it and is not
set again until PRBS changes state again. When PRBSL is set, it can cause a hardware interrupt to occur if the
PRBSIE interrupt-enable bit is set to one. The interrupt is cleared when PRBSL is cle are d or PRBSIE is set to zero.
Bit 3: PRBS Detector Bit Error Latched (PBERL). This latched status bit is set to one when the PRBS detector is
in sync and a bit error has been detected. PBERL is cleared when the host processor writes a one to it and is not
set again until another bit error is detected. When PBERL is set, it can cause a hardware interrupt to occur if the
PBERIE interrupt-enable bit is set to one. The interrupt is cleared when PBERL is cleared or PBERIE is set to zero.
Bit 2: Receiver Code Violation Latched (RCVL). This latched status bit is set to one when the RCV status bit
goes high. RCVL is cleared when the host processor writes a one to it and is not set again until RCV goes high
again. When RCVL is set, it can cause a hardware interrupt to occur if the RCVIE interrupt-enable bit is set to one.
The interrupt is cleared when RCVL is cleared or RCVIE is set to zero.
Bit 1: Receiver Loss-of-Clock Lock Latched (RLOLL). This latched status bit is set to one when the RLOL status
bit changes state (low to high or high to low). RLOLL is cleared when the host processor writes a one to it and is
not set again until RLOL changes state again. When RLOLL is set, it can cause a hardware interrupt to occur if the
RLOLIE interrupt-enable bit is set to one. The interrupt is cleared when RLOLL is cleared or RL OLIE is set to zero.
Bit 0: Receiver Loss-of-Signal Latched (RLOSL). This latched status bit is set to one when the RLOS status bit
changes state (low to high or high to low). RLOSL is cleared when the host processor writes a one to it and is not
set again until RLOS changes state again. When RLOSL is set, it can cause a hardware interrupt to occur if the
RLOSIE interrupt-enable bit is set to one. The interrupt is cleared when RLOSL is cleared or RLOSIE is set to zero.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
21 of 61
Register Name: SRIEn
Register Description: Status Register Interrupt Enable
Register Address: 05h, 15h, 25h, 35h
Bit 7 6 5 4 3 2 1 0
Name — TDMIE PRBSIE PBERIE RCVIE RLOLIE RLOSIE
Default 0 0 0 0 0 0
Bit 5: Transmitter Driv er Monitor Interrupt Enable (TDMIE)
0 = mask TDML interrupt
1 = enable TDML interrupt
Bit 4: PRBS Detector Inte rrupt Enable (PRBSIE)
0 = mask PRBSL interrupt
1 = enable PRBSL interrupt
Bit 3: PRBS Detec tor Bit-Error Interrupt Enable (PBERIE)
0 = mask PBERL interrupt
1 = enable PBERL interrupt
Bit 2: Receiver Line-Code Violation Interrupt En able (RCVIE)
0 = mask RCVL interrupt
1 = enable RCVL interrupt
Bit 1: Receiver Loss-of-Clock Lock Interrupt Enable (RLOLIE)
0 = mask RLOLL interrupt
1 = enable RLOLL interrupt
Bit 0: Receiver Loss-of-Signal Interrupt Enable (RLOSIE)
0 = mask RLOSL interrupt
1 = enable RLOSL interrupt
Register Name: RCVLn
Register Description: Receiver Code-Violation Count Register (Low Byte)
Register Address: 06h, 16h, 26h, 36h
Bit 7 6 5 4 3 2 1 0
Name RCV[7] RCV[6] RCV[5] RCV[4] RCV[3] RCV[2] RCV[1] RCV[0]
Default 0 0 0 0 0 0 0 0
Register Name: RCVHn
Register Description: Receiver Code-Violation Count Register (High Byte)
Register Address: 07h, 17h, 27h, 37h
Bit 7 6 5 4 3 2 1 0
Name RCV[15] RCV[14] RCV[13] RCV[12] RCV[11] RCV[10] RCV[9] RCV[8]
Default 0 0 0 0 0 0 0 0
Bits 15 to 0: Receiver Code-Violation Counter Register (RCV[15:0]). The RCV registers form a 16-bit register
for reading the line-code violation counter value. The registers are updated with the line-code violation counter
value when the RCVUD control bit is toggled low to high. After the RCV registers are updated, the line-code
violation counter is cleared. The counter operates in two modes, depending on the setting of the ITU bit in the RCR
register. See the RCR regi ster description for details about the ITU control bit.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
22 of 61
6. RECEIVER
Interfacing to the Line. The receiver can be transformer-coupled or capacitor-coupled to the line. Typically, the
receiver interfaces to the incoming coaxial cable (75Ω) through a 1:2 step-up transformer. Figure 1-1 shows the
arrangement of the transformer and other recommended interface components. Table 11-A specifies the required
characteristics of the transformer. The receiver expects the incoming signal to be in B3ZS- or HDB3-coded AMI
format.
Optional Preamp. The receiver can be used in monitoring applications, which typically have series resistors with a
resistive loss of approximately 20dB. When the RMON input pin is high, the receiver compensates for this resistive
loss by applying approximately 14dB of flat gain to the incoming signal before sending the signal to the
AGC/equalizer block wher e additional flat gain is applied as neede d.
Automatic Gain Control (AGC) and Adaptive Equalizer. The AGC circuitry applies flat (frequency independent)
gain to the incoming signal to compensate for flat losses in the transmission channel and variations in transmission
power. Since the incoming signal also experiences frequency-dependent losses as it passes through the coaxial
cable, the adaptive equalizer circuitry applies frequency-dependent gain to offset line losses and restore the signal.
The AGC/equalizer circuitry automatically adapts to coaxial cable losses from 0 to 15dB, which translates into 0 to
380 meters (DS3), 0 to 440 meters (E3), or 0 to 360 meters (STS-1) of coaxial cable (AT&T 734A or equivalent).
The AGC and the equalizer work simultaneously but independently to supply a signal of nominal amplitude and
pulse shape to the clock and data recovery block. The AGC/equalizer block automatically handles direct (0 meters)
monitoring of the transmitter output signal.
Clock and Data Recovery (CDR). The CDR block takes the amplified, equalized signal from the AGC/equalizer
block and produces separate clock, positive data, and negative data signals. The CDR requires a master clock. If
the signal on the appropriate MCLK pin is toggling, the LIU selects the MCLK signal as its master clock. If the
appropriate MCLK pin is wired high, the LIU uses the signal on the TCLK pin as the master clock. The appropriate
MCLK is selected based o n the settings of the E3M and STS mode pins or register bits.
The receiver locks onto the incoming signal using a clock recovery PLL. The status of the PLL lock is indicated in
the RLOL status bit. The RLOL bit is set when the difference between recovered clock frequency and MCLK
frequency is greater than 7900ppm and cleared when the difference is less than 7700ppm. A change of state of the
RLOL status bit can cause an interrupt on the INT pin if enabled to do so by the RLOLIE interrupt-enable bit. Note
that if MCLK is not present, or MCLK is high and TCLK is not present, RLOL is not set.
Loss-of-Signal (LOS) Detector. The receiver contains analog and digital LOS detectors. The analog LOS detector
resides in the AGC/equali z er block. If the incoming signal level is less than a signal level approximately 24dB below
nominal, analog LOS (ALOS) is declared. The ALOS signal cannot be directly examined, but when ALOS occurs
the AGC/equa lizer mutes the re covered data, fo rcing all zeros out of the data recovery circuitry and causing digital
LOS (DLOS) , which is indicated b y the RLOS pin and the RLOS status bit. ALOS clears when the incoming signal
level is greater than or equal to a signal level approxi mately 18dB below nominal.
The digital LOS detector declares DLOS when it detects 175 ±75 consecu tive zeros in th e recovered d ata stream.
When DLOS occurs, the receiver asserts the RLOS pin (hardware mode) or the RLOS status bit (CPU bus mode).
DLOS is cleared when there are no EXZ occurrences over a span of 175 ±75 clock periods. An EXZ occurrence is
defined as three or more consecutive zeros in the DS3 and STS-1 modes and four or more consecutive zeros in
the E3 mode. The RLOS pin goes inactive (high) when the DLOS condition is cleared. In CPU bus mode, a change
of the RLOS status bit can cause an interrupt on the INT pin if enabled to do so by the RLOSIE interrupt-enable bit.
The requirements of ANSI T1.231 and ITU-T G.775 for DS3 LOS defects are met by the DLOS detector, which
asserts RLOS when it counts 175 ±75 consecutive zeros coming out of the CDR block and clears RLOS when it
counts 175 ±75 consecutive pulse intervals without excessive zero occurrences.
The requirements of ITU-T G.775 for E3 LOS defects are met by a combination of the ALOS detector and the
DLOS detector, as follows:
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
23 of 61
For E3 RLOS Assertion:
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is less than or equal to a signal
level approximately 24dB below nominal, and mutes the data coming out of the clock and data recovery block.
(24dB below nominal in the “tolerance range” of G.775, where LOS may or may not be declared.)
2) The DLOS detector counts 175 ±75 consecutive zeros coming out of the CDR block and asserts RLOS. (175
±75 meets the 10 N 255 pulse-interval duration requirement of G.775.)
For E3 RLOS Clear:
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is greater than or equal to a
signal level approximately 18dB below nominal, and enables data to come out of the CDR block. (18dB is in
the “tolerance range” of G.775, where L OS may or may not be declared.)
2) The DLOS detector counts 175 ±75 consecutive pulse intervals without EXZ occurrences and deasserts
RLOS. (175 ±75 meets the 10 N 255 pulse-interval duration requirement of G.775.)
The DLOS detector supports the requirements of ANSI T1.231 for STS-1 LOS defects. At STS-1 rates, the time
required for the DLOS detector to count 175 ±75 consecutive zeros falls in the range of 2.3 T 100μs required by
ANSI T1.231 for declaring an LOS defect. Although the time required for the DLOS detector to count 175 ±75
consecutive pulse intervals with no excessive zeros is less than the 125μs–250μs period required by ANSI T1.231
for clearing an LOS defect, a period of this length where LOS is inactive can easily be timed in software.
During LOS, the RCLK output pin is derived from the LIU’s master clock. The ALOS detector has a longer time
constant than the DLOS detector. Thus, when the incoming signal is lost, the DLOS detector activates first
(asserting the RLOS pin or bit), followed by the ALOS detector. When a signal is restored, the DLOS detector does
not get a valid signal that it can qualify for no EXZ occurrences until the ALOS detector has seen the signal rise
above a signal level approximately 18dB below nominal.
Framer Interface Format and the B3ZS/HDB3 Decoder. The recovered data can be output in either binary or
bipolar format. To select the bipolar interface format, pull the RBIN pin low (hardware mode) or clear the RBIN
configuration bit (CPU bus mode). In bipolar format, the B3ZS/HDB3 decoder is disabled and the recovered data is
buffered and output on the RPOS and RNEG outputs. Received positive-polarity pulses are indicated by RPOS =
1, while negative-polarity pulses are indicated by RNEG = 1. In bipolar interface format, the receiver simply passes
on the received data and does not check it for BPV or EXZ occurrences.
To select the binary interface format, pull the RBIN pin high (hardware mode) or set the RBIN configuration bit
(CPU bus mode). In binary format, the B3ZS/HBD3 decoder is enabled, and the recovered data is decoded and
output as a binary value on the RDAT pin. Code violations are flagged on the RLCV pin. In the discussion that
follows, a valid pulse that conforms to the AMI rule is denoted as B. A BPV pulse that violates the AMI rule is
denoted as V.
In DS3 and STS-1 modes, B3ZS decoding is performed. RLCV is asserted during any RCLK cycle where the data
on RDAT causes ones of the following code violation s :
Hardware mode or ITU bit set to 0
A BPV immediately preceded by a valid pulse (B, V).
A BPV with the same polarity as the last BPV.
The third zero in an EXZ occurrence.
ITU bit set to 1
A BPV immediately preceded by a valid pulse (B, V).
A BPV with the same polarity as the last BPV.
In E3 mode, HDB3 decoding is performed. RLCV is asserted during any RCLK cycle where the data on RDAT
causes one of the following code violatio ns:
Hardware mode or ITU bit set to 0
A BPV immediately preceded by a valid pulse (B, V) or by a valid pulse and a zero (B, 0, V).
A BPV with the same polarity as the last BPV.
The fourth zero in an EXZ occurrence (only in hard wa re mod e or when ITU = 0).
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
24 of 61
ITU bit set to 1
A BPV with the same polarity as the last BPV.
When RLCV is asserted to flag a BPV, the RDAT pin outputs a one. The state bit that tracks the polarity of the last
BPV is toggled on every BPV, whether part of a valid B3ZS/HDB3 codeword or not.
To support a glueless interface to a variety of neighboring components, the polarity of RCLK can be inverted.
Normally, data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK. To output data on
these pins on the rising edge of RCLK, pull the RCINV pin high (hardware mode) or set the RCINV configuration bit
(CPU bus mode).
The RCLK, RPOS/RDAT, and RNEG/RLCV pins can be tri-stated to support protection switching and redundant-
LIU applications. This tri-stating capability supports system configurations where two or more LIUs are wire-ORed
together and a system processor selects one to be active. To tri-state RCLK, RPOS/RDAT, and RNEG/RLCV,
assert the RTS pin or the RTS configuration bit.
Receive Line-Code Violation Counter. The line-code violation counter is always enabled regardless of the
settings of the RBIN pin or the RBIN configuration bit. The receiver has an internal 16-bit saturating counter and a
16-bit latch, which the CPU can rea d as registers RCVH and RCVL. The value of the internal counter is latched into
the RCVH/RCVL register and cleared when the receive code-violation counter update bit, RCVUD, is changed from
a zero to a one. The RCVUD bit must be cleared back to a zero before a new update can occur. If there is an LCV
increment pulse and an update pulse in the same clock period, the counter is preset to a one rather than cleared
so that the LCV is not missed. The counter is incremented when the RLCV pin flags a code violation as described
in the Framer Interface Format and the B3ZS/HDB3 Decoder section. The counter saturates at 65,535 (0FFFFh)
and does not roll over.
Receiver Power-Down. To minimize power consumption when the receiver is not being used, assert the RPD
configuration bit (CPU bus mode). When the receiver is powered down, the RCLK, RPOS/RDAT, and RNEG/RLCV
pins are tri-stated. In addition, the RXP and RXN pins be come high impedance.
Receiver Jitter Tolerance. The receiver exceeds the input jitter tolerance requirements of all applicable
telecommunication standa rds in Table 1-A. See Figure 6-1.
Figure 6-1. Receiver Jitter Tolerance
10 100 1k 10k 100k 1M
60k22.3k2.3k669
0.1
1.0
10
300k 800k 30030
0.1
0.15
0.3
10
5
1.5
E3 G.823
DS3 GR-499 Cat II
DS3 GR-499 Cat I DS315x JITTER TOLERANCE
15 STS-1 GR253
FREQUENCY (Hz)
JITTER TOLERANCE (UIP-P)
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
25 of 61
7. TRANSMITTER
Transmit Clock. The clock applied at the TCLK input clocks in data on the TPOS/TDAT and TNEG pins. If the jitter
attenuator is not enabled in the transmit path, the signal on TCLK is the transmit line clock and must be
transmission quality (i.e., ±20ppm frequency accuracy and low jitter). If the jitter attenuator is enabled in the
transmit path, the signal on TCLK can be jittery and/or periodically gapped (not exceeding 8UI), but must still have
an average frequency within ±20ppm of the nominal line rate. When enabled in the transmit path, the jitter
attenuator generates the transmit line clock from the signal applied on the appropriate MCLK pin. The signal on the
MCLK pin must, therefore, be a transmission -quality clock (±20ppm frequency accuracy and low jitter).
The polarity of TCLK can be inverted to support glueless interfacing to a variety of neighboring components.
Normally data is sampled on the TPOS/TDAT and TNEG pins on the rising edge of TCLK. To sample data on the
falling edge of TCLK, pull the TCINV pin high (hardware mode) or set the TCINV configuration bit (CPU bus mode).
Framer Interface Format and the B3ZS/HDB3 Encoder. Data to be transmitted can be input in either binary or
bipolar format. To select the binary interface format, pull the TBIN pin high (hardware mode) or set the TBIN
configuration bit (CPU bus mode). In binary format, the B3ZS/HBD3 encoder is enabled, and the data to be
transmitted is sampled on the TDAT pin. The TNEG pin is ignored in binary interface mode and should be wired
low. In DS3 and STS-1 modes, the B3ZS/HDB3 encoder operates in the B3ZS mode. In E3 mode the encoder
operates in HDB3 mode.
To select the bipolar interface format, pull the TBIN pin low (hardware mode) or clear the TBIN configuration bit
(CPU bus mode). In bipolar format, the B3ZS/HDB3 encoder is disabled and the data to be transmitted is sampled
on the TPOS and TNEG pins. Positive-polarity pulses are indicated by TPOS = 1, while negative-polarity pulses
are indicated by TNEG = 1.
Pattern Generation. The transmitter can generate several patterns internally, including unframed all ones (E3
AIS), 100100…, and DS3 AIS. See Figure 7-2 for the structure of the DS3 AIS signal. The TDSA and TDSB input
pins (hardware mode) or the TDSA and TDSB control bits (CPU bus mode) are used to select these patterns.
Table 4-F indicates the possible selections.
Waveshaping, Line Build-Out, Line Driver. The waveshaping block converts the transmit clock, positive data,
and negative data signals into a single AMI signal with the waveshape required for interfacing to DS3/E3/STS-1
lines. Table 7-A through Table 7-E and Figure 7-1 show the waveform template specifications and test parameters.
Because DS3 and STS-1 signals must meet the waveform templates at the cross-connect through any cable length
from 0 to 450ft, the waveshaping circuitry includes a selectable LBO feature. For cable lengths of 225ft or greater,
the TLBO pin (hardware mode) or the TLBO configuration bit (CPU bus mode) should be low. When TLBO is low,
output pulses are driven onto the coaxial cable without any preattenuation. For cable lengths less than 225ft, TLBO
should be high to enable the LBO circuitry. When TLBO is high, pulses are preattenuated by the LBO circuitry
before being driven onto the coaxial cable. The LBO circuitry provides attenuation that mimics the attenuation of
225ft of coaxial cable.
The transmitter line driver can be disabled and the TXP and TXN outputs tri-stated by asserting the TTS input or
the TTS configuration bit. Powering down the transmitter through the TPD configuration bit (CPU bus mode) also
tri-states the TXP and TXN outputs.
Interfacing to the Line. The transmitter interfaces to the outgoing DS3/E3/STS-1 coaxial cable (75Ω) through a
2:1 step-down transformer connected to the TXP and TXN pins. Figure 1-1 shows the arrangement of the
transformer and other recommended interface components. Table 11-A specifies the required characteristics of the
transformer.
Transmit Driver Monitor. If the transmit driver monitor detects a faulty transmitter, it activates the TDM output
(hardware mode or CPU bus mode) or sets the TDM status bit and optionally activates the INT output (CPU bus
mode). When the transmitter is tri-stated, the transmit driver monitor is also disabled. The transmitter is declared to
be faulty when the transmitter outputs se e a load of less than ~25Ω.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
26 of 61
Transmitter Power-Down. To minimize power consumption when the transmitter is not being used, assert the
TPD configuration bit (CPU bus mode only). When the transmitter is powered down, the TXP and TXN pins are put
in a high-impedance state and the transmit amplifiers are powered down.
Transmitter Jitter Generation (Intrinsic). The transmitter meets the jitter generation requirements of all
applicable standards, with or witho ut the jitter attenuator enabled.
Transmitter Jitter Transfer. Without the jitter attenuator enabled in the transmit side, the transmitter passes jitter
through unchanged. With the jitter attenuator enabled in the transmit side, the transmitter meets the jitter transfer
requirements of all applicab le telecommunication standards in Table 1-A. See Figure 9-1.
Table 7-A. DS3 Waveform Template
TIME (IN UNIT INTERVALS) NORMALIZED AMPLITUDE EQUATION
UPPER CURVE
-0.85 T -0.68 0.03
-0.68 T +0.36 0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03
0.36 T 1.4 0.08 + 0.407e-1.84(T - 0.36)
LOWER CURVE
-0.85 T -0.36 -0.03
-0.36 T +0.36 0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03
0.36 T 1.4 -0.03
Governing Specifications: ANSI T1.102 and Bellcore GR-499.
Table 7-B. DS3 Waveform Test Parameters and Limits
PARAMETER SPECIFICATION
Rate 44.736Mbps (±20ppm)
Line Code B3ZS
Transmission Medium Coaxial cable (AT&T 734A or equivalent)
Test Measurement Point At the end of 0 to 450ft of coaxial cable
Test Termination 75Ω (±1%) resistive
Pulse Amplitude Between 0.36V and 0.85V
Pulse Shape An isolated pulse (precede d by two zeros and
followed by one or more zeros) falls within the
curves listed in Table 7-A.
Unframed All-Ones Power Level at
22.368MHz Between -1.8dBm and +5.7dBm
Unframed All-Ones Power Level at
44.736MHz At least 20dB less than the power measured at
22.368MHz
Pulse Imbalance of Isolated Pulses Ratio of positive and negative pulses must be
between 0.90 and 1.10.
Table 7-C. STS-1 Waveform Template
TIME (IN UNIT INTERVALS) NORMALIZED AMPLITUDE EQUATIONS
UPPER CURVE
-0.85 T -0.68 0.03
-0.68 T +0.26 0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03
0.26 T 1.4 0.1 + 0.61e-2.4(T - 0.26)
LOWER CURVE
-0.85 T -0.36 -0.03
-0.36 T +0.36 0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03
0.36 T 1.4 -0.03
Governing Specifications: Bellcore GR-253 and Bellcore GR -499 and ANSI T1.102.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
27 of 61
Table 7-D. STS-1 Waveform Test Parameters and Limits
PARAMETER SPECIFICATION
Rate 51.840Mbps (±20ppm)
Line Code B3ZS
Transmission Medium Coaxial cable (AT&T 734A or equivalent)
Test Measurement Point At the end of 0 to 450ft of coa xial ca ble
Test Termination 75Ω (±1%) resistive
Pulse Amplitude 0.800V nominal (not covered in specs)
Pulse Shape An isolated pulse (precede d by two zeros and followed b y one
or more zeros) falls within the curved listed in Table 7-C.
Unframed All-Ones Power Level at 25.92MHz Between -1.8dBm and +5.7dBm
Unframed All-Ones Power Level at 51.84MHz At least 20dB less than the power measured at 25.92MHz.
Table 7-E. E3 Waveform Test Parameters and Limits
PARAMETER SPECIFICATION
Rate 34.368Mbps (±20ppm)
Line Code HDB3
Transmission Medium Coaxial cable (AT&T 734A or equivalent)
Test Measurement Point At the transmitter
Test Termination 75Ω (±1%) resistive
Pulse Amplitude 1.0V (nominal)
Pulse Shape An isolated pulse (precede d by two zeros and followed b y one
or more zeros) falls within the template shown in Figure 7-1.
Ratio of the Amplitudes of Positive and Negative
Pulses at the Center of the Pulse Interval 0.95 to 1.05
Ratio of the Widths of Positive and Negativ e
Pulses at the Nominal Half Amplitude 0.95 to 1.05
Figure 7-1. E3 Waveform Template
0
-0.1
-0.2
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
TIME (ns)
G.703
E3
TEMPLATE
OUTPUT LEVEL (V)
29.1
24.5
12.1
8.65
17
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
28 of 61
Figure 7-2. DS3 AIS Structure
M1 Subframe
X1
(1)
84
Info
Bits
F1
(1)
84
Info
Bits
C1
(0)
84
Info
Bits
F2
(0)
84
Info
Bits
C2
(0)
84
Info
Bits
F3
(0)
84
Info
Bits
C3
(0)
84
Info
Bits
F4
(1)
84
Info
Bits
M2 Subframe
X2
(1)
84
Info
Bits
F1
(1)
84
Info
Bits
C1
(0)
84
Info
Bits
F2
(0)
84
Info
Bits
C2
(0)
84
Info
Bits
F3
(0)
84
Info
Bits
C3
(0)
84
Info
Bits
F4
(1)
84
Info
Bits
M3 Subframe
P1
(0)
84
Info
Bits
F1
(1)
84
Info
Bits
C1
(0)
84
Info
Bits
F2
(0)
84
Info
Bits
C2
(0)
84
Info
Bits
F3
(0)
84
Info
Bits
C3
(0)
84
Info
Bits
F4
(1)
84
Info
Bits
M4 Subframe
P2
(0)
84
Info
Bits
F1
(1)
84
Info
Bits
C1
(0)
84
Info
Bits
F2
(0)
84
Info
Bits
C2
(0)
84
Info
Bits
F3
(0)
84
Info
Bits
C3
(0)
84
Info
Bits
F4
(1)
84
Info
Bits
M5 Subframe
M1
(0)
84
Info
Bits
F1
(1)
84
Info
Bits
C1
(0)
84
Info
Bits
F2
(0)
84
Info
Bits
C2
(0)
84
Info
Bits
F3
(0)
84
Info
Bits
C3
(0)
84
Info
Bits
F4
(1)
84
Info
Bits
M6 Subframe
M2
(1)
84
Info
Bits
F1
(1)
84
Info
Bits
C1
(0)
84
Info
Bits
F2
(0)
84
Info
Bits
C2
(0)
84
Info
Bits
F3
(0)
84
Info
Bits
C3
(0)
84
Info
Bits
F4
(1)
84
Info
Bits
M7 Subframe
M3
(0)
84
Info
Bits
F1
(1)
84
Info
Bits
C1
(0)
84
Info
Bits
F2
(0)
84
Info
Bits
C2
(0)
84
Info
Bits
F3
(0)
84
Info
Bits
C3
(0)
84
Info
Bits
F4
(1)
84
Info
Bits
Note 1: X1 is transmitted first.
Note 2: The 84 info bits contain the repetitive sequence 1010…, where the first 1 in the sequence immediately follows each X, P, F, C, or M bit.
8. DIAGNOSTICS
PRBS Generator and De t ector. Each LIU has built-in pseudorandom bit sequence (PRBS) generator and detector
circuitry for physical layer testing. The device generates and detects unframed 215 - 1 (DS3 or STS-1) or 223 - 1
PRBS, according to the ITU O.151 specification. To transmit a PRBS pattern, pull the TDSA and TDSB pins high
(hardware mode) or set configuration bits TDSA and TDSB (CPU bus mode). As Table 4-F shows, the PRBS
generator automatically generates 215 - 1 for DS3 and STS-1 modes and 223 - 1 for E3 mode.
The PRBS detector, which is always enabled (Table 4-G), r eports its status through the PRBS output pin (hardware
and CPU bus modes) or through the PRBS and PBER status bits (CPU bus mode). When the PRBS detector is out
of synchronization, the PRBS pin is forced high. When the detector syncs to an incoming PRBS pattern, the PRBS
pin is driven low, then pulses high, synchronous with RCLK, for each bit error detected. See Figure 8-1 and Figure
8-2 for details. In CPU bus mode, the PRBS status bit is set to one when the detector is out of synchronization and
set to zero when the detector syncs to an incoming PRBS pattern. A change of state of the PRBS bit can cause an
interrupt on the INT pin if the PRBSIE interrupt-enable bit is set to one. A pattern bit error can also cause an
interrupt if the PBERIE interrupt-enable bit is set to one. The PRBS detector also declares sync in the presence of
an incoming all-ones pattern.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
29 of 61
Loopbacks. Each LIU has three internal loopbacks. See Figure 3-1 and Figure 3-2. The LLB and RLB pins
(hardware mode) or LLB and RLB control bits (CPU bus mode) enable these loopbacks. When LLB = RLB = 0,
loopbacks are disabled. Setting RLB = 1 with LLB = 0 enables remote loopback, which loops recovered clock and
data back through the LIU transmitter. During remote loopback, recovered clock and data are output on RCLK,
RPOS/RDAT, and RNEG/RLCV, but the TPOS/TDAT and TNEG pins are ignored. Setting LLB = 1 with RLB = 0
enables analog local loopback, which loops the outgoing transmit signal back to the receiver’s analog front end.
Setting LLB = RLB = 1 enables digital local loopback, which loops digital transmit clock and data back to the
receiver’s digital circuitry, including the LOS detector, the B3ZS/HDB3 decoder, and the PRBS detector. When
either of the local loopbacks is enabled, the transmit signal is output normally on TXP/TXN, but the received signal
on RXP/RXN is ignored.
Figure 8-1. PRBS Output with Normal RCLK Operation
Figure 8-2. PRBS Output with Inverted RCLK Operation
9. JITTER ATTENUATOR
Each LIU contains an on-board jitter attenuator that can be placed in the receive path or the transmit path or can
be disabled. The TJA and RJA pins (hardware mode) or the TJA and RJA control bits (CPU bus mode) specify how
the jitter attenuator is used. Setting TJA = RJA = 0 disables the jitter attenuator. To use the jitter attenuator in the
receive path, set RJA = 1 (with TJA = 0). To use it in the transmit path, set TJA = 1. Figure 9-1 shows the minimum
jitter attenuation for the device when the jitter attenuator is enabled. Figure 9-1 also shows the receive jitter transfer
when the jitter attenuator is disabled.
The jitter attenuator consists of a narrowband PLL to retime the selected clock, a 16 x 2-bit FIFO to buffer the
associated data while the clock is being retimed, and logic to prevent FIFO over/underflow in the presence of very
large jitter amplitudes.
The jitter attenuator requires a transmission-quality master clock (i.e., ±20ppm frequency accuracy and low jitter).
When enabled in the receive path, the JA can obtain its master clock from the appropriate MCLK pin or the TCLK
pin. If the signal on the MCLK pin is toggling, the JA uses the signal on the MCLK pin as its master clock. If the
MCLK pin is high, the JA uses the signal on the TCLK pin as its master clock. When enabled in the transmit path,
PRBS DETECTOR
IS NOT IN SYNC PRBS DETECTOR IS IN SYNC; THE
PRBS PIN PULSES HIGH FOR EACH BIT
ERROR DETECTED
RCL
K
PRBS
RCINV = 0
RCL
K
PRBS
PRBS DETECTOR
IS NOT IN SYNC PRBS DETECTOR IS IN SYNC; THE
PRBS PIN PULSES HIGH FOR EACH BIT
ERROR DETECTED
RCINV = 1
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
30 of 61
the JA must take its master clock from the MCLK pin. The clock and data recovery block also uses the selected
master clock.
The JA has a loop bandwidth of master_clock / 2,058,874 (see corner frequencies in Figure 9-1). The JA
attenuates jitter at frequencies higher than the loop bandwidth, while allowing jitter (and wander) at lower
frequencies to pass through relatively unaffected.
Figure 9-1. Jitter Attenuation/Jitter Transfer
10. RESET LOGIC
There are four sources for reset: an internal power-on reset (POR) circuit, the reset pin RST, the JTAG reset pin
JTRST, and the RST bit in each LIU’s global configuration register (GCR). The chip is divided into three zones for
reset: the digital logic, the analog circuits, and the JTAG logic. The digital logic includes the status and control
registers, the B3ZS/HDB3 encoder and decoder, the PRBS generator and detector, and the LOS detect logic. The
analog circuits include clock and data recovery, jitter attenuator, and transmit waveform generation. The JTAG
logic consists of the common boundary scan controller and the bounda ry scan cells at each pin.
The POR circuit resets the digital logic, analog circuits, and JTAG logic zones. The RST pin resets the digital logic
and the analog circuits but not the JTAG logic. The JTRST pin resets only the JTAG logic. Each LIU’s RST register
bit resets the digital logic for that LIU, including resetting the LIU’s registers to the default state (except for the RST
bit).
The POR signal and RST pin require an active master clock source for the LIU to properly reset.
10 100 1k 10k 100k 1M
21.7Hz (DS3)
16.7Hz (E3)
25.2Hz (STS-1) 1k
-30
-20
-10 E3 [TBR24 (1997)]
FREQUENCY (Hz)
JITTER ATTENUATION (dB)
0DS3 [GR-499 (1995)]
CATEGORY I DS315x TYPICAL RECEIVER
JITTER TRANSFER WITH JITTER
A
TTENUATOR DISABLED
>150k
DS315
x
DS3/E3/STS-1
MINIMUM
JITTE
R
ATTENUATION
WITH JITTE
R
ATTENUATO
R
ENABLED
40Hz
DS3 [GR-253 (1999)]
CATEGORY I
27Hz
STS-1 [GR-253
(1999)]
CATEGORY II
40k 59.6k
DS3 [GR-499 (1999)]
CATEGORY II
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
31 of 61
11. TRANSFORMERS
Table 11-A. Transformer Characteristics
PARAMETER VALUE
Turns Ratio 1:2ct ±2%
Bandwidth 75Ω 0.250M Hz to 500MHz (typ)
Primary Inductance 19μH (min)
Leakage Inductance 0.150μH (max)
Interwinding Capacitance 10pF (max)
Isolation Voltage 1500VRMS (min)
Table 11-B. Recommended Transformers
MANUFACTURER NO. OF
TRANSFORMERS PART TEMP RANGE
PIN-PACKAGE/
SCHEMATIC
1 PE-65968 0°C to +70°C 6 SMT
LS-1/C
1 PE-65969 0°C to +70°C 6 Thru-Hole
LC-1/C
Pulse Engineering
8 T3049 0°C to +70°C 32 SMT
YB/1
1 TG07-0206NS 0°C to +70°C 6 SMT
SMD/B
Halo Electronics 1 TD07-0206NE 0°C to +70°C 6 DIP
DIP/B
Note: Table subject to change. Industrial temperature range and other multiples (dual, quad) are also available. Contact the manufacturers for
details at www.pulseeng.com and www.haloelectronics.com.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
32 of 61
12. JTAG TEST ACCESS PORT AND BOUNDARY SCAN
12.1 JTAG Description
The DS315x LIUs support the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional
public instructions included are HIGHZ, CLAMP, and IDCODE. Figure 12-1 features a block diagram. The LIUs
contain the following items, which meet the requirements set by the IEEE 1149.1 Standard Test Access Port and
Boundary Scan Architecture:
Test Access Port (TAP)
TAP Controller
Instruction Register
Bypass Register
Boundary Scan Register
Device Identification Register
The TAP has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on these pins
can be found in Section 4. Details about the boundary scan architecture and the TAP can be found in IEEE 1149.1-
1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.
Figure 12-1. JTAG Block Diagram
BOUNDARY
SCAN
REGISTER
IDENTIFICATION
REGISTER
BYPASS
REGISTER
INSTRUCTION
REGISTER
TEST ACCESS PORT
CONTROLLER
MUX
SELECT
TRI-STATE
JTDI
10k
JTMS
10k
JTCLK
J
TRST
10k
JTDO
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
33 of 61
12.2 JTAG TAP Controller State Machine Description
This section discusses the operation of the TAP controller state machine. The TAP controller is a finite state
machine that responds to the logic level at JTMS on the rising edge of JTCLK. Each of the states denoted in Figure
12-2 are described in the following pages.
Figure 12-2. JTAG TAP Controller State Machine
Test-Logic-Reset. Upon device power-up, the TAP controller starts in the Test-Logic-Reset state. The instruction
register contains the IDCO DE instr uction. All system logic on the device operates normally.
Run-Test-Idle. Run-Test-Idle is used between scan operations or during specific tests. The instruction and test
registers remain idle.
Select-DR-Scan. All test registers retain their previous state. With JTMS low, a rising edge of JTCLK moves the
controller into the Capture-DR state and initiates a scan sequence. JTMS high moves the controller to the Select-
IR-SCAN state.
Capture-DR. Data can be parallel loaded into the test data registers selected by the current instruction. If the
instruction does not call for a parallel load or the selected register does not allow parallel loads, the test register
remains at its current value. On the rising edge of JTCLK, the controller goes to the Shift-DR state if JTMS is low or
to the Exit1-DR state if JTMS is high.
Test-Logic-Reset
Run-Test/Idle Select
DR-Scan 1
0
Capture-DR
1
0
Shift-DR 0
1
Exit1- DR 1
0
Pause-DR
1
Exit2-DR
1
Update-DR
0
0
1
Select
IR-Scan 1
0
Capture-IR
0
Shift-IR 0
1
Exit1-IR 1
0
Pause-IR
1
Exit2-IR
1
Update-IR
0
0
1
00
1
01
0
1
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
34 of 61
Shift-DR. The test data register selected by the current inst ruction is connected between JTDI and JTDO and shifts
data one stage toward its serial output on each rising edge of JTCLK. If a test register selected by the current
instruction is not placed in the serial pat h, it maintains its previous state.
Exit1-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state,
which terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Pause-DR
state.
Pause-DR. Shifting of the test registers is halted while in this state. All test registers selected by the current
instruction retain their previous state. The controller remains in this state while JTMS is low. A rising edge on
JTCLK with JTMS high puts the controller in the Exit2-DR state.
Exit2-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state
and terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Shift-DR
state.
Update-DR. A falling edge on JTCLK while in the Update-DR state latches the data from the shift register path of
the test registers into the data output latches. This prevents changes at the parallel output because of changes in
the shift register. A rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS
high, the controller enters the Select-DR-Scan state.
Select-IR-Scan. All test registers retain their previous state. The instruction register remains unchanged during this
state. With JTMS low, a rising edge on JTCLK moves the controller into the Capture-IR state and initiates a scan
sequence for the instruction register. JTMS high during a rising edge on JTCLK puts the controller back into the
Test-Logic-Reset state.
Capture-IR. The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This
value is loaded on the rising edge of JTCLK. If JTMS is high on the rising edge of JTCLK, the controller enters the
Exit1-IR state. If JTMS is low on the rising edge of JTCLK, the controller enters the Shift-IR state.
Shift-IR. In this state, the instruction register’s shift register is connected between JTDI and JTDO and shifts data
one stage for every rising edge of JTCLK toward the serial output. The parallel register and the test registers
remain at their previous states. A rising edge on JTCLK with JTMS high moves the controller to the Exit1-IR state.
A rising edge on JTCLK with JTMS low keeps the controller in the Shift-IR state, while moving data one stage
through the instruction shift registe r.
Exit1-IR. A rising edge on JTCLK with JTMS low puts the controller in the Pause-IR state. If JTMS is high on the
rising edge of JTCLK, the controller enters the Update-IR state and terminates the scanning process.
Pause-IR. Shifting of the instruction register is halted temporarily. With JTMS high, a rising edge on JTCLK puts
the controller in the Exit2-IR state. The controller remains in the Pause-IR state if JTMS is low during a rising edge
on JTCLK.
Exit2-IR. A rising edge on JTCLK with JTMS high puts the controller in the Update-IR state. The controller loops
back to the Shift-IR state if JTMS is low during a rising edge of JTCLK in this state.
Update-IR. The instruction shifted into the instruction shift register is latched into the parallel output on the falling
edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A
rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high, the controller
enters the Select-DR-Scan state.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
35 of 61
12.3 JTAG Instruction Register and Instructions
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the
TAP controller enters the Shift-IR state, the instruction shift register is connected between JTDI and JTDO. While in
the Shift-IR state, a rising edge on JTCLK with JTMS low shifts data one stage toward the serial output at JTDO. A
rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS high moves the controller to the Update-
IR state. The falling edge of that same JTCLK latches the data in the instruction shift register to the instruction
parallel output. Table 12-A shows the instructions supported by the DS315x and their respective operational binary
codes.
Table 12-A. JTAG Instruction Codes
INSTRUCTIONS SELECTED REGISTER INSTRUCTION CODES
SAMPLE/PRELOAD Boundary Scan 010
BYPASS Bypass 111
EXTEST Boundary Scan 000
CLAMP Bypass 011
HIGHZ Bypass 100
IDCODE Device Identification 001
SAMPLE/PRELOAD. SAMPLE/RELOAD is a mandatory instruction for the IEEE 1149.1 specification. This
instruction supports two functions. The digital I/Os of the device can be sampled at the boundary scan register
without interfering with the device’s normal operation by using the Capture-DR state. SAMPLE/PRELOAD also
allows the DS315x to shift data into the boundary scan register through JTDI using the Shift-DR state.
EXTEST. EXTEST allows testing of the interconnections to the device. When the EXTEST instruction is latched in
the instruction register, the following actions occur. Once enabled through the Update-IR state, the parallel outputs
of the digital output pins are driven. The boundary scan register is connected between JTDI and JTDO. The
Capture-DR samples all digital inputs into the boundary scan regi ster.
BYPASS. When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO
through the 1-bit bypass test register. This allows data to pass from JTDI to JTDO without affecting the device’s
normal operation.
IDCODE. When the IDCODE instruction is latched into the parallel instruction register, the identification test
register is selected. The device identification code is loaded into the identification register on the rising edge of
JTCLK, following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially
through JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register’s parallel
output.
HIGHZ. All digital outputs are placed into a high-impedance state. The bypass register is connected between JTDI
and JTDO.
CLAMP. All digital output pins output data from the boundary scan parallel output while connecting the bypass
register between JTDI and JTDO. The o utputs do n ot change during the CLAMP instruction.
Table 12-B. JTAG ID Code
PART REVISION DEVICE CODE M ANUFACTURER CODE REQUIRED
DS3154 Consult factory 0000000000110011 00010100001 1
DS3153 Consult factory 0000000000110010 00010100001 1
DS3152 Consult factory 0000000000110000 00010100001 1
DS3151 Consult factory 0000000000100000 00010100001 1
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
36 of 61
12.4 JTAG Test Registers
IEEE 1149.1 requires a minimum of two test registers—the bypass register and the boundary scan register. An
optional test register, the identification register, has been included in the device design. It is used with the IDCODE
instruction and the Test-Logic-Reset state of the TAP controller.
Bypass Register. This single 1-bit shift register, used with the BYPASS, CLAMP, and HIGHZ instructions,
provides a short path between JTDI and JTDO.
Boundary Scan Register. This register contains a shift register path and a latched parallel output for control cells
and digital I/O cells. DS315x BSDL files are available at www.maxim-ic.com/TechSupport/telecom/bsdl.htm.
Identification Register. This register contains a 32-bit shift register and a 32-bit latched parallel output. It is
selected during the IDCODE instructio n and when the TAP controller is in the Test-Logic-Reset state.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
37 of 61
13. ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
Voltage Range on Any Lead with Resp ect to VSS (except VDD) -0.3V to +5.5V
Supply Voltage Range (VDD) with Respect to VSS -0.3V to +3.63V
Ambient Operating Temperature Range -40°C to +85°C
Junction Operating Tempe rature Range -40°C to +125°C
Storage Temperature Range -55°C to +125°C
Soldering Temperature See IPC/JEDEC J-STD-020A Specification
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only,
and functional operation of the device at these or any other conditions beyond thos e indicated in the operational sections of the specifications is
not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Ambient operating
temperature range when device is mounted on a four-layer JEDEC test board with no airflow.
Note: The typical values listed in Tables 13-A through 13-I are not production tested.
Table 13-A. Recommended DC Operating Conditions
(TA = -40°C to +85°C)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Logic 1 VIH 2.0 5.5 V
Logic 0 VIL -0.3 +0.8 V
Supply Voltage VDD 3.135 3.3 3.465 V
Table 13-B. DC Characteristics
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
DS3151 75 100
DS3152 150 200
DS3153 225 300
Supply Current (Note 1) IDD
DS3154 300 400
mA
DS3151 65 80
DS3152 120 150
DS3153 180 225
Supply Current, Transmitters Tri-Stated
(All TTSn Low) (Note 2) IDDTTS
DS3154 240 300
mA
Power-Down Cur rent (All TPD, RPD
Control Bits High) IDDPD DS315x (Note 2) 55 70 mA
Lead Capacitance CIO 7 pF
Input Leakage IIL (Note 3) -50 +10 μA
Output Leakage (when High-Z) ILO (Note 3) -10 +10 μA
Output Voltage (IO = -4.0mA) VOH 2.4 VDD V
Output Voltage (IO = +4.0mA) VOL 0 0.4 V
Note 1: TCLKn = STMCLK = 51.84MHz; TXPn/TXNn driving all ones into 75Ω resistive loads; analog loopback enabled; all other inputs at VDD
or grounded; all other outputs open.
Note 2: TCLKn = STMCLK = 51.84MHz; other inputs at VDD or grounded; digital outputs left open circuited.
Note 3: 0V < VIN < VDD.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
38 of 61
Table 13-C. Framer Interface Timing
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 13-1 and Figure 13-2)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
(Note 4) 22.4
(Note 5) 29.1
RCLK/TCLK Clock Period t1 (Note 6) 19.3 ns
RCLK Duty Cycle t2/t1, t3/t1 (Notes 7, 8) 45 50 55 %
TCLK Duty Cycle t2/t1, t3/t1 (Note 8) 30 70 %
MCLK Duty Cycle t2/t1, t3/t1 (Note 8) 30 70 %
TPOS/TDAT, TNEG to TCLK Setup
Time t4 (Notes 8, 9) 2 ns
TPOS/TDAT, TNEG Hold Time t5 (Notes 8, 9) 2 ns
RCLK to RPOS/RDAT, RNEG/RLCV,
and PRBS Value Change t6 (Notes 7, 8, 10) 2 6 ns
RCLK Rise and Fall Time t7 (Notes 8, 11) 5 ns
TCLK Rise and Fall Time t8 (Notes 8, 12) 5 ns
Note 4: DS3 mode.
Note 5: E3 mode.
Note 6: STS-1 mode.
Note 7: Outputs loaded with 25pF, measured at 50% threshold.
Note 8: Not tested during production test.
Note 9: When TCINV = 0, TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. When TCINV = 1, TPOS/TDAT and TNEG are
sampled on the falling edge of TCLK.
Note 10: When RCINV = 0, RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK. When RCINV = 1, RPOS/RDAT and
RNEG/RLCV are updated on the rising edge of RCLK.
Note 11: Outputs loaded with 25pF, measured between VOL (max) and VOH (min).
Note 12: Measured between VIL (max) and VIH (min).
Figure 13-1. Transmitter Framer Interface Timing Diagram
TCLK (INVERTED)
TPOS/TDAT,
TNEG
t4 t5
t1
t2 t3
TCLK (NORMAL)
t8
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
39 of 61
Figure 13-2. Receiver Framer Interface Timing Diagram
Table 13-D. Receiver Input Characteristics—DS3 and STS-1 Modes
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)
PARAMETER MIN TYP MAX UNITS
Receive Sensitivity (Length of Cable) 900 1200 ft
Signal-to-Noise Ratio, Interfering Signal Test (Notes 13, 14) 10
Input Pulse Amplitude, RMON = 0 (Notes 14, 15 ) 1000 mVpk
Input Pulse Amplitude, RMON = 1 (Note 14, 15) 200 mVpk
Analog LOS Declare, RMON = 0 (Note 16) -24 dB
Analog LOS Clear, RMON = 0 (Note 16) -21 dB
Analog LOS Declare, RMON = 1 (Note 16) -38 dB
Analog LOS Clear, RMON = 1 (Note 16) -35 dB
Intrinsic Jitter Generation (Note 14) 0.03 UIP-P
Table 13-E. Receiver Input Characteristics—E3 Mode
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)
PARAMETER MIN TYP MAX UNITS
Receive Sensitivity (Length of Cable) 900 1200 ft
Signal-to-Noise Ratio, Interfering Signal Test (Notes 13, 14) 12
Input Pulse Amplitude, RMON = 0 (Notes 14, 15 ) 1300 mVpk
Input Pulse Amplitude, RMON = 1 (Notes 14, 15 ) 260 mVpk
Analog LOS Declare, RMON = 0 (Note 16) -24 dB
Analog LOS Clear, RMON = 0 (Note 16) -21 dB
Analog LOS Declare, RMON = 1 (Note 16) -38 dB
Analog LOS Clear, RMON = 1 (Note 16) -35 dB
Intrinsic Jitter Generation (Note 14) 0.03 UIP-P
Note 13: An interfering signal (215 - 1 PRBS for DS 3/STS-1, 2 23 - 1 PRBS for E3, B3 ZS/HDB3 encoded, compliant waveshape, nominal bit rate)
is added to the wanted signal. The combined signal is passed through 0 to 900ft of coaxial cable and presented to the DS3154
receiver. This spec indicates the lowest signal-to-noise ratio that results in a bit error ratio <10-9.
Note 14: Not tested during production test.
Note 15: Measured on the line side (i.e., the BNC connector side) of the 1:2 receive transformer (Fi gure 1-1). During measurement, incoming
data traffic is unframed 215 - 1 PRBS for DS3/STS-1 and unframed 223 - 1 PRBS for E3.
Note 16: With respect to nominal 800mVpk signal for DS3/STS-1 and nominal 1000mVpk signal for E3.
RCLK (NORMAL)
RPOS/RDAT,
RNEG/RLCV
t6
t1
t2 t3
RCLK (INVERTED)
t7
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
40 of 61
Table 13-F. Transmitter Output Characteristics—DS3 and STS-1 Modes
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)
PARAMETER MIN TYP MAX UNITS
DS3 Output Pulse Amplitude, TLBO = 0 (Note 17) 700 800 900 mVpk
DS3 Output Pulse Amplitude, TLBO = 1 (Note 17) 520 700 800 mVpk
STS-1 Output Pulse Amplitude, TLBO = 0 (Note 17) 700 800 1100 mVpk
STS-1 Output Pulse Amplitude, TLBO = 1 (Note 17) 520 700 850 mVpk
Ratio of Positive and Negative Pulse-Peak Amplitudes 0.9 1.1
DS3 Unframed All-Ones Power Level at 22.368MHz, 3kHz Bandwidth -1.8 +5.7 dBm
DS3 Unframed All-Ones Power Level at 44.736MHz vs. Power Level at
22.368MHz, 3kHz Bandwidth -20 dB
Intrinsic Jitter Generation (Note 18) 0.02 0.05 UIP-P
Table 13-G. Transmitter Output Characteristics—E3 Mode
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)
PARAMETER MIN TYP MAX UNITS
Output Pulse Amplitude (Note 17) 900 1000 1100 mVpk
Pulse Width 14.55 ns
Ratio of Positive and Negative Pulse Amplitudes (at Centers of Pulses) 0.95 1.05
Ratio of Positive and Negative Pulse Wi dths (at Nominal Half Amplitude) 0.95 1.05
Intrinsic Jitter Generation (Note 18) 0.02 0.05 UIP-P
Note 17: Measured on the line side (i.e., the BNC connector side) of the 2:1 transmit transformer (Figure 1-1).
Note 18: Measured with jitter-free clock applied to TCLK and a bandpass jitter filter with 10Hz and 800kHz cutoff frequencies. Not tested during
production test.
Table 13-H. CPU Bus Timing
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 13-3 and Figure 13-4)
PARAMETER SYMBOL MIN TYP MAX UNITS
Setup Time for A[5:0] Valid to CS Active (Notes 19, 20) t1 0 ns
Setup Time for CS Active to RD, WR, or DS Active t2 0 ns
Delay Time from RD or DS Active to D[7:0] Valid t3 65 ns
Hold Time from RD or WR or DS Inactive to CS Inactive t4 0 ns
Delay from CS or RD or DS Inactive to D[7:0] Invalid or Tri-State
(Note 21) t5 2 20 ns
Wait Time from WR or DS Active to Latch D[7:0] t6 65 ns
D[7:0] Setup Time to WR or DS Inactive t7 10 ns
D[7:0] Hold Time from WR or DS Inactive t8 2 ns
A[5:0] Hold Time from WR or RD or DS Inactive t9 5 ns
RD, WR, or DS Inactive Time t10 75 ns
Muxed Address Valid to ALE Falling (Note 22) t11 10 ns
Muxed Address Hold Time (Note 2 2) t12 10 ns
ALE Pulse Width (Note 22) t13 30 ns
Setup Time for ALE High or Muxed Address Valid to CS Active
(Note 22) t14 0 ns
Note 19: D[7:0] loaded with 50pF when tested as outputs.
Note 20: If a gapped clock is applied on TCLK and diagnostic loopback is enabled, read cycle time must be extended by the length of the
largest TCLK gap.
Note 21: Not tested during production test.
Note 22: In nonmultiplexed bus applications (Figure 13-3), ALE should be wired high. In multiplexed bus applications (Figure 13-4), A[5:0]
should be wired to D[5:0] and the falling edge of ALE latches the address.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
41 of 61
Figure 13-3. CPU Bus Timing Diagram (Nonmultiplexed)
A
DDRESS VALID
DATA VALID
A[5:0]
D[7:0]
WR
CS
RD
t1
t2 t3 t4
t5
t9
t10
INTEL READ CYCLE
A
DDRESS VALID
A[5:0]
D[7:0]
RD
CS
WR
t1
t2 t6 t4
t7 t8
t9
t10
INTEL WRITE CYCLE
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
42 of 61
Figure 13-3. CPU Bus Timing Diagram (Nonmultiplexed)(continued)
A
DDRESS VALID
DATA VALID
A[5:0]
D[7:0]
R/
W
CS
DS
t1
t2 t3 t4
t5
t9
t10
MOTOROLA READ CYCLE
A
DDRESS VALID
A[5:0]
D[7:0]
R/
W
CS
DS
t1
t2 t6 t4
t7 t8
t9
t10
MOTOROLA WRITE CYCLE
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
43 of 61
Figure 13-4. CPU Bus Timing Diagram (Multiplexed)
A
DDRESS
VALID
DATA VALID
A[5:0]
D[7:0]
WR
CS
RD
t2 t3 t4
t5
t10
ALE t11 t12
t13
t14
t14
NOTE: t14 STARTS ON THE OCCURRENCE OF E ITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.
NOTE: TO AVOID BUS CONTENTION, STOP DRIVING A[5:0] BEFORE RD GOES LOW.
INTEL READ CYCLE
D[7:0]
RD
CS
WR
t2 t6 t4
t7 t8
t10
A
DDRESS
VALID
A[5:0]
ALE t11 t12
t13
t14
t14
NOTE: t14 STARTS ON THE OCCURRENCE OF E ITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.
INTEL WRITE CYCLE
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
44 of 61
Figure 13-4. CPU Bus Timing Diagram (Multiplexed) (continued)
MOTOROLA READ CYCLE
DATA VALID
D[7:0]
R/
W
CS
DS
t2 t3 t4
t5
t10
A
DDRESS
VALID
A[5:0]
ALE t11 t12
t13
t14
t14
NOTE: t14 STARTS ON THE OCCURRENCE OF E ITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.
NOTE: TO AVOID BUS CONTENTION, STOP DRIVING A
[
5:0
]
BEFORE
R
DGOES LOW.
D[7:0]
R/
W
A[5:0]
CS
DS
t2 t6 t4
t7 t8
t10
ADDRESS
VALID
ALE t11 t12
t13
t14
t14
MOTOROLA WRITE CYCLE
NOTE: t14 STARTS ON THE OCCURRENCE OF E ITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
45 of 61
Table 13-I. JTAG Interface Timing
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 13-5)
PARAMETER SYMBOL MIN TYP MAX UNITS
JTCLK Clock Period t1 1000 ns
JTCLK Clock High/Low Time (Note 23) t2/t3 50 500 ns
JTCLK to JTDI, JTMS Setup Time t4 50 ns
JTCLK to JTDI, JTMS Hold Time t5 50 ns
JTCLK to JTDO Delay t6 2 50 ns
JTCLK to JTDO High-Z Delay (Note 2 4) t7 2 50 ns
JTRST Width Low Time t8 100 ns
Note 23: Clock can be stopped high or low.
Note 24: Not tested during production test.
Figure 13-5. JTAG Timing Diagram
t1
JTDO
t4 t5
t2 t3
t7
JTDI, JTMS,
J
TRS
T
t6
JTRST
t8
JTCLK
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
46 of 61
14. PIN ASSIGNMENTS
Table 14-A lists pin assignments sorted by signal name. Table 14-B lists pin assignments sorted by pin number.
DS3154 has all four LIUs. DS3153 has only LIUs 1, 2, and 3. DS3152 has only LIUs 1 and 2. DS3151 has only LIU
1. Figure 14-1 through Figure 14-8 sho w pino uts for the four devices in both hardware and CPU bus modes.
Table 14-A. Pin Assignments Sorted by Signal Name
PIN
NAME HARDWARE
MODE CPU BUS
MODE LIU 1 LIU 2 LIU 3 LIU 4
A[0] N Y K6
A[1] N Y L6
A[2] N Y K7
A[3] N Y L7
A[4] N Y K8
A[5] N Y L8
ALE N Y C7
CS N Y B7
D[0] N Y E3
D[1] N Y F2
D[2] N Y F3
D[3] N Y G2
D[4] N Y G3
D[5] N Y H2
D[6] N Y H3
D[7] N Y J3
E3MCLK Y Y E12
E3Mn Y N F3 G10 C7 K6
HIZ Y Y J8
HW Y Y E9
INT N Y C5
JTCLK Y Y E4
JTDI Y Y H4
JTDO Y Y J4
JTMS Y Y D5
JTRST Y Y D4
LLBn Y N B5 L8 E11 H2
MOT N Y C6
PRBSn Y Y B1 L12 A11 M2
RBIN Y N D9
RCINV Y N J9
RCLKn Y Y C1 K12 A10 M3
RD N Y B6
RJAn Y N B4 L9 D11 J2
RLBn Y N C5 K8 E10 H3
RLOSn Y Y A1 M12 A12 M1
Table 14-A. Pin Assignments Sorted by Signal Name (continued)
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
47 of 61
PIN
NAME HARDWARE
MODE CPU
MODE LIU 1 LIU 2 LIU 3 LIU 4
RNEGn Y Y C3 K10 C10 K3
RPOSn Y Y C2 K11 B10 L3
RST Y Y H1
RTSn Y Y B2 L11 B11 L2
RXNn Y Y A2 M11 B12 L1
RXPn Y Y A3 M10 C12 K1
STMCLK Y Y M8
STSn Y N F2 G11 B7 L6
T3MCLK Y Y A5
TBIN Y N D8
TCINV Y N H9
TCLKn Y Y E1 H12 A8 M5
TDMn Y Y D3 J10 C9 K4
TDSAn Y N G2 F11 B6 L7
TDSBn Y N G3 F10 C6 K7
TEST Y Y J5
TJAn Y N C4 K9 D10 J3
TLBOn Y N E3 H10 C8 K5
TNEGn Y Y D2 J11 B9 L4
TPOSn Y Y D1 J12 A9 M4
TTSn Y Y E2 H11 B8 L5
TXNn Y Y G1 F12 A6 M7
TXPn Y Y F1 G12 A7 M6
VDD Y Y D6, E5, E6, F4, F5, F6, G7, G8, G9, H7, H8, J7
VSS Y Y D7, E7, E8, F7, F8, F9, G4, G5, G6, H5, H6, J6
WR N Y B5
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
48 of 61
Table 14-B. Pin Assignments Sorted by Pin Number
DS3154 DS3153 DS3152 DS3151
PIN HARDWARE
MODE CPU BUS
MODE HARDWARE
MODE CPU BUS
MODE HARDWARE
MODE CPU BUS
MODE HARDWARE
MODE CPU BUS
MODE
A1 RLOS1 RLOS1 RLOS1 RLOS1 RLOS1 RLOS1 RLOS1 RLOS1
A2 RXN1 RXN1 RXN1 RXN1 RXN1 RXN1 RXN1 RXN1
A3 RXP1 RXP1 RXP1 RXP1 RXP1 RXP1 RXP1 RXP1
A4 RMON1 N.C. RMON1 N.C. RMON1 N.C. RMON1 N.C.
A5 T3MCLK T3MCLK T3MCLK T3MCLK T3MCLK T3MCLK T3MCLK T3MCLK
A6 TXN3 TXN3 TXN3 TXN3 N.C. N.C. N.C. N.C.
A7 TXP3 TXP3 TXP3 TXP3 N.C. N.C. N.C. N.C.
A8 TCLK3 TCLK3 TCLK3 TCLK3 N.C. N.C. N.C. N.C.
A9 TPOS3 TPOS3 TPOS3 TPOS3 N.C. N.C. N.C. N.C.
A10 RCLK3 RCLK3 RCLK3 RCLK3 N.C. N.C. N.C. N.C.
A11 PRBS3 PRBS3 PRBS3 PRBS3 N.C. N.C. N.C. N.C.
A12 RLOS3 RLOS3 RLOS3 RLOS3 N.C. N.C. N.C. N.C.
B1 PRBS1 PRBS1 PRBS1 PRBS1 PRBS1 PRBS1 PRBS1 PRBS1
B2 RTS1 RTS1 RTS1 RTS1 RTS1 RTS1 RTS1 RTS1
B3 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
B4 RJA1 N.C. RJA1 N.C. RJA1 N.C. RJA1 N.C.
B5 LLB1 WR LLB1 WR LLB1 WR LLB1 WR
B6 TDSA3 RD TDSA3 RD N.C. RD N.C. RD
B7 STS3 CS STS3 CS N.C. CS N.C. CS
B8 TTS3 TTS3 TTS3 TTS3 N.C. N.C. N.C. N.C.
B9 TNEG3 TNEG3 TNEG3 TNEG3 N.C. N.C. N.C. N.C.
B10 RPOS3 RPOS3 RPOS3 RPOS3 N.C. N.C. N.C. N.C.
B11 RTS3 RTS3 RTS3 RTS3 N.C. N.C. N.C. N.C.
B12 RXN3 RXN3 RXN3 RXN3 N.C. N.C. N.C. N.C.
C1 RCLK1 RCLK1 RCLK1 RCLK1 RCLK1 RCLK1 RCLK1 RCLK1
C2 RPOS1 RPOS1 RPOS1 RPOS1 RPOS1 RPOS1 RPOS1 RPOS1
C3 RNEG1 RNEG1 RNEG1 RNEG1 RNEG1 RNEG1 RNEG1 RNEG1
C4 TJA1 N.C. TJA1 N.C. TJA1 N.C. TJA1 N.C.
C5 RLB1 INT RLB1 INT RLB1 INT RLB1 INT
C6 TDSB3 MOT TDSB3 MOT N.C. MOT N.C. MOT
C7 E3M3 ALE E3M3 ALE N.C. ALE N.C. ALE
C8 TLBO3 N.C. TLBO3 N.C. N.C. N.C. N.C. N.C.
C9 TDM3 TDM3 TDM3 TDM3 N.C. N.C. N.C. N.C.
C10 RNEG3 RNEG3 RNEG3 RNEG3 N.C. N.C. N.C. N.C.
C11 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
C12 RXP3 RXP3 RXP3 RXP3 N.C. N.C. N.C. N.C.
D1 TPOS1 TPOS1 TPOS1 TPOS1 TPOS1 TPOS1 TPOS1 TPOS1
D2 TNEG1 TNEG1 TNEG1 TNEG1 TNEG1 TNEG1 TNEG1 TNEG1
D3 TDM1 TDM1 TDM1 TDM1 TDM1 TDM1 TDM1 TDM1
D4 JTRST JTRST JTRST JTRST JTRST JTRST JTRST JTRST
D5 JTMS JTMS JTMS JTMS JTMS JTMS JTMS JTMS
D6 VDD V
DD VDD VDD VDD VDD VDD VDD
D7 VSS V
SS VSS VSS VSS VSS VSS VSS
D8 TBIN N.C. TBIN N.C. TBIN N.C. TBIN N.C.
D9 RBIN N.C. RBIN N.C. RBIN N.C. RBIN N.C.
D10 TJA3 N.C. TJA3 N.C. N.C. N.C. N.C. N.C.
D11 RJA3 N.C. RJA3 N.C. N.C. N.C. N.C. N.C.
D12 RMON3 N.C. RMON3 N.C. N.C. N.C. N.C. N.C.
E1 TCLK1 TCLK1 TCLK1 TCLK1 TCLK1 TCLK1 TCLK1 TCLK1
E2 TTS1 TTS1 TTS1 TTS1 TTS1 TTS1 TTS1 TTS1
E3 TLBO1 D0 TLBO1 D0 TLBO1 D0 TLBO1 D0
E4 JTCLK JTCLK JTCLK JTCLK JTCLK JTCLK JTCLK JTCLK
E5 VDD VDD VDD VDD VDD VDD VDD VDD
E6 VDD VDD VDD VDD VDD VDD VDD VDD
E7 VSS VSS VSS VSS VSS VSS VSS VSS
E8 VSS VSS VSS VSS VSS VSS VSS VSS
E9 HW HW HW HW HW HW HW HW
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
49 of 61
DS3154 DS3153 DS3152 DS3151
PIN HARDWARE
MODE CPU BUS
MODE HARDWARE
MODE CPU BUS
MODE HARDWARE
MODE CPU BUS
MODE HARDWARE
MODE CPU BUS
MODE
E10 RLB3 N.C. RLB3 N.C. N.C. N.C. N.C. N.C.
E11 LLB3 N.C. LLB3 N.C. N.C. N.C. N.C. N.C.
E12 E3MCLK E3MCLK E3MCLK E3MCLK E3MCLK E3MCLK E3MCLK E3MCLK
F1 TXP1 TXP1 TXP1 TXP1 TXP1 TXP1 TXP1 TXP1
F2 STS1 D1 STS1 D1 STS1 D1 STS1 D1
F3 E3M1 D2 E3M1 D2 E3M1 D2 E3M1 D2
F4 VDD VDD VDD VDD VDD VDD VDD VDD
F5 VDD VDD VDD VDD VDD VDD VDD VDD
F6 VDD VDD VDD VDD VDD VDD VDD VDD
F7 VSS VSS VSS VSS VSS VSS VSS VSS
F8 VSS VSS VSS VSS VSS VSS VSS VSS
F9 VSS VSS VSS VSS VSS VSS VSS VSS
F10 TDSB2 N.C. TDSB2 N.C. TDSB2 N.C. N.C. N.C.
F11 TDSA2 N.C. TDSA2 N.C. TDSA2 N.C. N.C. N.C.
F12 TXN2 TXN2 TXN2 TXN2 TXN2 TXN2 N.C. N.C.
G1 TXN1 TxN1 TXN1 TXN1 TXN1 TXN1 TXN1 TXN1
G2 TDSA1 D3 TDSA1 D3 TDSA1 D3 TDSA1 D3
G3 TDSB1 D4 TDSB1 D4 TDSB1 D4 TDSB1 D4
G4 VSS VSS VSS VSS VSS VSS VSS VSS
G5 VSS VSS VSS VSS VSS VSS VSS VSS
G6 VSS VSS VSS VSS VSS VSS VSS VSS
G7 VDD VDD VDD VDD VDD VDD VDD VDD
G8 VDD VDD VDD VDD VDD VDD VDD VDD
G9 VDD VDD VDD VDD VDD VDD VDD VDD
G10 E3M2 N.C. E3M2 N.C. E3M2 N.C. N.C. N.C.
G11 STS2 N.C. STS2 N.C. STS2 N.C. N.C. N.C.
G12 TXP2 TXP2 TXP2 TXP2 TXP2 TXP2 N.C. N.C.
H1 RST RST RST RST RST RST RST RST
H2 LLB4 D5 N.C. D5 N.C. D5 N.C. D5
H3 RLB4 D6 N.C. D6 N.C. D6 N.C. D6
H4 JTDI JTDI JTDI JTDI JTDI JTDI JTDI JTDI
H5 VSS V
SS VSS VSS VSS VSS VSS VSS
H6 VSS V
SS VSS VSS VSS VSS VSS VSS
H7 VDD V
DD VDD VDD VDD VDD VDD VDD
H8 VDD V
DD VDD VDD VDD VDD VDD VDD
H9 TCINV N.C. TCINV N.C. TCINV N.C. TCINV N.C.
H10 TLBO2 N.C. TLBO2 N.C. TLBO2 N.C. N.C. N.C.
H11 TTS2 TTS2 TTS2 TTS2 TTS2 TTS2 N.C. N.C.
H12 TCLK2 TCLK2 TCLK2 TCLK2 TCLK2 TCLK2 N.C. N.C.
J1 RMON4 N.C. N.C. N.C. N.C. N.C. N.C. N.C.
J2 RJA4 N.C. N.C. N.C. N.C. N.C. N.C. N.C.
J3 TJA4 D7 N.C. D7 N.C. D7 N.C. D7
J4 JTDO JTDO JTDO JTDO JTDO JTDO JTDO JTDO
J5 TEST TEST TEST TEST TEST TEST TEST TEST
J6 VSS V
SS V
SS V
SS V
SS V
SS V
SS V
SS
J7 VDD V
DD VDD VDD VDD VDD VDD VDD
J8 HIZ HIZ HIZ HIZ HIZ HIZ HIZ HIZ
J9 RCINV N.C RCINV N.C RCINV N.C RCINV N.C
J10 TDM2 TDM2 TDM2 TDM2 TDM2 TDM2 N.C. N.C.
J11 TNEG2 TNEG2 TNEG2 TNEG2 TNEG2 TNEG2 N.C. N.C.
J12 TPOS2 TPOS2 TPOS2 TPOS2 TPOS2 TPOS2 N.C. N.C.
K1 RXP4 RXP4 N.C. N.C. N.C. N.C. N.C. N.C.
K2 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
K3 RNEG4 RNEG4 N.C. N.C. N.C. N.C. N.C. N.C.
K4 TDM4 TDM4 N.C. N.C. N.C. N.C. N.C. N.C.
K5 TLBO4 N.C. N.C. N.C. N.C. N.C. N.C. N.C.
K6 E3M4 A0 N.C. A0 N.C. A0 N.C. A0
K7 TDSB4 A2 N.C. A2 N.C. A2 N.C. A2
K8 RLB2 A4 RLB2 A4 RLB2 A4 N.C. N.C.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
50 of 61
DS3154 DS3153 DS3152 DS3151
PIN HARDWARE
MODE CPU BUS
MODE HARDWARE
MODE CPU BUS
MODE HARDWARE
MODE CPU BUS
MODE HARDWARE
MODE CPU BUS
MODE
K9 TJA2 N.C. TJA2 N.C. TJA2 N.C. N.C. N.C.
K10 RNEG2 RNEG2 RNEG2 RNEG2 RNEG2 RNEG2 N.C. N.C.
K11 RPOS2 RPOS2 RPOS2 RPOS2 RPOS2 RPOS2 N.C. N.C.
K12 RCLK2 RCLK2 RCLK2 RCLK2 RCLK2 RCLK2 N.C. N.C.
L1 RXN4 RXN4 N.C. N.C. N.C. N.C. N.C. N.C.
L2 RTS4 RTS4 N.C. N.C. N.C. N.C. N.C. N.C.
L3 RPOS4 RPOS4 N.C. N.C. N.C. N.C. N.C. N.C.
L4 TNEG4 TNEG4 N.C. N.C. N.C. N.C. N.C. N.C.
L5 TTS4 TTS4 N.C. N.C. N.C. N.C. N.C. N.C.
L6 STS4 A1 N.C. A1 N.C. A1 N.C. A1
L7 TDSA4 A3 N.C. A3 N.C. A3 N.C. A3
L8 LLB2 A5 LLB2 A5 LLB2 N.C. N.C. N.C.
L9 RJA2 N.C. RJA2 N.C. RJA2 N.C. N.C. N.C.
L10 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.
L11 RTS2 RTS2 RTS2 RTS2 RTS2 RTS2 N.C. N.C.
L12 PRBS2 PRBS2 PRBS2 PRBS2 PRBS2 PRBS2 N.C. N.C.
M1 RLOS4 RLOS4 N.C. N.C. N.C. N.C. N.C. N.C.
M2 PRBS4 PRBS4 N.C. N.C. N.C. N.C. N.C. N.C.
M3 RCLK4 RCLK4 N.C. N.C. N.C. N.C. N.C. N.C.
M4 TPOS4 TPOS4 N.C. N.C. N.C. N.C. N.C. N.C.
M5 TCLK4 TCLK4 N.C. N.C. N.C. N.C. N.C. N.C.
M6 TXP4 TXP4 N.C. N.C. N.C. N.C. N.C. N.C.
M7 TXN4 TXN4 N.C. N.C. N.C. N.C. N.C. N.C.
M8 STMCLK STMCLK STMCLK STMCLK STMCLK STMCLK STMCLK STMCLK
M9 RMON2 N.C. RMON2 N.C. RMON2 N.C. N.C. N.C.
M10 RXP2 RXP2 RXP2 RXP2 RXP2 RXP2 N.C. N.C.
M11 RXN2 RXN2 RXN2 RXN2 RXN2 RXN2 N.C. N.C.
M12 RLOS2 RLOS2 RLOS2 RLOS2 RLOS2 RLOS2 N.C. N.C.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
51 of 61
Figure 14-1. DS3151 Hardware Mode Pin Assignment
A1
RLOS1
A2
RXN1
A3
RXP1
A4
RMON1
A5
T3MCLK
A6
N.C.
A7
N.C.
A8
N.C.
A9
N.C.
A10
N.C.
A11
N.C.
A12
N.C.
B1
PRBS1
B2
RTS1
B3
N.C.
B4
RJA1
B5
LLB1
B6
N.C.
B7
N.C.
B8
N.C.
B9
N.C.
B10
N.C.
B11
N.C.
B12
N.C.
C1
RCLK1
C2
RPOS1
C3
RNEG1
C4
TJA1
C5
RLB1
C6
N.C.
C7
N.C.
C8
N.C.
C9
N.C.
C10
N.C.
C11
N.C.
C12
N.C.
D1
TPOS1
D2
TNEG1
D3
TDM1
D4
JTRST
D5
JTMS
D6
VDD
D7
VSS
D8
TBIN
D9
RBIN
D10
N.C.
D11
N.C.
D12
N.C.
E1
TCLK1
E2
TTS1
E3
TLBO1
E4
JTCLK
E5
VDD
E6
VDD
E7
VSS
E8
VSS
E9
HW
E10
N.C.
E11
N.C.
E12
E3MCLK
F1
TXP1
F2
STS1
F3
E3M1
F4
VDD
F5
VDD
F6
VDD
F7
VSS
F8
VSS
F9
VSS
F10
N.C.
F11
N.C.
F12
N.C.
G1
TXN1
G2
TDSA1
G3
TDSB1
G4
VSS
G5
VSS
G6
VSS
G7
VDD
G8
VDD
G9
VDD
G10
N.C.
G11
N.C.
G12
N.C.
H1
RST
H2
N.C.
H3
N.C.
H4
JTDI
H5
VSS
H6
VSS
H7
VDD
H8
VDD
H9
TCINV
H10
N.C.
H11
N.C.
H12
N.C.
J1
N.C.
J2
N.C.
J3
N.C.
J4
JTDO
J5
TEST
J6
VSS
J7
VDD
J8
HIZ
J9
RCINV
J10
N.C.
J11
N.C.
J12
N.C.
K1
N.C.
K2
N.C.
K3
N.C.
K4
N.C.
K5
N.C.
K6
N.C.
K7
N.C.
K8
N.C.
K9
N.C.
K10
N.C.
K11
N.C.
K12
N.C.
L1
N.C.
L2
N.C.
L3
N.C.
L4
N.C.
L5
N.C.
L6
N.C.
L7
N.C.
L8
N.C.
L9
N.C.
L10
N.C.
L11
N.C.
L12
N.C.
M1
N.C.
M2
N.C.
M3
N.C.
M4
N.C.
M5
N.C.
M6
N.C.
M7
N.C.
M8
STMCLK
M9
N.C.
M10
N.C.
M11
N.C.
M12
N.C.
High-Speed Analog
High-Speed Digital
Low-Speed Digital
VDD
VSS
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
52 of 61
Figure 14-2. DS3151 CPU Bus Mode Pin Assignment
A1
RLOS1
A2
RXN1
A3
RXP1
A4
N.C.
A5
T3MCLK
A6
N.C.
A7
N.C.
A8
N.C.
A9
N.C.
A10
N.C.
A11
N.C.
A12
N.C.
B1
PRBS1
B2
RTS1
B3
N.C.
B4
N.C.
B5
WR
B6
RD
B7
CS
B8
N.C.
B9
N.C.
B10
N.C.
B11
N.C.
B12
N.C.
C1
RCLK1
C2
RPOS1
C3
RNEG1
C4
N.C.
C5
INT
C6
MOT
C7
ALE
C8
N.C.
C9
N.C.
C10
N.C.
C11
N.C.
C12
N.C.
D1
TPOS1
D2
TNEG1
D3
TDM1
D4
JTRST
D5
JTMS
D6
VDD
D7
VSS
D8
N.C.
D9
N.C.
D10
N.C.
D11
N.C.
D12
N.C.
E1
TCLK1
E2
TTS1
E3
D0
E4
JTCLK
E5
VDD
E6
VDD
E7
VSS
E8
VSS
E9
HW
E10
N.C.
E11
N.C.
E12
E3MCLK
F1
TXP1
F2
D1
F3
D2
F4
VDD
F5
VDD
F6
VDD
F7
VSS
F8
VSS
F9
VSS
F10
N.C.
F11
N.C.
F12
N.C.
G1
TXN1
G2
D3
G3
D4
G4
VSS
G5
VSS
G6
VSS
G7
VDD
G8
VDD
G9
VDD
G10
N.C.
G11
N.C.
G12
N.C.
H1
RST
H2
D5
H3
D6
H4
JTDI
H5
VSS
H6
VSS
H7
VDD
H8
VDD
H9
N.C.
H10
N.C.
H11
N.C.
H12
N.C.
J1
N.C.
J2
N.C.
J3
D7
J4
JTDO
J5
TEST
J6
VSS
J7
VDD
J8
HIZ
J9
N.C.
J10
N.C.
J11
N.C.
J12
N.C.
K1
N.C.
K2
N.C.
K3
N.C.
K4
N.C.
K5
N.C.
K6
A0
K7
A2
K8
N.C.
K9
N.C.
K10
N.C.
K11
N.C.
K12
N.C.
L1
N.C.
L2
N.C.
L3
N.C.
L4
N.C.
L5
N.C.
L6
A1
L7
A3
L8
N.C.
L9
N.C.
L10
N.C.
L11
N.C.
L12
N.C.
M1
N.C.
M2
N.C.
M3
N.C.
M4
N.C.
M5
N.C.
M6
N.C.
M7
N.C.
M8
STMCLK
M9
N.C.
M10
N.C.
M11
N.C.
M12
N.C.
High-Speed Analog
High-Speed Digital
Low-Speed Digital
VDD
VSS
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
53 of 61
Figure 14-3. DS3152 Hardware Mode Pin Assignment
A1
RLOS1
A2
RXN1
A3
RXP1
A4
RMON1
A5
T3MCLK
A6
N.C.
A7
N.C.
A8
N.C.
A9
N.C.
A10
N.C.
A11
N.C.
A12
N.C.
B1
PRBS1
B2
RTS1
B3
N.C.
B4
RJA1
B5
LLB1
B6
N.C.
B7
N.C.
B8
N.C.
B9
N.C.
B10
N.C.
B11
N.C.
B12
N.C.
C1
RCLK1
C2
RPOS1
C3
RNEG1
C4
TJA1
C5
RLB1
C6
N.C.
C7
N.C.
C8
N.C.
C9
N.C.
C10
N.C.
C11
N.C.
C12
N.C.
D1
TPOS1
D2
TNEG1
D3
TDM1
D4
JTRST
D5
JTMS
D6
VDD
D7
VSS
D8
TBIN
D9
RBIN
D10
N.C.
D11
N.C.
D12
N.C.
E1
TCLK1
E2
TTS1
E3
TLBO1
E4
JTCLK
E5
VDD
E6
VDD
E7
VSS
E8
VSS
E9
HW
E10
N.C.
E11
N.C.
E12
E3MCLK
F1
TXP1
F2
STS1
F3
E3M1
F4
VDD
F5
VDD
F6
VDD
F7
VSS
F8
VSS
F9
VSS
F10
TDSB2
F11
TDSA2
F12
TXN2
G1
TXN1
G2
TDSA1
G3
TDSB1
G4
VSS
G5
VSS
G6
VSS
G7
VDD
G8
VDD
G9
VDD
G10
E3M2
G11
STS2
G12
TXP2
H1
RST
H2
N.C.
H3
N.C.
H4
JTDI
H5
VSS
H6
VSS
H7
VDD
H8
VDD
H9
TCINV
H10
TLBO2
H11
TTS2
H12
TCLK2
J1
N.C.
J2
N.C.
J3
N.C.
J4
JTDO
J5
TEST
J6
VSS
J7
VDD
J8
HIZ
J9
RCINV
J10
TDM2
J11
TNEG2
J12
TPOS2
K1
N.C.
K2
N.C.
K3
N.C.
K4
N.C.
K5
N.C.
K6
N.C.
K7
N.C.
K8
RLB2
K9
TJA2
K10
RNEG2
K11
RPOS2
K12
RCLK2
L1
N.C.
L2
N.C.
L3
N.C.
L4
N.C.
L5
N.C.
L6
N.C.
L7
N.C.
L8
LLB2
L9
RJA2
L10
N.C.
L11
RTS2
L12
PRBS2
M1
N.C.
M2
N.C.
M3
N.C.
M4
N.C.
M5
N.C.
M6
N.C.
M7
N.C.
M8
STMCLK
M9
RMON2
M10
RXP2
M11
RXN2
M12
RLOS2
High-Speed Analog
High-Speed Digital
Low-Speed Digital
VDD
VSS
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
54 of 61
Figure 14-4. DS3152 CPU Bus Mode Pin Assignment
A1
RLOS1
A2
RXN1
A3
RXP1
A4
N.C.
A5
T3MCLK
A6
N.C.
A7
N.C.
A8
N.C.
A9
N.C.
A10
N.C.
A11
N.C.
A12
N.C.
B1
PRBS1
B2
RTS1
B3
N.C.
B4
N.C.
B5
WR
B6
RD
B7
CS
B8
N.C.
B9
N.C.
B10
N.C.
B11
N.C.
B12
N.C.
C1
RCLK1
C2
RPOS1
C3
RNEG1
C4
N.C.
C5
INT
C6
MOT
C7
ALE
C8
N.C.
C9
N.C.
C10
N.C.
C11
N.C.
C12
N.C.
D1
TPOS1
D2
TNEG1
D3
TDM1
D4
JTRST
D5
JTMS
D6
VDD
D7
VSS
D8
N.C.
D9
N.C.
D10
N.C.
D11
N.C.
D12
N.C.
E1
TCLK1
E2
TTS1
E3
D0
E4
JTCLK
E5
VDD
E6
VDD
E7
VSS
E8
VSS
E9
HW
E10
N.C.
E11
N.C.
E12
E3MCLK
F1
TXP1
F2
D1
F3
D2
F4
VDD
F5
VDD
F6
VDD
F7
VSS
F8
VSS
F9
VSS
F10
N.C.
F11
N.C.
F12
TXN2
G1
TXN1
G2
D3
G3
D4
G4
VSS
G5
VSS
G6
VSS
G7
VDD
G8
VDD
G9
VDD
G10
N.C.
G11
N.C.
G12
TXP2
H1
RST
H2
D5
H3
D6
H4
JTDI
H5
VSS
H6
VSS
H7
VDD
H8
VDD
H9
N.C.
H10
N.C.
H11
TTS2
H12
TCLK2
J1
N.C.
J2
N.C.
J3
D7
J4
JTDO
J5
TEST
J6
VSS
J7
VDD
J8
HIZ
J9
N.C.
J10
TDM2
J11
TNEG2
J12
TPOS2
K1
N.C.
K2
N.C.
K3
N.C.
K4
N.C.
K5
N.C.
K6
A0
K7
A2
K8
A4
K9
N.C.
K10
RNEG2
K11
RPOS2
K12
RCLK2
L1
N.C.
L2
N.C.
L3
N.C.
L4
N.C.
L5
N.C.
L6
A1
L7
A3
L8
N.C.
L9
N.C.
L10
N.C.
L11
RTS2
L12
PRBS2
M1
N.C.
M2
N.C.
M3
N.C.
M4
N.C.
M5
N.C.
M6
N.C.
M7
N.C.
M8
STMCLK
M9
N.C.
M10
RXP2
M11
RXN2
M12
RLOS2
High-Speed Analog
High-Speed Digital
Low-Speed Digital
VDD
VSS
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
55 of 61
Figure 14-5. DS3153 Hardware Mode Pin Assignment
A1
RLOS1
A2
RXN1
A3
RXP1
A4
RMON1
A5
T3MCLK
A6
TXN3
A7
TXP3
A8
TCLK3
A9
TPOS3
A10
RCLK3
A11
PRBS3
A12
RLOS3
B1
PRBS1
B2
RTS1
B3
N.C.
B4
RJA1
B5
LLB1
B6
TDSA3
B7
STS3
B8
TTS3
B9
TNEG3
B10
RPOS3
B11
RTS3
B12
RXN3
C1
RCLK1
C2
RPOS1
C3
RNEG1
C4
TJA1
C5
RLB1
C6
TDSB3
C7
E3M3
C8
TLBO3
C9
TDM3
C10
RNEG3
C11
N.C.
C12
RXP3
D1
TPOS1
D2
TNEG1
D3
TDM1
D4
JTRST
D5
JTMS
D6
VDD
D7
VSS
D8
TBIN
D9
RBIN
D10
TJA3
D11
RJA3
D12
RMON3
E1
TCLK1
E2
TTS1
E3
TLBO1
E4
JTCLK
E5
VDD
E6
VDD
E7
VSS
E8
VSS
E9
HW
E10
RLB3
E11
LLB3
E12
E3MCLK
F1
TXP1
F2
STS1
F3
E3M1
F4
VDD
F5
VDD
F6
VDD
F7
VSS
F8
VSS
F9
VSS
F10
TDSB2
F11
TDSA2
F12
TXN2
G1
TXN1
G2
TDSA1
G3
TDSB1
G4
VSS
G5
VSS
G6
VSS
G7
VDD
G8
VDD
G9
VDD
G10
E3M2
G11
STS2
G12
TXP2
H1
RST
H2
N.C.
H3
N.C.
H4
JTDI
H5
VSS
H6
VSS
H7
VDD
H8
VDD
H9
TCINV
H10
TLBO2
H11
TTS2
H12
TCLK2
J1
N.C.
J2
N.C.
J3
N.C.
J4
JTDO
J5
TEST
J6
VSS
J7
VDD
J8
HIZ
J9
RCINV
J10
TDM2
J11
TNEG2
J12
TPOS2
K1
N.C.
K2
N.C.
K3
N.C.
K4
N.C.
K5
N.C.
K6
N.C.
K7
N.C.
K8
RLB2
K9
TJA2
K10
RNEG2
K11
RPOS2
K12
RCLK2
L1
N.C.
L2
N.C.
L3
N.C.
L4
N.C.
L5
N.C.
L6
N.C.
L7
N.C.
L8
LLB2
L9
RJA2
L10
N.C.
L11
RTS2
L12
PRBS2
M1
N.C.
M2
N.C.
M3
N.C.
M4
N.C.
M5
N.C.
M6
N.C.
M7
N.C.
M8
STMCLK
M9
RMON2
M10
RXP2
M11
RXN2
M12
RLOS2
High-Speed Analog
High-Speed Digital
Low-Speed Digital
VDD
VSS
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
56 of 61
Figure 14-6. DS3153 CPU Bus Mode Pin Assignment
A1
RLOS1
A2
RXN1
A3
RXP1
A4
N.C.
A5
T3MCLK
A6
TXN3
A7
TXP3
A8
TCLK3
A9
TPOS3
A10
RCLK3
A11
PRBS3
A12
RLOS3
B1
PRBS1
B2
RTS1
B3
N.C.
B4
N.C.
B5
WR
B6
RD
B7
CS
B8
TTS3
B9
TNEG3
B10
RPOS3
B11
RTS3
B12
RXN3
C1
RCLK1
C2
RPOS1
C3
RNEG1
C4
N.C.
C5
INT
C6
MOT
C7
ALE
C8
N.C.
C9
TDM3
C10
RNEG3
C11
N.C.
C12
RXP3
D1
TPOS1
D2
TNEG1
D3
TDM1
D4
JTRST
D5
JTMS
D6
VDD
D7
VSS
D8
N.C.
D9
N.C.
D10
N.C.
D11
N.C.
D12
N.C.
E1
TCLK1
E2
TTS1
E3
D0
E4
JTCLK
E5
VDD
E6
VDD
E7
VSS
E8
VSS
E9
HW
E10
N.C.
E11
N.C.
E12
E3MCLK
F1
TXP1
F2
D1
F3
D2
F4
VDD
F5
VDD
F6
VDD
F7
VSS
F8
VSS
F9
VSS
F10
N.C.
F11
N.C.
F12
TXN2
G1
TXN1
G2
D3
G3
D4
G4
VSS
G5
VSS
G6
VSS
G7
VDD
G8
VDD
G9
VDD
G10
N.C.
G11
N.C.
G12
TXP2
H1
RST
H2
D5
H3
D6
H4
JTDI
H5
VSS
H6
VSS
H7
VDD
H8
VDD
H9
N.C.
H10
N.C.
H11
TTS2
H12
TCLK2
J1
N.C.
J2
N.C.
J3
D7
J4
JTDO
J5
TEST
J6
VSS
J7
VDD
J8
HIZ
J9
N.C.
J10
TDM2
J11
TNEG2
J12
TPOS2
K1
N.C.
K2
N.C.
K3
N.C.
K4
N.C.
K5
N.C.
K6
A0
K7
A2
K8
A4
K9
N.C.
K10
RNEG2
K11
RPOS2
K12
RCLK2
L1
N.C.
L2
N.C.
L3
N.C.
L4
N.C.
L5
N.C.
L6
A1
L7
A3
L8
A5
L9
N.C.
L10
N.C.
L11
RTS2
L12
PRBS2
M1
N.C.
M2
N.C.
M3
N.C.
M4
N.C.
M5
N.C.
M6
N.C.
M7
N.C.
M8
STMCLK
M9
N.C.
M10
RXP2
M11
RXN2
M12
RLOS2
High-Speed Analog
High-Speed Digital
Low-Speed Digital
VDD
VSS
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
57 of 61
Figure 14-7. DS3154 Hardware Mode Pin Assignment
A1
RLOS1
A2
RXN1
A3
RXP1
A4
RMON1
A5
T3MCLK
A6
TXN3
A7
TXP3
A8
TCLK3
A9
TPOS3
A10
RCLK3
A11
PRBS3
A12
RLOS3
B1
PRBS1
B2
RTS1
B3
N.C.
B4
RJA1
B5
LLB1
B6
TDSA3
B7
STS3
B8
TTS3
B9
TNEG3
B10
RPOS3
B11
RTS3
B12
RXN3
C1
RCLK1
C2
RPOS1
C3
RNEG1
C4
TJA1
C5
RLB1
C6
TDSB3
C7
E3M3
C8
TLBO3
C9
TDM3
C10
RNEG3
C11
N.C.
C12
RXP3
D1
TPOS1
D2
TNEG1
D3
TDM1
D4
JTRST
D5
JTMS
D6
VDD
D7
VSS
D8
TBIN
D9
RBIN
D10
TJA3
D11
RJA3
D12
RMON3
E1
TCLK1
E2
TTS1
E3
TLBO1
E4
JTCLK
E5
VDD
E6
VDD
E7
VSS
E8
VSS
E9
HW
E10
RLB3
E11
LLB3
E12
E3MCLK
F1
TXP1
F2
STS1
F3
E3M1
F4
VDD
F5
VDD
F6
VDD
F7
VSS
F8
VSS
F9
VSS
F10
TDSB2
F11
TDSA2
F12
TXN2
G1
TXN1
G2
TDSA1
G3
TDSB1
G4
VSS
G5
VSS
G6
VSS
G7
VDD
G8
VDD
G9
VDD
G10
E3M2
G11
STS2
G12
TXP2
H1
RST
H2
LLB4
H3
RLB4
H4
JTDI
H5
VSS
H6
VSS
H7
VDD
H8
VDD
H9
TCINV
H10
TLBO2
H11
TTS2
H12
TCLK2
J1
RMON4
J2
RJA4
J3
TJA4
J4
JTDO
J5
TEST
J6
VSS
J7
VDD
J8
HIZ
J9
RCINV
J10
TDM2
J11
TNEG2
J12
TPOS2
K1
RXP4
K2
N.C.
K3
RNEG4
K4
TDM4
K5
TLBO4
K6
E3M4
K7
TDSB4
K8
RLB2
K9
TJA2
K10
RNEG2
K11
RPOS2
K12
RCLK2
L1
RXN4
L2
RTS4
L3
RPOS4
L4
TNEG4
L5
TTS4
L6
STS4
L7
TDSA4
L8
LLB2
L9
RJA2
L10
N.C.
L11
RTS2
L12
PRBS2
M1
RLOS4
M2
PRBS4
M3
RCLK4
M4
TPOS4
M5
TCLK4
M6
TXP4
M7
TXN4
M8
STMCLK
M9
RMON2
M10
RXP2
M11
RXN2
M12
RLOS2
High-Speed Analog
High-Speed Digital
Low-Speed Digital
VDD
VSS
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
58 of 61
Figure 14-8. DS3154 CPU Bus Mode Pin Assignment
A1
RLOS1
A2
RXN1
A3
RXP1
A4
N.C.
A5
T3MCLK
A6
TXN3
A7
TXP3
A8
TCLK3
A9
TPOS3
A10
RCLK3
A11
PRBS3
A12
RLOS3
B1
PRBS1
B2
RTS1
B3
N.C.
B4
N.C.
B5
WR
B6
RD
B7
CS
B8
TTS3
B9
TNEG3
B10
RPOS3
B11
RTS3
B12
RXN3
C1
RCLK1
C2
RPOS1
C3
RNEG1
C4
N.C.
C5
INT
C6
MOT
C7
ALE
C8
N.C.
C9
TDM3
C10
RNEG3
C11
N.C.
C12
RXP3
D1
TPOS1
D2
TNEG1
D3
TDM1
D4
JTRST
D5
JTMS
D6
VDD
D7
VSS
D8
N.C.
D9
N.C.
D10
N.C.
D11
N.C.
D12
N.C.
E1
TCLK1
E2
TTS1
E3
D0
E4
JTCLK
E5
VDD
E6
VDD
E7
VSS
E8
VSS
E9
HW
E10
N.C.
E11
N.C.
E12
E3MCLK
F1
TXP1
F2
D1
F3
D2
F4
VDD
F5
VDD
F6
VDD
F7
VSS
F8
VSS
F9
VSS
F10
N.C.
F11
N.C.
F12
TXN2
G1
TXN1
G2
D3
G3
D4
G4
VSS
G5
VSS
G6
VSS
G7
VDD
G8
VDD
G9
VDD
G10
N.C.
G11
N.C.
G12
TXP2
H1
RST
H2
D5
H3
D6
H4
JTDI
H5
VSS
H6
VSS
H7
VDD
H8
VDD
H9
N.C.
H10
N.C.
H11
TTS2
H12
TCLK2
J1
N.C.
J2
N.C.
J3
D7
J4
JTDO
J5
TEST
J6
VSS
J7
VDD
J8
HIZ
J9
N.C.
J10
TDM2
J11
TNEG2
J12
TPOS2
K1
RXP4
K2
N.C.
K3
RNEG4
K4
TDM4
K5
N.C.
K6
A0
K7
A2
K8
A4
K9
N.C.
K10
RNEG2
K11
RPOS2
K12
RCLK2
L1
RXN4
L2
RTS4
L3
RPOS4
L4
TNEG4
L5
TTS4
L6
A1
L7
A3
L8
A5
L9
N.C.
L10
N.C.
L11
RTS2
L12
PRBS2
M1
RLOS4
M2
PRBS4
M3
RCLK4
M4
TPOS4
M5
TCLK4
M6
TXP4
M7
TXN4
M8
STMCLK
M9
N.C.
M10
RXP2
M11
RXN2
M12
RLOS2
High-Speed Analog
High-Speed Digital
Low-Speed Digital
VDD
VSS
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
59 of 61
15. PACKAGE INFORMATION
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to
www.maxim-ic.com/DallasPackInfo.)
BOTTOM VIEW
12 11 10 9 8 7 6 5 4 3 2 1
1.00
A1 BALL PAD CORNE
R
A
B
C
D
E
F
G
H
J
K
L
M
(1.00)
(1.00) 1.00
13.00
13.00
Note: All dimensions in millimeters.
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
60 of 61
16. THERMAL INFORMATION
Table 16-A. Thermal Properties, Natural Convection
PARAMETER MIN TYP MAX UNITS
Ambient Temperature (Note 1) -40 +85
°C
Junction Temperature -40 +125 °C
Theta-JA (θJA), Still Air (Note 2) 22.4
°C/W
Psi-JB 9.2
°C/W
Psi-JT 1.6
°C/W
Note 1: The package is mounted on a four-layer JEDEC standard test board with no airflow and dissipating maximum power.
Note 2: Theta-JA (θJA) is the junction-to-ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test board
with no airflow and dissipating maximum power.
Table 16-B. Theta-JA (θJA) vs. Airflow
FORCED AIR (m/s) THETA-JA (θJA)
0 22.4°C/W
1 19.0°C/W
2.5 17.2°C/W
DS3151/DS3152/DS3153/ DS3154 Single/Dual/Triple/Quad DS3/E3/STS-1 LIUs
61 of 61
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2007 Maxim Integrated Products
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.
17. REVISION HISTORY
REVISION DESCRIPTION
012103 DS3154 new product release
040403
DS3151/DS3152/DS3153 ne w pr oduct releases.
Electrical Characteristics section, Notes 1 an d 2: Changed 44.73MHz to 51.84MHz; added ind ication that
specs are lower for rev A2; “all ones driven into RXP n/RXNn (1.0V square wave)” changed to “analog
loopback enabled” to match production test methodology.
Table 13-B, Input leakage, IIL: -10μA min changed to -50μA min.
Table 13-B: Replaced TBD values for IDD, IDDTS, and IDDPD (DS3151/DS3152 /DS3153); changed IDDPD
spec from 38 typ and 50 max to 45 typ and 70 max.
Table 14-A and Table 14-B: Changed pins RBIN, RCINV, TBIN, and TCINV to “N.C.” to reflect they are
not available in CPU bus mode.
072303
Figure 1-1: Labeled capacitors connected to transformer center taps as “(optiona l)”.
Section 6, Optional Pre-Amp Paragraph: Clarified that the pre-amp contributes +14dB of flat gain.
Table 11-A: Changed leakage inductance to 0.150μH max.
Table 11-B: Reformatted table and added row for Pulse Engin eering’s T3049 octal transformer.
Table 13-H: Reworded Note 2 0.
120303
GCR Register Definition (page 16): Clarified that the RST bit holds the digital logic of the LIU in reset
rather than the whole LIU.
Table 13-B: Changed DS3151 IDD from 130mA (max) to 100 mA (max). Changed DS3151 IDDTTS from
105mA (max) to 80mA (max). Removed sentences in Notes 1 and 2 that label ed the IDD and IDDTTS specs
for rev A1 devices.
052404 Added typical IDD and IDDTTS numbers to Table 13-B.
110404 Table 13-D and T able 13-E: Changed ALOS set and clear thresholds to typical numbers.
Figure 13-4: Added second note to the Read C ycle timing diagrams.
062705 Page 18: RCINV bit description: Change d 0 = rising edge to falling edge; chan ged 1 = falling edge to
rising edge.
030607
Page 39: In Table 13-D and Table 13-E, changed the TYP receiver input characteristics to show
increased sensitivity:
Analog LOS Declare, RMON = 0 from -23 to -24
Analog LOS Clear, RMON = 0 from -20 to -21
Analog LOS Declare, RMON = 1 from -37 to -38
Analog LOS Clear, RMON = 1 from -34 to -35