Preliminary Rev. 0.95 8/11 Copyright © 2011 by Silicon Laboratories Si5351A/B/C
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Si5351A/B/C
I2C-PROGRAMMABLE ANY-FREQUENCY CMOS CLOCK
GENERATOR + VCXO
Features
Applications
Description
The Si5351 is an I2C configurable clock generator that is ideally suited for replacing
crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs), and fanout buffers in
cost-sensitive applications. Based on a PLL/VCXO + hi gh re solutio n MultiSynth fractional
divider architecture, the Si5351 can generate any frequency up to 160 MHz on each of its
outputs with 0 ppm error. Three versions of the Si5351 are available to meet a wide
variety of applications. The Si5351A generates up to 8 free-running clocks using an
internal oscillator for replacing crystals and crystal oscillators. The Si5351B adds an
internal VCXO and provides the flexibility to replace both free-running clocks and
synchronous clocks. The Si5351B eliminates the need for higher cost, custom pullable
crystals while providing reliable operation over a wide tuning range. The Si5351C offers
the same flexibility but synchronizes to an external reference clock (CLKIN).
Functional Block Diagram
Generates up to 8 non-integer-relate d
frequencies from 8 kHz to 160 MHz
I2C user definable configuration
Exact frequency synthesis at each output
(0 ppm error)
Highly linear VCXO
Optional clock input (CLKIN)
Low output period jitter: 100 ps pp
Configurable spread spectrum selectable
at each output
Operates from a low-cost, fixed frequency
crystal: 25 or 27 MHz
Supports static phase offset
Programmable rise/fall time control
Glitchless frequency changes
Separate voltage supply pins:
Core VDD: 2.5 or 3.3 V
Output VDDO : 1.8, 2.5, or 3.3 V
Excellent PSRR eliminates external
power supply filtering
Very low power consumption
Adjustable output-output delay
Available in 3 packages types:
10-MSOP: 3 outputs
24-QSOP: 8 outputs
20-QFN (4x4 mm): 8 outputs
PCIE Gen 1 compliant
Supports HCSL compatible swing
HDTV, DVD/Blu-ray, set-top box
Audio/video equipment, gaming
Printers, scanners, projectors
Residential gateways
Networking/communication
Servers, storage
XO replacement
Si5351A
Multi
Synth
N
N = 2 or 7
I2C
SSEN
OEB
Multi
Synth
0
Multi
Synth
1
Si5351B
PLL
VC VCXO
I2C
SSEN
OEB
Multi
Synth
0
Multi
Synth
1
Multi
Synth
2
Multi
Synth
3
Multi
Synth
4
Multi
Synth
5
Multi
Synth
6
Multi
Synth
7
Si5351C
PLLA
CLKIN PLLB
I2C
INTR
OEB
Multi
Synth
0
Multi
Synth
1
Multi
Synth
2
Multi
Synth
3
Multi
Synth
4
Multi
Synth
5
Multi
Synth
6
Multi
Synth
7
XA
XB
OSC
XA
XB
OSC
PLLB
PLLA
XA
XB
OSC
Ordering Information:
See page 66
10-MSOP
24-QSOP
20-QFN
Si5351A/B/C
2 Preliminary Rev. 0.95
Si5351A/B/C
Preliminary Rev. 0.95 3
TABLE OF CONTENTS
Section Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.1. Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2. Synthesis Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.3. Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.4. Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.5. Control Pins (OEB, SSEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
5. Configuring the Si5351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.1. Writing a Custom Configuration to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.2. Si5351 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.3. Replacing Crystals and Crystal Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.4. Replacing Crystals, Crystal Oscillators, and VCXOs . . . . . . . . . . . . . . . . . . . . . . . .19
5.5. Replacing Crystals, Crystal Oscillators, and PLLs . . . . . . . . . . . . . . . . . . . . . . . . . .19
5.6. Replacing a Crystal with a Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5.7. HCSL Compatible Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
6. Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6.1. Power Supply Decoupling/Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6.2. Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6.3. External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6.4. External Crystal Load Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6.5. Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6.6. Trace Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
7. Register Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
8. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
9. Si5351A Pin Descriptions (20-Pin QFN, 24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . .62
10. Si5351B Pin Descriptions (20-Pin QFN, 24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . .63
11. Si5351C Pin Descriptions (20-Pin QFN, 24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . .64
12. Si5351A Pin Descriptions (10-Pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
13. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
14. Package Outline (24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
15. Package Outline (20-Pin QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
16. Package Outline (10-Pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Si5351A/B/C
4 Preliminary Rev. 0.95
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter Symbol Test Condition Min Typ Max Unit
Ambient Temperature TA40258C
Core Supply Voltage VDD 3.0 3.3 3.60 V
2.25 2.5 2.75 V
Output Buffer Voltage VDDOx
1.71 1.8 1.89 V
2.25 2.5 2.75 V
3.0 3.3 3.60 V
Notes:All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.
VDD and VDDOx can be operated at independent voltages.
Power supply sequencing for VDD and VDDOx requires that both voltage rails are powered at the same time.
Table 2. DC Characteristics
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Core Supply Current IDD
Enabled 3 outputs 22 35 mA
Enabled 8 outputs 27 45 mA
Power Down (PDN = VDD)— 20 µA
Output Buffer Supply Current
(Per Output)* IDDOx CL=5pF 2.2 5 mA
Input Current ICLKIN CLKIN, SDA, SCL
Vin < 3.6 V ——10 µA
IVC VC 30 µA
Output Impedance ZO
8 mA output drive current.
See "6. Design Consider-
ations" on page 21. —85
*Note: Output clocks less than or equal to 100 MHz.
Si5351A/B/C
Preliminary Rev. 0.95 5
Table 3. AC Characteristics
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Power-up Time TRDY
From VDD =V
DDmin to valid
output clock, CL=5pF,
fCLKn >1MHz —110ms
Output Enable Time TOE
From OEB pulled low to valid
clock output, CL=5pF,
fCLKn >1MHz ——10 µs
Output Phase Offset PSTEP 333 ps/step
Spread Spectrum Frequency
Deviation SSDEV Down spre ad –0.1 –2.5 %
Center spread ±0.1 ±1.5 %
Spread Spectrum Modulation
Rate SSMOD 30 31.5 33 kHz
VCXO Specifications (Si5351B only)
VCXO Control Voltage Range Vc 0 VDD/2 VDD V
VCXO Gain (configurable) Kv Vc = 10–90% of VDD, VDD = 3.3 V 18 150 ppm/V
VCXO Control Voltage Linearity KVL Vc = 10–90% of VDD –5 +5 %
VCXO Pull Range
(configurable) PR VDD = 3.3 V* ±30 0 ±240 ppm
VCXO Modulation Bandwidth 10 kHz
*Note: Contact Silicon Labs for 2.5 V VCXO operation.
Table 4. Input Clock Characteristics
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Units
CLKIN Input Low Voltage VIL –0.1 0.3 x VDD V
CLKIN Input High Voltage VIH 0.7 x VDD —3.60V
CLKIN Frequency Range fCLKIN 10 100 MHz
Si5351A/B/C
6 Preliminary Rev. 0.95
Table 5. Output Clock Characteristics
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA=–40 to 8C)
Parameter Symbol Test Condition Min Typ Max Units
Frequency Range FCLK 0.008 160 MHz
Load Capacitance CL—515pF
Duty Cycle DC Measured at VDD/2,
fCLK =50MHz 45 50 55 %
Rise/Fall Time tr20%–80%, CL=5pF,
Drive Strength = 8 mA 0.5 1 1.5 ns
tf0.5 1 1.5 ns
Output High Voltage VOH CL=5pF VDD – 0.6 V
Output Low Voltage VOL ——0.6V
Period Jitter JPER Measured over 10k cycles 35 100 ps pk-pk
Period Jitter VCXO JPER_VCXO 60 110 ps pk-pk
Cycle-to-Cycle Jitter JCC Measured over 10k cycles —3090ps pk
Cycle-to-Cycle Jitter
VCXO JCC_VCXO —5095ps pk
RMS Phase Jitter JRMS 12 kHz–20 MHz 3.5 11 ps rms
RMS Phase Jitter VCXO JRMS_VCXO 8.5 18.5 ps rms
Table 6. Crystal Requirements1,2
Parameter Symbol Min Typ Max Unit
Crystal Frequency fXTAL 25 27 MHz
Load Capacitance CL6—12pF
Equivalent Series Resistance rESR ——150
Crystal Max Drive Level dL——100µW
Notes:
1. Crystals which require load capacitances of 6, 8, or 10 pF should use the device’s internal load capacitance for
optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a
combination of the internal 10 pF load capacitors in addition to external 2 pF load capaci to rs.
2. Refer to “AN551: Crystal Selection Guide” for more details.
Si5351A/B/C
Preliminary Rev. 0.95 7
Table 7. I2C Specifications (SCL,SDA)1
Parameter Symbol Tes t Co ndition Standard Mode
100 kbps Fast Mode
400 kbps Unit
Min Max Min Max
LOW Level
Input Voltage VILI2C –0.5
0.3 x VDDI2
C –0.5 0.3 x VDDI2C2V
HIGH Level
Input Voltage VIHI2C 0.7 x VDDI2
C3.63 0.7 x VDDI2C23.63 V
Hysteresis of
Schmitt Trigger
Inputs VHYS ——0.1 V
LOW Level
Output Voltage
(open drain or
open collector)
at 3 mA Sink
Current
VOLI2C2
VDDI2C2= 2.5/3.3 V 0 0.4 0 0.4 V
VDDI2C2= 1.8 V 0 0.2 x VDDI2C V
Input Current III2C –10 10 –10 10 µA
Capacit ance for
Each I/O Pin CII2C V
IN = –0.1 to VDDI2C —4 4pF
I2C Bus
Timeout TTO Timeout Enabled 25 35 25 35 ms
Notes:
1. Refer to NXP’s UM10204 I2C-bus specification and user manual, revision 03, for further details, go to:
www.nxp.com/acrobat_download/usermanuals/UM10204_3.pdf.
2. Only I2C pullup voltages (VDDI2C) of 2.25 to 3.63 V are supported.
Table 8. Thermal Characteristics
Parameter Symbol Test Condition Package Value Unit
Thermal Resistance
Junction to Ambient JA Still Air
10-MSOP 131 °C/W
24-QSOP 80 °C/W
20-QFN 51 °C/W
Thermal Resistance
Junction to Case JC Still Air
10-MSOP 43 °C/W
24-QSOP 31 °C/W
20-QFN 16 °C/W
Si5351A/B/C
8 Preliminary Rev. 0.95
Table 9. Absolute Maximum Ratings1
Parameter Symbol Test Condition Value Unit
DC Supply Vo ltage VDD_max –0.5 to 3.8 V
Input Voltage
VIN_CLKIN CLKIN, SCL, SDA –0.5 to 3.8 V
VIN_VC VC –0.5 to (VDD+0.3) V
VIN_XA/B Pins XA, XB –0.5 to 1.3 V V
Junction Temperature TJ–55 to 150 °C
Soldering Temperature (Pb-free
profile)2TPEAK 260 °C
Soldering Temperature Time at
TPEAK (Pb-free profile)2 TP20–40 Sec
Notes:
1. Permanent device damage may occur if the absolute maximum ratings are exceede d. Functional operation should be
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
2. The device is compliant with JEDEC J-STD-020.
Si5351A/B/C
Preliminary Rev. 0.95 9
2. Detailed Block Diagrams
Figure 1. Block Diagrams of 3-Output and 8-Output Si5351A Devices
PLL
B
PLL
A
SDA
SCL
OSC
XA
XB
VDDO
R0
R1
CLK0
CLK1
R2 CLK2
Mult iSynth
0
Mult iSynth
1
Mult iSynth
2
VDD
GND 10-MSOP
Si5351A 3-Outpu t
R0
R1
CLK0
CLK1
VDDOA
R2
R3
CLK2
CLK3
VDDOB
R4
R5
CLK4
CLK5
VDDOC
R6
R7
CLK6
CLK7
VDDOD
MultiSynth
0
MultiSynth
1
MultiSynth
2
MultiSynth
3
Mult iSynth
4
Mult iSynth
5
Mult iSynth
6
Mult iSynth
7
VDD
GND 20-QF N, 24-QSO P
SCL
A0
SDA
Control
Logic
OEB
SSEN
I2C
Interface
Si5351A 8-Output
I2C
Interface
PLL
B
PLL
A
OSC
XA
XB
Si5351A/B/C
10 Preliminary Rev. 0.95
Figure 2. Block Diagrams of Si5351B and Si5351C 8-Output Devices
OSC
XA
XB
PLL
VCXO
R0
R1
CLK0
CLK1
VDDOA
R2
R3
CLK2
CLK3
VDDOB
R4
R5
CLK4
CLK5
VDDOC
R6
R7
CLK6
CLK7
VDDOD
MultiSynth
0
MultiSynth
1
MultiSynth
2
MultiSynth
3
MultiSynth
4
MultiSynth
5
MultiSynth
6
MultiSynth
7
VC
VDD
GND
Si5351B
SCL
SDA
Control
Logic
OEB
SSEN
I2C
Interface
20-QFN, 24-QSOP
R0
R1
CLK0
CLK1
VDDOA
R2
R3
CLK2
CLK3
VDDOB
R4
R5
CLK4
CLK5
VDDOC
R6
R7
CLK6
CLK7
VDDOD
MultiSynth
0
MultiSynth
1
MultiSynth
2
MultiSynth
3
MultiSynth
4
MultiSynth
5
MultiSynth
6
MultiSynth
7
VDD
GND
Si5351C
PLL
A
PLL
B
XA
XB OSC
CLKIN
SCL
SDA
Control
Logic
INTR
OEB
I2C
Interface
20-QFN, 24-QSOP
Si5351A/B/C
Preliminary Rev. 0.95 11
3. Functional Description
The Si5351 is a versatile I2C programmable clock generator that is ideally suited for replacing crystals, crystal
oscillators, VCXOs, PLLs, and buffers. A block diagram showing the general architecture of the Si5351 is shown in
Figure 3. The device consists of an input stage, two synthesis stages, and an output stage.
The input stage accepts an external crystal (XTAL), a clock input (CLKIN), or a control voltage input (VC)
depending on the version of the device (A/B/C). The first stage of synthesis multiplies the input frequencies to an
high-frequency intermediate clock, while the second stage of synthesis uses high resolution MultiSynth fractional
dividers to generate the desired output frequencies. Additional integer division is provided at the output stage for
generating output frequencies as low as 8 kHz. Crosspoint switches at each of the synthesis stages allows total
flexibility in routing any of the inputs to any of the outputs.
Because of this high resolution and flexible synthesis architecture, the Si5351 is capable of generating
synchronous or free-running non-integer related clock frequencies at each of its outputs, enabling one device to
synthesize clocks for multiple clock domains in a design.
Figure 3. Si5351 Block Diagram
3.1. Input Stage
3.1.1. Crystal Inputs (XA, XB)
The Si5351 uses a fixed-frequency standard AT-cut crystal as a reference to the internal oscillator. The output of
the oscillator can be used to provide a free-running reference to one or both of the PLLs for generating
asynchronous clocks. Th e output frequency of the oscillator will operate at the crystal frequency, either 25 MHz or
27 MHz. The crystal is also used as a reference to the VCXO to help maintain its frequency accuracy.
Internal load capacitors (CL) are provided to eliminate the need fo r exte rnal co mponen ts when connecting a crysta l
to the Si5351. Options for internal load capacitors are 6, 8, or 10 pF. Crystals with alternate load capacitance
requirements are supported using additional external load capacitors as shown in Figure 4. Refer to application
note AN551 for crystal recommendations.
Figure 4. External XTAL with Optional Load Capacitors
Input
Stage Synthesis
Stage 1
PLL B
(VCXO)
PLL A
(SSC)
VC VCXO
XA
XB
OSC
XTAL
CLKIN Div
Multi
Synth
0
Multi
Synth
1
Multi
Synth
2
Multi
Synth
3
Multi
Synth
4
Multi
Synth
5
Multi
Synth
6
Multi
Synth
7
Synthesis
Stage 2
R0
R1
R2
R3
R4
R5
R6
R7
Output
Stage
CLK0
CLK1
VDDOA
CLK2
CLK3
VDDOB
CLK4
CLK5
VDDOC
CLK6
CLK7
VDDOD
XA
XB
Selectable internal
load capacitors
6 pF, 8 pF, 10 pF
CLCL
CL
Optional
Additional external
load capacitors
(< 2 pF)
CL
Si5351A/B/C
12 Preliminary Rev. 0.95
3.1.2. External Clock Input (CLKIN)
The external clock input is used as a clock reference for the PLLs when generating synchronous clock outputs.
CLKIN can accept any frequency from 10 to 10 0 MHz. A divider at the input stag e limits the PLL input frequency to
30 MHz.
3.1.3. Voltage Control Input (VC)
The VCXO architecture of the Si5350B eliminates the need for an external pullable crystal. Only a standard, low-
cost, fixed-frequency ( 25 or 27 MHz) AT-cut crystal is required.
The tuning range of the VCXO is configurable allowing for a wide variety of applications. Key advantages of the
VCXO design in the Si5351 include high linearity, a wide operating range (linear from 10 to 90% of VDD), and
reliable startup and operation. Refer to Table 3 on page 5 for VCXO specification details.
A unique feature of the Si5351B is its ability to generate multiple output frequencies controlled by the same control
voltage applied to the VC pin. This replaces multiple PLLs or VCXOs that would normally be locked to the same
reference. An example is illustrated in Figure 9 on page 15.
3.2. Synthesis Stages
The Si5351 uses two stages of synthesis to generate its final output clocks. The first stage uses PLLs to multiply
the lower frequency input references to a high-frequency intermediate clock. The second stage uses high-
resolution MultiSynth fractional dividers to generate frequencies in the range of 1 MHz to 100 MHz. It is also
possible to generate two unique frequencies up to 160 MHz on two or more of the outputs.
A crosspoint switch at the input of the first stage allows each of the PLLs to lock to the CLKIN or the XTAL input.
This allows each of th e PLLs to lock to a dif ferent source fo r generatin g independen t free-run ning and synchrono us
clocks. Alternatively, both PLLs could lock to the same source. The crosspoint switch at the input of the second
stage allows any of the MultiSynth dividers to connect to P LLA or PLLB. This flexible synthesis architecture allows
any of the outputs to generate synchronous or non-synchronous clocks, with spread spectrum or without spread
spectrum, and with the flexibility of generating non-integer related clock frequencies at each output.
Since the VCXO already generates a high-frequency intermediate clock, it is fed directly into the second stage of
synthesis. The MultiSynth high-resolution dividers synthesize the VCXO center frequency to any frequency in the
range of ~391 kHz to 160 MHz. The center frequency is then controlled (or pulled) by the VC input. An interesting
feature of the Si5351 is that the VCXO output can be routed to more than one MultiSynth divider. This creates a
VCXO with multiple output frequencies controlled from one VC input as shown in Figure 5.
Frequencies down to 8 kHz can be generated by applying the R divider at the output of the Multisynth (see
Figure 5 below).
Figure 5. Using the Si5351 as a Multi-Output VCXO
3.3. Output Stage
An additional level of division (R) is available at the output stage for generating clocks as low as 8 kHz. All output
drivers generate CMOS level outputs with separate o utput volt age supply pins ( VDDOx) allowing a d iffer ent volt age
signal level (1.8, 2.5, or 3.3 V) at each of the four 2-output banks.
CLK0
VC
Multi
Synth
2
CLK1
CLK2
Additional MultiSynths
can be “linked” to the
VCXO to generate
additional clock
frequencies
XA XB
OSC
VCXO Multi
Synth
1
Multi
Synth
0
Control
Voltage
Fixed Frequency
Crystal (non-pullable)
The clock frequency
generated from CLK0 is
controlled by the VC input
R2
R1
R0
Si5351A/B/C
Preliminary Rev. 0.95 13
3.4. Spread Spectrum
Spread spectrum can be enabled on any of the clock outputs that use PLLA as its reference. Sp read spectrum is
useful for reducin g el ectromag netic interf er ence (EMI). E nabling sp read spectru m on a n output clo ck modulates its
frequency, which effectively reduces the overall amplitude of its radiated energy. See “AN554: Si5350/51 PCB
Layout Guide” for details. Note that spread spectrum is not available on clocks synchronized to PLLB or to the
VCXO.
The Si5351 supports several levels of spread spectrum allowing the designer to chose an ideal compromise
between syste m pe rf or m an ce and EMI comp lia nce .
Figure 6. Available Spread Spectrum Profiles
3.5. Control Pins (OEB, SSEN)
The Si5351 offers control pins for enabling/di sabling clock outputs and spread spectrum.
3.5.1. Output Enable (OEB)
The output enable pin allows enabling or disabling outputs clocks. Output clocks are enabled when the OEB pin is
held low, and disabled when pulled high. When disabled, the output st ate is configurable as disable d high, d isable d
low, or disabled in high-impedance.
The output enable control circuitry ensu res glitchless oper ation by st arting the outpu t clock cycle on the first leading
edge after OEB is pulled low. When OEB is pulled high, the clock is allowed to complete its full clock cycle before
going into a disabled st ate.
3.5.2. Spread Spectrum Enable (SSEN)—Si5351A and Si5351B only
This control pin allows disabling the spread spectrum feature for all outputs that were configured with spread
spectrum enabled. Hold SSEN low to disable spread spectrum. The SSEN pin provides a convenient method of
evaluating the effect of using spread spectrum clocks during EMI compliance testing.
Si5351A/B/C
14 Preliminary Rev. 0.95
4. I2C Interface
Many of the functions and features of the Si5351 are controlled by reading and writing to the RAM space using the
I2C interface. The following is a list of the common features that are controllable through the I2C interface. A
summary of register functions is shown in Section 7.
Read Status Indicators
Loss of signal (LOS) for the CLKIN input
Loss of lock (LOL) for PLLA and PLLB
Configuration of multiplica tion and divider values for the PLLs, MultiSynth dividers
Configuration of the Spread Spectrum profile (down or center spread, modulation percentage)
Control of the cross point switch selection for each of the PLLs and MultiSynth dividers
Set output clock options
Enable/disable for each clock output
Invert/non-invert for each clock output
Output divider values (2n, n=1.. 7)
Output state when disabled (stop hi, stop low, Hi-Z)
Output phase offset
The I2C interface operates in slave mode with 7-bit addressing and can operate in Standard-Mode (100 kbps) or
Fast-Mode (400 kbps) and supports burst data transfer with auto address increments.
The I2C bus consists of a bidirectional serial data line (SDA) and a serial clock input (SCL) as shown in Figure 7.
Both the SDA and SCL pins must be connected to the VDD supply via an external pull-up as recommended by the
I2C specification.
Figure 7. I2C and Control Signals
The 7-bit device (slave) address of the Si5351 consist of a 6-bit fixed address plus a user selectable LSB bit as
shown in Figure 8. The LSB bit is selectable as 0 or 1 using the optional A0 pin which is useful for applica tions th at
require more than one Si5351 on a single I2C bus.
Figure 8. Si5351 I2C Slave Address
Data is transferred MSB first in 8-bit words as specified by the I2C specification. A write command consists of a 7-
bit device (sla ve) address + a write bit, a n 8-bit register address, and 8 bits of data as show n in Figure 9. A write
burst operation is also shown where every addition al data word is written using to an auto-incremented address.
SCL
VDD
SDA
I2C Bus
INTR
A0
I2C Address Select:
Pull-up to VDD (A0 = 1)
Pull-down to GND (A0 = 0)
Si5351
>1k >1k
4.7 k
Slave Address 1 1 0 0 0 0 0/1
A0
0123456
Si5351A/B/C
Preliminary Rev. 0.95 15
Figure 9. I2C Write Operation
A read operation is performed in two stages. A data write is used to set the register address, then a data read is
performed to retrieve the data from the set address. A read burst operation is also supported. This is shown in
Figure 10.
Figure 10. I2C Read Operation
AC and DC electrical specifications for the SCL and SDA pins are shown in Table 7. The timing specifications and
timing diagram for the I2C bus is compatible with the I2C-Bus Standard. SDA timeout is supported for compatibility
with SMBus interfaces.
1 – Read
0 – W rite
A – Acknowledge (SD A LOW)
N – Not Acknowledge (SDA HIGH)
S – START condition
P ST OP c o n ditio n
From slave to master
From m aster to slave
W rite Operation – Single Byte
S 0 A R e g Addr [7 :0 ]Slv Addr [6:0] ADa ta [7:0] PA
W rite Operation - Burst (Auto Address Increment)
Reg Addr +1
S 0 A R e g Addr [7 :0 ]S lv A d d r [6 :0 ] ADa ta [7:0] ADa ta [7:0 ] PA
1 – Read
0 – W rite
A – Acknowledge (SD A LOW)
N – Not Acknowledge (SDA HIGH)
S – START condition
P ST OP c o n ditio n
From slave to master
From m aster to slave
R e a d Ope r a tio n S in g le Byte
S 0 A R e g Addr [7 :0 ]Slv Addr [6:0] A P
R e a d O p e r atio n - B u r s t (A u to A d dres s In c re men t)
Reg Addr +1
S 1 AS lv Ad d r [6:0 ] D a t a [7 :0 ] PN
S 0 A R e g Addr [7 :0 ]S lv A d d r [6 :0 ] A P
S 1 AS lv Ad d r [6:0 ] D a t a [7 :0 ] A PND ata [7 :0 ]
Si5351A/B/C
16 Preliminary Rev. 0.95
5. Configuring the Si5351
The Si5351 is a highly flexible clock generator which is entirely configurable through its I2C interface. The device’s
default configuration is stored in non-volatile memory (NVM) as shown in Figure 11. The NVM is a one time
programmable memory (OTP) which can store a custom user configuration at power-up . This is a useful feature for
applications that need a clock present at power-up (e.g., for providin g a clock to a pr oc es so r).
Figure 11. Si5351 Memory Configuration
During a power cycle the contents of the NVM are copied into random access memory (RAM), which sets the
device configuration that will be used during normal operation. Any changes to the device configuration after
power-up are made by reading and writing to registers in the RAM space through the I2C interface. A detailed
register map is shown in Section "8. Register Descriptions" on page 25.
5.1. Writing a Custom Configuration to RAM
To simplify device configuration, Silicon Labs has released the ClockBuilder Desktop. The software serves two
purposes: to configure the Si5351 with optimal configuration based on the desired frequencies and to control the
EVB when connected to a host PC.
The optimal configuration can be saved from the software in text files that can be used in any system, which
configures the device over I2C. ClockBuilder Desktop can be downloaded from www.silabs.com/ClockBuilder and
runs on Windows XP, Windows Vista, and Windows 7.
Once the configuration file has bee n saved, the de vice can be pr ogram med via I 2C by following the steps shown in
Figure 12.
Power-Up
I2C
RAM
NVM
(OTP)
Def ault
Config
Si5351A/B/C
Preliminary Rev. 0.95 17
Figure 12. I2C Programming Procedure
Disable Outputs
Set CLKx_DIS high; Reg. 3 = 0xFF
Powerdown all output drivers
Reg. 16, 17, 18, 19, 20, 21, 22 , 23 =
0x80
Se t interrupt m a s k s
(see register 2 description)
Write new configuration to device using
the contents of the register map
generated by ClockBuilder Desktop. This
step also powers up the output driv ers.
(Registers 15-92 and 149-170)
Apply PLLA and PLLB soft reset
Reg. 177 = 0xAC
Enable desired outputs
(see Register 3)
Use ClockBuilder
Desktop v3.1 or later
Register
Map
Si5351A/B/C
18 Preliminary Rev. 0.95
5.2. Si5351 Application Examples
The Si5351 is a versatile clock generator which serves a wide variety of applications. The following examples show
how it can be used to replace crystals, crystal oscillators, VCXOs, and PLLs.
5.3. Replacing Crystals and Crystal Oscillators
Using an inexpensive external crystal, the Si5351A can generate up to 8 different free-running clock frequencies
for replacing crystals and crystal oscillators. A 3-output version packaged in a small 10-MSOP is also available for
applications that require fewer clocks. An example is shown in Figure 13.
Figure 13. Using the Si5351A to Replace Multiple Crystals, Crystal Oscillators, and PLLs
48 MHz USB
Controller
28.322 MHz
125 MHz
Video/Audio
Processor
74.25/1 .001 MHz
24.576 MHz
OSC
XA
XB
CLK0
CLK1
CLK2
CLK3
CLK4
CLK5
PLL
Multi
Synth
0
Multi
Synth
1
Multi
Synth
2
74.25 MHz
27 MHz
Si5351A
Multi
Synth
3
Multi
Synth
4
Multi
Synth
5
Mu lt i
Synth
7
HDMI
Port
Ethernet
PHY
Mu lt i
Synth
6
22.5792 MHz
CLK6
33.3333 MHz
CLK7 CPU
Note: Si5351A replaces crystals, XOs, and PLLs.
Si5351A/B/C
Preliminary Rev . 0.95 19
5.4. Replacing Crystals, Crystal Oscillators, and VCXOs
The Si5351B combines free-running clock generation and a VCXO in a single package for cost sensitive video
applications. An example is shown in Figure 14.
Figure 14. Using the Si5351B to Replace Crystals, Crystal Oscillators, VCXOs, and PLLs
5.5. Replacing Crystals, Crystal Oscillators, and PLLs
The Si5350C generates synchronous clocks for applications that require a fully integrated PLL instead of a VCXO.
Because of its dual PLL architecture, the Si5351C is capable of generating both synchronous and free-running
clocks. An example is shown in Figure 15.
Figure 15. Using the Si5351C to Replace Crystals, Crystal Oscillators, and PLLs
Ethernet
PHY
USB
Controller
HDMI
Port
28.322 MHz
48 MHz
125 MHz
Video/Audio
Processor
74.25/1.001 M H z
24.576 MHz
OSC
XA
XB
CLK0
CLK1
CLK2
CLK3
CLK4
CLK5
PLL
VCXO
Multi
Synth
0
Multi
Synth
1
Multi
Synth
2
74.25 MHz
VC
27 MHz
Si5351B
Multi
Synth
3
Multi
Synth
4
Multi
Synth
5
Free-running
Clocks
Synchronous
Clocks
Note: FBW = 10 kHz
Ethernet
PHY
USB
Controller
HDMI
Port
28.322 MHz
48 MHz
125 MHz
Video/Audio
Processor
74.25/1.001 MHz
24.576 MHz
OSC
XA
XB
CLK0
CLK1
CLK2
CLK3
CLK4
CLK5
PLL
PLL
Multi
Synth
0
Multi
Synth
1
Multi
Synth
2
74.25 MHz
CLKIN
25 MHz
Si5351C
Multi
Synth
3
Multi
Synth
4
Multi
Synth
5
54 MHz
Free-running
Clocks
Synchronous
Clocks
Si5351A/B/C
20 Preliminary Rev. 0.95
5.6. Replacing a Crystal with a Clock
The Si5351 can be driven with a clock signal through the XA input pin.
Figure 16. Si5351 Driven by a Clock Signal
5.7. HCSL Compatible Outputs
The Si5351 can be configured to support HCSL compatible swing when the VDDO of the output pair of interest is
set to 2.5 V (i.e., VDDOA mus t be 2.5 V when using CLK0/1; VDDOB must be 2.5 V for CLK2/3 and so on).
The circuit in the figure below must be applied to each of the two clocks used, and one of the clocks in the pair
must also be inverted to generate a differential pair. See register setting CLKx_INV.
Figure 17. Si5350C Output is HCSL Compatible
Mu lti
Synth
N
Mu lti
Synth
0
Mu lti
Synth
1
PLLB
PLLA
XA
XB
OSC
VIN = 1 VPP
25/27 MHz
Note: Float the XB input while driving
the XA input w ith a clock
0.1 µF
Multi
Synth
N
Multi
Synth
0
Multi
Synth
1
PLLB
PLLA
OSC
Note: The complementary -180 degree
out of phase output cl o ck is gene rated
using the INV function
R1
511
240 R2
ZO = 70
0
HCSL
CLKIN
R1
511
240 R2
ZO = 70
0
Si5351A/B/C
Preliminary Rev . 0.95 21
6. Design Considerations
The Si5351 is a self-contained clock generator that requires very few external components. The following general
guidelines are recommended to ensure op timum pe rforman c e. Refer to “AN55 4: Si5350/51 PCB Layout Guide” for
additional layout recommendations.
6.1. Power Supply Decoupling/Filtering
The Si5351 has built-in power supply filtering circuitry and extensive internal Low Drop Out (LDO) voltage
regulators to help minimize the number of external bypass components. All that is recommended is one 0.1 µF
decoupling capacitor per power supply pin. This capacitor should be mounted as close to the VDD and VDDOx
pins as possible without using vias.
6.2. Power Supply Sequencing
The VDD and VDDOx (i.e., VDDO0, VDDO1, VDDO2, VDDO3) power supply pins have been separated to allow
flexibility in output signal levels. If a minimum output-to-output skew is important, then all VDDOx must be applied
before VDD. Unused VDDOx pins should be tied to VDD.
6.3. External Crystal
The external crystal should be mounted as close to the pins as possible using short PCB traces. The XA and XB
traces should be kept away from other high-speed signal traces. See “AN551: Crystal Selection Guide” for more
details.
6.4. External Crystal Load Capacitors
The Si5351 provides the option of using intern al and external cryst al load capacitors. If internal load capacit ance is
insufficient, capacitors of value < 2 pF may be used to increased equivalent load capacitance. If external load
capacitors are used, they should be placed as close to the XA/XB pads as possible. See AN554 for mo re details.
6.5. Unused Pins
Unused voltage control pin should be tied to GND.
Unused CLKIN pin should be tied to GND.
Unused XA/XB pins should be left floating. Refer to "5.6. Replacing a Crystal with a Clock" on page 20 when using
XA as a clock input pin.
Unused output pins (CLK0–CLK7) should be left floating.
Unused VDDOx pins should be tied to VDD.
Si5351A/B/C
22 Preliminary Rev. 0.95
6.6. Trace Characteristics
The Si5351A/B/C features various output current drives ranging from 2 to 8 mA (default). It is recommended to
configure the trace characteristics as shown in Figure 18 when an output drive setting of 8 mA is used.
Figure 18. Recommended Trace Characteristics with 8 mA Drive Strength Setting
Note: Jitter is only specified at 6 and 8 mA drive strength.
ZO = 85 ohms
Length = No Restrictions
CLK
(O p t io n a l re s istor fo r
EMI mana gement)
R = 0 ohms
Si5351A/B/C
Preliminary Rev . 0.95 23
7. Register Map Summary
The following is a summary of the register map used to read status, control, and configure th e Si5351.
Register 7 6 5 4 3 2 1 0
0 SYS_INIT LOL_B LOL_A LOS REVID[1:0]
1 SYSCAL_
STKY LOS_B_
STKY LOL_A_
STKY LOS_
STKY
2 SYSCAL_
MASK LOS_B_
MASK LOL_A _
MASK LOS_
MASK
3 CLK7_EN CLK6_EN CLK5_EN CLK4_EN CLK3_EN CLK2_EN CLK1_EN CLK0_EN
4–8 Reserved
9 OEB_CLK7 OEB_CLK6 OEB_CLK5 OEB_CLK4 OEB_CLK3 OEB_CLK2 OEB_CLK1 OEB_CLK0
10–14 Reserved
15 0 0 0 0 PLLB_SRC PLLA_SRC 0 0
16 CLK0_PDN MS0_INT MS0_SRC CLK0_INV CLK0_SRC[1:0] CLK0_IDRV[1:0]
17 CLK1_PDN MS1_INT MS1_SRC CLK1_INV CLK1_SRC[1:0] CLK1_IDRV[1:0]
18 CLK2_PDN MS2_INT MS2_SRC CLK2_INV CLK2_SRC[1:0] CLK2_IDRV[1:0]
19 CLK3_PDN MS3_INT MS3_SRC CLK3_INV CLK3_SRC[1:0] CLK3_IDRV[1:0]
20 CLK4_PDN MS4_INT MS4_SRC CLK4_INV CLK4_SRC[1:0] CLK4_IDRV[1:0]
21 CLK5_PDN MS5_INT MS5_SRC CLK5_INV CLK5_SRC[1:0] CLK5_IDRV[1:0]
22 CLK6_PDN FBA_INT MS6_SRC CLK6_INV CLK6_SRC[1:0] CLK6_IDRV[1:0]
23 CLK7_PDN FBB_INT MS6_SRC CLK7_INV CLK7_SRC[1:0] CLK7_IDRV[1:0]
24 CLK3_DIS_STATE CLK2_DIS_STATE CLK1_DIS_STATE CLK0_DIS_STATE
25 CLK7_DIS_STATE CLK6_DIS_STATE CLK5_DIS_STATE CLK4_DIS_STATE
26–41 PLL, MultiSynth, and output clock delay offset Configuration Registers.
Use ClockBuilder Desktop Software to Determine These Register Values.
42 MS0_P3[15:8]
43 MS0_P3[7:0]
44 R0_DIV[2:0] MS0_P1[17:16]
45 MS0_P1[15:8]
46 MS0_P1[7:0]
47 MS0_P3[19:16] MS0_P2[19:16]
48 MS0_P2[15:8]
49 MS0_P2[7:0]
50 MS1_P3[15:8]
51 MS1_P3[7:0]
52 R1_DIV[2:0] MS1_P1[17:16]
53 MS1_P1[15:8]
54 MS1_P1[7:0]
55 MS1_P3[19:16] MS1_P2[19:16]
56 MS1_P2[15:8]
57 MS1_P2[7:0]
58 MS2_P3[15:8]
59 MS2_P3[7:0]
60 R2_DIV[2:0] MS2_P1[17:16]
61 MS2_P1[15:8]
62 MS2_P1[7:0]
63 MS2_P3[19:16] MS2_P2[19:16]
64 MS2_P2[15:8]
65 MS2_P2[7:0]
Si5351A/B/C
24 Preliminary Rev. 0.95
66 MS3_P3[15:8]
67 MS3_P3[7:0]
68 R3_DIV[2:0] MS3_P1[17:16]
69 MS3_P1[15:8]
70 MS3_P1[7:0]
71 MS3_P3[19:16] MS3_P2[19:16]
72 MS3_P2[15:8]
73 MS3_P2[7:0]
74 MS4_P3[15:8]
75 MS4_P3[7:0]
76 R4_DIV[2:0] MS4_P1[17:16]
77 MS4_P1[15:8]
78 MS4_P1[7:0]
79 MS4_P3[19:16] MS4_P2[19:16]
80 MS4_P2[15:8]
81 MS4_P2[7:0]
82 MS5_P3[15:8]
83 MS5_P3[7:0]
84 R5_DIV[2:0] MS5_P1[17:16]
85 MS5_P1[15:8]
86 MS5_P1[7:0]
87 MS5_P3[19:16] MS5_P2[19:16]
88 MS5_P2[15:8]
89 MS5_P2[7:0]
90 MS6_P1[7:0]
91 MS7_P1[7:0]
92 R7_DIV[2:0] R6_DIV[2:0]
93–164 PLL, MultiSynth, and output clock delay offset Configuration Registers.
Use ClockBuilder Desktop Software to Determine These Register Values.
165 CLK0_PHOFF[7:0]
166 CLK1_PHOFF[7:0]
167 CLK2_PHOFF[7:0]
168 CLK3_PHOFF[7:0]
189 CLK4_PHOFF[7:0]
170 CLK5_PHOFF[7:0]
173–176 Reserved
177 PLLB_RST PLLA_RST
178–182 Reserved
183 XTAL_CL
184–255 Reserved
Register 7 6 5 4 3 2 1 0
Si5351A/B/C
Preliminary Rev . 0.95 25
8. Register Descriptions
Reset value = 0000 0000
Register 0. Device Status
BitD7D6D5D4D3D2D1D0
Name SYS_INIT LOL_B LOL_A LOS REVID[1:0]
Type RRRRRR R
Bit Name Function
7SYS_INITSystem Initialization Status.
During power up the device copies the content of the NVM into RAM and performs a system
initialization. The device is not operational until initialization is complete. It is not recom-
mended to read or write registers in RAM through the I2C interface until initialization is com-
plete. An interrupt will be triggered (INTR pin = 0, Si5351C only) during the system
initialization period.
0: System initialization is complete. Device is ready.
1: Device is in system initialization mode.
6LOL_BPLLB Loss Of Lock Status.
Si5351A/C only. PLLB will operate in a locked state when it has a valid reference from CLKIN
or XTAL. A loss of lock will occur if the frequency of the reference clock forces the PLL to
operate out side of it s lock r ange as spe cified in Table 3, or if the reference clock fails to meet
the minimum requirements of a valid input signal as specified in Table 4. An interrupt will be
triggered (INTR pin = 0, Si5351C) during a LOL condition.
0: PLL B is locked.
1: PLL B is unlocked. When the device is in this state it will trigger an interrupt causing the
INTR pin to go low (Si5351C only).
5LOL_APLL A Loss Of Lock Status.
PLL A will operate in a locked state when it has a valid reference from CLKIN or XT AL. A loss
of lock will occur if the frequency of the reference clock forces the PLL to operate outside of
its lock range as specified in Table 3, or if the reference clock fails to meet the minimum
requirements of a valid input signal as specified in Table 4. An interrupt will be triggered
(INTR pin = 0, Si5351C only) during a LOL cond itio n.
0: PLL A is operating normally.
1: PLL A is unlocked. When the device is in this state it will trigger an interrupt causing the
INTR pin to go low (Si5351C only).
4LOSCLKIN Loss Of Signal (Si5351C Only).
A loss of signal status indicates if the reference clock fails to meet the minimum requirements
of a valid input signal as specified in Table 4. An interrupt will be triggered (INTR pin = 0,
Si5351C only) during a LOS condition.
0: Valid clock signal at the CLKIN pin.
1: Loss of signal detected at the CLKIN pin.
3:2 Reserved Leave as default.
1:0 REVID[1:0] Revision ID. Device revision number. Set at the factory.
Si5351A/B/C
26 Preliminary Rev. 0.95
Reset value = 0000 0000
Register 1. Interrupt Status Sticky
Bit D7 D6 D5 D4 D3D2D1D0
Name SYS_INIT_STKY LOL_B_STKY LOL_A_STKY LOS_STKY
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7 SYS_INIT_STKY System Calibration Status Sticky Bit.
The SYS_INIT_STKY bit is triggered when the SYS_INIT bit (register 0, bit 7) is trig-
gered high. It remains high until cl eared. Writing a 0 to this register bit will cause it to
clear.
0: No SYS_INIT interrupt has occurred since it was last cleared.
1: A SYS_INIT interrupt has occurred since it was last cleared.
6 LOL_B_STKY PLLB Loss Of Lock Status Sticky Bit.
The LOL_B_STKY bit is triggered when the LOL_B bit (register 0, bit 6) is triggered
high. It remains high until cleared. Writing a 0 to this register bit will cause it to clear.
0: No PLL B interrupt has occurred since it was last cleared.
1: A PLL B interrupt has occurred since it was last cleared.
5 LOL_A_STKY PLLA Loss Of Lock Status Sticky Bit.
The LOL_A_STKY bit is triggered when the LOL_A bit (register 0, bit 5) is triggered
high. It remains high until cleared. Writing a 0 to this register bit will cause it to clear.
0: No PLLA interrupt has occurred since it was last cleared.
1: A PLLA interrupt has occurred since it was last cleared.
4LOS_STKYCLKIN Loss Of Signal Sticky Bit (Si5351C Only).
The LOS_STKY bit is triggered when the LOS bit (re gister 0, bit 4) is triggered high . It
remains high until cleared. Writing a 0 to this register bit will cause it to clear.
0: No LOS interrupt has occurred since it was last cleared.
1: A LOS interrupt has occurred since it was last cleared.
3:0 Reserved Leave as default.
Si5351A/B/C
Preliminary Rev . 0.95 27
Reset value = 0000 0000
Register 2. Interrupt Status Mask
Bit D7 D6 D5 D4 D3D2D1D0
Name SYS_INIT_MASK LOL_B_MASK LOL_A_MASK LOS_MASK
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7 SYS_INIT_MASK System Initialization Status Mask.
Use this mask bit to prevent the INTR pin (Si5351C only) from going low when
SYS_INIT is asserted.
0: Do not mask the SYS_INIT interrupt.
1: Mask the SYS_INIT interrupt.
6 LOL_B_MASK PLLB Loss Of Lock Status Mask.
Use this mask bit to prevent the INTR pin (Si5351C only) fro m going low wh en LOL_B
is asserted.
0: Do not mask the LOL_B interrupt.
1: Mask the LOL_B interrupt.
5 LOL_A_MASK PLL A Loss Of Lock Status Mask.
Use this mask bit to prevent the INTR pin (Si5351C only) fro m going low wh en LOL_A
is asserted.
0: Do not mask the LOL_A interrupt.
1: Mask the LOL_A interrupt.
4 LOS_MASK CLKIN Loss Of Signal Mask (Si5351C Only).
Use this mask bit to prevent the INTR pin (Si5351C only) from going low when LOS is
asserted.
0: Do not mask the LOS interrupt.
1: Mask the LOS interrupt.
3:0 Reserved Leave as default.
Si5351A/B/C
28 Preliminary Rev. 0.95
Reset value = 0000 0000
Reset value = 0000 0000
Register 3. Output Enable Control
BitD7D6D5D4D3D2D1D0
Name CLK7_OEB CLK6_OEB CLK5_OEB CLK4_OEB CLK3_OEB CLK2_OEB CLK1_OEB CLK0_OEB
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7:0 CLKx_OEB Output Disable for CLKx.
Where x = 0, 1, 2, 3, 4, 5, 6, 7
0: Enable CLKx output.
1: Disable CLKx output.
Register 9. OEB Pin Enable Control
BitD7D6D5D4D3D2D1D0
Name OEB_CLK7 OEB_CLK6 OEB_CLK5 OEB_CLK4 OEB_CLK3 OEB_CLK2 OEB_CLK1 OEB_CLK0
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7:0 OEB_CLKx OEB pin enable control of CLKx.
Where x = 0, 1, 2, 3, 4, 5, 6, 7
0: OEB pin controls enable/disable state of CLKx output.
1: OEB pin does not control enable/disable state of CLKx output.
Si5351A/B/C
Preliminary Rev . 0.95 29
Reset value = 0000 0000
Register 15. PLL Input Source
BitD7D6D5D4D3D2D1D0
Name PLLB_SRC PLLA_SRC
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7:4 Reserved Leave as default.
3 PLLB_SRC Input Source Select for PLLB.
0: Select the XTAL input as the reference clock for PLLB (Si5351A/C only).
1: Select the CLKIN input as the reference clock for PLLB (Si5351C only).
2 PLLA_SRC Input Source Select for PLLA.
0: Select the XTAL input as the reference clock for PLLA.
1: Select the CLKIN input as the reference clock for PLLA (Si5351C only).
1:0 Reserved Leave as default.
Si5351A/B/C
30 Preliminary Rev. 0.95
Reset value = 0000 0000
Register 16. CLK0 Control
BitD7D6D5D4D3D2D1D0
Name CLK0_PDN MS0_INT MS0_SRC CLK0_INV CLK0_SRC[1:0] CLK0_IDRV[1:0]
Type R/W R/W R/W R/W R/W R/W
Bit Name Function
7 CLK0_PDN Clock 0 Power Down.
This bit allows powering down the CLK0 output driver to conserve power when the out-
put is unused.
0: CLK0 is powered up.
1: CLK0 is powered down.
6MS0_INTMultiSynth 0 Integer Mode.
This bit can be used to fo rce MS0 into Integer mo de to improve jitter pe rformance. Note
that the fractional mode is necessary when a delay offset is specified for CLK0.
0: MS0 operates in fractional division mode.
1: MS0 operates in integer mode.
5MS0_SRCMultiSynth Source Select for CLK0.
0: Select PLLA as the source for MultiSynth0.
1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0.
4 CLK0_INV Output Clock 0 Invert.
0: Output Clock 0 is not inverted.
1: Output Clock 0 is inverted.
3:2 CLK0_SRC[1:0] Output Clock 0 Input Source.
These bits determine the input source for CLK0.
00: Select the XTAL as the clock source for CLK0. This option by-passes both synthe sis
stages (PLL/VCXO & MultiSynth) and connects CLK0 directly to the oscillator which
generates an output frequency determined by the XTAL frequency.
01: Select CLKIN as the clock source for CLK0. This by-passes both synthesis stages
(PLL/VCXO & MultiSynth) and connects CLK0 directly to the CLKIN input. This essen-
tially creates a buffered output of the CLKIN input.
10: Reserved. Do not select this option.
11: Select Mu ltiSy nt h 0 as the so ur ce for CLK0. Select this option when using the
Si5351 to generate free-running or synchronous clocks.
1:0 CLK0_IDRV[1:0] CLK0 Output Rise and Fall time / Drive Strength Control.
00: 2 mA
01: 4 mA
10: 6 mA
11: 8 mA
Si5351A/B/C
Preliminary Rev . 0.95 31
Reset value = 0000 0000
Register 17. CLK1 Control
BitD7D6D5D4D3D2D1D0
Name CLK1_PDN MS1_INT MS1_SRC CLK1_INV CLK1_SRC[1:0] CLK1_IDRV[1:0]
Type R/W R/W R/W R/W R/W R/W
Bit Name Function
7 CLK1_PDN Clock 1 Power Down.
This bit allows powering down the CLK1 output driver to conserve power when the out-
put is unused.
0: CLK1 is powered up.
1: CLK1 is powered down.
6MS1_INTMultiSynth 1 Integer Mode.
This bit can be u sed to force M S1 into Inte ger mode to imp rove jitter performan ce. Note
that the fractional mode is necessary when a delay offset is specified for CLK1.
0: MS1 operates in fractional division mode.
1: MS1 operates in integer mode.
5 MS1_SRC MultiSynth Source Select for CLK1.
0: Select PLLA as the sour ce for MultiSynth0.
1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0.
4 CLK1_INV Output Cloc k 1 In ve rt.
0: Output Clock 1 is not inverted.
1: Output Clock 1 is inverted.
3:2 CLK1_SRC[1:0] Output Clock 1 Input Source.
These bits determine the input source for CLK1.
00: Select the XTAL as the clock source for CLK1. This option by-p asses both synthesis
stages (PLL/VCXO & MultiSynth) and connects CLK1 directly to the oscillator which
generates an output frequency determined by the XTAL frequency.
01: Select CLKIN as the clock source for CLK1. This by-passes both synthesis stages
(PLL/VCXO & MultiSynth) and connects CLK1 directly to the CLKIN input. This essen-
tially creates a buffered output of the CLKIN input.
10: Reserved. Do not select this option.
11: Select MultiSynth 0 as the source for CLK1. Select this option when using the
Si5351 to generate free-running or synchronous clocks.
1:0 CLK1_IDRV[1:0] CLK1 Output Rise and Fall time / Drive Strength Control.
00: 2 mA
01: 4 mA
10: 6 mA
11: 8 mA
Si5351A/B/C
32 Preliminary Rev. 0.95
Reset value = 0000 0000
Register 18. CLK2 Control
BitD7D6D5D4D3D2D1D0
Name CLK2_PDN MS2_INT MS2_SRC CLK2_INV CLK2_SRC[1:0] CLK2_IDRV[1:0]
Type R/W R/W R/W R/W R/W R/W
Bit Name Function
7 CLK2_PDN Clock 2 Power Down.
This bit allows powering down the CLK2 output driver to conserve power when the out-
put is unused.
0: CLK2 is powered up.
1: CLK2 is powered down.
6MS2_INTMultiSynth 2 Integer Mode.
This bit can be used to force MS2 into Integer mode to improve jitter performance. Note
that the fractional mode is necessary when a delay offset is specified for CLK2.
0: MS2 operates in fractional division mode.
1: MS2 operates in integer mode.
5MS2_SRCMultiSynth Source Select for CLK2.
0: Select PLLA as the source for MultiSynth0.
1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0.
4 CLK2_INV Output Clock 2 Invert.
0: Output Clock 2 is not inverted.
1: Output Clock 2 is inverted.
3:2 CLK2_SRC[1:0] Output Clock 2 Input Source.
These bits determine the input source for CLK2.
00: Select the XTAL as the clock source for CLK2. This option by-passes both synthesis
stages (PLL/VCXO & MultiSynth) and connects CLK2 directly to the oscillator which gen-
erates an output frequency determined by the XTAL frequency.
01: Select CLKIN as the clock source for CLK2. This by-passes both synthesis stages
(PLL/VCXO & MultiSynth) and connects CLK2 directly to the CLKIN input. This essen-
tially creates a buffered output of the CLKIN input.
10: Reserved. Do not select this option.
11: Select MultiSynth 0 as the source for CLK2. Select this option when using the Si5351
to generate free-running or synchronous clocks.
1:0 CLK2_IDRV[1:0] CLK2 Output Rise and Fall time / Drive Strength Control.
00: 2 mA
01: 4 mA
10: 6 mA
11: 8 mA
Si5351A/B/C
Preliminary Rev . 0.95 33
Reset value = 0000 0000
Register 19. CLK3 Control
BitD7D6D5D4D3D2D1D0
Name CLK3_PDN MS3_INT MS3_SRC CLK3_INV CLK3_SRC[1:0] CLK3_IDRV[1:0]
Type R/W R/W R/W R/W R/W R/W
Bit Name Function
7CLK3_PDNClock 3 Pow e r Do wn .
This bit allows powering down the CLK3 output driver to co nserve po wer whe n the ou t-
put is unused.
0: CLK3 is powered up.
1: CLK3 is powered down.
6 MS3_INT MultiSynth 3 Integer Mode.
This bit can be used to fo rce MS3 into Integer mode to improve jitter performance.
Note that the fractional mode is necessary when a delay offset is specified for CLK3.
0: MS3 operates in fractional division mode.
1: MS3 operates in integer mode.
5MS3_SRCMultiSynth Source Select for CLK3.
0: Select PLLA as the source for MultiSynth0.
1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0.
4CLK3_INVOutput Clock 3 Invert.
0: Output Clock 3 is not inverted.
1: Output Clock 3 is inverted.
3:2 CLK3_SRC[1:0] Output Clock 3 Input Source.
These bits determine the input source for CLK3.
1:0 CLK3_IDRV[1:0] CLK3 Output Rise and Fall time / Drive Strength Control.
00: 2 mA
01: 4 mA
10: 6 mA
11: 8 mA
Si5351A/B/C
34 Preliminary Rev. 0.95
Reset value = 0000 0000
Register 20. CLK4 Control
BitD7D6D5D4D3D2D1D0
Name CLK4_PDN MS4_INT MS4_SRC CLK4_INV CLK4_SRC[1:0] CLK4_IDRV[1:0]
Type R/W R/W R/W R/W R/W R/W
Bit Name Function
7 CLK4_PDN Clock 4 Power Down.
This bit allows powering down the CLK4 output dr iver to conserve power when the out-
put is unused.
0: CLK4 is powered up.
1: CLK4 is powered down.
6MS4_INTMultiSynth 4 Integer Mode.
This bit can be used to force MS4 into Integer mode to improve jitter performance.
Note that the fractional mode is necessary when a delay offset is specified for CLK4.
0: MS4 operates in fractional division mode.
1: MS4 operates in integer mode.
5MS4_SRCMultiSynth Source Select for CLK4.
0: Select PLLA as the source for MultiSynth0.
1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0.
4 CLK4_INV Output Clock 4 Invert.
0: Output Clock 4 is not inverted.
1: Output Clock 4 is inverted.
3:2 CLK4_SRC[1:0] Output Clock 4 Input Source.
These bits determine the input source for CLK4.
00: Select the XTA L as th e cloc k sou rc e fo r CLK4. Th is op tio n by -passes both synt he -
sis stages (PLL/VCXO & MultiSynth) and connects CLK4 directly to the oscillator
which generates an output frequency determined by the XTAL frequency.
01: Select C LKIN as th e cl o ck so ur ce for CL K4. T his by- passes both synthe sis stages
(PLL/VCXO & MultiSynth) and connects CLK4 directly to the CLKIN input. This essen-
tially creates a buffered output of the CLKIN input.
10: Reserved. Do not select this option.
11: Select Mu ltiSy nt h 0 as the so ur ce for CLK4. Select this option when using the
Si5351 to generate free-running or synchronous clocks.
1:0 CLK4_IDRV[1:0] CLK4 Output Rise and Fall time / Drive Strength Control.
00: 2 mA
01: 4 mA
10: 6 mA
11: 8 mA
Si5351A/B/C
Preliminary Rev . 0.95 35
Reset value = 0000 0000
Register 21. CLK5 Control
BitD7D6D5D4D3D2D1D0
Name CLK5_PDN MS5_INT MS5_SRC CLK5_INV CLK5_SRC[1:0] CLK5_IDRV[1:0]
Type R/W R/W R/W R/W R/W R/W
Bit Name Function
7 CLK5_PDN Clock 5 Power Down.
This bit allows powering down the CLK5 output dr iver to conserve power when the out-
put is unused.
0: CLK4 is powered up.
1: CLK4 is powered down.
6MS5_INTMultiSynth 5 Integer Mode.
This bit can be used to force MS5 into Integer mode to improve jitter performance.
Note that the fractional mode is necessary when a delay offset is specified for CLK4.
0: MS5 operates in fractional division mode.
1: MS5 operates in integer mode.
5MS5_SRCMultiSynth Source Select for CLK5.
0: Select PLLA as the source for MultiSynth0.
1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0.
4 CLK5_INV Output Clock 5 Invert.
0: Output Clock 5 is not inverted.
1: Output Clock 5 is inverted.
3:2 CLK5_SRC[1:0] Output Clock 5 Input Source.
These bits determine the input source for CLK5.
00: Select the XTA L as th e cloc k sou rc e fo r CLK5. Th is op tio n by -passes both synt he -
sis stages (PLL/VCXO & MultiSynth) and connects CLK5 directly to the oscillator
which generates an output frequency determined by the XTAL frequency.
01: Select C LKIN as th e cl o ck so ur ce for CL K5. T his by- passes both synthe sis stages
(PLL/VCXO & MultiSynth) and connects CLK5 directly to the CLKIN input. This essen-
tially creates a buffered output of the CLKIN input.
10: Reserved. Do not select this option.
11: Select Mu ltiSy nt h 0 as the so ur ce for CLK5. Select this option when using the
Si5351 to generate free-running or synchronous clocks.
1:0 CLK5_IDRV[1:0] CLK5 Output Rise and Fall time / Drive Strength Control.
00: 2 mA
01: 4 mA
10: 6 mA
11: 8 mA
Si5351A/B/C
36 Preliminary Rev. 0.95
Reset value = 0000 0000
Register 22. CLK6 Control
BitD7D6D5D4D3D2D1D0
Name CLK6_PDN FBA_INT MS6_SRC CLK6_INV CLK6_SRC[1:0] CLK6_IDRV[1:0]
Type R/W R/W R/W R/W R/W R/W
Bit Name Function
7 CLK6_PDN Clock 7 Power Down.
This bit allows powering down the CLK6 output dr iver to conserve power when the out-
put is unused.
0: CLK6 is powered up.
1: CLK6 is powered down.
6 FBA_INT FBA MultiSynth Integer Mode.
Set this bit according to ClockBuilder Desktop generated register map file.
5MS6_SRCMultiSynth Source Select for CLK6.
0: Select PLLA as the source for MultiSynth0.
1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0.
4 CLK6_INV Output Clock 6 Invert.
0: Output Clock 6 is not inverted.
1: Output Clock 6 is inverted.
3:2 CLK6_SRC[1:0] Output Clock 0 Input Source.
These bits determine the input source for CLK6.
00: Select the XTA L as th e cloc k sou rc e fo r CLK6. Th is op tio n by -passes both synt he -
sis stages (PLL/VCXO & MultiSynth) and connects CLK6 directly to the oscillator
which generates an output frequency determined by the XTAL frequency.
01: Select C LKIN as th e cl o ck so ur ce for CL K6. T his by- passes both synthe sis stages
(PLL/VCXO & MultiSynth) and connects CLK6 directly to the CLKIN input. This essen-
tially creates a buffered output of the CLKIN input.
10: Reserved. Do not select this option.
11: Select Mu ltiSy nt h 0 as the so ur ce for CLK6. Select this option when using the
Si5351 to generate free-running or synchronous clocks.
1:0 CLK6_IDRV[1:0] CLK6 Output Rise and Fall time / Drive Strength Control.
00: 2 mA
01: 4 mA
10: 6 mA
11: 8 mA
Si5351A/B/C
Preliminary Rev . 0.95 37
Reset value = 0000 0000
Register 23. CLK7 Control
BitD7D6D5D4D3D2D1D0
Name CLK7_PDN FBB_INT MS7_SRC CLK7_INV CLK7_SRC[1:0] CLK7_IDRV[1:0]
Type R/W R/W R/W R/W R/W R/W
Bit Name Function
7 CLK7_PDN Clock 7 Power Down.
This bit allows powering down the CLK7 output dr iver to conserve power when the out-
put is unused.
0: CLK7 is powered up.
1: CLK7 is powered down.
6 FBB_INT FBB MultiSynth Integer Mode.
Set this bit according to ClockBuilder Desktop generated register map file.
5MS7_SRCMultiSynth Source Select for CLK7.
0: Select PLLA as the source for MultiSynth0.
1: Select PLLB (Si5351A/C only) or VCXO (Si5351B only) MultiSynth0.
4 CLK7_INV Output Clock 7 Invert.
0: Output Clock 7 is not inverted.
1: Output Clock 7 is inverted.
3:2 CLK7_SRC[1:0] Output Clock 0 Input Source.
These bits determine the input source for CLK7.
00: Select the XTA L as th e cloc k sou rc e fo r CLK7. Th is op tio n by -passes both synt he -
sis stages (PLL/VCXO & MultiSynth) and connects CLK7 directly to the oscillator
which generates an output frequency determined by the XTAL frequency.
01: Select C LKIN as th e cl o ck so ur ce for CL K7. T his by- passes both synthe sis stages
(PLL/VCXO & MultiSynth) and connects CLK7 directly to the CLKIN input. This essen-
tially creates a buffered output of the CLKIN input.
10: Reserved. Do not select this option.
11: Select Mu ltiSy nt h 0 as the so ur ce for CLK7. Select this option when using the
Si5351 to generate free-running or synchronous clocks.
1:0 CLK7_IDRV[1:0] CLK7 Output Rise and Fall time / Drive Strength Control.
00: 2 mA
01: 4 mA
10: 6 mA
11: 8 mA
Si5351A/B/C
38 Preliminary Rev. 0.95
Reset value = 0000 0000
Reset value = 0000 0000
Register 24. CLK3–0 Disable State
BitD7D6D5D4D3D2D1D0
Name CLK3_DIS_STATE CLK2_DIS_STATE CLK1_DIS_STATE CLK0_DIS_STATE
Type R/W R/W R/W R/W
Bit Name Function
7:0 CLKx_DIS_STATE Clock x Disable State.
Where x = 0, 1, 2, 3. These 2 bits determine the state of the CLKx output when dis-
abled. Individual output clocks can be disabled using register Output En ab le Co n-
trol located at address 3. Outputs are also disabled using the OEB pin.
00: CLKx is set to a LOW state when disabled.
01: CLKx is set to a HIGH state when disabled.
10: CLKx is set to a HIGH IMPEDANCE state when disabled.
11: CLKx is NEVER DISABLED.
Register 25. CLK7–4 Disable State
BitD7D6D5D4D3D2D1D0
Name CLK7_DIS_STATE CLK6_DIS_STATE CLK5_DIS_STATE CLK4_DIS_STATE
Type R/W R/W R/W R/W
Bit Name Function
7:0 CLKx_DIS_STATE Clock x Disable State.
Where x = 4, 5, 6, 7. These 2 bits dete rmi n e the state of the CLKx output when dis-
abled. Individual output clocks can be di sabled using register Output Enable Con-
trol located at address 3. Outputs are also disabled using the OEB pin.
00: CLKx is set to a LOW state when disabled.
01: CLKx is set to a HIGH state when disabled.
10: CLKx is set to a HIGH IMPEDANCE state when disabled.
11: CLKx is NEVER DISABLED.
Si5351A/B/C
Preliminary Rev . 0.95 39
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 42. Multisynth0 Parameters
BitD7D6D5D4D3D2D1D0
Name MS0_P3[15:8]
Type R/W
Bit Name Function
7:0 MS0_P3[15:8] Multisynth0 Parameter 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the MultiSynth0 Divider.
Register 43. Multisynth0 Parameters
BitD7D6D5D4D3D2D1D0
Name MS0_P3[7:0]
Type R/W
Bit Name Function
7:0 MS0_P3[7:0] Multisynth0 Parameter 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the MultiSynth0 Divider.
Si5351A/B/C
40 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 44. Multisynth0 Parameters
BitD7D6D5D4D3D2D1D0
Name R0_DIV[2:0] MS0_P1[17:16]
Type R/W R/W R/W R/W R/W
Bit Name Function
7 Unused
6:4 R0_DIV[2:0] R0 Output Divider.
000b: Divide by 1
001b: Divide by 2
010b: Divide by 4
011b: Divide by 8
100b: Divide by 16
101b: Divide by 32
110b: Divide by 64
111b: Divide by 128
3:2 Reserved
1:0 MS0_P1[17:16] Multisynth0 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
MultiSynth0 divider.
Register 45. Multisynth0 Parameters
BitD7D6D5D4D3D2D1D0
Name MS0_P1[15:8]
Type R/W
Bit Name Function
7:0 MS0_P1[15:8] Multisynth0 Parameter 1.
This 18-bit number is an encoded representation of the integer part of the
MultiSynth1 divider.
Si5351A/B/C
Preliminary Rev . 0.95 41
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 46. Multisynth0 Parameters
BitD7D6D5D4D3D2D1D0
Name MS0_P1[7:0]
Type R/W
Bit Name Function
7:0 MS0_P1[7:0] Multisynth0 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
MultiSynth1 divider.
Register 47. Multisynth0 Parameters
BitD7D6D5D4D3D2D1D0
Name MS0_P3[19:16] MS0_P2[19:16]
Type R/W R/W
Bit Name Function
7:4 MS0_P3[19:16] Multisynth0 Paramet er 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the MultiSynth0 Divider
3:0 MS0_P2[19:16] Multisynth0 Paramet er 2.
This 20-bit numbe r is an encoded represe nt ation of the numerator for the fractional
part of the MultiSynth1 Divider.
Register 48. Multisynth0 Parameters
BitD7D6D5D4D3D2D1D0
Name MS0_P2[15:8]
Type R/W
Bit Name Function
7:0 MS0_P2[15:8] Multisynth0 Parameter 2.
This 20-bit number is an enco ded repre sentation of the numerator for the fractional
part of the MultiSynth1 Divider.
Si5351A/B/C
42 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 49. Multisynth0 Parameters
BitD7D6D5D4D3D2D1D0
Name MS0_P2[7:0]
Type R/W
Bit Name Function
7:0 MS0_P2[7:0] Multisynth0 Paramet er 2.
This 20-bit number is an enco ded repre sentation of the numerator for the fractional
part of the MultiSynth1 Divider.
Register 50. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name MS1_P3[15:8]
Type R/W
Bit Name Function
7:0 MS1_P3[15:8] Multisynth1 Parameter 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the MultiSynth1 Divider.
Register 51. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name MS1_P3[7:0]
Type R/W
Bit Name Function
7:0 MS1_P3[7:0] Multisynth1 Paramet er 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the MultiSynth1 Divider.
Si5351A/B/C
Preliminary Rev . 0.95 43
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 52. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name R1_DIV[2:0] MS1_P1[17:16]
Type R/W R/W R/W R/W R/W
Bit Name Function
7 Unused
6:4 R1_DIV[2:0] R1 Output Divider.
000b: Divide by 1
001b: Divide by 2
010b: Divide by 4
011b: Divide by 8
100b: Divide by 16
101b: Divide by 32
110b: Divide by 64
111b: Divide by 128
3:2 Reserved
1:0 MS1_P1[17:16] Multisynth1 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
MultiSynth1 divider.
Register 53. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name MS1_P1[15:8]
Type R/W
Bit Name Function
7:0 MS1_P1[15:8] Multisynth1 Parameter 1.
This 18-bit number is an encoded representation of the integer part of the
MultiSynth1 divider.
Si5351A/B/C
44 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 54. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name MS1_P1[7:0]
Type R/W
Bit Name Function
7:0 MS1_P1[7:0] Multisynth1 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
MultiSynth1 divider.
Register 55. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name MS1_P3[19:16] MS1_P2[19:16]
Type R/W R/W
Bit Name Function
7:4 MS1_P3[19:16] Multisynth1 Paramet er 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the Multisynth1 Divider
3:0 MS1_P2[19:16] Multisynth1 Paramet er 2.
This 20-bit numbe r is an encoded represen t ation of the numerator for th e fractional
part of the MultiSynth1 Divider.
Register 56. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name MS1_P2[15:8]
Type R/W
Bit Name Function
7:0 MS1_P2[15:8] Multisynth1 Parameter 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the MultiSynth1 divider.
Si5351A/B/C
Preliminary Rev . 0.95 45
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 57. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name MS1_P2[7:0]
Type R/W
Bit Name Function
7:0 MS1_P2[7:0] Multisynth1 Paramet er 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the MultiSynth1 divider.
Register 58. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name MS1_P3[15:8]
Type R/W
Bit Name Function
7:0 MS1_P3[15:8] Multisynth1 Parameter 3.
This 20-bit numb er is an enc od e d re pr es en ta tio n of th e de no m ina to r fo r the fra c-
tional part of the MultiSynth1 divider.
Register 59. Multisynth1 Parameters
BitD7D6D5D4D3D2D1D0
Name MS1_P3[7:0]
Type R/W
Bit Name Function
7:0 MS1_P3[7:0] Multisynth1 Paramet er 3.
This 20-bit numb er is an enc od e d re pr es en ta tio n of th e de no m ina to r fo r the fra c-
tional part of the MultiSynth1 divider.
Si5351A/B/C
46 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 60. Multisynth2 Parameters
BitD7D6D5D4D3D2D1D0
Name R2_DIV[2:0] MS2_P1[17:16]
Type R/W R/W R/W R/W R/W
Bit Name Function
7 Unused
6:4 R2_DIV[2:0] R2 Output Divider.
000b: Divide by 1
001b: Divide by 2
010b: Divide by 4
011b: Divide by 8
100b: Divide by 16
101b: Divide by 32
110b: Divide by 64
111b: Divide by 128
3:2 Reserved
1:0 MS2_P1[17:16] Multisynth2 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth2 div ide r.
Register 61. Multisynth2 Parameters
BitD7D6D5D4D3D2D1D0
Name MS2_P1[15:8]
Type R/W
Bit Name Function
7:0 MS2_P1[15:8] Multisynth2 Parameter 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth2 div ide r.
Si5351A/B/C
Preliminary Rev . 0.95 47
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 62. Multisynth2 Parameters
BitD7D6D5D4D3D2D1D0
Name MS2_P1[7:0]
Type R/W
Bit Name Function
7:0 MS2_P1[7:0] Multisynth2 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth2 div ide r.
Register 63. Multisynth2 Parameters
BitD7D6D5D4D3D2D1D0
Name MS2_P3[19:16] MS2_P2[19:16]
Type R/W R/W
Bit Name Function
7:4 MS2_P3[19:16] Multisynth2 Paramet er 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the Multisynth2 divider
3:0 MS2_P2[19:16] Multisynth2 Paramet er 2.
This 20-bit numbe r is an encoded represen t ation of the numerator for th e fractional
part of the MultiSynth2 divider.
Register 64. Multisynth2 Parameters
BitD7D6D5D4D3D2D1D0
Name MS2_P2[15:8]
Type R/W
Bit Name Function
7:0 MS2_P2[15:8] Multisynth2 Parameter 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the Multisynth2 divider.
Si5351A/B/C
48 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 65. Multisynth2 Parameters
BitD7D6D5D4D3D2D1D0
Name MS2_P2[7:0]
Type R/W
Bit Name Function
7:0 MS2_P2[7:0] Multisynth2 Paramet er 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the Multisynth2 divider.
Register 66. Multisynth3 Parameters
BitD7D6D5D4D3D2D1D0
Name MS3_P3[15:8]
Type R/W
Bit Name Function
7:0 MS3_P3[15:8] Multisynth3 Parameter 3.
This 20-bit numb er is an enc od e d re pr es en ta tio n of th e de no m ina to r fo r the fra c-
tional part of the Multisynth3 divid er.
Register 67. Multisynth3 Parameters
BitD7D6D5D4D3D2D1D0
Name MS3_P3[7:0]
Type R/W
Bit Name Function
7:0 MS3_P3[7:0] Multisynth3 Paramet er 3.
This 20-bit numb er is an enc od e d re pr es en ta tio n of th e de no m ina to r fo r the fra c-
tional part of the Multisynth3 divid er.
Si5351A/B/C
Preliminary Rev . 0.95 49
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 68. Multisynth3 Parameters
BitD7D6D5D4D3D2D1D0
Name R3_DIV[2:0] MS3_P1[17:16]
Type R/W R/W R/W R/W R/W
Bit Name Function
7 Unused
6:4 R3_DIV[2:0] R3 Output Divider.
000b: Divide by 1
001b: Divide by 2
010b: Divide by 4
011b: Divide by 8
100b: Divide by 16
101b: Divide by 32
110b: Divide by 64
111b: Divide by 128
3:2 Reserved
1:0 MS3_P1[17:16] Multisynth3 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth3 div ide r.
Register 69. Multisynth3 Parameters
BitD7D6D5D4D3D2D1D0
Name MS3_P1[15:8]
Type R/W
Bit Name Function
7:0 MS3_P1[15:8] Multisynth3 Parameter 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth3 div ide r.
Si5351A/B/C
50 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 70. Multisynth3 Parameters
BitD7D6D5D4D3D2D1D0
Name MS3_P1[7:0]
Type R/W
Bit Name Function
7:0 MS3_P1[7:0] Multisynth3 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth3 div ide r.
Register 71. Multisynth3 Parameters
BitD7D6D5D4D3D2D1D0
Name MS3_P3[19:16] MS3_P2[19:16]
Type R/W R/W
Bit Name Function
7:4 MS3_P3[19:16] Multisynth3 Paramet er 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the Multisynth3 divider
3:0 MS3_P2[19:16] Multisynth3 Paramet er 2.
This 20-bit numbe r is an encoded represen t ation of the numerator for th e fractional
part of the MultiSynth3 divider.
Register 72. Multisynth3 Parameters
BitD7D6D5D4D3D2D1D0
Name MS3_P2[15:8]
Type R/W
Bit Name Function
7:0 MS3_P2[15:8] Multisynth3 Parameter 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the Multisynth3 divider.
Si5351A/B/C
Preliminary Rev . 0.95 51
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 73. Multisynth3 Parameters
BitD7D6D5D4D3D2D1D0
Name MS3_P2[7:0]
Type R/W
Bit Name Function
7:0 MS3_P2[7:0] Multisynth3 Paramet er 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the Multisynth3 divider.
Register 74. Multisynth4 Parameters
BitD7D6D5D4D3D2D1D0
Name MS4_P3[15:8]
Type R/W
Bit Name Function
7:0 MS4_P3[15:8] Multisynth4 Parameter 3.
This 20-bit numb er is an enc od e d re pr es en ta tio n of th e de no m ina to r fo r the fra c-
tional part of the Multisynth4 divid er.
Register 75. Multisynth4 Parameters
BitD7D6D5D4D3D2D1D0
Name MS4_P3[7:0]
Type R/W
Bit Name Function
7:0 MS4_P3[7:0] Multisynth4 Paramet er 3.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the Multisynth4 divider.
Si5351A/B/C
52 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 76. Multisynth4 Parameters
BitD7D6D5D4D3D2D1D0
Name R4_DIV[2:0] MS4_P1[17:16]
Type R/W R/W R/W R/W R/W
Bit Name Function
7 Unused
6:4 R4_DIV[2:0] R4 Output Divider.
000b: Divide by 1
001b: Divide by 2
010b: Divide by 4
011b: Divide by 8
100b: Divide by 16
101b: Divide by 32
110b: Divide by 64
111b: Divide by 128
3:2 Reserved
1:0 MS4_P1[17:16] Multisynth4 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth4 div ide r.
Register 77. Multisynth4 Parameters
BitD7D6D5D4D3D2D1D0
Name MS4_P1[15:8]
Type R/W
Bit Name Function
7:0 MS4_P1[15:8] Multisynth4 Parameter 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth4 div ide r.
Si5351A/B/C
Preliminary Rev . 0.95 53
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 78. Multisynth4 Parameters
BitD7D6D5D4D3D2D1D0
Name MS4_P1[7:0]
Type R/W
Bit Name Function
7:0 MS4_P1[7:0] Multisynth4 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth4 div ide r.
Register 79. Multisynth4 Parameters
BitD7D6D5D4D3D2D1D0
Name MS4_P3[19:16] MS4_P2[19:16]
Type R/W R/W
Bit Name Function
7:4 MS4_P3[19:16] Multisynth4 Paramet er 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the Multisynth4 divider
3:0 MS4_P2[19:16] Multisynth4 Paramet er 2.
This 20-bit numbe r is an encoded represen t ation of the numerator for th e fractional
part of the MultiSynth4 divider.
Register 80. Multisynth4 Parameters
BitD7D6D5D4D3D2D1D0
Name MS4_P2[15:8]
Type R/W
Bit Name Function
7:0 MS4_P2[15:8] Multisynth4 Parameter 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the Multisynth4 Divider.
Si5351A/B/C
54 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 81. Multisynth4 Parameters
BitD7D6D5D4D3D2D1D0
Name MS4_P2[7:0]
Type R/W
Bit Name Function
7:0 MS4_P2[7:0] Multisynth4 Paramet er 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the Multisynth4 divider.
Register 82. Multisynth5 Parameters
BitD7D6D5D4D3D2D1D0
Name MS5_P3[15:8]
Type R/W
Bit Name Function
7:0 MS5_P3[15:8] Multisynth5 Parameter 3.
This 20-bit numb er is an enc od e d re pr es en ta tio n of th e de no m ina to r fo r the fra c-
tional part of the Multisynth5 divid er.
Register 83. Multisynth5 Parameters
BitD7D6D5D4D3D2D1D0
Name MS5_P3[7:0]
Type R/W
Bit Name Function
7:0 MS5_P3[7:0] Multisynth5 Paramet er 3.
This 20-bit numb er is an enc od e d re pr es en ta tio n of th e de no m ina to r fo r the fra c-
tional part of the Multisynth5 divid er.
Si5351A/B/C
Preliminary Rev . 0.95 55
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 84. Multisynth5 Parameters
BitD7D6D5D4D3D2D1D0
Name R5_DIV[2:0] MS5_P1[17:16]
Type R/W R/W R/W R/W R/W
Bit Name Function
7 Unused
6:4 R5_DIV[2:0] R5 Output Divider.
000b: Divide by 1
001b: Divide by 2
010b: Divide by 4
011b: Divide by 8
100b: Divide by 16
101b: Divide by 32
110b: Divide by 64
111b: Divide by 128
3:2 Reserved
1:0 MS5_P1[17:16] Multisynth5 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth5 div ide r.
Register 85. Multisynth5 Parameters
BitD7D6D5D4D3D2D1D0
Name MS5_P1[15:8]
Type R/W
Bit Name Function
7:0 MS5_P1[15:8] Multisynth5 Parameter 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth5 div ide r.
Si5351A/B/C
56 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 86. Multisynth5 Parameters
BitD7D6D5D4D3D2D1D0
Name MS5_P1[7:0]
Type R/W
Bit Name Function
7:0 MS5_P1[7:0] Multisynth5 Paramet er 1.
This 18-bit number is an encoded representation of the integer part of the
Multisynth5 div ide r.
Register 87. Multisynth5 Parameters
BitD7D6D5D4D3D2D1D0
Name MS5_P3[19:16] MS5_P2[19:16]
Type R/W R/W
Bit Name Function
7:4 MS5_P3[19:16] Multisynth5 Paramet er 3.
This 20-bit number is an encoded representation of the denominator for the frac-
tional part of the Multisynth5 divider
3:0 MS5_P2[19:16] Multisynth5 Paramet er 2.
This 20-bit numbe r is an encoded represen t ation of the numerator for th e fractional
part of the MultiSynth5 divider.
Register 88. Multisynth5 Parameters
BitD7D6D5D4D3D2D1D0
Name MS5_P2[15:8]
Type R/W
Bit Name Function
7:0 MS5_P2[15:8] Multisynth5 Parameter 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the Multisynth5 Divider.
Si5351A/B/C
Preliminary Rev . 0.95 57
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Reset value = xxxx xxxx
Register 89. Multisynth5 Parameters
BitD7D6D5D4D3D2D1D0
Name MS5_P2[7:0]
Type R/W
Bit Name Function
7:0 MS5_P2[7:0] Multisynth5 Paramet er 2.
This 20-bit number is an encoded representation of the numerator for the fractio nal
part of the Multisynth5 Divider.
Register 90. Multisynth6 Parameters
BitD7D6D5D4D3D2D1D0
Name MS6_P1[7:0]
Type R/W
Bit Name Function
7:0 MS6_P1[7:0] Multisynth6 Paramet er 1.
This 8-bit number is the Multisynth6 divide ratio. Multisynth6 divide ratio can only be
even integers greater than or equal to 6. All other divide values are invalid.
Register 91. Multisynth7 Parameters
BitD7D6D5D4D3D2D1D0
Name MS7_P1[7:0]
Type R/W
Bit Name Function
7:0 MS7_P1[7:0] Multisynth7 Paramet er 1.
This 8-bit number is the Multisynth6 divide ratio. Multisynth6 divide ratio can only be
even integers greater than or equal to 6. All other divide values are invalid.
Si5351A/B/C
58 Preliminary Rev. 0.95
Reset value = xxxx xxxx
Register 92. Clock 6 and 7 Output Divider
BitD7D6D5D4D3D2D1D0
Name R7_DIV[2:0] R6_DIV[2:0]
Type R/W R/W R/W R/W
Bit Name Function
7 Reserved Leave as default.
6:4 R7_DIV[2:0] R7 Output Divider.
000b: Divide by 1
001b: Divide by 2
010b: Divide by 4
011b: Divide by 8
100b: Divide by 16
101b: Divide by 32
110b: Divide by 64
111b: Divide by 128
3 Reserved Leave as default.
1:0 R6_DIV[2:0] R6 Output Divider.
000b: Divide by 1
001b: Divide by 2
010b: Divide by 4
011b: Divide by 8
100b: Divide by 16
101b: Divide by 32
110b: Divide by 64
111b: Divide by 128
Si5351A/B/C
Preliminary Rev . 0.95 59
Reset value = 0000 0000
Reset value = 0000 0000
Reset value = 0000 0000
Register 165. CLK0 Initial Phase Offset
BitD7D6D5D4D3D2D1D0
Name CLK0_PHOFF[6:0]
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7 Reserved Only write 0 to this bit.
6:0 CLK0_PHOFF[6:0] Clock 0 Initial Phase Offset.
CLK0_PHOFF[6:0] is an unsigned integer with one LSB equivalent to a time delay of
Tvco/4, where Tvco is the period of the VCO/PLL associated with this output.
Register 166. CLK1 Initial Phase Offset
BitD7D6D5D4D3D2D1D0
Name CLK1_PHOFF[6:0]
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7 Reserved Only write 0 to this bit.
6:0 CLK1_PHOFF[6:0] Clock 1 Initial Phase Offset.
CLK1_PHOFF[6:0] is an unsigned integer with one LSB equivalent to a time delay of
Tvco/4, where Tvco is the period of the VCO/PLL associated with this output.
Register 167. CLK2 Initial Phase Offset
BitD7D6D5D4D3D2D1D0
Name CLK2_PHOFF[6:0]
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7 Reserved Only write 0 to this bit.
6:0 CLK2_PHOFF[6:0] Clock 2 Initial Phase Offset.
CLK2_PHOFF[6:0] is an unsigned integer with one LSB equivalent to a time delay of
Tvco/4, where Tvco is the period of the VCO/PLL associated with this output.
Si5351A/B/C
60 Preliminary Rev. 0.95
Reset value = 0000 0000
Reset value = 0000 0000
Reset value = 0000 0000
Register 168. CLK3 Initial Phase Offset
BitD7D6D5D4D3D2D1D0
Name CLK3_PHOFF[6:0]
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7 Reserved Only write 0 to this bit.
6:0 CLK3_PHOFF[6:0] Clock 3 Initial Phase Offset.
CLK3_PHOFF[6:0] is a n unsigned in teger with on e LSB e quivale nt to a time de lay o f
Tvco/4, where Tvco is the period of the VCO/PLL associated with this output.
Register 169. CLK4 Initial Phase Offset
BitD7D6D5D4D3D2D1D0
Name CLK4_PHOFF[6:0]
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7 Reserved Only write 0 to this bit.
6:0 CLK4_PHOFF[6:0] Clock 4 Initial Phase Offset.
CLK4_PHOFF[6:0] is a n unsigned in teger with on e LSB e quivale nt to a time de lay o f
Tvco/4, where Tvco is the period of the VCO/PLL associated with this output.
Register 170. CLK5 Initial Phase Offset
BitD7D6D5D4D3D2D1D0
Name CLK5_PHOFF[6:0]
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7 Reserved Only write 0 to this bit.
6:0 CLK5_PHOFF[6:0] Clock 5 Initial Phase Offset.
CLK5_PHOFF[6:0] is an unsi gned intege r with one L SB equivale nt to a time delay of
Tvco/4, where Tvco is the perio d of the VCO/PLL associated with this output.
Si5351A/B/C
Preliminary Rev . 0.95 61
Reset value = 0000 0000
Reset value = 11xx xxxx
Register 177. PLL Reset
BitD7D6D5D4D3D2D1D0
Name PLLB_RST PLLA_RST
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7PLLB_RSTPLLB_Reset.
Writing a 1 to this bit will reset PLLB. This is a self clearing bit (Si5351A/C only).
6 Reserved Leave as default.
5PLLA_RSTPLLA_Reset.
Writing a 1 to this bit will reset PLLA. This is a self clearing bit.
4:0 Reserved Leave as default.
Register 183. Crystal Internal Load Capacitance
BitD7D6D5D4D3D2D1D0
Name XTAL_CL[1:0]
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bit Name Function
7:6 XTAL_CL[1:0] Crystal Load Capacitance Selection.
These 2 bits determine the internal load capacitance value for the crystal. See "3.1.1.
Crystal Inputs (XA, XB)" on page 11.
00: Reserved. Do not select this option.
01: Internal CL = 6 p F.
10: Internal CL = 8 p F.
11: Internal CL = 10 pF (default).
5:0 Reserved Leave as default.
Si5351A/B/C
62 Preliminary Rev. 0.95
9. Si5351A Pin Descriptions (20-Pin QFN, 24-Pin QSOP)
Table 10. Si5351A Pin Descriptions
Pin Name Pin Number Pin Type* Function
20-QFN 24-QSOP
XA 1 6 I Input pin for external crystal.
XB 2 7 I Input pin for external crystal.
CLK0 13 21 O Output clo ck 0.
CLK1 12 20 O Output clo ck 1.
CLK2 9 15 O Output clock 2.
CLK3 8 14 O Output clock 3.
CLK4 19 3 O Output clock 4.
CLK5 17 1 O Output clock 5.
CLK6 16 24 O Output clock 6.
CLK7 15 23 O Output clock 7.
A0 3 9 I I2C address bit.
SCL 4 10 I I2C bus serial clock input. Pull-up to VDD core with 1 k
SDA 5 11 I/O I2C bus serial data input. Pull-up to VDD core with 1 k
SSEN 6 12 I Spread spectrum enable. High = enabled, Low = disabled.
OEB 7 13 I Output driver enable. Low = enabled, High = disabled.
VDD 20 4 P Core volt age supply pin. See 6.2.
VDDOA 11 18 P Output voltage supply pin for CL K0 and CLK1. See 6.2.
VDDOB 10 16 P Output voltage supply pin for CLK2 and CLK3. See 6.2.
VDDOC 18 2 P Output voltage supply pin for CLK4 and CLK5. See 6.2.
VDDOD 14 22 P Output voltage supply pin for CLK6 and CLK7. See 6.2.
GND Center Pad 5, 8, 17, 19 P Ground. Use multiple vias to ensure a solid path to GND.
1. I = Input, O = O utput, P = Power.
2. Input pins are not internally pulled up.
1
2
3
4
5
6
7
8
9
10
15
14
13
12
11
20
19
18
17
16
XA
XB
A0
SCL
SDA
OEB
CLK3
CLK2
VDDOB
SSEN
Si5351A 20-QFN
Top View
GND
PAD
CLK6
CLK5
VDDOC
CLK4
VDD
VDDOA
CLK1
CLK0
VDDOD
CLK7
2
1
4
3
6
5
8
7
10
9
12
11
23
24
21
22
19
20
17
18
15
16
13
14
Si5351A 24-QSOP
Top View
CLK7
CLK6
CLK0
VDD0D
GND
CLK1
GND
VDDOA
CLK2
VDD0B
OEB
CLK3
VDDOC
CLK5
VDD
CLK4
XA
GND
GND
XB
SCL
A0
SSEN
SDA
Si5351A/B/C
Preliminary Rev . 0.95 63
10. Si5351B Pin Descriptions (20-Pin QFN, 24-Pin QSOP)
Table 11. Si5351B Pin Descriptions
Pin Name Pin Number Pin Type* Function
20-QFN 24-QSOP
XA 1 6 I Input pin for external crystal
XB 2 7 I Input pin for external crystal
CLK0 13 21 O Output clock 0
CLK1 12 20 O Output clock 1
CLK2 9 15 O Output clock 2
CLK3 8 14 O Output clock 3
CLK4 19 3 O Output clock 4
CLK5 17 1 O Output clock 5
CLK6 16 24 O Output clock 6
CLK7 15 23 O Output clock 7
VC 3 9 I VCXO control voltage input
SCL 4 10 I I2C bus serial clock input. Pull-up to VDD core with 1 k
SDA 5 11 I/O I2C bus serial data input. Pull-up to VDD core with 1 k
SSEN 6 12 I Spread spectrum enable. High = enabled, Low = disabled.
OEB 7 13 I Output driver enable. Low = enabled, High = disabled.
VDD 20 4 P Core voltage supply pin
VDDOA 11 18 P Output voltage supply pin for CL K0 and CLK1. See 6.2
VDDOB 10 16 P Output voltage supply pin for CLK2 and CLK3. See 6.2
VDDOC 18 2 P Output voltage supply pin for CLK4 and CLK5. See 6.2
VDDOD 14 22 P Output voltage supply pin for CLK6 and CLK7. See 6.2
GND Center Pad 5, 8, 17, 19 P G ro un d
*Note: I = Input, O = Output , P = Power
*Note: Input pins are not internally pulled up.
1
2
3
4
5
6
7
8
9
10
15
14
13
12
11
20
19
18
17
16
XA
XB
VC
SCL
SDA
OEB
CLK3
CLK2
VDDOB
SSEN
Si5351B 20-QFN
Top View
GND
PAD
CLK6
CLK5
VDDOC
CLK4
VDD
VDDOA
CLK1
CLK0
VDDOD
CLK7
2
1
4
3
6
5
8
7
10
9
12
11
23
24
21
22
19
20
17
18
15
16
13
14
Si5351B 24-QSOP
Top View
VDDOC
CLK5
VDD
CLK4
XA
GND
GND
XB
SCL
VC
SSEN
SDA
CLK7
CLK6
CLK0
VDD0D
GND
CLK1
GND
VDDOA
CLK2
VDD0B
OEB
CLK3
Si5351A/B/C
64 Preliminary Rev. 0.95
11. Si5351C Pin Descriptions (20-Pin QFN, 24-Pin QSOP)
Table 12. Si5351C Pin Descriptions
Pin Name Pin Number Pin Type* Function
20-QFN 24-QSOP
XA 1 6 I Input pin for external crystal.
XB 2 7 I Input pin for external crystal.
CLK0 13 21 O Output clock 0.
CLK1 12 20 O Output clock 1.
CLK2 9 15 O Output clock 2.
CLK3 8 14 O Output clock 3.
CLK4 19 3 O Output clock 4.
CLK5 17 1 O Output clock 5.
CLK6 16 24 O Output clock 6.
CLK7 15 23 O Output clock 7.
INTR 3 9 O Interrupt pin. Open drain active low output, requires a pull-up
resistor greater than 1 k
SCL 4 10 I I2C bus serial clock input. Pull-up to VDD core with 1 k
SDA 5 11 I/O I2C bus serial data input. Pull-up to VDD core with 1 k
CLKIN 6 12 I PLL clock input.
OEB 7 13 I Output driver enable. Low = enabled, High = disabled.
VDD 20 4 P Core voltage supply pin
VDDOA 11 18 P Output voltage supply pin for CL K0 and CLK1. See 6.2
VDDOB 10 16 P Output voltage supply pin for CLK2 and CLK3. See 6.2
VDDOC 18 2 P Output voltage supply pin for CLK4 and CLK5. See 6.2
VDDOD 14 22 P Output voltage supply pin for CLK6 and CLK7. See 6.2
GND Center Pad 5, 8, 17, 19 P G ro un d.
Notes:
1. I = Input, O = O utput, P = Power.
2. Input pins are not internally pulled up.
1
2
3
4
5
6
7
8
9
10
15
14
13
12
11
20
19
18
17
16
XA
XB
INTR
SCL
SDA
OEB
CLK3
CLK2
VDDOB
CLKIN
Si5351C 20-QFN
Top View
GND
PAD
CLK6
CLK5
VDDOC
CLK4
VDD
VDDOA
CLK1
CLK0
VDDOD
CLK7
2
1
4
3
6
5
8
7
10
9
12
11
23
24
21
22
19
20
17
18
15
16
13
14
Si5351C 24-QSOP
Top View
VDDOC
CLK5
VDD
CLK4
XA
GND
GND
XB
SCL
INTR
CLKIN
SDA
CLK7
CLK6
CLK0
VDD0D
GND
CLK1
GND
VDDOA
CLK2
VDD0B
OEB
CLK3
Si5351A/B/C
Preliminary Rev . 0.95 65
12. Si5351A Pin Descriptions (10-Pin MSOP)
Table 13. Si5351A 10-MSOP Pin Descriptions
Pin Name
Pin
Number Pin Type* Function
10-MSOP
XA 2 I Input pin for external crystal.
XB 3 I Input pin for external crystal.
CLK0 10 O Output clock 0.
CLK1 9 O Output clock 1.
CLK2 6 O Output clock 2.
SCL 4 I Serial clock input for the I2C bus. This pin must be pulled-up using a pull-
up resistor of at least 1 k.
SDA 5 I/O Serial data input for the I2C bus. This pin must b e pulled-up using a pull-u p
resistor of at least 1 k.
VDD 1 P Core voltage supply pin.
VDDO 7 P Output voltage supply pin for CLK0, CLK1, and CLK2. See "6.2. Power
Supply Sequencing" on page 21.
GND 8 P Ground.
*Note: I = Input, O = Output , P = Power
Si5351A 10-M SOP
Top View
XA
VDD
SCL
XB
2
1
4
3
CLK1
CLK0
VDDO
GND
9
10
7
8
SDA 5CLK2
6
Si5351A/B/C
66 Preliminary Rev. 0.95
13. Ordering Information
Figure 19. Device Part Numbers
An evaluation kit containing ClockBuilder Desktop software and hardware enable easy evaluatin of the Si5351A/B/C.
The orderable part numbers for the evaluation kits are provided in Figure 20.
Figure 20. Si5351A/B/C Evaluation Kit
Si5351X XX
A
A = Product Re vision A
A = Crystal In
B = Crystal In + VCXO
C = Crystal In + CLKIN
GT = 10-MSOP*
GM = 20-QFN
GU = 24-QSOP
*Note: The 10-MSOP is only
available in the Si5351A variant.
Si535X EVB
XXXXX
XXXXX =
EVB = Evaluation Kit
20-QFN
24-QSOP
Si5351A/B/C
Preliminary Rev . 0.95 67
14. Package Outline (24-Pin QSOP)
Table 14. 24-QSOP Package Dimensions
Dimension Min Nom Max
A—1.75
A1 0.10 0.25
b 0.19 0.30
c 0.15 0.25
D 8.558.658.75
E 6.00 BSC
E1 3.81 3.90 3.99
e 0.635 BSC
L 0.40 1.27
L2 0.25 BSC
q08
aaa 0.10
bbb 0.17
ccc 0.10
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioni ng and Tolerancing per ANSI Y14.5M-1994.
3. This drawing co nforms to the JEDEC Solid State Outline MO-137, Variation C
4. Recommended card reflow profile is per th e JEDEC/IPC J-STD-020 specification for Small Body
Components.
Si5351A/B/C
68 Preliminary Rev. 0.95
15. Package Outline (20-Pin QFN)
Table 15. Package Dimensions
Dimension Min Nom Max
A 0.800.850.90
A1 0.00 0.02 0.05
b 0.180.250.30
D 4.00 BSC
D2 2.65 2.70 2.75
e 0.50 BSC
E 4.00 BSC
E2 2.65 2.70 2.75
L 0.300.400.50
aaa 0.10
bbb 0.10
ccc 0.08
ddd 0.10
eee 0.10
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioni ng and Tolerancing per ANSI Y14.5M-1994.
3. This drawing co nforms to the JEDEC Outline MO-220, variation VGGD-8.
4. Recommended card reflow profile is per th e JEDEC/IPC J-STD-020 specification for Small Body
Components.
Si5351A/B/C
Preliminary Rev . 0.95 69
16. Package Outline (10-Pin MSOP)
Table 16. 24-QSOP Package Dimensions
Dimension Min Nom Max
A—1.10
A1 0.00 0.15
A2 0.75 0.85 0.95
b 0.17 0.33
c 0.08 0.23
D 3.00 BSC
E 4.90 BSC
E1 3.00 BSC
e 0.50 BSC
L 0.400.600.80
L2 0.25 BSC
q08
aaa 0.20
bbb 0.25
ccc 0.10
ddd 0.08
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioni ng and Tolerancing per ANSI Y14.5M-1994.
3. This drawing co nforms to the JEDEC Solid State Outline MO-137, Variation C
4. Recommended card reflow profile is per th e JEDEC/IPC J-STD-020 specification for Small Body
Components.
Si5351A/B/C
70 Preliminary Rev. 0.95
DOCUMENT CHANGE LIST
Revision 0.1 to Revision 0.9
Updated max output frequency.
Updated kV values in Table 3 on page 5.
Updated "3.4. Spread Spectrum" on page 13.
Added "5.1. Writing a Custom Configuration to RAM"
on page 16.
Added "5.7. HCSL Compatible Outputs" on page 20.
Added "6.6. Trace Characteristics" on page 22.
Updated "8. Register Descriptions" on page 25.
Added register descri ptions.
Revision 0.9 to Revision 0.95
Added 1.8 V VDDO sup p ort.
Updated Table 2, “DC Characteristics,” on page 4.
Added soldering profile specs to Table 9, “Absolute
Maximum Ratings1,” on page 8.
Si5351A/B/C
Preliminary Rev . 0.95 71
NOTES:
Si5351A/B/C
72 Preliminary Rev. 0.95
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.