voltage ripple (ΔVOUT) and to supply load current during fast
load transients.
In this example the output current is 4A and the expected type
of capacitor is an aluminum electrolytic, as with the input ca-
pacitors. Other possibilities include ceramic, tantalum, and
solid electrolyte capacitors, however the ceramic type often
do not have the large capacitance needed to supply current
for load transients, and tantalums tend to be more expensive
than aluminum electrolytic. Aluminum capacitors tend to have
very high capacitance and fairly low ESR, meaning that the
ESR zero, which affects system stability, will be much lower
than the switching frequency. The large capacitance means
that at the switching frequency, the ESR is dominant, hence
the type and number of output capacitors is selected on the
basis of ESR. One simple formula to find the maximum ESR
based on the desired output voltage ripple, ΔVOUT and the
designed output current ripple, ΔIOUT, is:
In this example, in order to maintain a 2% peak-to-peak output
voltage ripple and a 40% peak-to-peak inductor current ripple,
the required maximum ESR is 20 mΩ. The Sanyo 4SP560M
electrolytic capacitor will give an equivalent ESR of 14 mΩ.
The capacitance of 560 µF is enough to supply energy even
to meet severe load transient demands.
MOSFETs
Selection of the power MOSFETs is governed by a tradeoff
between cost, size, and efficiency. One method is to deter-
mine the maximum cost that can be endured, and then select
the most efficient device that fits that price. Breaking down the
losses in the high-side and low-side MOSFETs and then cre-
ating spreadsheets is one way to determine relative efficien-
cies between different MOSFETs. Good correlation between
the prediction and the bench result is not guaranteed, how-
ever. Single-channel buck regulators that use a controller IC
and discrete MOSFETs tend to be most efficient for output
currents of 2A to 10A.
Losses in the high-side MOSFET can be broken down into
conduction loss, gate charging loss, and switching loss. Con-
duction loss, or I2R loss, is approximately:
PC = D ((IO)2 x RDSON-HI x 1.3)
(High-Side MOSFET)
PC = (1 - D) x ((IO)2 x RDSON-LO x 1.3)
(Low-Side MOSFET)
In the above equations the factor 1.3 accounts for the in-
crease in MOSFET RDSON due to heating. Alternatively, the
1.3 can be ignored and the RDSON of the MOSFET estimated
using the RDSON Vs. Temperature curves in the MOSFET
datasheets.
Gate charging loss results from the current driving the gate
capacitance of the power MOSFETs, and is approximated as:
PGC = n x (VDD) x QG x fSW
where ‘n’ is the number of MOSFETs (if multiple devices have
been placed in parallel), VDD is the driving voltage (see MOS-
FET Gate Drivers section) and QGS is the gate charge of the
MOSFET. If different types of MOSFETs are used, the ‘n’ term
can be ignored and their gate charges simply summed to form
a cumulative QG. Gate charge loss differs from conduction
and switching losses in that the actual dissipation occurs in
the LM2743, and not in the MOSFET itself.
Switching loss occurs during the brief transition period as the
high-side MOSFET turns on and off, during which both current
and voltage are present in the channel of the MOSFET. It can
be approximated as:
PSW = 0.5 x VIN x IO x (tr + tf) x fSW
where tR and tF are the rise and fall times of the MOSFET.
Switching loss occurs in the high-side MOSFET only.
For this example, the maximum drain-to-source voltage ap-
plied to either MOSFET is 3.6V. The maximum drive voltage
at the gate of the high-side MOSFET is 3.1V, and the maxi-
mum drive voltage for the low-side MOSFET is 3.3V. Due to
the low drive voltages in this example, a MOSFET that turns
on fully with 3.1V of gate drive is needed. For designs of 5A
and under, dual MOSFETs in SO-8 package provide a good
trade-off between size, cost, and efficiency.
Support Components
CIN2 - A small value (0.1 µF to 1 µF) ceramic capacitor should
be placed as close as possible to the drain of the high-side
MOSFET and source of the low-side MOSFET (dual MOS-
FETs make this easy). This capacitor should be X5R type
dielectric or better.
RCC, CCC- These are standard filter components designed to
ensure smooth DC voltage for the chip supply. RCC should be
1Ω to 10Ω. CCC should 1 µF, X5R type or better.
CBOOT- Bootstrap capacitor, typically 100 nF.
RPULL-UP – This is a standard pull-up resistor for the open-
drain power good signal (PWGD). The recommended value
is 10 kΩ connected to VCC. If this feature is not necessary, the
resistor can be omitted.
D1 - A small Schottky diode should be used for the bootstrap.
It allows for a minimum drop for both high and low-side
drivers. The MBR0520 or BAT54 work well in most designs.
RCS - Resistor used to set the current limit. Since the design
calls for a peak current magnitude (IOUT+ (0.5 x ΔIOUT)) of
4.8A, a safe setting would be 6A. (This is below the saturation
current of the output inductor, which is 7A.) Following the
equation from the Current Limit section, a 1.3 kΩ resistor
should be used.
RFADJ - This resistor is used to set the switching frequency of
the chip. The resistor value is calculated from equation in
Normal Operation section. For 300 kHz operation, a 97.6
kΩ resistor should be used.
CSS - The soft-start capacitor depends on the user require-
ments and is calculated based on the equation given in the
section titled START UP/SOFT-START. Therefore, for a 700
μs delay, a 12 nF capacitor is suitable.
Control Loop Compensation
The LM2743 uses voltage-mode (‘VM’) PWM control to cor-
rect changes in output voltage due to line and load transients.
One of the attractive advantages of voltage mode control is
its relative immunity to noise and layout. However VM re-
quires careful small signal compensation of the control loop
for achieving high bandwidth and good phase margin.
The control loop is comprised of two parts. The first is the
power stage, which consists of the duty cycle modulator, out-
put inductor, output capacitor, and load. The second part is
the error amplifier, which for the LM2743 is a 9 MHz op-amp
used in the classic inverting configuration. Figure 13 shows
the regulator and control loop components.
www.national.com 16
LM2743