September 2006 Rev 4 1/20
20
LM224A-LM324A
Low power quad operational amplifiers
Features
Wide gain bandwidth: 1.3 MHz
Input common-mode voltage range includes
ground
Large voltage gain: 100 dB
Very low supply current/amplifier: 375 µA
Low input bias current: 20 nA
Low input offset voltage: 3 mV max.
Low input offset current: 2 nA
Wide power supply range:
Single supply: +3 V to +30 V
Dual supplies: ±1.5 V to ±15 V
Description
These circuits consist of four independent, high
gain, internally frequency compensated
operationa l amplifiers . The y oper ate from a single
power supply ov er a wide range of voltages.
Operation from split power supplies is also
possib le and the low p ower supply current drain is
independent of the magnitude of the power supply
voltage.
Order codes
N
DIP14
(Plastic package)
D
SO-14
(Plastic micropackage)
P
TSSOP-14
(Thin shrink small outline package)
Part number Temper ature range Package P ackaging
LM224AN
-40° C, +105° C
DIP Tube
LM224AD/ADT SO Tube or tape & reel
LM224APT TSSOP
(Thin shrink outline package) Tape & reel
LM324AN
0° C, +70° C
DIP Tube
LM324AD/ADT SO Tube or tape & reel
LM324APT TSSOP
(Thin shrink outline package) Tape & reel
www.st.com
Contents LM224A-LM324A
2/20
Contents
1 Pin connections and schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Absolute maxim u m ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Typical single-supply applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Macromodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 DIP14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 SO-14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 TSSOP14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
LM224A-LM324 A Pin connections and schematic diagram
3/20
1 Pin connections and schematic diagram
Figure 1. Pin connections (top vie w)
Figure 2. Schematic diagram (1/4 LM124)
Inverting Input 2
Non-inverting Input 2
Non-inverting Input 1
CC
V
-
CC
V
1
2
3
4
8
5
6
7
9
10
11
12
13
14
+
Output 3
Output 4
Non-inverting Input 4
Inverting Input 4
Non-inverting Input 3
Inverting Input 3
-
+
-
+
-
+
-
+
Output 1
Inverting Input 1
Output 2
Absolute maximum ratings LM224A-LM324A
4/20
2 Absolute maximum ratings
Table 1. Absolute maximum ratings
Symbol Parameter LM224A LM324A Unit
VCC Supply voltage ±16 or 32 V
ViInput voltage -0.3 to VCC + 0.3 V
Vid Differential input voltage (1)
1. Neither of the input voltages must exceed the magnitude of VCC+ or VCC-.
32 V
Ptot
Power dissipation:
N suffix
D suffix 500
400 500
400 mW
Output short-circuit duration (2)
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output
current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result
from simultaneous short-circuits on all amplifiers.
Infinite
Iin Input current (3)
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input
diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This
transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground
for a large overdrive) for the time during which an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3 V.
50 mA
Toper Operating free-air temperature range -40 to +105 0 to +70 °C
Tstg Storage temperature range -65 to +150 °C
TjMaximum junction temperature 150 °C
Rthja
Ther mal resistance junction to ambient(4):
SO14
TSSOP14
DIP14
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-
circuits on all amplifiers. These are typical values given for a single layer board (except for TSSOP which is
a two-layer board).
103
100
83
°C/W
Rthjc
Ther mal resistance junction to case:
SO14
TSSOP14
DIP14
31
32
33
°C/W
ESD
HBM: human body model(5)
5. Human body model, 100 pF discharged through a 1.5 kΩ resistor into pin of device.
700
VMM: machine model(6)
6. Machine model ESD, a 200 pF cap is charged to the specified voltage, then discharged directly into the IC
with no external series resistor (internal resistor < 5Ω), into pin-to-pin of device.
150
CDM: charged device model 1500
LM224A-LM324A Electrical characteristics
5/20
3 Electrical characteristics
Table 2. VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise
specified)
Symbol Parameter Min. Typ. Max. Unit
Vio
Input offset voltage (1):
Tamb = +25° C
Tmin T
amb T
max
23
5mV
Iio
Input offse t current:
Tamb = +25° C
Tmin T
amb T
max
220
40 nA
Iib
Input bias current (2):
Tamb = +25° C
Tmin T
amb T
max
20 100
200 nA
Avd
Large signal voltage gain:
VCC+ = +15 V, RL = 2 kΩ, Vo = 1.4 V to 11.4 V
Tamb = +25° C
Tmin T
amb T
max
50
25 100 V/mV
SVR
Supply voltage rejection ratio (Rs 10 kΩ):
VCC+ = 5 V to 30 V
Tamb = +25° C
Tmin T
amb T
max
65
65 110 dB
ICC
Supply current, all Amp, no load:
–T
amb = +25° C
VCC = +5V
VCC = +30 V
–T
min T
amb T
max
VCC = +5 V
VCC = +30 V
0.7
1.5
0.8
1.5
1.2
3
1.2
3
mA
Vicm
Input common mode voltage range:
VCC = +30 V (3)
Tamb = +25° C
Tmin Tamb T
max
0
0VCC -1.5
VCC -2
V
CMR Common mode rejection ratio (Rs 10 kΩ):
Tamb = +25° C
Tmin T
amb T
max
70
60 80 dB
Isource Output current source (Vid = +1 V):
VCC = +15 V, Vo = +2 V 20 40 70 mA
Isink
Output sink current (Vid = -1 V):
VCC = +15 V, Vo = +2 V
VCC = +15 V, Vo = +0.2 V 10
12 20
50 mA
µA
Electrical characteristics LM224A-LM324A
6/20
VOH
High level output voltage VCC = +30 V, RL = 2 kΩ
Tamb = +25°C
Tmin T
amb T
max
26
26 27 V
VCC = +30 V, RL = 10 kΩ
Tamb = +25° C
Tmin T
amb T
max 27
27 28 V
VCC = +5 V, RL = 2 kΩ
Tamb = +25° C
Tmin T
amb Tmax
3.5
3V
VOL
Low level output voltage (RL = 10kΩ):
Tamb = +25°C
Tmin Tamb Tmax
520
20 mV
SR Slew rate:
VCC = 15 V, Vi = 0.5 to 3 V, RL = 2 kΩ, CL = 100 pF,
unity gain 0.4 V/µs
GBP Gain bandwidth product:
VCC = 30 V, f =100 kHz, Vin = 10 mV, RL = 2 kΩ,
CL= 100pF 1.3 MHz
THD Total harmonic distortion:
f = 1kHz, Av = 20dB , RL = 2kΩ, Vo = 2Vpp, CL =
100pF, VCC = 30V 0.015 %
enEquivalent input noise voltage:
f = 1 kHz, Rs = 100 Ω, VCC = 30 V 40
DVio Input offset voltage drift 7 30 μV/°C
DIio Input offset current drift 10 200 pA/°C
Vo1/Vo2 Channel separation(4) - 1kHz f 20 kHZ 120 dB
1. Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC+ < 30 V, 0 < Vic < VCC+ - 1.5 V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the
state of the output so there is no load change on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by
more than 0.3 V. The upper end of the common-mode voltage range is VCC+ - 1.5 V, but either or both
inputs can go to +32 V without damage.
4. Due to the proximity of external components, ensure that there is no coupling originating from stray
capacitance between these external parts. Typically, this can be detected at higher frequencies because
this type of capacitance increases.
Table 2. VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise
specified)
Symbol Parameter Min. Typ. Max. Unit
nV
Hz
------------
LM224A-LM324A Electrical characteristics
7/20
Figure 3. Input bias current vs. ambient
temperature Figure 4. Current limiting
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
24
21
18
15
9
12
6
3
0
INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
IB (nA)
Figure 5. Input voltage range Figure 6. Supply current
Figure 7. Gain bandwidth product Figure 8. Common mode rejection ratio
Electrical characteristics LM224A-LM324A
8/20
Figure 9. Input bias current vs. ambient
temperature Figure 10. Current limiting
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
24
21
18
15
9
12
6
3
0
INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
IB (nA)
Figure 11. Input voltage range Figure 12. Supply current
Figure 13. Gain band width product Figure 14. Common mode rejection ratio
LM224A-LM324A Electrical characteristics
9/20
Figure 15. Electrical curves
Electrical characteristics LM224A-LM324A
10/20
Figure 16. Input current Figure 17. Large signal voltage gain
Figure 18. Power supply & common mode
rejection ratio Figure 19. Voltage gain
LM224A-LM324A Typical singl e-supply applications
11/20
4 Typical single-supply applications
Figure 20. AC coupled inverting amplifier Figure 21. High input Z adjustable gain DC
instrumentation amplifier
if R1 = R5 and R3 = R4 = R6 = R7
e0 = (e2 -e1)
As shown e 0 = 101 (e2 - e1).
12R1
R2
-----------+
Figure 22. AC coupled non inverting amplifier Figure 23. DC summing amplifier
e0 = e1 +e2 -e3 -e4
Where (e1 +e2)
(e3 +e4)
to keep e0
0V
Figure 24. Non-inverting DC gain Figure 25. Low drift peak detector
Typical single-supply applica tions LM224A-LM32 4A
12/20
Figure 26. Active bandpass filter Figure 27. High input Z, DC differential
amplifier
Figure 28. Using symmetrical amplifiers to
reduce input curre nt (general
concept)
Fo = 1kHz
Q = 50
Av = 100 (40dB)
For
(CMRR depends on this resistor ratio match)
R1
R2
------- R4
R3
-------=
e0 (e2 - e1)
As shown e0 = (e2 - e1)
1R4
R3
-------+
⎝⎠
⎛⎞
LM224A-LM324A Macromodels
13/20
5 Macromodels
Note: Please consider the following before using this macromodel:
All models are a tr ade-off betw een accuracy and complexity (i.e. simu lation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a
design approach and help to select surrounding component values.
A macromodel emulates the nominal performance of a typical device within specified
operating conditions ( i.e. temper ature, sup ply voltage , etc.). Thus the macromod el is often
not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the
product.
Data issued from macromodels that is used outside of the specified conditions (VCC,
temper ature, etc.) or e v en w orse, outside of th e de vice oper ating conditions ( VCC, Vicm, etc.)
is not reliable in any way.
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM124 1 3 2 4 5
*******************************************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
Macromodels LM224A-LM324A
14/20
FIP 5 19 VOFP 3.600000E+02
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
The v alues provided in Table 3 are der i ved from this macromodel.
Table 3. Vcc+ = +15V, Vcc- = 0V, Tamb = 25° C (unle s s ot h erw is e sp e ci fie d )
Symbol Conditions Value Unit
Vio 0mV
Avd RL = 2 kΩ100 V/mV
Icc No load, per amplifier 350 µA
Vicm 0 to +13.5 V
VOH RL = 2 kΩ (VCC+=15 V) +13.5 V
VOL RL = 10 kΩ5mV
Ios Vo = +2 V, VCC = +15 V +40 mA
GBP RL = 2 kΩ, CL = 100 pF 1.3 MHz
SR RL = 2 kΩ, CL = 100 pF 0.4 V/µs
LM224A-LM324A Package mechanical data
15/20
6 Package mechanical data
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a Lead-free second level interconnect. The
category of second level interconnect is marked on the pa ckage and on the inner bo x label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
tradem ark. ECOPACK specifications are available at: www.st.com.
Package mechanical data LM224A-LM324A
16/20
6.1 DIP14 package
DIM. mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 1.39 1.65 0.055 0.065
b 0.5 0.020
b1 0.25 0.010
D 20 0.787
E 8.5 0.335
e 2.54 0.100
e3 15.24 0.600
F 7.1 0.280
I 5.1 0.201
L 3.3 0.130
Z 1.27 2.54 0.050 0.100
Plastic DIP-14 MECHANICAL DATA
P001A
LM224A-LM324A Package mechanical data
17/20
6.2 SO-14 package
DIM. mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 1.75 0.068
a1 0.1 0.2 0.003 0.007
a2 1.65 0.064
b 0.35 0.46 0.013 0.018
b1 0.19 0.25 0.007 0.010
C 0.5 0.019
c1 45˚ (typ. )
D 8.55 8.75 0.336 0.344
E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 7.62 0.300
F 3.8 4.0 0.149 0.157
G 4.6 5.3 0.181 0.208
L 0.5 1.27 0.019 0.050
M 0.68 0.026
(max.)
SO-14 MECHANICAL DATA
PO13G
8
Package mechanical data LM224A-LM324A
18/20
6.3 TSSOP14 package
DIM. mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 1.2 0.047
A1 0.05 0.15 0.002 0.004 0.006
A2 0.8 1 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.0089
D 4.9 5 5.1 0.193 0.197 0.201
E 6.2 6.4 6.6 0.244 0.252 0.260
E1 4.3 4.4 4.48 0.169 0.173 0.176
e 0.65 BSC 0.0256 BSC
K0˚ 8˚0˚ 8˚
L 0.45 0.60 0.75 0.018 0.024 0.030
TSSOP14 MECHANICAL DATA
cE
b
A2
A
E1
D
1
PIN 1 IDENTIFICATION
A1 L
K
e
0080337D
LM224A-LM324A Revision history
19/20
7 Revision history
Table 4. Document revi sion history
Date Revision Changes
1-Mar-2001 1 First Release
1-Feb-2005 2 Added explanation of Vid and Vi limits in Table 1 on page 4.
Updated macromodel.
1-Jun-2005 3 ESD protection inserted in Table 1 on page 4.
25-Sep-2006 4 Editorial update.
LM224A-LM324A
20/20
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers a re so lel y res ponsibl e fo r th e choic e, se lecti on an d use o f th e ST pr oduc ts and s ervi ces d escr ibed he rein , and ST as sumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document ref er s to an y t hi rd pa rt y p roduc t s or serv ic es it sh al l n ot be dee med a li ce nse gr an t by ST for t he use of su ch t hi rd party products
or services, or any intel lectual pro perty conta ined therei n or considere d as a warranty covering the use in any mann er whatsoev er of such
third party products or services or any intellect u al property contained ther ein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTAB ILIT Y, FITNESS F OR A PARTI CULAR PURPOS E (AND THEIR EQUIVALE NTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERT Y RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warrant y granted by ST for the S T product or se rvice descr ibed herein a nd shall no t create or e xtend in any manner whatsoe ver, any
liability of ST.
ST and the ST lo go are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroele ctr on ic s gr ou p of companies
Australia - Belgium - Brazil - Canada - China - Cz ech Republic - Finland - France - Germany - Hong Kong - India - Isra el - Italy - Ja pan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com