Parameter Max. Units
VCES Collector-to-Emitter Breakdown Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 23.5
IC @ TC = 100°C Continuous Collector Current 13.0 A
ICM Pulsed Collector Current 47
ILM Clamped Inductive Load Current 47
VGE Gate-to-Emitter Voltage ± 20 V
EARV Reverse Voltage Avalanche Energy 10 mJ
PD @ TC = 25°C Maximum Power Dissipation 45
PD @ TC = 100°C Maximum Power Dissipation 18
TJOperating Junction and -55 to + 150
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm) from case)
°C
IRG4IBC30SPbF
INSULATED GATE BIPOLAR TRANSISTOR
E
C
G
Features
Benefits
VCES = 600V
VCE(on) typ. = 1.4V
@VGE = 15V, IC = 18A
Absolute Maximum Ratings
W
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 2.8
RθJA Junction-to-Ambient, typical socket mount –– 65
Wt Weight 2.1 (0.075) ––– g (oz)
Thermal Resistance
06/17/2010
N-channel
www.irf.com 1
• Standard: Optimized for minimum saturation
voltage and low operating freqencies (<1 kHz)
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
previous generation
• Industry standard TO-220 Full-Pak
• Lead-Free
• Generation 4 IGBTs offer highest efficiencies available
• IGBTs optimized for specific application conditions
• Designed to be a "drop-in" replacement for equivalent
industry -standard Generation 3 IR IGBTs
TO-220 Full-Pak
°C/W
PD - 95637A
IRG4IBC30SPbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
QgTotal Gate Charge (turn-on) 50 75 IC = 18A
Qge Gate - Emitter Charge (turn-on) 7.3 11 nC VCC = 400V See Fig.8
Qgc Gate - Collector Charge (turn-on) 17 26 VGE = 15V
td(on) Turn-On Delay Time 22
trRise Time 18 TJ = 25°C
td(off) Turn-Off Delay Time 540 810 IC = 18A, VCC = 480V
tfFall Time 390 590 VGE = 15V, RG = 23
Eon Turn-On Switching Loss 0.26 Energy losses include "tail"
Eoff Turn-Off Switching Loss 3.45 mJ See Fig. 9, 10, 14
Ets Total Switching Loss 3.71 5.6
td(on) Turn-On Delay Time 21 TJ = 150°C,
trRise Time 19 IC = 18A, VCC = 480V
td(off) Turn-Off Delay Time 790 VGE = 15V, RG = 23
tfFall Time 760 Energy losses include "tail"
Ets Total Switching Loss 6.55 mJ See Fig. 10, 11, 14
LEInternal Emitter Inductance 7.5 nH Measured 5mm from package
Cies Input Capacitance 1100 VGE = 0V
Coes Output Capacitance 72 pF VCC = 30V See Fig. 7
Cres Reverse Transfer Capacitance 19 ƒ = 1.0MHz
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V, IC = 250µA
V(BR)ECS Emitter-to-Collector Breakdown Voltage 18 V VGE = 0V, IC = 1.0A
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage 0.75 V/°C VGE = 0V, IC = 1.0mA
1.40 1.6 IC = 18A VGE = 15V
VCE(ON) Collector-to-Emitter Saturation Voltage 1.84 IC = 34A See Fig.2, 5
1.45 IC = 18A , TJ = 150°C
VGE(th) Gate Threshold Voltage 3.0 6.0 VCE = VGE, IC = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage -11 mV/°C VCE = VGE, IC = 250µA
gfe Forward Transconductance 6.0 11 S VCE = 100 V, IC = 18A
250 VGE = 0V, VCE = 600V
2.0 VGE = 0V, VCE = 10V, TJ = 25°C
1000 VGE = 0V, VCE = 600V, TJ = 150°C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
ICES Zero Gate Voltage Collector Current
V
µA
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
ns
ns
Pulse width 80µs; duty factor 0.1%.
Pulse width 5.0µs, single shot.
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. (See Fig. 13b)
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23,
(See Fig. 13a)
Repetitive rating; pulse width limited by maximum
junction temperature.
IRG4IBC30SPbF
www.irf.com 3
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics
1
10
100
1 10
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
V = 15V
20µs PULSE WIDTH
GE
T = 25 C
Jo
T = 150 C
Jo
0.1
1
10
100
5678910
V , Gate-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
GE
C
V = 50V
s PULSE WIDTH
CC
T = 25 C
Jo
T = 150 C
Jo
0.1 110 100
f , Frequency ( kHz )
0
5
10
15
20
Load Current ( A )
For both:
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 7.0W
60% of rated
voltage
I
Ideal diodes
Square wave:
Triangular wave:
I
Clamp voltage:
80% of rated
For both:
Duty cycle: 50%
T = 125°C
T = 90°C
Gate drive as specified
sink
J
Power Dissipation = W
5.8
IRG4IBC30SPbF
4www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
25 50 75 100 125 150
TJ , Junction Temperature (°C)
0
4
8
12
16
20
24
Maximum DC Collector Current (A)
V GE
= 15V
-60 -40 -20 020 40 60 80 100 120 140 160
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
V , Collector-to-Emitter Voltage(V)
J°
CE
V = 15V
80 us PULSE WIDTH
GE
I = A9
C
I = A18
C
I = A36
C
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1 10
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRG4IBC30SPbF
www.irf.com 5
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
RG, Gate Resistance (Ω)
10
1 10 100
0
500
1000
1500
2000
V , Collector-to-Emitter Voltage (V)
C, Capacitance (pF)
CE
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GE
ies ge gc , ce
res gc
oes ce gc
Cies
Coes
Cres
010 20 30 40 50 60
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Emitter Voltage (V)
G
GE
V= 400V
I = 18A
CC
C
010 20 30 40 50
3.60
3.64
3.68
3.72
3.76
3.80
R , Gate Resistance (Ohm)
Total Switching Losses (mJ)
G
V = 480V
V = 15V
T = 25 C
I = 18A
CC
GE
J
C
°
-60 -40 -20 020 40 60 80 100 120 140 160
0.1
1
10
100
T , Junction Temperature ( C )
Total Switching Losses (mJ)
J°
R = 23Ohm
V = 15V
V = 480V
G
GE
CC
I = A
36
C
I = A
18
C
I = A
9
C
9.0 A
IRG4IBC30SPbF
6www.irf.com
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
010 20 30 40 50
0.0
3.0
6.0
9.0
12.0
15.0
I , Collector-to-emitter Current (A)
Total Switching Losses (mJ)
C
R = 23Ohm
T = 150 C
V = 480V
V = 15V
G
J
CC
GE
°
1
10
100
1000
1 10 100 1000
V = 20V
T = 125 C
GE
Jo
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
SAFE OPERATING AREA
IRG4IBC30SPbF
www.irf.com 7
D.U.T.
50V
L
V *
C
cd
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
1000V
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
t=5µs
d(on)
t
t
f
t
r
90%
t
d(off)
10%
90%
10%
5%
V
C
I
C
E
on
E
off
ts on off
E = (E +E )
c
d
e
Fig. 14b - Switching Loss
Waveforms
50V
Driver*
1000V
D.U.T.
I
C
C
V
c
de
L
Fig. 14a - Switching Loss
Test Circuit
* Driver same type
as D.U.T., VC = 480V
0 - VCC
RLICM
VCC
=
480µF
IRG4IBC30SPbF
8www.irf.com
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.06/2010
TO-220 Full-Pak Part Marking Information
:,7+$66(0%/<
(;$03/( 7+,6,6$1,5),*
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
3$57180%(5
/27&2'(
$66(0%/<
,17(51$7,21$/
5(&7,),(5
/2*2

.
,5),*
'$7(&2'(
<($5
:((.
/,1(.
Note: "P" in assembly line
position indicates "Lead-Free"
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/