Si5351A/B/C I 2 C - P R O GRA MM A B LE A NY - F R E Q U E N C Y CMOS C L O C K G ENERATOR + VCXO Features Generates up to 8 non-integer-related frequencies from 8 kHz to 160 MHz 2 I C user definable configuration Exact frequency synthesis at each output (0 ppm error) Highly linear VCXO Optional clock input (CLKIN) Low output period jitter: 100 ps pp Configurable spread spectrum selectable at each output Operates from a low-cost, fixed frequency crystal: 25 or 27 MHz Supports static phase offset Programmable rise/fall time control Glitchless frequency changes Separate voltage supply pins: Core VDD: 2.5 or 3.3 V Output VDDO: 1.8, 2.5, or 3.3 V Excellent PSRR eliminates external power supply filtering Very low power consumption Adjustable output-output delay Available in 3 packages types: 10-MSOP: 3 outputs 24-QSOP: 8 outputs 20-QFN (4x4 mm): 8 outputs PCIE Gen 1 compliant Supports HCSL compatible swing 10-MSOP 24-QSOP Applications 20-QFN HDTV, DVD/Blu-ray, set-top box Audio/video equipment, gaming Printers, scanners, projectors Residential gateways Networking/communication Servers, storage XO replacement Description Ordering Information: See page 66 The Si5351 is an I2C configurable clock generator that is ideally suited for replacing crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs), and fanout buffers in cost-sensitive applications. Based on a PLL/VCXO + high resolution MultiSynth fractional divider architecture, the Si5351 can generate any frequency up to 160 MHz on each of its outputs with 0 ppm error. Three versions of the Si5351 are available to meet a wide variety of applications. The Si5351A generates up to 8 free-running clocks using an internal oscillator for replacing crystals and crystal oscillators. The Si5351B adds an internal VCXO and provides the flexibility to replace both free-running clocks and synchronous clocks. The Si5351B eliminates the need for higher cost, custom pullable crystals while providing reliable operation over a wide tuning range. The Si5351C offers the same flexibility but synchronizes to an external reference clock (CLKIN). Functional Block Diagram XA PLLA PLL XB PLLB VC Multi Synth N I2C SSEN OEB Si5351A N = 2 or 7 XA Multi Synth 0 OSC Multi Synth 1 OSC XB XA Multi Synth 0 VCXO OSC Multi Synth 1 Multi Synth 2 XB CLKIN IC SSEN OEB Preliminary Rev. 0.95 8/11 PLLB Multi Synth 0 Multi Synth 1 Multi Synth 2 Multi Synth 3 Multi Synth 3 Multi Synth 4 Multi Synth 4 Multi Synth 5 Multi Synth 5 Multi Synth 6 2 PLLA Multi Synth 7 Si5351B Multi Synth 6 2 IC INTR OEB Copyright (c) 2011 by Silicon Laboratories Multi Synth 7 Si5351C Si5351A/B/C This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Si5351A/B/C 2 Preliminary Rev. 0.95 Si5351A/B/C TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1. Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2. Synthesis Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3. Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.4. Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5. Control Pins (OEB, SSEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5. Configuring the Si5351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1. Writing a Custom Configuration to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2. Si5351 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3. Replacing Crystals and Crystal Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.4. Replacing Crystals, Crystal Oscillators, and VCXOs . . . . . . . . . . . . . . . . . . . . . . . .19 5.5. Replacing Crystals, Crystal Oscillators, and PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.6. Replacing a Crystal with a Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.7. HCSL Compatible Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6. Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 6.1. Power Supply Decoupling/Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.2. Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.3. External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 6.4. External Crystal Load Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.5. Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 6.6. Trace Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7. Register Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 9. Si5351A Pin Descriptions (20-Pin QFN, 24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . 62 10. Si5351B Pin Descriptions (20-Pin QFN, 24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . 63 11. Si5351C Pin Descriptions (20-Pin QFN, 24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . 64 12. Si5351A Pin Descriptions (10-Pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 13. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 14. Package Outline (24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 15. Package Outline (20-Pin QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 16. Package Outline (10-Pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Preliminary Rev. 0.95 3 Si5351A/B/C 1. Electrical Specifications Table 1. Recommended Operating Conditions Parameter Symbol Ambient Temperature TA Core Supply Voltage VDD Output Buffer Voltage Test Condition VDDOx Min Typ Max Unit -40 25 85 C 3.0 3.3 3.60 V 2.25 2.5 2.75 V 1.71 1.8 1.89 V 2.25 2.5 2.75 V 3.0 3.3 3.60 V Notes:All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 C unless otherwise noted. VDD and VDDOx can be operated at independent voltages. Power supply sequencing for VDD and VDDOx requires that both voltage rails are powered at the same time. Table 2. DC Characteristics (VDD = 2.5 V 10%, or 3.3 V 10%, TA = -40 to 85 C) Parameter Core Supply Current Output Buffer Supply Current (Per Output)* Input Current Output Impedance Symbol Test Condition Min Typ Max Unit Enabled 3 outputs -- 22 35 mA Enabled 8 outputs -- 27 45 mA Power Down (PDN = VDD) -- -- 20 A IDDOx CL = 5 pF -- 2.2 5 mA ICLKIN CLKIN, SDA, SCL Vin < 3.6 V -- -- 10 A IVC VC -- -- 30 A ZO 8 mA output drive current. See "6. Design Considerations" on page 21. -- 85 -- IDD *Note: Output clocks less than or equal to 100 MHz. 4 Preliminary Rev. 0.95 Si5351A/B/C Table 3. AC Characteristics (VDD = 2.5 V 10%, or 3.3 V 10%, TA = -40 to 85 C) Parameter Symbol Test Condition Min Typ Max Unit Power-up Time TRDY From VDD = VDDmin to valid output clock, CL = 5 pF, fCLKn > 1 MHz -- 1 10 ms Output Enable Time TOE From OEB pulled low to valid clock output, CL = 5 pF, fCLKn > 1 MHz -- -- 10 s Output Phase Offset PSTEP -- 333 -- ps/step Spread Spectrum Frequency Deviation SSDEV Down spread -0.1 -- -2.5 % Center spread 0.1 -- 1.5 % Spread Spectrum Modulation Rate SSMOD 30 31.5 33 kHz 0 VDD/2 VDD V VCXO Specifications (Si5351B only) VCXO Control Voltage Range Vc VCXO Gain (configurable) Kv Vc = 10-90% of VDD, VDD = 3.3 V 18 -- 150 ppm/V VCXO Control Voltage Linearity KVL Vc = 10-90% of VDD -5 -- +5 % VCXO Pull Range (configurable) PR VDD = 3.3 V* 30 0 240 ppm -- 10 -- kHz VCXO Modulation Bandwidth *Note: Contact Silicon Labs for 2.5 V VCXO operation. Table 4. Input Clock Characteristics (VDD = 2.5 V 10%, or 3.3 V 10%, TA = -40 to 85 C) Parameter Symbol Test Condition Min Typ Max Units CLKIN Input Low Voltage VIL -0.1 -- 0.3 x VDD V CLKIN Input High Voltage VIH 0.7 x VDD -- 3.60 V CLKIN Frequency Range fCLKIN 10 -- 100 MHz Preliminary Rev. 0.95 5 Si5351A/B/C Table 5. Output Clock Characteristics (VDD = 2.5 V 10%, or 3.3 V 10%, TA = -40 to 85 C) Parameter Symbol Test Condition Min Typ Max Units Frequency Range FCLK 0.008 -- 160 MHz Load Capacitance CL -- 5 15 pF Duty Cycle DC 45 50 55 % 0.5 1 1.5 ns 0.5 1 1.5 ns VDD - 0.6 -- -- V -- -- 0.6 V -- 35 100 ps pk-pk tr Rise/Fall Time tf Output High Voltage VOH Output Low Voltage VOL Period Jitter JPER Measured at VDD/2, fCLK = 50 MHz 20%-80%, CL = 5 pF, Drive Strength = 8 mA CL = 5 pF Measured over 10k cycles Period Jitter VCXO JPER_VCXO -- 60 110 ps pk-pk Cycle-to-Cycle Jitter JCC -- 30 90 ps pk Cycle-to-Cycle Jitter VCXO JCC_VCXO -- 50 95 ps pk -- 3.5 11 ps rms -- 8.5 18.5 ps rms Measured over 10k cycles RMS Phase Jitter JRMS 12 kHz-20 MHz RMS Phase Jitter VCXO JRMS_VCXO Table 6. Crystal Requirements1,2 Parameter Symbol Min Typ Max Unit Crystal Frequency fXTAL 25 -- 27 MHz Load Capacitance CL 6 -- 12 pF rESR -- -- 150 dL -- -- 100 W Equivalent Series Resistance Crystal Max Drive Level Notes: 1. Crystals which require load capacitances of 6, 8, or 10 pF should use the device's internal load capacitance for optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a combination of the internal 10 pF load capacitors in addition to external 2 pF load capacitors. 2. Refer to "AN551: Crystal Selection Guide" for more details. 6 Preliminary Rev. 0.95 Si5351A/B/C Table 7. I2C Specifications (SCL,SDA)1 Parameter Symbol LOW Level Input Voltage VILI2C HIGH Level Input Voltage VIHI2C Hysteresis of Schmitt Trigger Inputs VHYS LOW Level Output Voltage (open drain or open collector) at 3 mA Sink Current VOLI2C2 Test Condition Standard Mode Fast Mode 100 kbps 400 kbps Unit Min Max Min Max -0.5 0.3 x VDDI2 -0.5 0.3 x VDDI2C2 V 3.63 0.7 x VDDI2C2 3.63 V -- -- 0.1 -- V VDDI2C2 = 2.5/3.3 V 0 0.4 0 0.4 V VDDI2C2 = 1.8 V -- -- 0 0.2 x VDDI2C V -10 10 -10 10 A C 0.7 x VDDI2 C Input Current III2C Capacitance for Each I/O Pin CII2C VIN = -0.1 to VDDI2C -- 4 -- 4 pF I2C Bus Timeout TTO Timeout Enabled 25 35 25 35 ms Notes: 1. Refer to NXP's UM10204 I2C-bus specification and user manual, revision 03, for further details, go to: www.nxp.com/acrobat_download/usermanuals/UM10204_3.pdf. 2. Only I2C pullup voltages (VDDI2C) of 2.25 to 3.63 V are supported. Table 8. Thermal Characteristics Parameter Thermal Resistance Junction to Ambient Thermal Resistance Junction to Case Symbol JA JC Test Condition Still Air Still Air Preliminary Rev. 0.95 Package Value Unit 10-MSOP 131 C/W 24-QSOP 80 C/W 20-QFN 51 C/W 10-MSOP 43 C/W 24-QSOP 31 C/W 20-QFN 16 C/W 7 Si5351A/B/C Table 9. Absolute Maximum Ratings1 Parameter Symbol DC Supply Voltage VDD_max Test Condition Value Unit -0.5 to 3.8 V VIN_CLKIN CLKIN, SCL, SDA -0.5 to 3.8 V VIN_VC VC -0.5 to (VDD+0.3) V VIN_XA/B Pins XA, XB -0.5 to 1.3 V V TJ -55 to 150 C Soldering Temperature (Pb-free profile)2 TPEAK 260 C Soldering Temperature Time at TPEAK (Pb-free profile)2 TP 20-40 Sec Input Voltage Junction Temperature Notes: 1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. The device is compliant with JEDEC J-STD-020. 8 Preliminary Rev. 0.95 Si5351A/B/C 2. Detailed Block Diagrams VDD Si5351A 3-Output VDDO PLL A MultiSynth 0 R0 CLK0 PLL B MultiSynth 1 R1 CLK1 MultiSynth 2 R2 CLK2 XA OSC XB SDA SCL I2C Interface 10-MSOP GND VDD Si5351A 8-Output VDDOA MultiSynth 0 R0 MultiSynth 1 R1 MultiSynth 2 R2 MultiSynth 3 R3 MultiSynth 4 R4 SCL MultiSynth 5 R5 OEB MultiSynth 6 R6 MultiSynth 7 R7 PLL A XA OSC PLL B XB A0 SDA SSEN I2C Interface Control Logic GND CLK0 CLK1 VDDOB CLK2 CLK3 VDDOC CLK4 CLK5 VDDOD CLK6 CLK7 20-QFN, 24-QSOP Figure 1. Block Diagrams of 3-Output and 8-Output Si5351A Devices Preliminary Rev. 0.95 9 Si5351A/B/C VDD XA OSC PLL XB VCXO VC SDA SCL OEB SSEN 2 IC Interface Control Logic GND Si5351B VDDOA MultiSynth 0 R0 MultiSynth 1 R1 MultiSynth 2 R2 MultiSynth 3 R3 MultiSynth 4 R4 MultiSynth 5 R5 MultiSynth 6 R6 MultiSynth 7 R7 OSC XB PLL A PLL B CLKIN SDA SCL I2C Interface INTR OEB Control Logic CLK1 VDDOB CLK2 CLK3 VDDOC CLK4 CLK5 VDDOD CLK6 CLK7 20-QFN, 24-QSOP VDD XA CLK0 Si5351C VDDOA MultiSynth 0 R0 MultiSynth 1 R1 MultiSynth 2 R2 MultiSynth 3 R3 MultiSynth 4 R4 MultiSynth 5 R5 MultiSynth 6 R6 MultiSynth 7 R7 GND CLK0 CLK1 VDDOB CLK2 CLK3 VDDOC CLK4 CLK5 VDDOD CLK6 CLK7 20-QFN, 24-QSOP Figure 2. Block Diagrams of Si5351B and Si5351C 8-Output Devices 10 Preliminary Rev. 0.95 Si5351A/B/C 3. Functional Description The Si5351 is a versatile I2C programmable clock generator that is ideally suited for replacing crystals, crystal oscillators, VCXOs, PLLs, and buffers. A block diagram showing the general architecture of the Si5351 is shown in Figure 3. The device consists of an input stage, two synthesis stages, and an output stage. The input stage accepts an external crystal (XTAL), a clock input (CLKIN), or a control voltage input (VC) depending on the version of the device (A/B/C). The first stage of synthesis multiplies the input frequencies to an high-frequency intermediate clock, while the second stage of synthesis uses high resolution MultiSynth fractional dividers to generate the desired output frequencies. Additional integer division is provided at the output stage for generating output frequencies as low as 8 kHz. Crosspoint switches at each of the synthesis stages allows total flexibility in routing any of the inputs to any of the outputs. Because of this high resolution and flexible synthesis architecture, the Si5351 is capable of generating synchronous or free-running non-integer related clock frequencies at each of its outputs, enabling one device to synthesize clocks for multiple clock domains in a design. Input Stage CLKIN Synthesis Stage 1 Synthesis Stage 2 Div PLL A (SSC) XA OSC XTAL PLL B (VCXO) XB VC VCXO Output Stage VDDOA Multi Synth 0 R0 Multi Synth 1 R1 Multi Synth 2 R2 Multi Synth 3 R3 Multi Synth 4 R4 Multi Synth 5 R5 Multi Synth 6 R6 Multi Synth 7 R7 CLK0 CLK1 VDDOB CLK2 CLK3 VDDOC CLK4 CLK5 VDDOD CLK6 CLK7 Figure 3. Si5351 Block Diagram 3.1. Input Stage 3.1.1. Crystal Inputs (XA, XB) The Si5351 uses a fixed-frequency standard AT-cut crystal as a reference to the internal oscillator. The output of the oscillator can be used to provide a free-running reference to one or both of the PLLs for generating asynchronous clocks. The output frequency of the oscillator will operate at the crystal frequency, either 25 MHz or 27 MHz. The crystal is also used as a reference to the VCXO to help maintain its frequency accuracy. Internal load capacitors (CL) are provided to eliminate the need for external components when connecting a crystal to the Si5351. Options for internal load capacitors are 6, 8, or 10 pF. Crystals with alternate load capacitance requirements are supported using additional external load capacitors as shown in Figure 4. Refer to application note AN551 for crystal recommendations. CL CL XA XB Optional Additional external load capacitors (< 2 pF) CL CL Selectable internal load capacitors 6 pF, 8 pF, 10 pF Figure 4. External XTAL with Optional Load Capacitors Preliminary Rev. 0.95 11 Si5351A/B/C 3.1.2. External Clock Input (CLKIN) The external clock input is used as a clock reference for the PLLs when generating synchronous clock outputs. CLKIN can accept any frequency from 10 to 100 MHz. A divider at the input stage limits the PLL input frequency to 30 MHz. 3.1.3. Voltage Control Input (VC) The VCXO architecture of the Si5350B eliminates the need for an external pullable crystal. Only a standard, lowcost, fixed-frequency (25 or 27 MHz) AT-cut crystal is required. The tuning range of the VCXO is configurable allowing for a wide variety of applications. Key advantages of the VCXO design in the Si5351 include high linearity, a wide operating range (linear from 10 to 90% of VDD), and reliable startup and operation. Refer to Table 3 on page 5 for VCXO specification details. A unique feature of the Si5351B is its ability to generate multiple output frequencies controlled by the same control voltage applied to the VC pin. This replaces multiple PLLs or VCXOs that would normally be locked to the same reference. An example is illustrated in Figure 9 on page 15. 3.2. Synthesis Stages The Si5351 uses two stages of synthesis to generate its final output clocks. The first stage uses PLLs to multiply the lower frequency input references to a high-frequency intermediate clock. The second stage uses highresolution MultiSynth fractional dividers to generate frequencies in the range of 1 MHz to 100 MHz. It is also possible to generate two unique frequencies up to 160 MHz on two or more of the outputs. A crosspoint switch at the input of the first stage allows each of the PLLs to lock to the CLKIN or the XTAL input. This allows each of the PLLs to lock to a different source for generating independent free-running and synchronous clocks. Alternatively, both PLLs could lock to the same source. The crosspoint switch at the input of the second stage allows any of the MultiSynth dividers to connect to PLLA or PLLB. This flexible synthesis architecture allows any of the outputs to generate synchronous or non-synchronous clocks, with spread spectrum or without spread spectrum, and with the flexibility of generating non-integer related clock frequencies at each output. Since the VCXO already generates a high-frequency intermediate clock, it is fed directly into the second stage of synthesis. The MultiSynth high-resolution dividers synthesize the VCXO center frequency to any frequency in the range of ~391 kHz to 160 MHz. The center frequency is then controlled (or pulled) by the VC input. An interesting feature of the Si5351 is that the VCXO output can be routed to more than one MultiSynth divider. This creates a VCXO with multiple output frequencies controlled from one VC input as shown in Figure 5. Frequencies down to 8 kHz can be generated by applying the R divider at the output of the Multisynth (see Figure 5 below). XA Control VC Voltage XB Fixed Frequency Crystal (non-pullable) OSC Multi Synth 0 R0 CLK0 VCXO Multi Synth 1 R1 CLK1 Multi Synth 2 R2 CLK2 The clock frequency generated from CLK0 is controlled by the VC input Additional MultiSynths can be "linked" to the VCXO to generate additional clock frequencies Figure 5. Using the Si5351 as a Multi-Output VCXO 3.3. Output Stage An additional level of division (R) is available at the output stage for generating clocks as low as 8 kHz. All output drivers generate CMOS level outputs with separate output voltage supply pins (VDDOx) allowing a different voltage signal level (1.8, 2.5, or 3.3 V) at each of the four 2-output banks. 12 Preliminary Rev. 0.95 Si5351A/B/C 3.4. Spread Spectrum Spread spectrum can be enabled on any of the clock outputs that use PLLA as its reference. Spread spectrum is useful for reducing electromagnetic interference (EMI). Enabling spread spectrum on an output clock modulates its frequency, which effectively reduces the overall amplitude of its radiated energy. See "AN554: Si5350/51 PCB Layout Guide" for details. Note that spread spectrum is not available on clocks synchronized to PLLB or to the VCXO. The Si5351 supports several levels of spread spectrum allowing the designer to chose an ideal compromise between system performance and EMI compliance. Reduced Amplitude and EMI Reduced Amplitude and EMI Center Frequency Amplitude fc fc fc No Spread Spectrum Center Spread Down Spread Figure 6. Available Spread Spectrum Profiles 3.5. Control Pins (OEB, SSEN) The Si5351 offers control pins for enabling/disabling clock outputs and spread spectrum. 3.5.1. Output Enable (OEB) The output enable pin allows enabling or disabling outputs clocks. Output clocks are enabled when the OEB pin is held low, and disabled when pulled high. When disabled, the output state is configurable as disabled high, disabled low, or disabled in high-impedance. The output enable control circuitry ensures glitchless operation by starting the output clock cycle on the first leading edge after OEB is pulled low. When OEB is pulled high, the clock is allowed to complete its full clock cycle before going into a disabled state. 3.5.2. Spread Spectrum Enable (SSEN)--Si5351A and Si5351B only This control pin allows disabling the spread spectrum feature for all outputs that were configured with spread spectrum enabled. Hold SSEN low to disable spread spectrum. The SSEN pin provides a convenient method of evaluating the effect of using spread spectrum clocks during EMI compliance testing. Preliminary Rev. 0.95 13 Si5351A/B/C 4. I2C Interface Many of the functions and features of the Si5351 are controlled by reading and writing to the RAM space using the I2C interface. The following is a list of the common features that are controllable through the I2C interface. A summary of register functions is shown in Section 7. Read Status Indicators Loss Loss of signal (LOS) for the CLKIN input of lock (LOL) for PLLA and PLLB Configuration of multiplication and divider values for the PLLs, MultiSynth dividers Configuration of the Spread Spectrum profile (down or center spread, modulation percentage) Control of the cross point switch selection for each of the PLLs and MultiSynth dividers Set output clock options Enable/disable for each clock output for each clock output Invert/non-invert divider values (2n, n=1.. 7) Output state when disabled (stop hi, stop low, Hi-Z) Output phase offset Output The I2C interface operates in slave mode with 7-bit addressing and can operate in Standard-Mode (100 kbps) or Fast-Mode (400 kbps) and supports burst data transfer with auto address increments. The I2C bus consists of a bidirectional serial data line (SDA) and a serial clock input (SCL) as shown in Figure 7. Both the SDA and SCL pins must be connected to the VDD supply via an external pull-up as recommended by the I2C specification. VDD >1k >1k Si5351 SCL I2C Bus SDA 4.7 k INTR I2C Address Select: Pull-up to VDD (A0 = 1) Pull-down to GND (A0 = 0) A0 Figure 7. I2C and Control Signals The 7-bit device (slave) address of the Si5351 consist of a 6-bit fixed address plus a user selectable LSB bit as shown in Figure 8. The LSB bit is selectable as 0 or 1 using the optional A0 pin which is useful for applications that require more than one Si5351 on a single I2C bus. Slave Address 6 5 4 3 2 1 0 1 1 0 0 0 0 0/1 A0 Figure 8. Si5351 I2C Slave Address Data is transferred MSB first in 8-bit words as specified by the I2C specification. A write command consists of a 7bit device (slave) address + a write bit, an 8-bit register address, and 8 bits of data as shown in Figure 9. A write burst operation is also shown where every additional data word is written using to an auto-incremented address. 14 Preliminary Rev. 0.95 Si5351A/B/C Write Operation - Single Byte S Slv Addr [6:0] 0 A Reg Addr [7:0] A Data [7:0] A P Write Operation - Burst (Auto Address Increment) S Slv Addr [6:0] 0 A Reg Addr [7:0] A Data [7:0] A Data [7:0] A P Reg Addr +1 From slave to master From master to slave 1 - Read 0 - Write A - Acknowledge (SDA LOW) N - Not Acknowledge (SDA HIGH) S - START condition P - STOP condition Figure 9. I2C Write Operation A read operation is performed in two stages. A data write is used to set the register address, then a data read is performed to retrieve the data from the set address. A read burst operation is also supported. This is shown in Figure 10. Read Operation - Single Byte S Slv Addr [6:0] 0 A Reg Addr [7:0] A P S Slv Addr [6:0] 1 A Data [7:0] N P Read Operation - Burst (Auto Address Increment) S Slv Addr [6:0] 0 A Reg Addr [7:0] A P S Slv Addr [6:0] 1 A Data [7:0] A Data [7:0] N P Reg Addr +1 From slave to master From master to slave 1 - Read 0 - Write A - Acknowledge (SDA LOW) N - Not Acknowledge (SDA HIGH) S - START condition P - STOP condition Figure 10. I2C Read Operation AC and DC electrical specifications for the SCL and SDA pins are shown in Table 7. The timing specifications and timing diagram for the I2C bus is compatible with the I2C-Bus Standard. SDA timeout is supported for compatibility with SMBus interfaces. Preliminary Rev. 0.95 15 Si5351A/B/C 5. Configuring the Si5351 The Si5351 is a highly flexible clock generator which is entirely configurable through its I2C interface. The device's default configuration is stored in non-volatile memory (NVM) as shown in Figure 11. The NVM is a one time programmable memory (OTP) which can store a custom user configuration at power-up. This is a useful feature for applications that need a clock present at power-up (e.g., for providing a clock to a processor). Power-Up NVM (OTP) RAM Default Config I2C Figure 11. Si5351 Memory Configuration During a power cycle the contents of the NVM are copied into random access memory (RAM), which sets the device configuration that will be used during normal operation. Any changes to the device configuration after power-up are made by reading and writing to registers in the RAM space through the I2C interface. A detailed register map is shown in Section "8. Register Descriptions" on page 25. 5.1. Writing a Custom Configuration to RAM To simplify device configuration, Silicon Labs has released the ClockBuilder Desktop. The software serves two purposes: to configure the Si5351 with optimal configuration based on the desired frequencies and to control the EVB when connected to a host PC. The optimal configuration can be saved from the software in text files that can be used in any system, which configures the device over I2C. ClockBuilder Desktop can be downloaded from www.silabs.com/ClockBuilder and runs on Windows XP, Windows Vista, and Windows 7. Once the configuration file has been saved, the device can be programmed via I2C by following the steps shown in Figure 12. 16 Preliminary Rev. 0.95 Si5351A/B/C Disable Outputs Set CLKx_DIS high; Reg. 3 = 0xFF Powerdown all output drivers Reg. 16, 17, 18, 19, 20, 21, 22, 23 = 0x80 Set interrupt masks (see register 2 description) Register Map Use ClockBuilder Desktop v3.1 or later Write new configuration to device using the contents of the register map generated by ClockBuilder Desktop. This step also powers up the output drivers. (Registers 15-92 and 149-170) Apply PLLA and PLLB soft reset Reg. 177 = 0xAC Enable desired outputs (see Register 3) Figure 12. I2C Programming Procedure Preliminary Rev. 0.95 17 Si5351A/B/C 5.2. Si5351 Application Examples The Si5351 is a versatile clock generator which serves a wide variety of applications. The following examples show how it can be used to replace crystals, crystal oscillators, VCXOs, and PLLs. 5.3. Replacing Crystals and Crystal Oscillators Using an inexpensive external crystal, the Si5351A can generate up to 8 different free-running clock frequencies for replacing crystals and crystal oscillators. A 3-output version packaged in a small 10-MSOP is also available for applications that require fewer clocks. An example is shown in Figure 13. XA OSC 27 MHz PLL Multi Synth 0 Multi Synth 1 XB Multi Synth 2 Multi Synth 3 125 MHz Ethernet PHY CLK1 48 MHz USB Controller CLK2 28.322 MHz CLK3 74.25 MHz CLK4 74.25/1.001 MHz CLK5 24.576 MHz Multi Synth 6 CLK6 22.5792 MHz Multi Synth 7 CLK7 33.3333 MHz Multi Synth 4 Multi Synth 5 Si5351A CLK0 HDMI Port Video/Audio Processor CPU Note: Si5351A replaces crystals, XOs, and PLLs. Figure 13. Using the Si5351A to Replace Multiple Crystals, Crystal Oscillators, and PLLs 18 Preliminary Rev. 0.95 Si5351A/B/C 5.4. Replacing Crystals, Crystal Oscillators, and VCXOs The Si5351B combines free-running clock generation and a VCXO in a single package for cost sensitive video applications. An example is shown in Figure 14. Free-running Clocks XA OSC 27 MHz Multi Synth 0 PLL Multi Synth 1 XB Multi Synth 2 VC VCXO Multi Synth 3 Multi Synth 4 Multi Synth 5 Si5351B CLK0 125 MHz CLK1 48 MHz CLK2 28.322 MHz Ethernet PHY USB Controller HDMI Port CLK3 CLK4 74.25 MHz 74.25/1.001 MHz CLK5 Video/Audio Processor 24.576 MHz Synchronous Clocks Note: FBW = 10 kHz Figure 14. Using the Si5351B to Replace Crystals, Crystal Oscillators, VCXOs, and PLLs 5.5. Replacing Crystals, Crystal Oscillators, and PLLs The Si5350C generates synchronous clocks for applications that require a fully integrated PLL instead of a VCXO. Because of its dual PLL architecture, the Si5351C is capable of generating both synchronous and free-running clocks. An example is shown in Figure 15. Free-running Clocks XA OSC 25 MHz PLL Multi Synth 0 Multi Synth 1 XB Multi Synth 2 CLKIN PLL 54 MHz Multi Synth 3 Multi Synth 4 Si5351C Multi Synth 5 CLK0 125 MHz CLK1 48 MHz CLK2 28.322 MHz Ethernet PHY USB Controller HDMI Port CLK3 74.25 MHz CLK4 74.25/1.001 MHz CLK5 24.576 MHz Video/Audio Processor Synchronous Clocks Figure 15. Using the Si5351C to Replace Crystals, Crystal Oscillators, and PLLs Preliminary Rev. 0.95 19 Si5351A/B/C 5.6. Replacing a Crystal with a Clock The Si5351 can be driven with a clock signal through the XA input pin. VIN = 1 VPP 25/27 MHz XA 0.1 F Multi Synth 0 PLLA Multi Synth 1 OSC XB PLLB Multi Synth N Note: Float the XB input while driving the XA input with a clock Figure 16. Si5351 Driven by a Clock Signal 5.7. HCSL Compatible Outputs The Si5351 can be configured to support HCSL compatible swing when the VDDO of the output pair of interest is set to 2.5 V (i.e., VDDOA must be 2.5 V when using CLK0/1; VDDOB must be 2.5 V for CLK2/3 and so on). The circuit in the figure below must be applied to each of the two clocks used, and one of the clocks in the pair must also be inverted to generate a differential pair. See register setting CLKx_INV. ZO = 70 PLLA Multi Synth 0 0 R1 511 240 OSC PLLB Multi Synth 1 ZO = 70 0 R1 511 240 Multi Synth N R2 Note: The complementary -180 degree out of phase output clock is generated using the INV function Figure 17. Si5350C Output is HCSL Compatible 20 R2 Preliminary Rev. 0.95 HCSL CLKIN Si5351A/B/C 6. Design Considerations The Si5351 is a self-contained clock generator that requires very few external components. The following general guidelines are recommended to ensure optimum performance. Refer to "AN554: Si5350/51 PCB Layout Guide" for additional layout recommendations. 6.1. Power Supply Decoupling/Filtering The Si5351 has built-in power supply filtering circuitry and extensive internal Low Drop Out (LDO) voltage regulators to help minimize the number of external bypass components. All that is recommended is one 0.1 F decoupling capacitor per power supply pin. This capacitor should be mounted as close to the VDD and VDDOx pins as possible without using vias. 6.2. Power Supply Sequencing The VDD and VDDOx (i.e., VDDO0, VDDO1, VDDO2, VDDO3) power supply pins have been separated to allow flexibility in output signal levels. If a minimum output-to-output skew is important, then all VDDOx must be applied before VDD. Unused VDDOx pins should be tied to VDD. 6.3. External Crystal The external crystal should be mounted as close to the pins as possible using short PCB traces. The XA and XB traces should be kept away from other high-speed signal traces. See "AN551: Crystal Selection Guide" for more details. 6.4. External Crystal Load Capacitors The Si5351 provides the option of using internal and external crystal load capacitors. If internal load capacitance is insufficient, capacitors of value < 2 pF may be used to increased equivalent load capacitance. If external load capacitors are used, they should be placed as close to the XA/XB pads as possible. See AN554 for more details. 6.5. Unused Pins Unused voltage control pin should be tied to GND. Unused CLKIN pin should be tied to GND. Unused XA/XB pins should be left floating. Refer to "5.6. Replacing a Crystal with a Clock" on page 20 when using XA as a clock input pin. Unused output pins (CLK0-CLK7) should be left floating. Unused VDDOx pins should be tied to VDD. Preliminary Rev. 0.95 21 Si5351A/B/C 6.6. Trace Characteristics The Si5351A/B/C features various output current drives ranging from 2 to 8 mA (default). It is recommended to configure the trace characteristics as shown in Figure 18 when an output drive setting of 8 mA is used. ZO = 85 ohms R = 0 ohms CLK (Optional resistor for EMI management) Length = No Restrictions Figure 18. Recommended Trace Characteristics with 8 mA Drive Strength Setting Note: Jitter is only specified at 6 and 8 mA drive strength. 22 Preliminary Rev. 0.95 Si5351A/B/C 7. Register Map Summary The following is a summary of the register map used to read status, control, and configure the Si5351. Register 7 6 5 4 0 SYS_INIT LOL_B LOL_A LOS 3 1 SYSCAL_ STKY LOS_B_ STKY LOL_A_ STKY LOS_ STKY 2 SYSCAL_ MASK LOS_B_ MASK LOL_A _ MASK LOS_ MASK 3 CLK7_EN CLK6_EN CLK5_EN CLK4_EN 1 0 REVID[1:0] 4-8 9 2 CLK3_EN CLK2_EN CLK1_EN CLK0_EN OEB_CLK2 OEB_CLK1 OEB_CLK0 PLLA_SRC 0 0 Reserved OEB_CLK7 OEB_CLK6 OEB_CLK5 OEB_CLK4 10-14 OEB_CLK3 Reserved 15 0 0 0 0 16 CLK0_PDN MS0_INT MS0_SRC CLK0_INV CLK0_SRC[1:0] CLK0_IDRV[1:0] 17 CLK1_PDN MS1_INT MS1_SRC CLK1_INV CLK1_SRC[1:0] CLK1_IDRV[1:0] 18 CLK2_PDN MS2_INT MS2_SRC CLK2_INV CLK2_SRC[1:0] CLK2_IDRV[1:0] 19 CLK3_PDN MS3_INT MS3_SRC CLK3_INV CLK3_SRC[1:0] CLK3_IDRV[1:0] 20 CLK4_PDN MS4_INT MS4_SRC CLK4_INV CLK4_SRC[1:0] CLK4_IDRV[1:0] 21 CLK5_PDN MS5_INT MS5_SRC CLK5_INV CLK5_SRC[1:0] CLK5_IDRV[1:0] 22 CLK6_PDN FBA_INT MS6_SRC CLK6_INV CLK6_SRC[1:0] CLK6_IDRV[1:0] 23 CLK7_PDN FBB_INT MS6_SRC CLK7_INV 24 CLK3_DIS_STATE 25 CLK7_DIS_STATE PLLB_SRC CLK7_SRC[1:0] CLK7_IDRV[1:0] CLK2_DIS_STATE CLK1_DIS_STATE CLK0_DIS_STATE CLK6_DIS_STATE CLK5_DIS_STATE CLK4_DIS_STATE 26-41 PLL, MultiSynth, and output clock delay offset Configuration Registers. Use ClockBuilder Desktop Software to Determine These Register Values. 42 MS0_P3[15:8] 43 44 MS0_P3[7:0] R0_DIV[2:0] 45 46 47 MS0_P1[17:16] MS0_P1[15:8] MS0_P1[7:0] MS0_P3[19:16] MS0_P2[19:16] 48 MS0_P2[15:8] 49 MS0_P2[7:0] 50 MS1_P3[15:8] 51 52 MS1_P3[7:0] R1_DIV[2:0] 53 54 55 MS1_P1[17:16] MS1_P1[15:8] MS1_P1[7:0] MS1_P3[19:16] MS1_P2[19:16] 56 MS1_P2[15:8] 57 MS1_P2[7:0] 58 MS2_P3[15:8] 59 60 MS2_P3[7:0] R2_DIV[2:0] 61 62 63 MS2_P1[17:16] MS2_P1[15:8] MS2_P1[7:0] MS2_P3[19:16] MS2_P2[19:16] 64 MS2_P2[15:8] 65 MS2_P2[7:0] Preliminary Rev. 0.95 23 Si5351A/B/C Register 7 6 5 66 4 3 2 1 67 MS3_P3[7:0] 68 R3_DIV[2:0] 69 MS3_P1[17:16] MS3_P1[15:8] 70 MS3_P1[7:0] 71 MS3_P3[19:16] 72 MS3_P2[19:16] MS3_P2[15:8] 73 MS3_P2[7:0] 74 MS4_P3[15:8] 75 MS4_P3[7:0] 76 R4_DIV[2:0] 77 MS4_P1[17:16] MS4_P1[15:8] 78 MS4_P1[7:0] 79 MS4_P3[19:16] 80 MS4_P2[19:16] MS4_P2[15:8] 81 MS4_P2[7:0] 82 MS5_P3[15:8] 83 MS5_P3[7:0] 84 R5_DIV[2:0] 85 MS5_P1[17:16] MS5_P1[15:8] 86 MS5_P1[7:0] 87 MS5_P3[19:16] MS5_P2[19:16] 88 MS5_P2[15:8] 89 MS5_P2[7:0] 90 MS6_P1[7:0] 91 MS7_P1[7:0] 92 R7_DIV[2:0] R6_DIV[2:0] 93-164 PLL, MultiSynth, and output clock delay offset Configuration Registers. Use ClockBuilder Desktop Software to Determine These Register Values. 165 CLK0_PHOFF[7:0] 166 CLK1_PHOFF[7:0] 167 CLK2_PHOFF[7:0] 168 CLK3_PHOFF[7:0] 189 CLK4_PHOFF[7:0] 170 CLK5_PHOFF[7:0] 173-176 177 Reserved PLLB_RST 178-182 183 184-255 24 0 MS3_P3[15:8] PLLA_RST Reserved XTAL_CL Reserved Preliminary Rev. 0.95 Si5351A/B/C 8. Register Descriptions Register 0. Device Status Bit D7 D6 D5 D4 Name SYS_INIT LOL_B LOL_A LOS Type R R R R D3 D2 D1 D0 REVID[1:0] R R R Reset value = 0000 0000 Bit 7 Name Function SYS_INIT System Initialization Status. During power up the device copies the content of the NVM into RAM and performs a system initialization. The device is not operational until initialization is complete. It is not recommended to read or write registers in RAM through the I2C interface until initialization is complete. An interrupt will be triggered (INTR pin = 0, Si5351C only) during the system initialization period. 0: System initialization is complete. Device is ready. 1: Device is in system initialization mode. 6 LOL_B PLLB Loss Of Lock Status. Si5351A/C only. PLLB will operate in a locked state when it has a valid reference from CLKIN or XTAL. A loss of lock will occur if the frequency of the reference clock forces the PLL to operate outside of its lock range as specified in Table 3, or if the reference clock fails to meet the minimum requirements of a valid input signal as specified in Table 4. An interrupt will be triggered (INTR pin = 0, Si5351C) during a LOL condition. 0: PLL B is locked. 1: PLL B is unlocked. When the device is in this state it will trigger an interrupt causing the INTR pin to go low (Si5351C only). 5 LOL_A PLL A Loss Of Lock Status. PLL A will operate in a locked state when it has a valid reference from CLKIN or XTAL. A loss of lock will occur if the frequency of the reference clock forces the PLL to operate outside of its lock range as specified in Table 3, or if the reference clock fails to meet the minimum requirements of a valid input signal as specified in Table 4. An interrupt will be triggered (INTR pin = 0, Si5351C only) during a LOL condition. 0: PLL A is operating normally. 1: PLL A is unlocked. When the device is in this state it will trigger an interrupt causing the INTR pin to go low (Si5351C only). 4 LOS CLKIN Loss Of Signal (Si5351C Only). A loss of signal status indicates if the reference clock fails to meet the minimum requirements of a valid input signal as specified in Table 4. An interrupt will be triggered (INTR pin = 0, Si5351C only) during a LOS condition. 0: Valid clock signal at the CLKIN pin. 1: Loss of signal detected at the CLKIN pin. 3:2 1:0 Reserved Leave as default. REVID[1:0] Revision ID. Device revision number. Set at the factory. Preliminary Rev. 0.95 25 Si5351A/B/C Register 1. Interrupt Status Sticky Bit Name Type D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W SYS_INIT_STKY LOL_B_STKY LOL_A_STKY LOS_STKY R/W R/W R/W R/W Reset value = 0000 0000 Bit 7 Name Function SYS_INIT_STKY System Calibration Status Sticky Bit. The SYS_INIT_STKY bit is triggered when the SYS_INIT bit (register 0, bit 7) is triggered high. It remains high until cleared. Writing a 0 to this register bit will cause it to clear. 0: No SYS_INIT interrupt has occurred since it was last cleared. 1: A SYS_INIT interrupt has occurred since it was last cleared. 6 LOL_B_STKY PLLB Loss Of Lock Status Sticky Bit. The LOL_B_STKY bit is triggered when the LOL_B bit (register 0, bit 6) is triggered high. It remains high until cleared. Writing a 0 to this register bit will cause it to clear. 0: No PLL B interrupt has occurred since it was last cleared. 1: A PLL B interrupt has occurred since it was last cleared. 5 LOL_A_STKY PLLA Loss Of Lock Status Sticky Bit. The LOL_A_STKY bit is triggered when the LOL_A bit (register 0, bit 5) is triggered high. It remains high until cleared. Writing a 0 to this register bit will cause it to clear. 0: No PLLA interrupt has occurred since it was last cleared. 1: A PLLA interrupt has occurred since it was last cleared. 4 LOS_STKY CLKIN Loss Of Signal Sticky Bit (Si5351C Only). The LOS_STKY bit is triggered when the LOS bit (register 0, bit 4) is triggered high. It remains high until cleared. Writing a 0 to this register bit will cause it to clear. 0: No LOS interrupt has occurred since it was last cleared. 1: A LOS interrupt has occurred since it was last cleared. 3:0 26 Reserved Leave as default. Preliminary Rev. 0.95 Si5351A/B/C Register 2. Interrupt Status Mask Bit Name Type D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W SYS_INIT_MASK LOL_B_MASK LOL_A_MASK LOS_MASK R/W R/W R/W R/W Reset value = 0000 0000 Bit 7 Name Function SYS_INIT_MASK System Initialization Status Mask. Use this mask bit to prevent the INTR pin (Si5351C only) from going low when SYS_INIT is asserted. 0: Do not mask the SYS_INIT interrupt. 1: Mask the SYS_INIT interrupt. 6 LOL_B_MASK PLLB Loss Of Lock Status Mask. Use this mask bit to prevent the INTR pin (Si5351C only) from going low when LOL_B is asserted. 0: Do not mask the LOL_B interrupt. 1: Mask the LOL_B interrupt. 5 LOL_A_MASK PLL A Loss Of Lock Status Mask. Use this mask bit to prevent the INTR pin (Si5351C only) from going low when LOL_A is asserted. 0: Do not mask the LOL_A interrupt. 1: Mask the LOL_A interrupt. 4 LOS_MASK CLKIN Loss Of Signal Mask (Si5351C Only). Use this mask bit to prevent the INTR pin (Si5351C only) from going low when LOS is asserted. 0: Do not mask the LOS interrupt. 1: Mask the LOS interrupt. 3:0 Reserved Leave as default. Preliminary Rev. 0.95 27 Si5351A/B/C Register 3. Output Enable Control Bit Name Type D7 D6 D5 D4 D3 D2 D1 D0 CLK7_OEB CLK6_OEB CLK5_OEB CLK4_OEB CLK3_OEB CLK2_OEB CLK1_OEB CLK0_OEB R/W R/W R/W R/W R/W R/W R/W R/W D2 D1 D0 Reset value = 0000 0000 Bit 7:0 Name Function CLKx_OEB Output Disable for CLKx. Where x = 0, 1, 2, 3, 4, 5, 6, 7 0: Enable CLKx output. 1: Disable CLKx output. Register 9. OEB Pin Enable Control Bit Name Type D7 D6 D5 D4 D3 OEB_CLK7 OEB_CLK6 OEB_CLK5 OEB_CLK4 OEB_CLK3 OEB_CLK2 OEB_CLK1 OEB_CLK0 R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit 7:0 Name Function OEB_CLKx OEB pin enable control of CLKx. Where x = 0, 1, 2, 3, 4, 5, 6, 7 0: OEB pin controls enable/disable state of CLKx output. 1: OEB pin does not control enable/disable state of CLKx output. 28 Preliminary Rev. 0.95 R/W R/W Si5351A/B/C Register 15. PLL Input Source Bit D7 D6 D5 D4 D2 D1 D0 R/W R/W PLLB_SRC PLLA_SRC Name Type D3 R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name Function 7:4 Reserved 3 PLLB_SRC Input Source Select for PLLB. 0: Select the XTAL input as the reference clock for PLLB (Si5351A/C only). 1: Select the CLKIN input as the reference clock for PLLB (Si5351C only). 2 PLLA_SRC Input Source Select for PLLA. 0: Select the XTAL input as the reference clock for PLLA. 1: Select the CLKIN input as the reference clock for PLLA (Si5351C only). 1:0 Reserved Leave as default. Leave as default. Preliminary Rev. 0.95 29 Si5351A/B/C Register 16. CLK0 Control Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK0_PDN MS0_INT MS0_SRC CLK0_INV CLK0_SRC[1:0] CLK0_IDRV[1:0] Type R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 CLK0_PDN Function Clock 0 Power Down. This bit allows powering down the CLK0 output driver to conserve power when the output is unused. 0: CLK0 is powered up. 1: CLK0 is powered down. 6 MS0_INT MultiSynth 0 Integer Mode. This bit can be used to force MS0 into Integer mode to improve jitter performance. Note that the fractional mode is necessary when a delay offset is specified for CLK0. 0: MS0 operates in fractional division mode. 1: MS0 operates in integer mode. 5 MS0_SRC MultiSynth Source Select for CLK0. 0: Select PLLA as the source for MultiSynth0. 1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0. 4 CLK0_INV Output Clock 0 Invert. 0: Output Clock 0 is not inverted. 1: Output Clock 0 is inverted. 3:2 CLK0_SRC[1:0] Output Clock 0 Input Source. These bits determine the input source for CLK0. 00: Select the XTAL as the clock source for CLK0. This option by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK0 directly to the oscillator which generates an output frequency determined by the XTAL frequency. 01: Select CLKIN as the clock source for CLK0. This by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK0 directly to the CLKIN input. This essentially creates a buffered output of the CLKIN input. 10: Reserved. Do not select this option. 11: Select MultiSynth 0 as the source for CLK0. Select this option when using the Si5351 to generate free-running or synchronous clocks. 1:0 CLK0_IDRV[1:0] CLK0 Output Rise and Fall time / Drive Strength Control. 00: 2 mA 01: 4 mA 10: 6 mA 11: 8 mA 30 Preliminary Rev. 0.95 Si5351A/B/C Register 17. CLK1 Control Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK1_PDN MS1_INT MS1_SRC CLK1_INV CLK1_SRC[1:0] CLK1_IDRV[1:0] Type R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 CLK1_PDN Function Clock 1 Power Down. This bit allows powering down the CLK1 output driver to conserve power when the output is unused. 0: CLK1 is powered up. 1: CLK1 is powered down. 6 MS1_INT MultiSynth 1 Integer Mode. This bit can be used to force MS1 into Integer mode to improve jitter performance. Note that the fractional mode is necessary when a delay offset is specified for CLK1. 0: MS1 operates in fractional division mode. 1: MS1 operates in integer mode. 5 MS1_SRC MultiSynth Source Select for CLK1. 0: Select PLLA as the source for MultiSynth0. 1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0. 4 CLK1_INV Output Clock 1 Invert. 0: Output Clock 1 is not inverted. 1: Output Clock 1 is inverted. 3:2 CLK1_SRC[1:0] Output Clock 1 Input Source. These bits determine the input source for CLK1. 00: Select the XTAL as the clock source for CLK1. This option by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK1 directly to the oscillator which generates an output frequency determined by the XTAL frequency. 01: Select CLKIN as the clock source for CLK1. This by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK1 directly to the CLKIN input. This essentially creates a buffered output of the CLKIN input. 10: Reserved. Do not select this option. 11: Select MultiSynth 0 as the source for CLK1. Select this option when using the Si5351 to generate free-running or synchronous clocks. 1:0 CLK1_IDRV[1:0] CLK1 Output Rise and Fall time / Drive Strength Control. 00: 2 mA 01: 4 mA 10: 6 mA 11: 8 mA Preliminary Rev. 0.95 31 Si5351A/B/C Register 18. CLK2 Control Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK2_PDN MS2_INT MS2_SRC CLK2_INV CLK2_SRC[1:0] CLK2_IDRV[1:0] Type R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 CLK2_PDN Function Clock 2 Power Down. This bit allows powering down the CLK2 output driver to conserve power when the output is unused. 0: CLK2 is powered up. 1: CLK2 is powered down. 6 MS2_INT MultiSynth 2 Integer Mode. This bit can be used to force MS2 into Integer mode to improve jitter performance. Note that the fractional mode is necessary when a delay offset is specified for CLK2. 0: MS2 operates in fractional division mode. 1: MS2 operates in integer mode. 5 MS2_SRC MultiSynth Source Select for CLK2. 0: Select PLLA as the source for MultiSynth0. 1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0. 4 CLK2_INV Output Clock 2 Invert. 0: Output Clock 2 is not inverted. 1: Output Clock 2 is inverted. 3:2 CLK2_SRC[1:0] Output Clock 2 Input Source. These bits determine the input source for CLK2. 00: Select the XTAL as the clock source for CLK2. This option by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK2 directly to the oscillator which generates an output frequency determined by the XTAL frequency. 01: Select CLKIN as the clock source for CLK2. This by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK2 directly to the CLKIN input. This essentially creates a buffered output of the CLKIN input. 10: Reserved. Do not select this option. 11: Select MultiSynth 0 as the source for CLK2. Select this option when using the Si5351 to generate free-running or synchronous clocks. 1:0 CLK2_IDRV[1:0] CLK2 Output Rise and Fall time / Drive Strength Control. 00: 2 mA 01: 4 mA 10: 6 mA 11: 8 mA 32 Preliminary Rev. 0.95 Si5351A/B/C Register 19. CLK3 Control Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK3_PDN MS3_INT MS3_SRC CLK3_INV CLK3_SRC[1:0] CLK3_IDRV[1:0] Type R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 CLK3_PDN Function Clock 3 Power Down. This bit allows powering down the CLK3 output driver to conserve power when the output is unused. 0: CLK3 is powered up. 1: CLK3 is powered down. 6 MS3_INT MultiSynth 3 Integer Mode. This bit can be used to force MS3 into Integer mode to improve jitter performance. Note that the fractional mode is necessary when a delay offset is specified for CLK3. 0: MS3 operates in fractional division mode. 1: MS3 operates in integer mode. 5 MS3_SRC MultiSynth Source Select for CLK3. 0: Select PLLA as the source for MultiSynth0. 1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0. 4 CLK3_INV Output Clock 3 Invert. 0: Output Clock 3 is not inverted. 1: Output Clock 3 is inverted. 3:2 CLK3_SRC[1:0] Output Clock 3 Input Source. These bits determine the input source for CLK3. 1:0 CLK3_IDRV[1:0] CLK3 Output Rise and Fall time / Drive Strength Control. 00: 2 mA 01: 4 mA 10: 6 mA 11: 8 mA Preliminary Rev. 0.95 33 Si5351A/B/C Register 20. CLK4 Control Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK4_PDN MS4_INT MS4_SRC CLK4_INV CLK4_SRC[1:0] CLK4_IDRV[1:0] Type R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 CLK4_PDN Function Clock 4 Power Down. This bit allows powering down the CLK4 output driver to conserve power when the output is unused. 0: CLK4 is powered up. 1: CLK4 is powered down. 6 MS4_INT MultiSynth 4 Integer Mode. This bit can be used to force MS4 into Integer mode to improve jitter performance. Note that the fractional mode is necessary when a delay offset is specified for CLK4. 0: MS4 operates in fractional division mode. 1: MS4 operates in integer mode. 5 MS4_SRC MultiSynth Source Select for CLK4. 0: Select PLLA as the source for MultiSynth0. 1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0. 4 CLK4_INV Output Clock 4 Invert. 0: Output Clock 4 is not inverted. 1: Output Clock 4 is inverted. 3:2 CLK4_SRC[1:0] Output Clock 4 Input Source. These bits determine the input source for CLK4. 00: Select the XTAL as the clock source for CLK4. This option by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK4 directly to the oscillator which generates an output frequency determined by the XTAL frequency. 01: Select CLKIN as the clock source for CLK4. This by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK4 directly to the CLKIN input. This essentially creates a buffered output of the CLKIN input. 10: Reserved. Do not select this option. 11: Select MultiSynth 0 as the source for CLK4. Select this option when using the Si5351 to generate free-running or synchronous clocks. 1:0 CLK4_IDRV[1:0] CLK4 Output Rise and Fall time / Drive Strength Control. 00: 2 mA 01: 4 mA 10: 6 mA 11: 8 mA 34 Preliminary Rev. 0.95 Si5351A/B/C Register 21. CLK5 Control Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK5_PDN MS5_INT MS5_SRC CLK5_INV CLK5_SRC[1:0] CLK5_IDRV[1:0] Type R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 CLK5_PDN Function Clock 5 Power Down. This bit allows powering down the CLK5 output driver to conserve power when the output is unused. 0: CLK4 is powered up. 1: CLK4 is powered down. 6 MS5_INT MultiSynth 5 Integer Mode. This bit can be used to force MS5 into Integer mode to improve jitter performance. Note that the fractional mode is necessary when a delay offset is specified for CLK4. 0: MS5 operates in fractional division mode. 1: MS5 operates in integer mode. 5 MS5_SRC MultiSynth Source Select for CLK5. 0: Select PLLA as the source for MultiSynth0. 1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0. 4 CLK5_INV Output Clock 5 Invert. 0: Output Clock 5 is not inverted. 1: Output Clock 5 is inverted. 3:2 CLK5_SRC[1:0] Output Clock 5 Input Source. These bits determine the input source for CLK5. 00: Select the XTAL as the clock source for CLK5. This option by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK5 directly to the oscillator which generates an output frequency determined by the XTAL frequency. 01: Select CLKIN as the clock source for CLK5. This by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK5 directly to the CLKIN input. This essentially creates a buffered output of the CLKIN input. 10: Reserved. Do not select this option. 11: Select MultiSynth 0 as the source for CLK5. Select this option when using the Si5351 to generate free-running or synchronous clocks. 1:0 CLK5_IDRV[1:0] CLK5 Output Rise and Fall time / Drive Strength Control. 00: 2 mA 01: 4 mA 10: 6 mA 11: 8 mA Preliminary Rev. 0.95 35 Si5351A/B/C Register 22. CLK6 Control Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK6_PDN FBA_INT MS6_SRC CLK6_INV CLK6_SRC[1:0] CLK6_IDRV[1:0] Type R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 CLK6_PDN Function Clock 7 Power Down. This bit allows powering down the CLK6 output driver to conserve power when the output is unused. 0: CLK6 is powered up. 1: CLK6 is powered down. 6 FBA_INT FBA MultiSynth Integer Mode. Set this bit according to ClockBuilder Desktop generated register map file. 5 MS6_SRC MultiSynth Source Select for CLK6. 0: Select PLLA as the source for MultiSynth0. 1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0. 4 CLK6_INV Output Clock 6 Invert. 0: Output Clock 6 is not inverted. 1: Output Clock 6 is inverted. 3:2 CLK6_SRC[1:0] Output Clock 0 Input Source. These bits determine the input source for CLK6. 00: Select the XTAL as the clock source for CLK6. This option by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK6 directly to the oscillator which generates an output frequency determined by the XTAL frequency. 01: Select CLKIN as the clock source for CLK6. This by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK6 directly to the CLKIN input. This essentially creates a buffered output of the CLKIN input. 10: Reserved. Do not select this option. 11: Select MultiSynth 0 as the source for CLK6. Select this option when using the Si5351 to generate free-running or synchronous clocks. 1:0 CLK6_IDRV[1:0] CLK6 Output Rise and Fall time / Drive Strength Control. 00: 2 mA 01: 4 mA 10: 6 mA 11: 8 mA 36 Preliminary Rev. 0.95 Si5351A/B/C Register 23. CLK7 Control Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK7_PDN FBB_INT MS7_SRC CLK7_INV CLK7_SRC[1:0] CLK7_IDRV[1:0] Type R/W R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 CLK7_PDN Function Clock 7 Power Down. This bit allows powering down the CLK7 output driver to conserve power when the output is unused. 0: CLK7 is powered up. 1: CLK7 is powered down. 6 FBB_INT FBB MultiSynth Integer Mode. Set this bit according to ClockBuilder Desktop generated register map file. 5 MS7_SRC MultiSynth Source Select for CLK7. 0: Select PLLA as the source for MultiSynth0. 1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0. 4 CLK7_INV Output Clock 7 Invert. 0: Output Clock 7 is not inverted. 1: Output Clock 7 is inverted. 3:2 CLK7_SRC[1:0] Output Clock 0 Input Source. These bits determine the input source for CLK7. 00: Select the XTAL as the clock source for CLK7. This option by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK7 directly to the oscillator which generates an output frequency determined by the XTAL frequency. 01: Select CLKIN as the clock source for CLK7. This by-passes both synthesis stages (PLL/VCXO & MultiSynth) and connects CLK7 directly to the CLKIN input. This essentially creates a buffered output of the CLKIN input. 10: Reserved. Do not select this option. 11: Select MultiSynth 0 as the source for CLK7. Select this option when using the Si5351 to generate free-running or synchronous clocks. 1:0 CLK7_IDRV[1:0] CLK7 Output Rise and Fall time / Drive Strength Control. 00: 2 mA 01: 4 mA 10: 6 mA 11: 8 mA Preliminary Rev. 0.95 37 Si5351A/B/C Register 24. CLK3-0 Disable State Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK3_DIS_STATE CLK2_DIS_STATE CLK1_DIS_STATE CLK0_DIS_STATE Type R/W R/W R/W R/W Reset value = 0000 0000 Bit Name Function 7:0 CLKx_DIS_STATE Clock x Disable State. Where x = 0, 1, 2, 3. These 2 bits determine the state of the CLKx output when disabled. Individual output clocks can be disabled using register Output Enable Control located at address 3. Outputs are also disabled using the OEB pin. 00: CLKx is set to a LOW state when disabled. 01: CLKx is set to a HIGH state when disabled. 10: CLKx is set to a HIGH IMPEDANCE state when disabled. 11: CLKx is NEVER DISABLED. Register 25. CLK7-4 Disable State Bit D7 D6 D5 D4 D3 D2 D1 D0 Name CLK7_DIS_STATE CLK6_DIS_STATE CLK5_DIS_STATE CLK4_DIS_STATE Type R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7:0 CLKx_DIS_STATE Function Clock x Disable State. Where x = 4, 5, 6, 7. These 2 bits determine the state of the CLKx output when disabled. Individual output clocks can be disabled using register Output Enable Control located at address 3. Outputs are also disabled using the OEB pin. 00: CLKx is set to a LOW state when disabled. 01: CLKx is set to a HIGH state when disabled. 10: CLKx is set to a HIGH IMPEDANCE state when disabled. 11: CLKx is NEVER DISABLED. 38 Preliminary Rev. 0.95 Si5351A/B/C Register 42. Multisynth0 Parameters Bit D7 D6 D5 D4 D3 Name MS0_P3[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit 7:0 Name MS0_P3[15:8] Function Multisynth0 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth0 Divider. Register 43. Multisynth0 Parameters Bit D7 D6 D5 D4 D3 Name MS0_P3[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS0_P3[7:0] Function Multisynth0 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth0 Divider. Preliminary Rev. 0.95 39 Si5351A/B/C Register 44. Multisynth0 Parameters Bit D7 D6 Name Type D5 D4 D3 D2 R0_DIV[2:0] R/W D1 D0 MS0_P1[17:16] R/W R/W R/W R/W Reset value = xxxx xxxx Bit Name 7 Unused 6:4 R0_DIV[2:0] Function R0 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 110b: Divide by 64 111b: Divide by 128 3:2 Reserved 1:0 MS0_P1[17:16] Multisynth0 Parameter 1. This 18-bit number is an encoded representation of the integer part of the MultiSynth0 divider. Register 45. Multisynth0 Parameters Bit D7 Name D6 D5 D4 D3 D2 D1 MS0_P1[15:8] Type Reset value = xxxx xxxx Bit Name 7:0 MS0_P1[15:8] R/W Function Multisynth0 Parameter 1. This 18-bit number is an encoded representation of the integer part of the MultiSynth1 divider. 40 Preliminary Rev. 0.95 D0 Si5351A/B/C Register 46. Multisynth0 Parameters Bit D7 D6 D5 D4 D3 Name MS0_P1[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS0_P1[7:0] Function Multisynth0 Parameter 1. This 18-bit number is an encoded representation of the integer part of the MultiSynth1 divider. Register 47. Multisynth0 Parameters Bit D7 D6 D5 D4 D3 D2 D1 Name MS0_P3[19:16] MS0_P2[19:16] Type R/W R/W D0 Reset value = xxxx xxxx Bit Name 7:4 MS0_P3[19:16] Function Multisynth0 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth0 Divider 3:0 MS0_P2[19:16] Multisynth0 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 Divider. Register 48. Multisynth0 Parameters Bit D7 D6 D5 D4 D3 Name MS0_P2[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS0_P2[15:8] Function Multisynth0 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 Divider. Preliminary Rev. 0.95 41 Si5351A/B/C Register 49. Multisynth0 Parameters Bit D7 D6 D5 D4 D3 Name MS0_P2[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS0_P2[7:0] Function Multisynth0 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 Divider. Register 50. Multisynth1 Parameters Bit D7 D6 D5 D4 D3 Name MS1_P3[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS1_P3[15:8] Function Multisynth1 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth1 Divider. Register 51. Multisynth1 Parameters Bit D7 D6 D5 D4 D3 Name MS1_P3[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS1_P3[7:0] Function Multisynth1 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth1 Divider. 42 Preliminary Rev. 0.95 Si5351A/B/C Register 52. Multisynth1 Parameters Bit D7 D6 D4 D3 D2 R1_DIV[2:0] Name Type D5 R/W D1 D0 MS1_P1[17:16] R/W R/W R/W R/W Reset value = xxxx xxxx Bit Name 7 Unused 6:4 R1_DIV[2:0] Function R1 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 110b: Divide by 64 111b: Divide by 128 3:2 Reserved 1:0 MS1_P1[17:16] Multisynth1 Parameter 1. This 18-bit number is an encoded representation of the integer part of the MultiSynth1 divider. Register 53. Multisynth1 Parameters Bit D7 D6 D5 D4 D3 Name MS1_P1[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS1_P1[15:8] Function Multisynth1 Parameter 1. This 18-bit number is an encoded representation of the integer part of the MultiSynth1 divider. Preliminary Rev. 0.95 43 Si5351A/B/C Register 54. Multisynth1 Parameters Bit D7 D6 D5 D4 D3 Name MS1_P1[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS1_P1[7:0] Function Multisynth1 Parameter 1. This 18-bit number is an encoded representation of the integer part of the MultiSynth1 divider. Register 55. Multisynth1 Parameters Bit D7 D6 D5 D4 D3 D2 D1 Name MS1_P3[19:16] MS1_P2[19:16] Type R/W R/W D0 Reset value = xxxx xxxx Bit Name 7:4 MS1_P3[19:16] Function Multisynth1 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth1 Divider 3:0 MS1_P2[19:16] Multisynth1 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 Divider. Register 56. Multisynth1 Parameters Bit D7 D6 D5 D4 D3 Name MS1_P2[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS1_P2[15:8] Function Multisynth1 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 divider. 44 Preliminary Rev. 0.95 Si5351A/B/C Register 57. Multisynth1 Parameters Bit D7 D6 D5 D4 D3 Name MS1_P2[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS1_P2[7:0] Function Multisynth1 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 divider. Register 58. Multisynth1 Parameters Bit D7 D6 D5 D4 D3 Name MS1_P3[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS1_P3[15:8] Function Multisynth1 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth1 divider. Register 59. Multisynth1 Parameters Bit D7 D6 D5 D4 D3 Name MS1_P3[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS1_P3[7:0] Function Multisynth1 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth1 divider. Preliminary Rev. 0.95 45 Si5351A/B/C Register 60. Multisynth2 Parameters Bit D7 D6 Name Type D5 D4 D3 D2 R2_DIV[2:0] R/W D1 D0 MS2_P1[17:16] R/W R/W R/W R/W Reset value = xxxx xxxx Bit Name 7 Unused 6:4 R2_DIV[2:0] Function R2 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 110b: Divide by 64 111b: Divide by 128 3:2 Reserved 1:0 MS2_P1[17:16] Multisynth2 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth2 divider. Register 61. Multisynth2 Parameters Bit D7 D6 D5 D4 D3 Name MS2_P1[15:8] Type R/W D2 D1 Reset value = xxxx xxxx Bit Name 7:0 MS2_P1[15:8] Function Multisynth2 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth2 divider. 46 Preliminary Rev. 0.95 D0 Si5351A/B/C Register 62. Multisynth2 Parameters Bit D7 D6 D5 D4 D3 Name MS2_P1[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS2_P1[7:0] Function Multisynth2 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth2 divider. Register 63. Multisynth2 Parameters Bit D7 D6 D5 D4 D3 D2 D1 Name MS2_P3[19:16] MS2_P2[19:16] Type R/W R/W D0 Reset value = xxxx xxxx Bit Name 7:4 MS2_P3[19:16] Function Multisynth2 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth2 divider 3:0 MS2_P2[19:16] Multisynth2 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth2 divider. Register 64. Multisynth2 Parameters Bit D7 D6 D5 D4 D3 Name MS2_P2[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS2_P2[15:8] Function Multisynth2 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the Multisynth2 divider. Preliminary Rev. 0.95 47 Si5351A/B/C Register 65. Multisynth2 Parameters Bit D7 D6 D5 D4 D3 Name MS2_P2[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS2_P2[7:0] Function Multisynth2 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the Multisynth2 divider. Register 66. Multisynth3 Parameters Bit D7 D6 D5 D4 D3 Name MS3_P3[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS3_P3[15:8] Function Multisynth3 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth3 divider. Register 67. Multisynth3 Parameters Bit D7 D6 D5 D4 D3 Name MS3_P3[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS3_P3[7:0] Function Multisynth3 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth3 divider. 48 Preliminary Rev. 0.95 Si5351A/B/C Register 68. Multisynth3 Parameters Bit D7 D6 Name Type D5 D4 D3 D2 R3_DIV[2:0] R/W D1 D0 MS3_P1[17:16] R/W R/W R/W R/W Reset value = xxxx xxxx Bit Name 7 Unused 6:4 R3_DIV[2:0] Function R3 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 110b: Divide by 64 111b: Divide by 128 3:2 Reserved 1:0 MS3_P1[17:16] Multisynth3 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth3 divider. Register 69. Multisynth3 Parameters Bit D7 D6 D5 D4 D3 Name MS3_P1[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS3_P1[15:8] Function Multisynth3 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth3 divider. Preliminary Rev. 0.95 49 Si5351A/B/C Register 70. Multisynth3 Parameters Bit D7 D6 D5 D4 D3 Name MS3_P1[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS3_P1[7:0] Function Multisynth3 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth3 divider. Register 71. Multisynth3 Parameters Bit D7 D6 D5 D4 D3 D2 D1 Name MS3_P3[19:16] MS3_P2[19:16] Type R/W R/W D0 Reset value = xxxx xxxx Bit Name 7:4 MS3_P3[19:16] Function Multisynth3 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth3 divider 3:0 MS3_P2[19:16] Multisynth3 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth3 divider. Register 72. Multisynth3 Parameters Bit D7 D6 D5 D4 D3 Name MS3_P2[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS3_P2[15:8] Function Multisynth3 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the Multisynth3 divider. 50 Preliminary Rev. 0.95 Si5351A/B/C Register 73. Multisynth3 Parameters Bit D7 D6 D5 D4 D3 Name MS3_P2[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS3_P2[7:0] Function Multisynth3 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the Multisynth3 divider. Register 74. Multisynth4 Parameters Bit D7 D6 D5 D4 D3 Name MS4_P3[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS4_P3[15:8] Function Multisynth4 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth4 divider. Register 75. Multisynth4 Parameters Bit D7 D6 D5 D4 D3 Name MS4_P3[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS4_P3[7:0] Function Multisynth4 Parameter 3. This 20-bit number is an encoded representation of the numerator for the fractional part of the Multisynth4 divider. Preliminary Rev. 0.95 51 Si5351A/B/C Register 76. Multisynth4 Parameters Bit D7 D6 Name Type D5 D4 D3 D2 R4_DIV[2:0] R/W D1 D0 MS4_P1[17:16] R/W R/W R/W R/W Reset value = xxxx xxxx Bit Name 7 Unused 6:4 R4_DIV[2:0] Function R4 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 110b: Divide by 64 111b: Divide by 128 3:2 Reserved 1:0 MS4_P1[17:16] Multisynth4 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth4 divider. Register 77. Multisynth4 Parameters Bit D7 D6 D5 D4 D3 Name MS4_P1[15:8] Type R/W D2 D1 Reset value = xxxx xxxx Bit Name 7:0 MS4_P1[15:8] Function Multisynth4 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth4 divider. 52 Preliminary Rev. 0.95 D0 Si5351A/B/C Register 78. Multisynth4 Parameters Bit D7 D6 D5 D4 D3 Name MS4_P1[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS4_P1[7:0] Function Multisynth4 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth4 divider. Register 79. Multisynth4 Parameters Bit D7 D6 D5 D4 D3 D2 D1 Name MS4_P3[19:16] MS4_P2[19:16] Type R/W R/W D0 Reset value = xxxx xxxx Bit Name 7:4 MS4_P3[19:16] Function Multisynth4 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth4 divider 3:0 MS4_P2[19:16] Multisynth4 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth4 divider. Register 80. Multisynth4 Parameters Bit D7 D6 D5 D4 D3 Name MS4_P2[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS4_P2[15:8] Function Multisynth4 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the Multisynth4 Divider. Preliminary Rev. 0.95 53 Si5351A/B/C Register 81. Multisynth4 Parameters Bit D7 D6 D5 D4 D3 Name MS4_P2[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS4_P2[7:0] Function Multisynth4 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the Multisynth4 divider. Register 82. Multisynth5 Parameters Bit D7 D6 D5 D4 D3 Name MS5_P3[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS5_P3[15:8] Function Multisynth5 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth5 divider. Register 83. Multisynth5 Parameters Bit D7 D6 D5 D4 D3 Name MS5_P3[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS5_P3[7:0] Function Multisynth5 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth5 divider. 54 Preliminary Rev. 0.95 Si5351A/B/C Register 84. Multisynth5 Parameters Bit D7 D6 Name Type D5 D4 D3 D2 R5_DIV[2:0] R/W D1 D0 MS5_P1[17:16] R/W R/W R/W R/W Reset value = xxxx xxxx Bit Name 7 Unused 6:4 R5_DIV[2:0] Function R5 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 110b: Divide by 64 111b: Divide by 128 3:2 Reserved 1:0 MS5_P1[17:16] Multisynth5 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth5 divider. Register 85. Multisynth5 Parameters Bit D7 D6 D5 D4 D3 Name MS5_P1[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS5_P1[15:8] Function Multisynth5 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth5 divider. Preliminary Rev. 0.95 55 Si5351A/B/C Register 86. Multisynth5 Parameters Bit D7 D6 D5 D4 D3 Name MS5_P1[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS5_P1[7:0] Function Multisynth5 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth5 divider. Register 87. Multisynth5 Parameters Bit D7 D6 D5 D4 D3 D2 D1 Name MS5_P3[19:16] MS5_P2[19:16] Type R/W R/W D0 Reset value = xxxx xxxx Bit Name 7:4 MS5_P3[19:16] Function Multisynth5 Parameter 3. This 20-bit number is an encoded representation of the denominator for the fractional part of the Multisynth5 divider 3:0 MS5_P2[19:16] Multisynth5 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth5 divider. Register 88. Multisynth5 Parameters Bit D7 D6 D5 D4 D3 Name MS5_P2[15:8] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS5_P2[15:8] Function Multisynth5 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the Multisynth5 Divider. 56 Preliminary Rev. 0.95 Si5351A/B/C Register 89. Multisynth5 Parameters Bit D7 D6 D5 D4 D3 Name MS5_P2[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS5_P2[7:0] Function Multisynth5 Parameter 2. This 20-bit number is an encoded representation of the numerator for the fractional part of the Multisynth5 Divider. Register 90. Multisynth6 Parameters Bit D7 D6 D5 D4 D3 Name MS6_P1[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS6_P1[7:0] Function Multisynth6 Parameter 1. This 8-bit number is the Multisynth6 divide ratio. Multisynth6 divide ratio can only be even integers greater than or equal to 6. All other divide values are invalid. Register 91. Multisynth7 Parameters Bit D7 D6 D5 D4 D3 Name MS7_P1[7:0] Type R/W D2 D1 D0 Reset value = xxxx xxxx Bit Name 7:0 MS7_P1[7:0] Function Multisynth7 Parameter 1. This 8-bit number is the Multisynth6 divide ratio. Multisynth6 divide ratio can only be even integers greater than or equal to 6. All other divide values are invalid. Preliminary Rev. 0.95 57 Si5351A/B/C Register 92. Clock 6 and 7 Output Divider Bit D7 Name Type D6 D5 D4 D3 R7_DIV[2:0] R/W R/W Name 7 Reserved 6:4 R7_DIV[2:0] R/W Function Leave as default. R7 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 110b: Divide by 64 111b: Divide by 128 3 Reserved 1:0 R6_DIV[2:0] Leave as default. R6 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 110b: Divide by 64 111b: Divide by 128 58 D1 R6_DIV[2:0] Reset value = xxxx xxxx Bit D2 Preliminary Rev. 0.95 R/W D0 Si5351A/B/C Register 165. CLK0 Initial Phase Offset Bit D7 D6 D5 D4 D2 D1 D0 R/W R/W R/W CLK0_PHOFF[6:0] Name Type D3 R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 Reserved 6:0 Function Only write 0 to this bit. CLK0_PHOFF[6:0] Clock 0 Initial Phase Offset. CLK0_PHOFF[6:0] is an unsigned integer with one LSB equivalent to a time delay of Tvco/4, where Tvco is the period of the VCO/PLL associated with this output. Register 166. CLK1 Initial Phase Offset Bit D7 D6 D5 D4 D2 D1 D0 R/W R/W R/W CLK1_PHOFF[6:0] Name Type D3 R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 Reserved 6:0 Function Only write 0 to this bit. CLK1_PHOFF[6:0] Clock 1 Initial Phase Offset. CLK1_PHOFF[6:0] is an unsigned integer with one LSB equivalent to a time delay of Tvco/4, where Tvco is the period of the VCO/PLL associated with this output. Register 167. CLK2 Initial Phase Offset Bit D7 D6 D5 D4 D2 D1 D0 R/W R/W R/W CLK2_PHOFF[6:0] Name Type D3 R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 Reserved 6:0 Function Only write 0 to this bit. CLK2_PHOFF[6:0] Clock 2 Initial Phase Offset. CLK2_PHOFF[6:0] is an unsigned integer with one LSB equivalent to a time delay of Tvco/4, where Tvco is the period of the VCO/PLL associated with this output. Preliminary Rev. 0.95 59 Si5351A/B/C Register 168. CLK3 Initial Phase Offset Bit D7 D6 D5 D4 D2 D1 D0 R/W R/W R/W CLK3_PHOFF[6:0] Name Type D3 R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 Reserved 6:0 Function Only write 0 to this bit. CLK3_PHOFF[6:0] Clock 3 Initial Phase Offset. CLK3_PHOFF[6:0] is an unsigned integer with one LSB equivalent to a time delay of Tvco/4, where Tvco is the period of the VCO/PLL associated with this output. Register 169. CLK4 Initial Phase Offset Bit D7 D6 D5 D4 D2 D1 D0 R/W R/W R/W CLK4_PHOFF[6:0] Name Type D3 R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 Reserved 6:0 Function Only write 0 to this bit. CLK4_PHOFF[6:0] Clock 4 Initial Phase Offset. CLK4_PHOFF[6:0] is an unsigned integer with one LSB equivalent to a time delay of Tvco/4, where Tvco is the period of the VCO/PLL associated with this output. Register 170. CLK5 Initial Phase Offset Bit D7 D6 D5 D4 D2 D1 D0 R/W R/W R/W CLK5_PHOFF[6:0] Name Type D3 R/W R/W R/W R/W R/W Reset value = 0000 0000 Bit Name 7 Reserved 6:0 Function Only write 0 to this bit. CLK5_PHOFF[6:0] Clock 5 Initial Phase Offset. CLK5_PHOFF[6:0] is an unsigned integer with one LSB equivalent to a time delay of Tvco/4, where Tvco is the period of the VCO/PLL associated with this output. 60 Preliminary Rev. 0.95 Si5351A/B/C Register 177. PLL Reset Bit D7 Name PLLB_RST Type R/W D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W PLLA_RST R/W R/W Reset value = 0000 0000 Bit 7 Name Function PLLB_RST PLLB_Reset. Writing a 1 to this bit will reset PLLB. This is a self clearing bit (Si5351A/C only). 6 5 Reserved Leave as default. PLLA_RST PLLA_Reset. Writing a 1 to this bit will reset PLLA. This is a self clearing bit. 4:0 Reserved Leave as default. Register 183. Crystal Internal Load Capacitance Bit Name Type D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W R/W XTAL_CL[1:0] R/W R/W Reset value = 11xx xxxx Bit 7:6 Name Function XTAL_CL[1:0] Crystal Load Capacitance Selection. These 2 bits determine the internal load capacitance value for the crystal. See "3.1.1. Crystal Inputs (XA, XB)" on page 11. 00: Reserved. Do not select this option. 01: Internal CL = 6 pF. 10: Internal CL = 8 pF. 11: Internal CL = 10 pF (default). 5:0 Reserved Leave as default. Preliminary Rev. 0.95 61 Si5351A/B/C 9. Si5351A Pin Descriptions (20-Pin QFN, 24-Pin QSOP) Si5351A 24-QSOP Top View 16 CLK6 18 VDDOC 17 CLK5 20 VDD 19 CLK4 Si5351A 20-QFN Top View CLK5 1 24 CLK6 VDDOC 2 23 CLK7 CLK4 3 22 VDD0D VDD 4 21 CLK0 GND 5 20 CLK1 XA 1 15 CLK7 XB 2 14 VDDOD A0 3 13 CLK0 XA 6 19 GND SCL 4 12 CLK1 XB 7 18 VDDOA GND 8 17 GND A0 9 16 VDD0B SCL 10 15 CLK2 SDA 11 14 CLK3 SSEN 12 13 OEB CLK2 VDDOA VDDOB 10 9 8 CLK3 SSEN 7 11 6 5 OEB SDA GND PAD Table 10. Si5351A Pin Descriptions Pin Name Pin Number Pin Type* Function 20-QFN 24-QSOP XA 1 6 I Input pin for external crystal. XB 2 7 I Input pin for external crystal. CLK0 13 21 O Output clock 0. CLK1 12 20 O Output clock 1. CLK2 9 15 O Output clock 2. CLK3 8 14 O Output clock 3. CLK4 19 3 O Output clock 4. CLK5 17 1 O Output clock 5. CLK6 16 24 O Output clock 6. CLK7 15 23 O Output clock 7. A0 3 9 I I2C address bit. SCL 4 10 I I2C bus serial clock input. Pull-up to VDD core with 1 k SDA 5 11 I/O I2C bus serial data input. Pull-up to VDD core with 1 k SSEN 6 12 I Spread spectrum enable. High = enabled, Low = disabled. OEB 7 13 I Output driver enable. Low = enabled, High = disabled. VDD 20 4 P Core voltage supply pin. See 6.2. VDDOA 11 18 P Output voltage supply pin for CLK0 and CLK1. See 6.2. VDDOB 10 16 P Output voltage supply pin for CLK2 and CLK3. See 6.2. VDDOC 18 2 P Output voltage supply pin for CLK4 and CLK5. See 6.2. VDDOD 14 22 P Output voltage supply pin for CLK6 and CLK7. See 6.2. GND Center Pad 5, 8, 17, 19 P Ground. Use multiple vias to ensure a solid path to GND. 1. I = Input, O = Output, P = Power. 2. Input pins are not internally pulled up. 62 Preliminary Rev. 0.95 Si5351A/B/C 10. Si5351B Pin Descriptions (20-Pin QFN, 24-Pin QSOP) Si5351B 24-QSOP Top View 16 CLK6 18 VDDOC 17 CLK5 20 VDD 19 CLK4 Si5351B 20-QFN Top View XA 1 15 XB 2 14 VC 3 GND PAD 13 4 SCL 12 7 8 9 CLK3 CLK2 1 24 CLK6 2 23 CLK7 CLK4 3 22 VDD0D VDD 4 21 CLK0 GND 5 20 CLK1 CLK0 XA 6 19 GND CLK1 XB 7 18 VDDOA GND 8 17 GND VC 9 16 VDD0B SCL 10 15 CLK2 SDA 11 14 CLK3 SSEN 12 13 OEB CLK7 VDDOD VDDOA VDDOB 10 6 OEB 11 SSEN 5 SDA CLK5 VDDOC Table 11. Si5351B Pin Descriptions Pin Name Pin Number Pin Type* Function 20-QFN 24-QSOP XA 1 6 I Input pin for external crystal XB 2 7 I Input pin for external crystal CLK0 13 21 O Output clock 0 CLK1 12 20 O Output clock 1 CLK2 9 15 O Output clock 2 CLK3 8 14 O Output clock 3 CLK4 19 3 O Output clock 4 CLK5 17 1 O Output clock 5 CLK6 16 24 O Output clock 6 CLK7 15 23 O Output clock 7 VC 3 9 I VCXO control voltage input SCL 4 10 I I2C bus serial clock input. Pull-up to VDD core with 1 k SDA 5 11 I/O I2C bus serial data input. Pull-up to VDD core with 1 k SSEN 6 12 I Spread spectrum enable. High = enabled, Low = disabled. OEB 7 13 I Output driver enable. Low = enabled, High = disabled. VDD 20 4 P Core voltage supply pin VDDOA 11 18 P Output voltage supply pin for CLK0 and CLK1. See 6.2 VDDOB 10 16 P Output voltage supply pin for CLK2 and CLK3. See 6.2 VDDOC 18 2 P Output voltage supply pin for CLK4 and CLK5. See 6.2 VDDOD 14 22 P Output voltage supply pin for CLK6 and CLK7. See 6.2 GND Center Pad 5, 8, 17, 19 P Ground *Note: I = Input, O = Output, P = Power *Note: Input pins are not internally pulled up. Preliminary Rev. 0.95 63 Si5351A/B/C 11. Si5351C Pin Descriptions (20-Pin QFN, 24-Pin QSOP) Si5351C 24-QSOP Top View 16 CLK6 18 VDDOC 17 CLK5 20 VDD 19 CLK4 Si5351C 20-QFN Top View CLK5 1 24 CLK6 VDDOC 2 23 CLK7 CLK4 3 22 VDD0D XA 1 15 CLK7 VDD 4 21 CLK0 XB 2 14 VDDOD GND 5 20 CLK1 XA 6 19 GND XB 7 18 VDDOA GND 8 17 GND INTR 9 16 VDD0B SCL 10 15 CLK2 SDA 11 14 CLK3 CLKIN 12 13 OEB GND PAD 3 INTR 13 4 SCL 12 7 8 9 CLK3 CLK2 CLK1 VDDOA VDDOB 10 6 OEB 11 CLKIN 5 SDA CLK0 Table 12. Si5351C Pin Descriptions Pin Name Pin Number Pin Type* Function 20-QFN 24-QSOP XA 1 6 I Input pin for external crystal. XB 2 7 I Input pin for external crystal. CLK0 13 21 O Output clock 0. CLK1 12 20 O Output clock 1. CLK2 9 15 O Output clock 2. CLK3 8 14 O Output clock 3. CLK4 19 3 O Output clock 4. CLK5 17 1 O Output clock 5. CLK6 16 24 O Output clock 6. CLK7 15 23 O Output clock 7. INTR 3 9 O Interrupt pin. Open drain active low output, requires a pull-up resistor greater than 1 k SCL 4 10 I I2C bus serial clock input. Pull-up to VDD core with 1 k SDA 5 11 I/O I2C bus serial data input. Pull-up to VDD core with 1 k CLKIN 6 12 I PLL clock input. OEB 7 13 I Output driver enable. Low = enabled, High = disabled. VDD 20 4 P Core voltage supply pin VDDOA 11 18 P Output voltage supply pin for CLK0 and CLK1. See 6.2 VDDOB 10 16 P Output voltage supply pin for CLK2 and CLK3. See 6.2 VDDOC 18 2 P Output voltage supply pin for CLK4 and CLK5. See 6.2 VDDOD 14 22 P Output voltage supply pin for CLK6 and CLK7. See 6.2 GND Center Pad 5, 8, 17, 19 P Ground. Notes: 1. I = Input, O = Output, P = Power. 2. Input pins are not internally pulled up. 64 Preliminary Rev. 0.95 Si5351A/B/C 12. Si5351A Pin Descriptions (10-Pin MSOP) Si5351A 10-MSOP Top View VDD 1 10 CLK0 XA 2 9 CLK1 XB 3 8 GND SCL 4 7 VDDO SDA 5 6 CLK2 Table 13. Si5351A 10-MSOP Pin Descriptions Pin Name Pin Number Pin Type* Function 10-MSOP XA 2 I Input pin for external crystal. XB 3 I Input pin for external crystal. CLK0 10 O Output clock 0. CLK1 9 O Output clock 1. CLK2 6 O Output clock 2. SCL 4 I Serial clock input for the I2C bus. This pin must be pulled-up using a pullup resistor of at least 1 k. SDA 5 I/O Serial data input for the I2C bus. This pin must be pulled-up using a pull-up resistor of at least 1 k. VDD 1 P Core voltage supply pin. VDDO 7 P Output voltage supply pin for CLK0, CLK1, and CLK2. See "6.2. Power Supply Sequencing" on page 21. GND 8 P Ground. *Note: I = Input, O = Output, P = Power Preliminary Rev. 0.95 65 Si5351A/B/C 13. Ordering Information Si5351X A XX *Note: The 10-MSOP is only available in the Si5351A variant. GT = 10-MSOP* GM = 20-QFN GU = 24-QSOP A = Product Revision A A = Crystal In B = Crystal In + VCXO C = Crystal In + CLKIN Figure 19. Device Part Numbers An evaluation kit containing ClockBuilder Desktop software and hardware enable easy evaluatin of the Si5351A/B/C. The orderable part numbers for the evaluation kits are provided in Figure 20. Si535X XXXXX EVB EVB = Evaluation Kit XXXXX = 20-QFN 24-QSOP Figure 20. Si5351A/B/C Evaluation Kit 66 Preliminary Rev. 0.95 Si5351A/B/C 14. Package Outline (24-Pin QSOP) Table 14. 24-QSOP Package Dimensions Dimension Min Nom Max A -- -- 1.75 A1 0.10 -- 0.25 b 0.19 -- 0.30 c 0.15 -- 0.25 D 8.55 8.65 8.75 E E1 6.00 BSC 3.81 e L 3.99 0.635 BSC 0.40 L2 q 3.90 -- 1.27 0.25 BSC 0 -- aaa 0.10 bbb 0.17 ccc 0.10 8 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation C 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Preliminary Rev. 0.95 67 Si5351A/B/C 15. Package Outline (20-Pin QFN) Table 15. Package Dimensions Dimension A A1 b D D2 e E E2 L aaa bbb ccc ddd eee Min 0.80 0.00 0.18 2.65 2.65 0.30 Nom 0.85 0.02 0.25 4.00 BSC 2.70 0.50 BSC 4.00 BSC 2.70 0.40 Max 0.90 0.05 0.30 2.75 2.75 0.50 0.10 0.10 0.08 0.10 0.10 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Outline MO-220, variation VGGD-8. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 68 Preliminary Rev. 0.95 Si5351A/B/C 16. Package Outline (10-Pin MSOP) Table 16. 24-QSOP Package Dimensions Dimension A A1 A2 b c D E E1 e L L2 q aaa bbb ccc ddd Min -- 0.00 0.75 0.17 0.08 0.40 0 -- -- -- -- Nom -- -- 0.85 -- -- 3.00 BSC 4.90 BSC 3.00 BSC 0.50 BSC 0.60 0.25 BSC -- -- -- -- -- Max 1.10 0.15 0.95 0.33 0.23 0.80 8 0.20 0.25 0.10 0.08 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation C 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Preliminary Rev. 0.95 69 Si5351A/B/C DOCUMENT CHANGE LIST Revision 0.1 to Revision 0.9 Updated max output frequency. Updated kV values in Table 3 on page 5. Updated "3.4. Spread Spectrum" on page 13. Added "5.1. Writing a Custom Configuration to RAM" on page 16. Added "5.7. HCSL Compatible Outputs" on page 20. Added "6.6. Trace Characteristics" on page 22. Updated "8. Register Descriptions" on page 25. Added register descriptions. Revision 0.9 to Revision 0.95 Added 1.8 V VDDO support. Updated Table 2, "DC Characteristics," on page 4. Added soldering profile specs to Table 9, "Absolute Maximum Ratings1," on page 8. 70 Preliminary Rev. 0.95 Si5351A/B/C NOTES: Preliminary Rev. 0.95 71 Si5351A/B/C CONTACT INFORMATION Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders. 72 Preliminary Rev. 0.95