© Semiconductor Components Industries, LLC, 2012
May, 2012 Rev. 15
1Publication Order Number:
MC74VHC1GT126/D
MC74VHC1GT126
Noninverting Buffer /
CMOS Logic Level Shifter
with LSTTLCompatible Inputs
The MC74VHC1GT126 is a single gate noninverting 3state buffer
fabricated with silicon gate CMOS technology. It achieves high speed
operation similar to equivalent Bipolar Schottky TTL while maintaining
CMOS low power dissipation.
The MC74VHC1GT126 requires the 3state control input (OE) to be
set Low to place the output into the high impedance state.
The device input is compatible with TTLtype input thresholds and
the output has a full 5 V CMOS level output swing. The input
protection circuitry on this device allows overvoltage tolerance on the
input, allowing the device to be used as a logiclevel translator from
3 V CMOS logic to 5 V CMOS Logic or from 1.8 V CMOS logic to
3 V CMOS Logic while operating at the highvoltage power supply.
The MC74VHC1GT126 input structure provides protection when
voltages up to 7 V are applied, regardless of the supply voltage. This
allows the MC74VHC1GT126 to be used to interface 5 V circuits to
3 V circuits. The output structures also provide protection when
VCC = 0 V. These input and output structures help prevent device
destruction caused by supply voltage input/output voltage mismatch,
battery backup, hot insertion, etc.
Features
High Speed: tPD = 3.5 ns (Typ) at VCC = 5 V
Low Power Dissipation: ICC = 1 mA (Max) at TA = 25°C
TTLCompatible Inputs: VIL = 0.8 V; VIH = 2 V
CMOSCompatible Outputs: VOH > 0.8 VCC; VOL < 0.1 VCC @Load
Power Down Protection Provided on Inputs and Outputs
Balanced Propagation Delays
Pin and Function Compatible with Other Standard Logic Families
Chip Complexity: FETs = 62; Equivalent Gates = 16
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AECQ100
Qualified and PPAP Capable
These Devices are PbFree and are RoHS Compliant
Figure 1. Pinout (Top View)
IN A OUT Y
VCC
OE
IN A
OUT YGND
OE
Figure 2. Logic Symbol
1
2
34
5
PIN ASSIGNMENT
1
2
3 GND
OE
IN A
4
5V
CC
OUT Y
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
ORDERING INFORMATION
FUNCTION TABLE
L
H
X
A Input Y Output
L
H
Z
OE Input
H
H
L
http://onsemi.com
SC88A / SOT353 / SC70
DF SUFFIX
CASE 419A
TSOP5 / SOT23 / SC59
DT SUFFIX
CASE 483
MARKING
DIAGRAMS
1
5
1
5
1
5
W3 M G
G
W3 = Device Code
M = Date Code*
G= PbFree Package
1
5
W3 M G
G
M
*Date Code orientation and/or position may vary
depending upon manufacturing location.
(Note: Microdot may be in either location)
MC74VHC1GT126
http://onsemi.com
2
MAXIMUM RATINGS
Symbol Characteristics Value Unit
VCC DC Supply Voltage 0.5 to +7.0 V
VIN DC Input Voltage 0.5 to +7.0 V
VOUT DC Output Voltage 0.5 to VCC + 0.5 V
IIK Input Diode Current 20 mA
IOK Output Diode Current VOUT < GND; VOUT > VCC +20 mA
IOUT DC Output Current, per Pin +25 mA
ICC DC Supply Current, VCC and GND +50 mA
PDPower Dissipation in Still Air SC88A, TSOP5 200 mW
qJA Thermal Resistance SC88A, TSOP5 333 °C/W
TLLead Temperature, 1 mm from Case for 10 s 260 °C
TJJunction Temperature Under Bias +150 °C
Tstg Storage Temperature 65 to +150 °C
VESD ESD Withstand Voltage Human Body Model (Note 1)
Machine Model (Note 2)
Charged Device Model (Note 3)
> 2000
> 200
N/A
V
ILatchup Latchup Performance Above VCC and Below GND at 125°C (Note 4) ±500 mA
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Tested to EIA/JESD22A114A
2. Tested to EIA/JESD22A115A
3. Tested to JESD22C101A
4. Tested to EIA/JESD78
RECOMMENDED OPERATING CONDITIONS
Symbol Characteristics Min Max Unit
VCC DC Supply Voltage 3.0 5.5 V
VIN DC Input Voltage 0.0 5.5 V
VOUT DC Output Voltage 0.0 VCC V
TAOperating Temperature Range 55 +125 °C
tr, tfInput Rise and Fall Time VCC = 5.0 V ± 0.5 V 0 20 ns/V
Device Junction Temperature versus
Time to 0.1% Bond Failures
Junction
Temperature °CTime, Hours Time, Years
80 1,032,200 117.8
90 419,300 47.9
100 178,700 20.4
110 79,600 9.4
120 37,000 4.2
130 17,800 2.0
140 8,900 1.0
1
1 10 100 1000
TIME, YEARS
NORMALIZED FAILURE RATE
TJ= 80 C°
TJ= 90 C°
TJ= 100 C°
TJ= 110 C°
TJ= 130 C°
TJ= 120 C°
FAILURE RATE OF PLASTIC = CERAMIC
UNTIL INTERMETALLICS OCCUR
Figure 3. Failure Rate vs. Time Junction Temperature
MC74VHC1GT126
http://onsemi.com
3
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC ELECTRICAL CHARACTERISTICS
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Parameter
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Test Conditions
ÎÎÎ
ÎÎÎ
ÎÎÎ
VCC
(V)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
TA 85°C
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
55 TA 125°C
Unit
ÎÎÎ
ÎÎÎ
Min
ÎÎ
ÎÎ
Typ
ÎÎÎ
ÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Min
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VIH
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Minimum HighLevel
Input Voltage
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
3.0
4.5
5.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.4
2.0
2.0
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.4
2.0
2.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.4
2.0
2.0
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VIL
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum LowLevel
Input Voltage
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
3.0
4.5
5.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.53
0.8
0.8
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.53
0.8
0.8
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.53
0.8
0.8
V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VOH
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Minimum HighLevel
Output Voltage
VIN = VIH or VIL
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VIN = VIH or VIL
IOH = 50 mA
ÎÎÎ
ÎÎÎ
3.0
4.5
ÎÎÎ
ÎÎÎ
2.9
4.4
ÎÎ
ÎÎ
3.0
4.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
2.9
4.4
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
2.9
4.4
ÎÎÎÎ
ÎÎÎÎ
V
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VIN = VIH or VIL
IOH = 4 mA
IOH = 8 mA
ÎÎÎ
ÎÎÎ
ÎÎÎ
3.0
4.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
2.58
3.94
ÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
2.48
3.80
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
2.34
3.66
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VOL
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum LowLevel
Output Voltage
VIN = VIH or VIL
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VIN = VIH or VIL
IOL = 50 mA
ÎÎÎ
ÎÎÎ
ÎÎÎ
3.0
4.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
0.0
0.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.1
0.1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.1
0.1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.1
0.1
V
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VIN = VIH or VIL
IOL = 4 mA
IOL = 8 mA
ÎÎÎ
ÎÎÎ
ÎÎÎ
3.0
4.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.36
0.36
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.44
0.44
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.52
0.52
ÎÎÎÎ
ÎÎÎÎ
IIN
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum Input Leak-
age Current
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VIN = 5.5 V or GND
ÎÎÎ
ÎÎÎ
0 to
5.5
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
±0.1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
±1.0
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
±1.0
mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ICC
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum Quiescent
Supply Current
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VIN = VCC or GND
ÎÎÎ
ÎÎÎ
ÎÎÎ
5.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
20
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
40
mA
ÎÎÎÎ
ÎÎÎÎ
ICCT
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Quiescent Supply
Current
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Input: VIN = 3.4 V
Other Input: VCC or GND
ÎÎÎ
ÎÎÎ
5.5
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
1.35
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.50
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.65
mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IOPD
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Output Leakage
Current
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VOUT = 5.5 V
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
5.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
10
mA
ÎÎÎÎ
ÎÎÎÎ
IOZ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum 3State
Leakage Current
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VIN = VIH or VIL
VOUT = VCC or GND
ÎÎÎ
ÎÎÎ
5.5
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
±0.25
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
±2.5
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
±2.5
mA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS Input tr = tf = 3.0 ns
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Parameter
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Test Conditions
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
TA 85°C
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
55 TA 125°C
Unit
ÎÎÎ
Min
ÎÎÎ
Typ
ÎÎ
Max
ÎÎÎ
Min
ÎÎÎ
Max
ÎÎÎ
Min
ÎÎÎÎ
Max
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tPLH,
tPHL
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum Propagation
Delay, A to Y
(Figures 3 and 5)
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
VCC = 3.3 ± 0.3 V CL = 15pF
CL = 50pF
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
5.6
8.1
ÎÎ
ÎÎ
ÎÎ
8.0
11.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.0
1.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
9.5
13.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
12.0
16.0
ns
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
VCC = 5.0 ± 0.5 V CL = 15pF
CL = 50pF
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
3.8
5.3
ÎÎ
ÎÎ
5.5
7.5
ÎÎÎ
ÎÎÎ
1.0
1.0
ÎÎÎ
ÎÎÎ
6.5
8.5
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
8.5
10.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tPZL,
tPZH
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum Output
Enable TIme,OE to Y
(Figures 4 and 5)
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
VCC = 3.3 ± 0.3 V CL = 15pF
RL = RI = 500 WCL = 50pF
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
5.4
7.9
ÎÎ
ÎÎ
ÎÎ
8.0
11.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.0
1.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
9.5
13.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
11.5
15.0
ns
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
VCC = 5.0 ± 0.5 V CL = 15pF
RL = RI = 500 WCL = 50pF
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
3.6
5.1
ÎÎ
ÎÎ
5.1
7.1
ÎÎÎ
ÎÎÎ
1.0
1.0
ÎÎÎ
ÎÎÎ
6.0
8.0
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
7.5
9.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tPLZ,
tPHZ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum Output
Disable Time,OE to Y
(Figures 4 and 5)
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
VCC = 3.3 ± 0.3 V CL = 15pF
RL = RI = 500 WCL = 50pF
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
6.5
8.0
ÎÎ
ÎÎ
ÎÎ
9.7
13.2
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.0
1.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
11.5
15.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
14.5
18.0
ns
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
VCC = 5.0 ± 0.5 V CL = 15pF
RL = RI = 500 WCL = 50pF
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
4.8
7.0
ÎÎ
ÎÎ
6.8
8.8
ÎÎÎ
ÎÎÎ
1.0
1.0
ÎÎÎ
ÎÎÎ
8.0
10.0
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
10.0
12.0
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Cin
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum Input
Capacitance
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
4
ÎÎ
ÎÎ
ÎÎ
10
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
10
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
10
pF
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Cout
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Maximum ThreeState
Output Capacitance
(Output in High
Impedance State)
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
6
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
pF
CPD Power Dissipation Capacitance (Note 5)
Typical @ 25°C, VCC = 5.0 V
pF
14
5. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC /4 (per buffer). CPD is used to determine the
noload dynamic power consumption; PD = CPD VCC2 fin + ICC VCC.
MC74VHC1GT126
http://onsemi.com
4
SWITCHING WAVEFORMS
Figure 4. Switching Waveforms Figure 5.
Y
50%
50% VCC
50% VCC
VCC
GND
HIGH
IMPEDANCE
VOL + 0.3V
VOH - 0.3V
Y
Y
OE
tPZL tPLZ
tPZH tPHZ
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
Figure 6. Test Circuit
*Includes all probe and jig capacitance
Figure 7. Test Circuit
OUTPUT
TEST POINT
CL *
1 kWCONNECT TO VCC WHEN
TESTING tPLZ AND tPZL.
CONNECT TO GND WHEN
TESTING tPHZ AND tPZH.
DEVICE
UNDER
TEST
HIGH
IMPEDANCE
50%
50% VCC
VCC
GND
tPLH tPHL
A
Figure 8. Input Equivalent Circuit
INPUT
ORDERING INFORMATION
Device Package Shipping
M74VHC1GT126DF1G SC88A / SOT353 / SC70
(PbFree)
3000 / Tape & Reel
M74VHC1GT126DF2G SC88A / SOT353 / SC70
(PbFree)
M74VHC1GT126DT1G TSOP5 / SOT23 / SC59
(PbFree)
NLVVHC1GT126DF1G* SC88A / SOT353 / SC70
(PbFree)
NLVVHC1GT126DF2G* SC88A / SOT353 / SC70
(PbFree)
NLVVHC1GT126DT1G* TSOP5 / SOT23 / SC59
(PbFree)
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP
Capable.
MC74VHC1GT126
http://onsemi.com
5
PACKAGE DIMENSIONS
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A01 OBSOLETE. NEW STANDARD
419A02.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
DIM
A
MIN MAX MIN MAX
MILLIMETERS
1.80 2.200.071 0.087
INCHES
B1.15 1.350.045 0.053
C0.80 1.100.031 0.043
D0.10 0.300.004 0.012
G0.65 BSC0.026 BSC
H--- 0.10---0.004
J0.10 0.250.004 0.010
K0.10 0.300.004 0.012
N0.20 REF0.008 REF
S2.00 2.200.079 0.087
B0.2 (0.008) MM
12 3
45
A
G
S
D 5 PL
H
C
N
J
K
B
SC88A (SC705/SOT353)
CASE 419A02
ISSUE K
MC74VHC1GT126
http://onsemi.com
6
PACKAGE DIMENSIONS
TSOP5
CASE 48302
ISSUE H
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS
OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
5. OPTIONAL CONSTRUCTION: AN
ADDITIONAL TRIMMED LEAD IS ALLOWED
IN THIS LOCATION. TRIMMED LEAD NOT TO
EXTEND MORE THAN 0.2 FROM BODY.
DIM MIN MAX
MILLIMETERS
A3.00 BSC
B1.50 BSC
C0.90 1.10
D0.25 0.50
G0.95 BSC
H0.01 0.10
J0.10 0.26
K0.20 0.60
L1.25 1.55
M0 10
S2.50 3.00
123
54 S
A
G
L
B
D
H
C
J
__
0.7
0.028
1.0
0.039
ǒmm
inchesǓ
SCALE 10:1
0.95
0.037
2.4
0.094
1.9
0.074
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
0.20
5X
CAB
T0.10
2X
2X T0.20
NOTE 5
T
SEATING
PLANE
0.05
K
M
DETAIL Z
DETAIL Z
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
MC74VHC1GT126/D
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative