March 1996
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
PRODUCT PROFILE SHEET
Edition 2.1
1
Copyright 1996 by FUJITSU LIMITED
11mW max. (TTL level) / 5.5mW max. (CMOS level)
2,097,152 words × 8 bit organization
Silicon gate, CMOS, Advanced
Capacitor Cell
All input and output are TTL compatible
4096 refresh cycles every 65.6ms
Self refresh function
NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings
are exceeded. Functional operation should be restricted to the conditions as
detailed in the operational sections of this data sheet. Exposure to absolute
maximum rating conditions for extended periods may af fect device reliability.
This device contains circuitry to protect the inputs against
damage due to high static voltages or electric fields. However ,
it is advised that normal precautions be taken to avoid
application of any voltage higher than maximum rated voltages
to this high impedance circuit.
CMOS 2M X 8BIT FAST PAGE MODE DYNAMIC RAM
MB8116800A
-60/-70
Parameter MB8116800A MB8116800A
RAS Access Time
PRODUCT LINE & FEATURES
CMOS 2,097,152 x 8BIT Fast Page Mode Dynamic RAM
The Fujitsu MB8116800A is a fully decoded CMOS Dynamic RAM (DRAM) that contains
16,777,216 memory cells accessible in 8-bit increments. The MB8116800A features a ”fast
page” mode of operation whereby high-speed random access of up to 512-bits of data within
the same row can be selected. The MB8116800A DRAM is ideally suited for mainframe,
buffers, hand-held computers video imaging equipment, and other memory applications where
very low power dissipation and high bandwidth are basic requirements of the design. Since the
standby current of the MB8116800A is very small, the device can be used as a non-volatile
memory in equipment that uses batteries for primary and/or auxiliary power.
The MB8116800A is fabricated using silicon gate CMOS and Fujitsu’s advanced four-layer
polysilicon and two-layer aluminum process. This process, coupled with advanced stacked
capacitor memory cells, reduces the possibility of soft errors and extends the time interval
between memory refreshes. Clock timing requirements for the MB8116800A are not critical
and all inputs are TTL compatible.
60ns max.
Fast Page Mode Cycle T ime
Plastic SOJ Package
(LCC-28P-M07)
Random Cycle Time
Address Access Time
Plastic TSOP Packages
(FPT-28P-M14)
–60 –70
CAS Access Time
110ns min.
30ns max.
15ns max.
40ns min.
495mW max.
70ns max.
130ns min.
35ns max.
17ns max.
45ns min.
440mW max.
Early write or OE controlled write capability
RAS only, CAS-before-RAS, or Hidden
Refresh
Fast page Mode, Read-Modify-Write
capability
On chip substrate bias generator for high
performance
Parameter Symbol Value Unit
Voltage at any pin relative to VSS
ABSOLUTE MAXIMUM RATINGS (see NOTE)
VIN, VOUT
Operating Temperature
Voltage of VCC supply relative to VSS
Power Dissipation
Short Circuit Output Current
VCC
PD
TOPE
–0.5 to +7.0
–0.5 to +7.0
1.0
50
0 to 70
Storage Temperature TSTG –55 to +125
V
V
W
mA
°C
°C
Package and Ordering Information
28-pin plastic (400mil) SOJ,
order as MB8116800A-××PJ
28-pin plastic (400mil) TSOP-II
with normal bend leads,
order as MB8116800A-××PFTN
Operating current
Standby current
Low Power
Dissipation
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
2
Fig. 1 – MB8116800A DYNAMIC RAM – BLOCK DIAGRAM
CAPACITANCE (TA = 25°C, f = 1MHz)
Mode
Control
Write
Clock
Gen
A2
A1
A4
A3
A6
A5
A8
A7
A10
A9
A0
A11
RAS
CAS
Clock
Gen #2
Data In
Buffer
WE
DQ1 to
DQ8
OE
VCC
VSS
Data Out
Buffer
Column
Decoder
Clock
Gen #1
Sense Ampl &
I/O Gate
16,777,216 Bit
Storage
Cell
Address
Buffer
&
Pre-
Decoder
Refresh
Address
Counter
Row
Decoder
Substrate
Bias Gen
Symbol UnitParameter
Input Capacitance, A0 to A11 CIN1 pF
Input Capacitance, RAS, CAS, WE, OE CIN2 pF
Max
Input/Output Capacitance, DQ1 to DQ8 CDQ pF
5
5
7
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
3
WE
OE
1 Pin Index
PIN ASSIGNMENTS AND DESCRIPTIONS
VCC 1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
DQ1
DQ2
DQ3
DQ4
VSS
VSS
DQ8
DQ7
DQ6
DQ5
/WE
/RAS
A11
A10
A0
A1
A2
A3
VCC
/CAS
/OE
A9
A8
A7
A6
A5
A4
28-Pin SOJ
(TOP VIEW) Designator Function
A0 to A11 Address inputs
row : A0 to A11
column: A0 to A8
refresh : A0 to A11
RAS Row address strobe
CAS Column address strobe
Write enable
Output enable
DQ1 to DQ8 Data Input/Output
VCC +5.0 volt power supply
VSS Circuit ground
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
VCC
DQ1
DQ2
DQ3
DQ4
VSS
VSS
DQ8
DQ7
DQ6
DQ5
/WE
/RAS
A11
A10
A0
A1
A2
A3
VCC
/CAS
/OE
A9
A8
A7
A6
A5
A4
1 Pin Index
28-Pin TSOP
(TOP VIEW)
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
4
RECOMMENDED OPERATING CONDITIONS
1
Symbol UnitMin Typ Max
V
Parameter
Supply Voltage 4.5
Ambient
5.0 5.5
0°C to +70°C
VCC
Operating Temp.
Notes
VSS
VIH
VIL
00 0
2.4 6.5
–0.3 0.8
V
V
Input High Voltage, all inputs
Input High Voltage, all inputs/outputs
1
1
: Undershoots of up to –2.0 volts with a pulse width not exceeding 20ns are acceptable.
FUNCTIONAL OPERATION
ADDRESS INPUTS
T wenty-one input bits are required to decode any eight of 16,777,216 cell addresses in the memory matrix. Since only twelve address bits (A0 to
A11) are available, the row and column inputs are separately strobed by RAS and CAS as shown in Figure 1. First, twelve row address bits are input
on pins A0–through–A11 and latched with the row address strobe (RAS) then, nine column address bits are input and latched with the column ad-
dress strobe (CAS). Both row and column addresses must be stable on or before the falling edge of RAS and CAS, respectively. The address
latches are of the flow-through type; thus, address information appearing after tRAH (min) + tT is automatically treated as the column address.
WRITE ENABLE
The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is se-
lected. During the read mode, input data is ignored.
DATA INPUT
Input data is written into memory in either of three basic ways–an early write cycle, an OE (delayed) write cycle, and a read-modify-write cycle. The
falling edge of WE or CAS, whichever is later , serves as the input data-latch strobe. In an early write cycle, the input data (DQ1-DQ8) is strobed by
CAS and the setup/hold times are referenced to CAS because WE goes Low before CAS. In a delayed write or a read-modify-write cycle, WE goes
Low after CAS; thus, input data is strobed by WE and all setup/hold times are referenced to the write-enable signal.
DATA OUTPUT
The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers
remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are
obtained under the following conditions:
tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
tCAC : from the falling edge of CAS when tRCD is greater than tRCD (max).
tAA : from column address input when tRAD is greater than tRAD (max).
tOEA : from the falling edge of OE when OE is brought Low after tRAC, tCAC, or t AA.
The data remains valid until either CAS or OE returns to a High logic level. When an early write is executed, the output buffers remain in a high-im-
pedance state during the entire cycle.
FAST PAGE MODE OF OPERATION
The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the
same row address and strobing in successive column addresses. To satisfy these conditions, RAS is held Low for all contiguous memory cycles in
which row addresses are common. For each fast page of memory, any of 512 x 8-bits can be accessed and, when multiple MB8116800As are used,
CAS is decoded to select the desired memory fast page. Fast page mode operations need not be addressed sequentially and combinations of read,
write, and/or ready-modify-write cycles are permitted.
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
5
DC CHARACTERISTICS
Symbol Unit
Parameter
Output high voltage VOH V
Output low voltage VOL
mA
Input leakage current (any input) II(L) µA
Min Typ Max
0.4
10
Value
(Recommended operating conditions unless otherwise noted) Notes 3
IOH = –5.0mA
IOL = +4.2mA
0V VIN VCC;
4.5V VCC 5.5V;
VSS = 0V ; All other pins
under test = 0V
2.4
–10
Conditions
Notes
Output leakage current 0V VOUT VCC;
Data out disabled
IDQ(L)
Operating current
(Average power
supply current)
MB8116800A-60
MB8116800A-70 ICC1 RAS & CAS cycling;
tRC = min
2
Standby current
(Power supply
current)
TTL level
CMOS level ICC2 RAS = CAS = VIH
RAS = CAS VCC–0.2V
Refresh current #1
(Average power
supply current)
MB8116800A-60
MB8116800A-70 ICC3 CAS = VIH, RAS cycling;
tRC = min
2
Fast Page Mode
Current
MB8116800A-60
MB8116800A-70 ICC4 RAS = VIL,, CAS cycling;
tPC = min
2
Refresh current #2
(Average power
supply current)
MB8116800A-60
MB8116800A-70 ICC5 RAS cycling;
CAS-before-RAS;
tRC = min
2
10–10
90
80
2.0
1.0
90
80
80
70
80
70
mA
mA
mA
mA
Refresh current #3
(Average power sup-
ply current)
RAS = VIL, CAS = VIL
Self refresh ;
tRASS = min. 1000 µA
MB8116800A-60
MB8116800A-70
ICC9 
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
6
10
AC CHARACTERISTICS
Symbol Unit
Parameter
tREF ms
T ime Between Refresh
Min Max
MB8116800A-70
(At recommended operating conditions unless otherwise noted.) Notes 3,4,5
Notes
No. Min Max
65.6
MB8116800A-60
1
2tRC ns
Random Read/Write Cycle Time
110
3tRWC ns
Read-Modify-Write Cycle Time
150
4tRAC ns
Access Time from RAS 60
5tCAC ns
Access Time from CAS 15
6tAA ns
Column Address Access T ime 30
7tOH ns
Output Hold T ime
3
8tON ns
Output Buf fer Turn On Delay Time
0
9tOFF ns
Output Buf fer Turn Off Delay Time 15
10 tTns
T ransition Time 503
11
12
13
14
15
16
17
18
19
20
tRP ns
RAS Precharge T ime
40
tRAS ns
RAS Pulse Width 10000060
tRSH ns
RAS Hold T ime
15
tCRP ns
CAS to RAS Precharge Time
5
tRCD ns
RAS to CAS Delay Time 4520
tCAS ns
CAS Pulse Width
15
tCSH ns
CAS Hold T ime
60
tCPN ns
CAS Precharge T ime (Normal)
10
tASR ns
Row Address Set Up T ime
0
tRAH ns
Row Address Hold T ime
10
21
22
23
24
25
26
27
28
tASC ns
Column Address Set Up T ime
0
tCAH ns
Column Address Hold T ime
15
tAR ns
Column Address Hold T ime from RAS
35
tRAD ns
RAS to Column Address Delay T ime 3015
tRAL ns
Column Address to RAS Lead Time
30
tCAL ns
Column Address to CAS Lead Time
30
tRCS ns
Read Command Set Up T ime
0
tRRH ns
Read Command Hold T ime
Referenced to RAS
0
29 tRCH ns
Read Command Hold T ime
Referenced to CAS
0
30
31
32
tWCS ns
Write Command Set Up Time
0
tWCH ns
Write Command Hold Time
15
tWCR ns
Write Hold Time from RAS
35
33
34
35
tWP ns
WE Pulse Width
15
tRWL ns
Write Command to RAS Lead Time
15
tCWL ns
Write Command to CAS Lead Time
15
65.6
130
174
70
17
35
3
0
17
503
50
10000070
17
5
5320
17
70
10
0
10
0
15
35
3515
35
35
0
0
0
0
15
35
15
17
17
6,9
7,9
8,9
11,12
19
13
14
14
15, 20
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
7
CAS Set Up T ime for CAS-before-
RAS Refresh
AC CHARACTERISTICS (Continued)
Symbol Unit
Parameter
tDS ns
DIN Set Up T ime
Min Max
MB8116800A-70
(At recommended operating conditions unless otherwise noted.) Notes 3,4,5
Notes
No. Min Max
MB8116800A-60
0
36
37 tDH ns
DIN Hold T ime
15
38 tDHR ns
Data Hold T ime from RAS
35
39 tRWD ns
RAS to WE Delay Time
80
40 tCWD ns
CAS to WE Delay Time
35
41 tAWD ns
Column Address to WE Delay Time
50
45
47
48
49
50
51
52
60
tOEA ns
Access Time from OE 15
tOEL ns
OE to RAS Lead T ime for Valid Data
10
tOEH ns
OE Hold Time Referenced to WE
5
tOED ns
OE to Data In Delay T ime
15
tCDD ns
CAS to Data In Delay T ime 15
tDZC ns
DIN to CAS Delay Time
0
tDZO ns
DIN to OE Delay Time
0
tRASP ns
Fast Page Mode RAS Pulse width 100000
63
64
65
tCPA ns
Access Time from CAS Precharge 35
tCP ns
Fast Page Mode CAS Precharge Time
10
tRHCP ns
Fast Page Mode RAS Hold Time
from CAS Precharge
35
66 tCPWD ns
Fast Page Mode CAS Precharge
to WE Delay Time
55
20
20
20
16
17
9,18
42
43
tRPC ns
RAS Precharge T ime to CAS
Active T ime (Refresh cycles)
5
tCSR ns
0
44 CAS Hold Time for CAS-before-
RAS Refresh tCHR ns
10
46 Output Buf fer Turn Off Delay
from OE tOEZ ns15
10
61
62
tPC ns
Fast Page Mode Read/Write
Cycle Time
40
tPRWC ns
Fast Page Mode Read-Modify-Write
Cycle Time
80
9
17
0
15
35
92
39
57
17
10
5
17
17
0
0
100000
40
10
40
62
5
0
12
17
45
89
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
8
Notes:
1. Referenced to VSS.
2. ICC depends on the output load conditions and cycle rates;
The
specified values are obtained with the output open. ICC
depends on the number of address change as RAS = VIL,
CAS = VIH and VIL > –0.3V.
ICC1, ICC3, Icc4 and ICC5 are specified at one time of address
cha
nge during RAS = VIL and CAS = VIH. ICC2 is specified
during RAS = VIH and VIL > –0.3V.
3. An initial pause (RAS = CAS = VIH) of 200µs is required after
power-up followed by any eight RAS–only cycles before
proper device operation is achieved. In case of using internal
refresh counter, a minimum of eight CAS-before-RAS initiali-
zation cycles instead of 8 RAS cycles are required.
4. AC characteristics assume tT = 5ns.
5. VIH (min) and VIL (max) are reference levels for measuring tim-
ing of input signals. Also transition times are measured be-
tween VIH (min) and VIL (max).
6. Assumes that tRCD tRCD (max), tRAD tRAD (max). If tRCD is
greater than the maximum recommended value shown in this
table, tRAC will be increased by the amount that tRCD exceeds
the value shown. Refer to Fig.2 and 3.
7. If tRCD tRCD (max), tRAD tRAD (max), and tASC tAA
–tCAC–tT, access time is tCAC.
8. If tRAD tRAD (max) and tASC tAAtCAC– tT, access time is
tAA.
9. Measured with a load equivalent to two TTL loads and 100pF.
10. tOFF and tOEZ is specified that output buffer change to high
impedance state.
1 1. Operation within the t RCD (max) limit ensures that tRAC (max)
can be met. tRCD (max) is specified as a reference point only; if
tRC
D is greater than the specified tRCD (max) limit, access time
is controlled exclusively by tCAC or tAA.
12. tRCD (min) = tRAH (min) + 2tT + tASC (min).
13. Operation within the tRAD (max) limit ensures that tRAC (max)
can be met. tRAD (max) is specified as a reference point only; if
tRAD is greater than the specified tRAD (max) limit, access time
is controlled exclusively by tCAC or tAA.
14. Either t RRH or tRCH must be satisfied for a read cycle.
15. tWCS is specified as a reference point only. If tWCS tWCS
(min)
the data output pin will remain High-Z state through entire
cycle.
16. Assumes that t WCS < tWCS (min).
17. Either t DZC or tDZO must be satisfied.
18. tCPA is access time from the selection of a new column address
(that
is caused by changing CAS from ”L” to ”H”). Therefore, if
tCP is long, tCPA is longer than tCPA (max).
19. Assumes that CAS -before-RAS refresh.
20. tWCS, tCWD, tRWD, tAWD and tCPWD are not restrictive operat-
ing parameters. They are included in the data sheet as an
electrical characteristic only . If tWCS tWCS (min), the cycle is
an early write cycle and DOUT pin will maintain high impedance
state through-out the entire cycle. If tCWD tCWD (min), tRWD
tRW
D (min), tAWD tAWD (min) and tCPWD tCPWD (min) , the
cycle is a read-modify-write cycle and data from the selected
cell will appear at the DOUT pin. If neither of the above
conditions is satisfied, the cycle is a delayed write cycle and
invalid data will appear the DOUT pin, and write operation can
be executed by satisfying tRWL, tCWL, and tRAL specifications.
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
9
60
40
100
80
120
2006040 10080
70ns version
60ns version
tRAC (ns)
tRCD (ns)
60
50
80
70
90
2004030 6050
70ns version
tRAC (ns)
tRAD (ns)
40
30
60
50
70
1003020 5040
tCPA (ns)
tCP (ns)
60ns version
70ns version
Fig. 2 – tRAC vs. tRCD Fig. 3 – tRAC vs. tRAD Fig. 4 – tCPA vs. tCP
60ns version
FUNCTIONAL TRUTH TABLE
X; ”H” or ”L”
; It is impossible in Fast Page Mode.
Input DataClock Input
Standby
Reflesh Note
Address
Operation Mode
Read Cycle
Write Cycle
(Early Write)
Read-Modify-
Write Cycle
RAS-only
Refresh Cycle
CAS-before-RAS
Refresh Cycle
Hidden Refresh
Cycle
ColumnRow
Previous data
is kept
Input Output
tRCS tRCS
(min)
tWCS tWCS
(min)
– – H H X X High-Z
Valid L L H L Valid Valid Yes
Valid L L L X High-Z Valid
Valid
Valid L L L Valid Valid
Valid
Valid L H X X High-Z
L L X X High-Z
tCSR tCSR
(min)
H L L Valid
L
H H L
RAS CAS WE OE
H X
Yes
Yes
Yes
Yes
Yes
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
10
DESCRIPTION
T o implement a read operation, a valid address is latched in by the RAS and CAS address strobes and with WE set to a High level and OE set
to a low level, the output is valid once the memory access time has elapsed. The access time is determined by RAS(tRAC), CAS(tCAC),
OE(tOEA) or column addresses (tAA) under the following conditions:
If tRCD > tRCD(max), access time = tCAC.
If tRAD > tRAD(max), access time = tAA
If OE is brought Low after tRAC, tCAC, or tAA(whichever occurs later), access time = tOEA.
However, if either CAS or OE goes High, the output returns to a high-impedance state after t OH is satisfied.
RAS
Fig. 5 – READ CYCLE
VIH
VIL
VIH
VIL
CAS
VIH
VIL
A0 to A11
WE VIH
VIL
VIH
VIL
DQ
(Output) VOH
VOL
OE VIH
VIL
DQ
(Input)
”H” or ”L”
tRC
tRAS
tAR
tRP
tCDD
tRCD
tCRP
tASR tRAH tASC tCAH tOEL
tRCH
tRRH
tRCS
tDZC
tOEA
tOEZ
tDZO tON tOED
tOH
tOFF
tRAD
ROW ADD COLUMN ADD
tRAL
tCAL
tAA
tCAC
tRAC
HIGH-Z
HIGH-Z tOH
tCSH
tRSH
tCAS
tON
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
11
DESCRIPTION
A write cycle is similar to a read cycle except WE is set to a Low state and OE is an ”H” or ”L” signal. A write cycle can be implemented in either
of three ways – early write, delayed write, or read-modify-write. During all write cycles, timing parameters tRWL, tCWL and tRAL must be satis-
fied. In the early write cycle shown above tWCS satisfied, data on the DQ pin is latched with the falling edge of CAS and written into memory .
RAS
Fig. 6 – EARLY WRITE CYCLE (OE = ”H” or ”L”)
VIH
VIL
VIH
VIL
CAS
VIH
VIL
A0 to A11
WE VIH
VIL
VIH
VIL
DQ
(Output) VOH
VOL
DQ
(Input)
”H” or ”L”
tRC
tRAS
tRP
tCSH
tRCD
tCRP
tCAS
tASR tRAH tASC tCAH
HIGH-Z
ROW ADD COLUMN ADD
tWCR
tWCS tWCH
tDH
tDS
VALID DATA IN
tRSH
tAR
tDHR
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
12
RAS
Fig. 7 – DELAYED WRITE CYCLE
VIH
VIL
VIH
VIL
CAS
VIH
VIL
A0 to A11
WE VIH
VIL
VIH
VIL
DQ
(Input)
VOH
VOL
OE VIH
VIL
DQ
(Output)
”H” or ”L”
DESCRIPTION
In the Delayed write cycle, tWCS is not satisfied; thus, the data on the DQ pins is latched with the falling edge of WE and written into memory .
The Output Enable (OE) signal must be changed from Low to High before WE goes Low (tOED + tDS).
tRC
tRAS
tCAS
tRCD
tCRP
tASR tCAH
tRCS
tDZC
Invalid Data
tCSH tRP
tASC
tRAH
tCWL
tWP
tDS
tDH
tOED
tDZO tOEH
tOEZ
ROW
ADD COL
ADD
VALID
DATA IN
tRSH
tWCH tRWL
HIGH-Z
HIGH-Z HIGH-Z
tON
tON
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
13
RAS
Fig. 8 – READ-MODIFY-WRITE-CYCLE
VIH
VIL
VIH
VIL
CAS
VIH
VIL
A0 to A11
WE VIH
VIL
VIH
VIL
DQ
(Input)
VOH
VOL
OE VIH
VIL
DQ
(Output)
”H” or ”L”
DESCRIPTION
The read-modify-write cycle is executed by changing WE from High to Low after the data appears on the DQ pins. In the read-modify-write
cycle, OE must be changed from Low to High after the memory access time.
tRWC
tRAS
tRCD
tCRP
tASR tCAH
tRWL
tRCS
tRP
tASC
tRAH
tCWL
tDS
tDH
tOED
tDZO
tOEH
ROW
ADD COL
ADD
tRAD
tCWD
tWP
VALID
tOEZ
tOH
tRWDtAWD
tDZC
HIGH-Z
tCAC
tRAC tAA
tON
tON
HIGH-Z HIGH-Z
VALID
DATA IN
tOEA
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
14
RAS
Fig. 9 – FAST PAGE MODE READ CYCLE
VIH
VIL
VIH
VIL
CAS
VIH
VIL
A0 to A11
WE VIH
VIL
VIH
VIL
DQ
(Input)
VOH
VOL
OE VIH
VIL
DQ
(Output)
”H” or ”L”
DESCRIPTION
The fast page mode of operation permits faster successive memory operations at multiple column locations of the same row address.
This operation is performed by strobing in the row address and maintaining RAS at a Low level and WE at a High level during all successive
memory cycles in which the row address is latched. The access time is determined by tCAC, tAA, tCPA, or tOEA, whichever one is the lastest in
occuring.
tRASP
tCRP
tASR tASC
tRCS
tRHCP
tRP
tRCD
ROW
ADD COL
ADD
tCAS
tRSH
tPC
tCAS
tCAS
tCP
tRCH tRCS tRCH tRCS
tDZC tCPA
tDZC
tDZC
tCAH
tAR
tCAH
tRAH tASC
tRRH
tCAH
tASC
tRCH
tCDD
Valid Data
tDZO
tOH
tDZO
tON
tOH
tCAC
tON
tOEA
tAA
tOEZ tOEA
tOED tOED
tOH
tOH
tRAD
COL
ADD COL
ADD
tOFF
tCSH
tRAL
tOEL
HIGH-Z
tOFF
HIGH-Z
HIGH-Z
tDZO tCAC
tOEZ
tAA
HIGH-Z
tRAC
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
15
RAS
Fig. 10 – FAST PAGE MODE EARLY WRITE CYCLE (OE = ”H ”or ”L”)
VIH
VIL
VIH
VIL
CAS
VIH
VIL
A0 to A11
WE VIH
VIL
VIH
VIL
DQ
(Input)
VOH
VOL
DQ
(Output)
”H” or ”L”
DESCRIPTION
The fast page mode early write cycle is executed in the same manner as the fast page mode read cycle except the states of WE and OE are
reversed. Data appearing on the DQ pins is latched on the falling edge of CAS and written into memory . During the fast page mode early
write cycle, including the delayed (OE) write and read-modify-write cycles, tCWL must be satisfied.
tRASP
tRP
ROW
ADD
tRSH
tPC
tRCD
tCSH
tCAS
tASC
tCAH
COL
ADD COL
ADD
HIGH-Z
tCAS
tCAS
tCP
COL
ADD
tCAH
tASC
tCAH
VALID
DATA VALID
DATA VALID
DATA
tWCS tWCH
tWCS
tWCH tWCS tWCH
tDS tDH
tASC
tRAH
tDS tDH
tDS tDH
tAR
tWCR
tDHR
tASR
tCRP
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
16
Fig. 11 – FAST PAGE MODE DELAYED WRITE CYCLE
DESCRIPTION
The fast page mode delayed write cycle is executed in the same manner as the fast page mode early write cycle except for the states of WE
and OE. Input data on the DQ pins are latched on the falling edge of WE and written into memory. In the fast page mode delayed write cycle,
OE must be changed from Low to High before WE goes Low (tOED + tT + tDS).
“H” or “L”
Invalid Data
RAS
CAS
A
WE
DQ
(Output)
OE
DQ
(Input)
to A
011
VALID VALID
COL
ADD COL
ADD
RASP
t
RP
t
RSH
t
CAS
t
CRP
t
ASR
tASC
tCAH
tASC
tCAH
t
DS
t
CWL
t
tOEZ
DH
t
DH
t
RCD
t
RAH
t
ROW
ADD
CP
t
WP
t
tOEH
RCS
t
tOED
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
VIH
VIL
VIH
VIL
AR
t
ON
tON
t
CSH
tPC
t
CAS
t
CWL
t
RWL
t
WCH
t
WCH
t
DS
t
DZC
t
tDZO
tOEH tOED
tOEZ
ON
t
ON
t
HIGH–Z
WP
t
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
17
DESCRIPTION
During the fast page mode of operation, the read-modify-write cycle can be executed by switching WE from High to Low after input data ap-
pears at the DQ pins during a normal cycle.
CWD
t
ÉÉ
ÉÉ
ÉÉ
ÉÉ
“H” or “L”
Valid Data
ÉÉ
ÉÉ
RAS
CAS
A
WE
DQ
(Output)
OE
DQ
(Input)
to A
011
VALID VALID
COL
ADD COL
ADD
RASP
t
RP
t
PRWC
t
CRP
t
ASR
tASC
tCAH
tASC
t
CAH
t
CWL
t
CWL
t
WP
t
CAC
t
ON
t
tOEZ
tOEA tCPA
DH
t
DH
t
DS
t
HIGH–Z
RCD
t
RAH
t
Fig. 12 Fast Page Mode Read Modify Write Cycle
ROW
ADD
ON
t
CP
t
WP
t
tOEH tOEA tOEH
CPWD
t
RCS
t
RCS
t
tOED
RAS
t
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
VIH
VIL
VIH
VIL
RAD
t
ON
tON
tAA
t
AWD
t
tOEZ
RWD
t
DZC
t
RWL
t
CAC
t
tDZO
DS
t
tOED
AA
t
CWD
t
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
18
DESCRIPTION
CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the
specified setup time (tCSR) before RAS goes Low , the on-chip refresh control clock generators and refresh address counter are enabled. An
internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-be-
fore-RAS refresh operation.
RAS
Fig. 13 – RAS-ONLY REFRESH (WE = OE = ”H”or ”L”)
VIH
VIL
VIH
VIL
A0 to A11
VIH
VIL
DQ
(Output) ”H” or ”L”
CAS
RAS
Fig. 14 – CAS-BEFORE-RAS REFRESH (ADDRESSES = WE = OE = ”H”or ”L”)
VIH
VIL
tRC
DQ
(Output)
”H” or ”L”
HIGH–Z
tRAS
CAS VIH
VIL
tRPC
tCPN tCSR tCHR
tRP
tOFF
tOH
DESCRIPTION
Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycle at each of 4096 row addresses ev-
ery 65.6–milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.
RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the
falling edge of RAS. During RAS-only refresh, D OUT pins are kept in a high-impedance state.
tRC
tRP
tASR tRPC
HIGH–Z
tRAH
tCRP
tOH
tCRP
tRAS
tOFF
ROW ADDRESS
VOH
VOL
VOH
VOL
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
19
RAS
Fig. 15 – HIDDEN REFRESH CYCLE
VIH
VIL
VIH
VIL
CAS
VIH
VIL
A0 to A11
WE VIH
VIL
VIH
VIL
DQ
(Input)
VOH
VOL
OE VIH
VIL
DQ
(Output)
”H” or ”L”
DESCRIPTION
A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the active time of CAS and cycling
RAS. The refresh row address is provided by the on-chip refresh address counter. This eliminates the need for the external row address that
is required by DRAMs that do not have CAS-before-RAS refresh capability.
tRC
tRP
tCHR
tRC
tRAS tRAS
tRP
tOEL
tRSH
tRAD
tRAH
tASC
tCAH
tRCS tRRH
tCAC
tDZC tCDD
tDZO tOEA tOED
tOEZ
tCRP
tASR
tOH
tOFF
tON
ROW
ADDRESS COLUMN
ADDRESS
VALID DATA OUT
tRCD
tRAL
tAR
tAA
tRAC
HIGH-Z
HIGH-Z
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
20
DESCRIPTION
A special timing sequence using the CAS-before-RAS refresh counter test cycle provides a convenient method to verify the function of
CAS-before-RAS refresh circuitry . If, a CAS-before-RAS refresh cycle CAS makes a transition from High to Low while RAS is held Low, read
and write operations are enabled as shown above. Row and column addresses are defined as follows:
Row Address: Bits A0 through A11 are defined by the on-chip refresh counter.
Column Address: Bits A0 through A8 are defined by latching levels on A0–A8 at the second falling edge of CAS.
The CAS-before-RAS Counter Test procedure is as follows;
1) Initialize the internal refresh address counter by using 8 RAS only refresh cycles.
2) Use the same column address throughout the test.
3) Write ”0” to all 4096 row addresses at the same column address by using normal write cycles.
4) Read ”0” written in procedure 3) and check; simultaneously write ”1” to the same addresses by using CAS -before-RAS
refresh counter test (read-modify-write cycles). Repeat this procedure 4096 times with addresses generated by the
internal refresh address counter.
5) Read and check data written in procedure 4) by using normal read cycle for all 4096 memory locations.
6) Reverse test data and repeat procedures 3), 4), and 5).
CAS
RAS
Fig. 16 – CAS–BEFORE–RAS REFRESH COUNTER TEST CYCLE
VIH
VIL
VIH
VIL
VIH
VIL
A0 to A11
WE VIH
VIL
VOH
VOL
DQ
(Input) VIH
VIL
OE VIH
VIL
DQ
(Output)
”H” or ”L”
Symbol Unit
Parameter Min Max
No. Min Max
90
91
92
93
94
tFCAC ns
Access Time from CAS
MB8116800A-70
(At recommended operating conditions unless otherwise noted.)
50
MB8116800A-60
tFCAH ns
Column Address Hold T ime
35
tFCWD ns
CAS toWE Delay T ime
70
tFCAS ns
CAS Pulse width
90
tFRSH ns
RAS Hold T ime
90
55
35
77
99
99
Note: Assumes that CAS-before-RAS refresh counter test cycle only.
tCRP tRP
tCP
tRCS
tFCAH
tASC
Valid Data
tCWL
tWP
tCHR tFRSH
tRWL
tFCWD
tDH
tDS
tDZC
tOED
tON
tOEA
tDZO tOEZ
tOEH
VALID DATA IN
HIGH–Z
COLUMN ADDRESSES
tFCAC
HIGH–Z HIGH–Z
tFCAS
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
21
CAS Hold T ime tCHS
DESCRIPTION
(At recommended operating conditions unless otherwise noted.)
Note . Assumes self refresh cycle only
Fig. 17 – SELF REFRESH CYCLE (A0–A11 = WE = OE = ”H” or ”L”)
Parameter Unit
Min Max
No. Min Max
100 RAS Pulse Width 100100
MB8116800A-70MB8116800A-60
Symbol
tRASS
101 tRPS 125
——
110
RAS Precharge T ime
102 –50–50
The self refresh cycle provides a refresh operation without external clock and external Address. Self refresh control circuit on chip is operated
in the self refresh cycle and refresh operation can be automatically executed using internal refresh address counter and timing generator.
If CAS goes to ”L” before RAS goes to ”L” (CBR) and the condition of CAS ”L” and RAS ”L” is kept for term of tRASS (more than 100µs), the
device can enter the self refresh cycle. Following that, refresh operation is automatically executed at fixed intervals using internal refresh
address counter during ”RAS=L” and ”CAS=L”.
Exit from self refresh cycle is performed by toggling RAS and CAS to ”H” with specified tCHS min.. In this time, RAS must be kept ”H” with
specified tRPS min..
Using self refresh mode, data can be retained without external CAS signal during system is in standby.
Restriction for Self Refresh operation ;
For self refresh operation, the notice below must be considered.
1) In the case that distributed CBR refresh are operated between read/write cycles
Self refresh cycles can be executed without special rule if 4,096 cycles of distributed CBR refresh are executed within tREF
max..
2) In the case that burst CBR refresh or distributed/burst /RAS only refresh are operated between read/write cycles
4,096 times of burst CBR refresh or 4,096 times of burst /RAS only refresh must be executed before and after Self refresh
cycles.
RAS
DQ
(Output)
VIH
VIL
VOH
VOL
VIH
VIL
RASS
tRPS
t
tRPC
tCSR
CPN
t
OFF
t
OH
t
HIGH–Z
“H” or “L”
tCHS
µs
ns
ns
* read/write operation can be performed non refresh time within tNS or tSN
CAS
A0 to A11, WE, OE = ”H” or ”L”
4,096 burst refresh cycle 4,096 burst refresh cycle
RAS VIH
VIL
Read/W rite operation
SN
t
RASS
t
Self Refresh operation Read/W rite operation
NS
t< 4ms < 4ms
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
22
PACKAGE DIMENSIONS
(Suffix: -PJ)
Dimensions in
inches (millimeters)
28 15
14
1
28-LEAD PLASTIC LEADED CHIP CARRIER
(CASE No.: LCC-28P-M07)
1994 FUJITSU LIMITED C28058S-2C(W)
“A”
.004(0.10)
.725±.005
(18.42±0.13)
.050±.005
(1.27±0.13)
.098(2.50)NOM
.650(16.51)REF
INDEX .400(10.16)
NOM
.108(2.75)NOM.
.025(0.64)MIN.
.370±.020
(9.40±0.51)
.432±.005
(10.97±0.13)
Resin protrusion (Each side : .006(0.15)MAX.)
LEAD No.
R.032(0.81)TYP.
.008+.002
–.001
(0.20 )
+0.05
–0.02
.134+.014
–.008 (3.40 )
+0.35
–0.20
Details of “A” part
.032(0.81)
MAX
.017±.004
(0.43±0.10)
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
23
PACKAGE DIMENSIONS (Continued)
(Suffix: -PFTN)
Dimensions in
inches (millimeters)
M
1994 FUJITSU LIMITED F28040S-1C(W)
28-LEAD PLASTIC FLAT PACKAGE
(CASE No.: FPT-28P-M14)
INDEX “A”
Details of “A” part
28 15
14
1
.016±.004
(0.40±0.10)
.050(1.27)
TYP .650(16.51)REF
.043+.004
–.002
(1.10 )
+0.10
–0.05
.004(0.10)
.006(0.15)MAX
.006(0.15)
.020(0.50)MAX
.010(0.25)
.400±.004
(10.16±0.10)
.005±.002
(0.125±0.05)
.424±.008
(10.76±0.20)
Resin Protrusion : (Each Side : .006(0.15)MAX)
(MOUNTING
HEIGHT)
.020±.004
(0.50±0.10)
.725±.004
(18.41±0.10)
.463±.008
(11.76±0.20)
LEAD No.
0(0)MIN
.008(0.21)
(STAND OFF
HEIGHT)
All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical
semiconductor applications. Complete information sufficient for construction purposes
is not necessarily given.
The information contained in this document has been carefully checked and is believed
to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.
The information contained in this document does not convey any license under the
copyrights, patent rights or trademarks claimed and owned by Fujitsu.
Fujitsu reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or
transferred to any third party without prior written consent of Fujitsu.
The products described in this document are not intended for use in equipment requiring
high reliability, such as marine relays and medical life–support systems. For such appli-
cations, contact your Fujitsu sales representative.
If the products and technologies described in this document are controlled by the For-
eign Exchange and Foreign Trade Control Act established in Japan, their export is sub-
ject to prior approval based on the said act.
MB8116800A-60
MB8116800A-70
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
– PRELIMINARY –
Edition 2.1
24
Visit our web site for the latest information:
http://www.fujitsumicro.com
Customer Response Center:
For semiconductor products, flat panel displays, and PC cards in the U.S., Canada and Mexico,
please contact the Fujitsu Microelectronics Customer Response Center (CRC). The CRC
provides a single point of contact for resolving customer issues and answering technical
questions. Web: Click on Tech Support in the FMI home page, then submit our form
Tel: Telephone: 1–800–866–8608 Monday through Friday, 7 to 5 PST
Outside U.S., Canada & Mexico call: 010–1–408–922–9000 and ask
for the Customer Response Center.
(Note: Country Code may vary)
Fax: (408) 922–9179
E–Mail: fmicrc@fmi.fujitsu.com
FJ ID NUMBER DS05–10166–1E MP–DRAM–DS–20100–5/96