TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D – FEBRUARY 1997 – REVISED MARCH 2001
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Output Swing Includes Both Supply Rails
D
Low Noise . . . 19 nV/Hz Typ at f = 1 kHz
D
Low Input Bias Current ...1 pA Typ
D
Fully Specified for Both Single-Supply and
Split-Supply Operation
D
Very Low Power ...35 µA Per Channel Typ
D
Common-Mode Input Voltage Range
Includes Negative Rail
D
Low Input Offset Voltage
850 µV Max at TA = 25°C (TLC225xA)
D
Macromodel Included
D
Performance Upgrades for the TS27L2/L4
and TLC27L2/L4
D
Available in Q–Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
description
The TLC2252 and TLC2254 are dual and
quadruple operational amplifiers from Texas
Instruments. Both devices exhibit rail-to-rail
output performance for increased dynamic range
in single- or split-supply applications. The
TLC225x family consumes only 35 µA of supply
current per channel. This micropower operation
makes them good choices for battery-powered
applications. The noise performance has been
dramatically improved over previous generations
of CMOS amplifiers. Looking at Figure 1, the
TLC225x has a noise level of 19 nV/Hz at 1kHz;
four times lower than competitive micropower
solutions.
The TLC225x amplifiers, exhibiting high input
impedance and low noise, are excellent for
small-signal conditioning for high-impedance
sources, such as piezoelectric transducers.
Because of the micropower dissipation levels,
these devices work well in hand-held monitoring
and remote-sensing applications. In addition, the
rail-to-rail output feature with single or split
supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For
precision applications, the TLC225xA family is available and has a maximum input offset voltage of 850 µV . This
family is fully characterized at 5 V and ±5 V.
The TLC2252/4 also makes great upgrades to the TLC27L2/L4 or TS27L2/L4 in standard designs. They offer
increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set
allows them to be used in a wider range of applications. For applications that require higher output drive and
wider input voltage ranges, see the TLV2432 and TLV2442 devices. If the design requires single amplifiers,
please see the TL V2211/21/31 family . These devices are single rail-to-rail operational amplifiers in the SOT -23
package. Their small size and low power consumption, make them ideal for high density, battery-powered
equipment.
Copyright 2001, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments.
Figure 1
VN – Equivalent Input Noise Voltage – nv//Hz
f – Frequency – Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
nV/ Hz
Vn
40
20
10
0
60
30
50
101102103104
VDD = 5 V
RS = 20
TA = 25°C
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLC2252 AVAILABLE OPTIONS
PACKAGED DEVICES
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP
(PW)
CERAMIC
FLATPACK
(U)
0°C to 70°C 1500 µV TLC2252CD TLC2252CP TLC2252CPW
40°Cto125°C
850 µV TLC2252AID TLC2252AIP TLC2252AIPW
40°C
to
125°C
µ
1500 µVTLC2252ID TLC2252IP
40°Cto125°C
850 µV TLC2252AQD
40°C
to
125°C
µ
1500 µVTLC2252QD
55°C to 125°C850 µV
1500 µV
TLC2252AMFK
TLC2252MFK TLC2252AMJG
TLC2252MJG
TLC2252AMU
TLC2252MU
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2262CDR).
The PW package is available only left-ended taped and reeled.
§Chip forms are tested at 25°C only.
TLC2254 AV AILABLE OPTIONS
PACKAGED DEVICES
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC DIP
(N) TSSOP
(PW)
CERAMIC
FLATPACK
(W)
0°C to
70°C1500 µV TLC2254CD TLC2254CN TLC2254CPW
40°C to 850
µ
V TLC2254AID TLC2254AIN TLC2254AIPW
125°C
µ
1500 µVTLC2254ID TLC2254IN
40°C to 850
µ
V TLC2254AQD
125°C
µ
1500 µVTLC2254QD
55°C to 850 µVTLC2254AMFK TLC2254AMJ TLC2254AMW
125°C
µ
1500 µVTLC2254MFK TLC2254MJ TLC2254MW
The D packages are available taped and reeled. Add R suffix to the device type (e.g., TLC2254CDR).
The PW package is available only left-end taped and reeled. Chips are tested at 25°C.
§Chip forms are tested at 25°C only.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLC2252M, TLC2252AM . . . JG PACKAGE
(TOP VIEW)
TLC2252C, TLC2252AC
TLC2252I, TLC2252AI
TLC2252Q, TLC2252AQ
D, P, OR PW PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD/GND
VDD+
2OUT
2IN
2IN+
NC
VCC +
2OUT
2IN
2IN +
NC
1OUT
1IN
1IN +
VCC/GND
1
2
3
4
5
10
9
8
7
6
TLC2262M, TLC2252AM ...U PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD/GND
VDD+
2OUT
2IN
2IN+
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
NC
2OUT
NC
2IN
NC
NC
1IN
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC NC
NC
NC VDD+
VDD
TLC2252M, TLC2252AM . . . FK PACKAGE
(TOP VIEW)
/GND
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
4OUT
4IN
4IN+
VDD/GND
3IN+
3IN
3OUT
3212019
910111213
4
5
6
7
8
18
17
16
15
14
4IN+
NC
VCC/GND
NC
3IN+
1IN+
NC
VCC+
NC
2IN+
1IN
1OUT
NC
3OUT
3IN 4OUT
4IN
2IN
2OUT
NC
TLC2254M, TLC2254AM
FK PACKAGE
(TOP VIEW)
TLC2254C, TLC2254AC
TLC2254I, TLC2254AI
TLC2254Q, TLC2254AQ
D, N, OR PW PACKAGE
(TOP VIEW)
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
4OUT
4IN
4IN+
VDD/GND
3IN+
3IN
3OUT
TLC2254M, TLC2254AM
J OR W PACKAGE
(TOP VIEW)
NC No internal connection
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
Q3 Q6 Q9 Q12 Q14 Q16
Q2 Q5 Q7 Q8 Q10 Q11
D1
Q17Q15Q13
Q4Q1
R5
C1
VDD+
IN+
IN
R3 R4 R1 R2
OUT
VDD/GND
R6
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLC2252 TLC2254
Transistors 38 76
Resistors 30 56
Diodes 9 18
Capacitors 3 6
Includes both amplifiers and all ESD, bias, and trim circuitry
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD+ (see Note 1) 8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage, VDD (see Note 1) 8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±16 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, VI (any input, see Note 1) ±8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VDD+ ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VDD ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only , and
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may af fect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD .
2. Differential voltages are at IN+ with respect to IN. Excessive current flows when input is brought below VDD 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
T
A
25°CDERATING FACTOR T
A
= 70°C T
A
= 85°C T
A
= 125°C
PACKAGE
A
POWER RATING ABOVE TA = 25°C
A
POWER RATING
A
POWER RATING
A
POWER RATING
D8724 mW 5.8 mW/°C464 mW 377 mW 144 mW
D14 950 mW 7.6 mW/°C 608 mW 450 mW 190 mW
FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW
J1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW
JG 1050 mW 8.4 mW/°C 672 mW 546 mW 275 mW
N1150 mW 9.2 mW/°C 736 mW 736 mW
P1000 mW 8.0 mW/°C 640 mW 520 mW
PW8525 mW 4.2 mW/°C 336 mW 273 mW
PW14 700 mW 5.6 mW/°C 448 mW 448 mW
U700 mW 5.5 mW/°C 246 mW 330 mW 150 mW
W700 mW 5.5 mW/°C246 mW 330 mW 150 mW
recommended operating conditions
C SUFFIX I SUFFIX Q SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, VDD±±2.2 ±8±2.2 ±8±2.2 ±8±2.2 ±8 V
Input voltage range, VIVDDVDD+ 1.5 VDDVDD+ 1.5 VDDVDD+ 1.5 VDDVDD+ 1.5 V
Common-mode input voltage, VIC VDDVDD+ 1.5 VDDVDD+ 1.5 VDDVDD+ 1.5 VDDVDD+ 1.5 V
Operating free-air temperature, TA0 70 40 125 40 125 55 125 °C
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
T
TLC2252C
UNIT
PARAMETER
T
A
MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 200 1500
µV
V
IO
Input
offset
voltage
Full range 1750 µ
V
αVIO
Tem
p
erature coefficient of in
p
ut offset voltage
25°C
05
µV/°C
αVIO
Temperature
coefficient
of
input
offset
voltage
to 70°C
0
.
5
µ
V/°C
Input offset voltage long-term drift (see Note 4) VIC = 0,
VO=0
VDD± = ±2.5 V,
RS=50
25°C 0.003 µV/mo
IIO
In
p
ut offset current
VO
=
0
,
RS
=
50
25°C 0.5 60 p
A
I
IO
Input
offset
current
Full range 100
pA
IIB
In
p
ut bias current
25°C 1 60 p
A
I
IB
Input
bias
current
Full range 100
pA
00.3
25°C
0
to
0.3
to
VICR
Common mode in
p
ut voltage range
RS=50
|VIO |≤5mV
4 4.2
V
V
ICR
Common
-
mode
input
voltage
range
R
S =
50
,
|V
IO
|
5
mV
0
V
Full range
0
to
g
3.5
IOH = 20 µA 25°C 4.98
VOH
High level out
p
ut voltage
25°C 4.9 4.94
V
V
OH
High
-
level
output
voltage
OH =
µ
Full range 4.8
V
IOH = 150 µA 25°C 4.8 4.88
VIC = 2.5 V, IOL = 50 µA 25°C 0.01
VIC =25V
IOL = 500 µA
25°C 0.09 0.15
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.15
VOL Low-level output voltage
VIC =25V
IOL =1
m
A
25°C 0.2 0.3 V
V
IC =
2
.
5
V
,
I
OL =
1
m
A
Full range 0.3
VIC =25V
IOL =4
m
A
25°C 0.7 1
V
IC =
2
.
5
V
,
I
OL =
4
m
A
Full range 1.2
V25V
R 100 k
25°C 100 350
AVD Large-signal differential voltage amplification VIC = 2.5 V,
VO=1Vto4V
R
L =
100
k
Full range 10 V/mV
VD
gg g
VO
=
1
V
to
4
V
RL = 1 M25°C 1700
rid Differential input resistance 25°C1012
ric Common-mode input resistance 25°C1012
cic Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF
zoClosed-loop output impedance f = 25 kHz, AV = 10 25°C 200
CMRR
Common mode rejection ratio
V
= 0 to 2.7 V, V
= 2.5 V, 25°C 70 83
dB
CMRR
Common
-
mode
rejection
ratio
RS = 50 Full range 70
dB
kSVR
Su
pp
ly voltage rejection ratio (VDD/VIO)
V
= 4.4 V to 16 V, 25°C 80 95
dB
k
SVR
Supply
-
voltage
rejection
ratio
(V
DD
/V
IO
)
VIC = VDD/2, No load Full range 80
dB
IDD
Su
pp
ly current
VO=25V
No load
25°C 70 125
µA
I
DD
Supply
current
V
O =
2
.
5
V
,
No
load
Full range 150 µ
A
Full range is 0°C to 70°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
T
TLC2252C
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
VO15Vto35VR
L100 k
25°C 0.07 0.12
SR Slew rate at unity gain
V
O =
1
.
5
V
t
o
3
.
5
V
,
R
L =
100
k
,
CL
=
100
p
F
Full
005
V/µs
CL
=
100
F
range
0
.
05
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 36
nV/Hz
V
n
Equivalent
input
noise
voltage
f = 1 kHz 25°C 19 n
V/H
z
VN(PP)
Peak to
p
eak equivalent in
p
ut noise voltage
f = 0.1 Hz to 1 Hz 25°C 0.7
µV
V
N(PP)
Peak
-
to
-
peak
equivalent
input
noise
voltage
f = 0.1 Hz to 10 Hz 25°C 1.1 µ
V
InEquivalent input noise current 25°C 0.6 fAHz
THD+N
Total harmonic distortion
p
lus noise
VO = 0.5 V to 2.5 V,
f 10 kHz
AV = 1
25°C
0.2%
THD
+
N
Total
harmonic
distortion
plus
noise
f
=
10
kH
z,
RL = 50 kAV = 10
25°C
1%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL = 50 k,25°C 0.2 MHz
BOM Maximum output-swing bandwidth VO(PP) = 2 V,
RL = 50 k,AV = 1,
CL = 100 pF25°C 30 kHz
φmPhase margin at unity gain
RL=50k
CL= 100
p
F
25°C63°
Gain margin
R
L =
50
k
,
C
L =
100
pF
25°C 15 dB
Full range is 0°C to 70°C.
Referenced to 2.5 V
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise
specified)
PARAMETER
TEST CONDITIONS
T
TLC2252C
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
V
25°C 200 1500
µV
V
IO
Input
offset
voltage
V
Full range 1750 µ
V
αVIO
Tem
p
erature coefficient of in
p
ut offset voltage
V
25°C
05
µV/°C
αVIO
Temperature
coefficient
of
input
offset
voltage
V
to 70°C
0
.
5
µ
V/°C
Input offset voltage long-term drift (see Note 4)
V
IC = 0,
RS=50
VO = 0, 25°C 0.003 µV/mo
IIO
In
p
ut offset current
RS
=
50
25°C 0.5 60 p
A
I
IO
Input
offset
current
Full range 100
pA
IIB
In
p
ut bias current
25°C 1 60 p
A
I
IB
Input
bias
current
Full range 100
pA
55.3
25°C
5
to
5.3
to
VICR
Common mode in
p
ut voltage range
|VIO |≤5mV
RS=50
4 4.2
V
V
ICR
Common
-
mode
input
voltage
range
|V
IO
|
5
mV
,
R
S =
50
5
V
Full range
5
to
g
3.5
IO = 20 µA 25°C 4.98
VOM
Maximum
p
ositive
p
eak out
p
ut voltage
IO= 100 µA
25°C 4.9 4.93
V
V
OM+
Maximum
positive
peak
output
voltage
I
O =
100
µ
A
Full range 4.7
V
IO = 200 µA 25°C 4.8 4.86
VIC = 0, IO = 50 µA 25°C4.99
VIC =0
IO= 500 µA
25°C4.85 4.91
V
IC =
0
,
I
O =
500
µ
A
Full range 4.85
VOMMaximum negative peak output voltage
VIC =0
IO=1
m
A
25°C4.7 4.8 V
V
IC =
0
,
I
O =
1
m
A
Full range 4.7
VIC =0
IO=4
m
A
25°C44.3
V
IC =
0
,
I
O =
4
m
A
Full range 3.8
RL= 100 k
25°C 45 650
AVD Large-signal differential voltage amplification VO = ±4 V
R
L =
100
k
Full range 10 V/mV
RL = 1 M25°C 3000
rid Differential input resistance 25°C1012
ric Common-mode input resistance 25°C1012
cic Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF
zoClosed-loop output impedance f = 25 kHz, AV = 10 25°C 190
CMRR
Common mode rejection ratio
VIC = 5 V to 2.7 V, 25°C 75 88
dB
CMRR
Common
-
mode
rejection
ratio
VO = 0, RS = 50 Full range 75
dB
kSVR
Su
pp
ly voltage rejection ratio (VDD±/VIO)
VDD± = 2.2 V to ±8 V, 25°C 80 95
dB
k
SVR
Supply
-
voltage
rejection
ratio
(V
DD±
/V
IO
)
VIC = 0, No load Full range 80
dB
IDD
Su
pp
ly current
VO=0
No load
25°C 80 125
µA
I
DD
Supply
current
V
O =
0
,
No
load
Full range 150 µ
A
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD± = ±5 V
PARAMETER
TEST CONDITIONS
T
TLC2252C
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
VO=±19V
RL= 100 k
25°C 0.07 0.12
SR Slew rate at unity gain
V
O =
±1
.
9
V
,
CL = 100 pF
R
L =
100
k
,Full
range 0.05 V/µs
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 38
nV/Hz
V
n
Equivalent
input
noise
voltage
f = 1 kHz 25°C 19 n
V/H
z
VN(PP)
Peak to
p
eak equivalent in
p
ut noise voltage
f = 0.1 Hz to 1 Hz 25°C 0.8
µV
V
N(PP)
Peak
-
to
-
peak
equivalent
input
noise
voltage
f = 0.1 Hz to 10 Hz 25°C 1.1 µ
V
InEquivalent input noise current 25°C 0.6 fAHz
THD+N
Total harmonic distortion
p
ulse duration
VO = ±2.3 V,
f 10 kHz
AV = 1
25°C
0.2%
THD
+
N
Total
harmonic
distortion
pulse
duration
f
=
10
kH
z,
RL = 50 kAV = 10
25°C
1%
Gain-bandwidth product f = 10 kHz,
CL = 100 pF RL = 50 k,25°C 0.21 MHz
BOM Maximum output-swing bandwidth VO(PP) = 4.6 V,
RL = 50 k,AV = 1,
CL = 100 pF 25°C 14 kHz
φmPhase margin at unity gain
RL=50k
CL= 100
p
F
25°C63°
Gain margin
R
L =
50
k
,
C
L =
100
pF
25°C 15 dB
Full range is 0°C to 70°C.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
T
TLC2254C
UNIT
PARAMETER
T
A
MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 200 1500
µV
V
IO
Input
offset
voltage
Full range 1750 µ
V
αVIO Temperature coefficient of input of fset voltage 25°C
to 70°C0.5 µV/°C
Input offset voltage long-term drift (see Note 4) VIC = 0,
VO=0
VDD± = ±2.5 V,
RS=50
25°C 0.003 µV/mo
IIO
In
p
ut offset current
VO
=
0
,
RS
=
50
25°C 0.5 60 p
A
I
IO
Input
offset
current
Full range 100
pA
IIB
In
p
ut bias current
25°C 1 60 p
A
I
IB
Input
bias
current
Full range 100
pA
VICR
Common mode in
p
ut voltage range
RS=50
|VIO |≤5mV
25°C0
to
4
0.3
to
4.2
V
V
ICR
Common
-
mode
input
voltage
range
R
S =
50
,
|V
IO
|
5
mV
Full range 0
to
3.5
V
IOH = 20 µA 25°C 4.98
VOH
High level out
p
ut voltage
25°C 4.9 4.94
V
V
OH
High
-
level
output
voltage
OH =
µ
Full range 4.8
V
IOH = 150 µA 25°C 4.8 4.88
VIC = 2.5 V, IOL = 50 µA 25°C 0.01
VIC =25V
IOL = 500 µA
25°C 0.09 0.15
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.15
VOL Low-level output voltage
VIC =25V
IOL =1
m
A
25°C 0.2 0.3 V
V
IC =
2
.
5
V
,
I
OL =
1
m
A
Full range 0.3
VIC =25V
IOL =4
m
A
25°C 0.7 1
V
IC =
2
.
5
V
,
I
OL =
4
m
A
Full range 1.2
V25V
R 100 k
25°C 100 350
AVD Large-signal differential voltage amplification VIC = 2.5 V,
VO=1Vto4V
R
L =
100
k
Full range 10 V/mV
VD
gg g
VO
=
1
V
to
4
V
RL = 1 M25°C 1700
ri(d) Differential input resistance 25°C1012
ri(c) Common-mode input resistance 25°C1012
ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 pF
zoClosed-loop output impedance f = 25 kHz, AV = 10 25°C 200
CMRR
Common mode rejection ratio
V
= 0 to 2.7 V, V
= 2.5 V, 25°C 70 83
dB
CMRR
Common
-
mode
rejection
ratio
RS = 50 Full range 70
dB
kSVR
Su
pp
ly voltage rejection ratio (VDD/VIO)
V
= 4.4 V to 16 V, 25°C 80 95
dB
k
SVR
Supply
-
voltage
rejection
ratio
(V
DD
/V
IO
)
VIC = VDD/2, No load Full range 80
dB
IDD
Su
pp
ly current (four am
p
lifiers)
VO=25V
No load
25°C 140 250
µA
I
DD
Supply
current
(four
amplifiers)
V
O =
2
.
5
V
,
No
load
Full range 300 µ
A
Full range is 0°C to 70°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
T
TLC2254C
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
SR
Slew rate at unity gain
V
O
= 1.4 V to 2.6 V R
L
= 100 k
,25°C 0.07 0.12
V/µs
SR
Slew
rate
at
unity
gain
O
CL = 100 pF
L,
Full range 0.05
V/
µ
s
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 36
nV/Hz
V
n
Equivalent
input
noise
voltage
f = 1 kHz 25°C 19 n
V/H
z
VN(PP)
Peak-to-peak equivalent input noise f = 0.1 Hz to 1 Hz 25°C 0.7
µV
V
N(PP)
q
voltage f = 0.1 Hz to 10 Hz 25°C 1.1 µ
V
InEquivalent input noise current 25°C 0.6 fA/Hz
THD+N
Total harmonic distortion
p
lus noise
VO = 0.5 V to 2.5 V,
f=10 kHz
AV = 1
25°C
0.2%
THD
+
N
Total
harmonic
distortion
plus
noise
f
=
10
kHz
,
RL = 50 kAV = 10
25°C
1%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL = 50 k,25°C 0.2 MHz
BOM Maximum output-swing bandwidth VO(PP) = 2 V,
RL = 50 k,AV = 1,
CL = 100 pF25°C 30 kHz
φmPhase margin at unity gain
RL=50k
CL= 100
p
F
25°C 63°
Gain margin
R
L =
50
k
,
C
L =
100
pF
25°C 15 dB
Full range is 0°C to 70°C.
Referenced to 2.5 V
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise
specified)
PARAMETER
TEST CONDITIONS
T
TLC2254C
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 200 1500
µV
V
IO
Input
offset
voltage
Full range 1750 µ
V
αVIO Temperature coefficient of input of fset voltage 25°C
to 70°C0.5 µV/°C
Input offset voltage long-term drift (see Note 4) VIC = 0,
RS=50
VO = 0, 25°C0.003 µV/mo
IIO
In
p
ut offset current
RS
=
50
25°C 0.5 60 p
A
I
IO
Input
offset
current
Full range 100
pA
IIB
In
p
ut bias current
25°C 1 60 p
A
I
IB
Input
bias
current
Full range 100
pA
VICR
Common mode in
p
ut voltage range
|VIO |≤5mV
RS=50
25°C5
to
4
5.3
to
4.2
V
V
ICR
Common
-
mode
input
voltage
range
|V
IO
|
5
mV
,
R
S =
50
Full range 5
to
3.5
V
IO = 20 µA 25°C 4.98
VOM
Maximum
p
ositive
p
eak out
p
ut voltage
IO= 100 µA
25°C 4.9 4.93
V
V
OM+
Maximum
positive
peak
output
voltage
I
O =
100
µ
A
Full range 4.7
V
IO = 200 µA 25°C 4.8 4.86
VIC = 0, IO = 50 µA 25°C4.99
VIC =0
IO= 500 µA
25°C4.85 4.91
V
IC =
0
,
I
O =
500
µ
A
Full range 4.85
VOMMaximum negative peak output voltage
VIC =0
IO1
m
A
25°C4.7 4.8 V
V
IC =
0
,
I
O =
1
m
A
Full range 4.7
VIC =0
IO4
m
A
25°C44.3
V
IC =
0
,
I
O =
4
m
A
Full range 3.8
RL= 100 k
25°C 40 150
AVD Large-signal differential voltage amplification VO = ±4 V
R
L =
100
k
Full range 10 V/mV
RL = 1 M25°C 3000
ri(d) Differential input resistance 25°C1012
ri(c) Common-mode input resistance 25°C1012
ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 pF
zoClosed-loop output impedance f = 25 kHz, AV = 10 25°C 190
CMRR
Common mode rejection ratio
V
IC
= 5 V to 2.7 V, 25°C 75 88
dB
CMRR
Common
-
mode
rejection
ratio
IC ,
VO = 0, RS = 50 Full range 75
dB
kSVR
Su
pp
ly voltage rejection ratio (VDD±/VIO)
V
DD±
= ±2.2 V to ±8 V, 25°C 80 95
dB
k
SVR
Supply
-
voltage
rejection
ratio
(V
DD±
/V
IO
)
DD±,
VIC = 0, No load Full range 80
dB
IDD
Su
pp
ly current (four am
p
lifiers)
VO=0
No load
25°C 160 250
µA
I
DD
Supply
current
(four
amplifiers)
V
O =
0
,
No
load
Full range 300 µ
A
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD± = ±5 V
PARAMETER
TEST CONDITIONS
T
TLC2254C
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
SR
Slew rate at unity gain
V
O
= ±1.9 V, R
L
= 100 k,25°C 0.07 0.12
V/µs
SR
Slew
rate
at
unity
gain
O,
CL = 100 pF
L,
Full range 0.05
V/
µ
s
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 38
nV/Hz
V
n
Equivalent
input
noise
voltage
f = 1 kHz 25°C 19 n
V/H
z
VN(PP)
Peak to
p
eak equivalent in
p
ut noise voltage
f = 0.1 Hz to 1 Hz 25°C 0.8
µV
V
N(PP)
Peak
-
to
-
peak
equivalent
input
noise
voltage
f = 0.1 Hz to 10 Hz 25°C 1.1 µ
V
InEquivalent input noise current 25°C 0.6 fA/Hz
THD+N
Total harmonic distortion
p
lus noise
VO = ±2.3 V,
f 20 kHz
AV = 1
25°C
0.2%
THD
+
N
Total
harmonic
distortion
plus
noise
f
=
20
kH
z,
RL = 50 kAV = 10
25°C
1%
Gain-bandwidth product f = 10 kHz,
CL = 100 pF RL = 50 k,25°C 0.21 MHz
BOM Maximum output-swing bandwidth VO(PP) = 4.6 V,
RL = 50 k,AV = 1,
CL = 100 pF 25°C 14 kHz
φmPhase margin at unity gain
RL=50k
CL= 100
p
F
25°C 63°
Gain margin
R
L =
50
k
,
C
L =
100
pF
25°C 15 dB
Full range is 0°C to 70°C.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLC2252I TLC2252AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
VVV
25°C 200 1500 200 850
µV
V
IO
Input
offset
voltage
VVV
Full range 1750 1000 µ
V
αVIO Temperature coefficient
of input offset voltage
VVV
25°C
to 85°C0.5 0.5 µV/°C
Input offset voltage
long-term drift
(see Note 4)
V
DD± = ±2.5
V
,
V
O = 0,
VIC = 0, RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 60 0.5 60 p
A
I
IO
Input
offset
current
Full range 1000 1000
pA
IIB
In
p
ut bias current
25°C 1 60 1 60 p
A
I
IB
Input
bias
current
Full range 1000 1000
pA
VICR
Common-mode input
RS=50Ω|VIO |≤5mV
25°C0
to
4
0.3
to
4.2
0
to
4
0.3
to
4.2
V
V
ICR voltage range
R
S =
50
,
|V
IO
|
5
mV
Full range 0
to
3.5
0
to
3.5
V
IOH = 20 µA 25°C 4.98 4.98
VOH
High-level output
IOH = 75 µA
25°C 4.9 4.94 4.9 4.94
V
V
OH
g
voltage
I
OH =
75
µ
A
Full range 4.8 4.8
V
IOH = 150 µA 25°C 4.8 4.88 4.8 4.88
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
Low level output
VIC =25V I
OL = 500 µA
25°C 0.09 0.15 0.09 0.15
VOL
L
ow-
l
eve
l
ou
t
pu
t
voltage
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.15 0.15 V
voltage
VIC =25V I
OL =4
m
A
25°C 0.8 1 0.7 1
V
IC =
2
.
5
V
,
I
OL =
4
m
A
Full range 1.2 1.2
Large signal differential
V25V
RL100 k
25°C 100 350 100 350
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
V
IC =
2
.
5
V
,
VO=1Vto4V
R
L =
100
k
Full range 10 10 V/mV
VD
voltage
am lification
VO
=
1
V
to
4
V
RL = 1 M25°C 1700 1700
rid Differential input
resistance 25°C 1012 1012
ric Common-mode
input resistance 25°C 1012 1012
cic Common-mode
input capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop
output impedance f = 25 kHz, AV = 10 25°C 200 200
CMRR
Common-mode V
IC
= 0 to 2.7 V, V
O
= 2.5 V, 25°C 70 83 70 83
dB
CMRR
rejection ratio
IC ,O,
RS = 50 Full range 70 70
dB
kSVR
Supply-voltage
rejection ratio
VDD = 4.4 V to 16 V, 25°C 80 95 80 95
dB
k
SVR
rejection
ratio
(VDD/VIO)
DD
VIC = VDD/2, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO= 2 5 V No load
25°C 70 125 70 125
µA
IDD
Su ly
current
VO
=
2
.
5
V
,
No
load
Full range 150 150
µA
Full range is 40°C to 125°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
T
TLC2252I TLC2252AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
Slew rate at unity
V
O
= 1.5 V to 3.5 V, R
L
= 100 k
,25°C 0.07 0.12 0.07 0.12
SR
Slew
rate
at
unity
gain
O,L,
CL = 100 pFFull
range 0.05 0.05 V/µs
V
Equivalent input f = 10 Hz 25°C 36 36
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 19 19 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
µV
V
N(PP) equ
i
va
l
en
t
i
npu
t
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fAHz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
f 10 kHz
AV = 1
25°C
0.2% 0.2%
THD
+
N
di
s
t
or
ti
on p
l
us
noise
f
=
10
kH
z,
RL = 50 kAV = 10
25°C
1% 1%
Gain-bandwidth
product f = 50 kHz,
CL = 100 pFRL = 50 k,25°C 0.2 0.2 MHz
BOM Maximum output-
swing bandwidth VO(PP) = 2 V,
RL = 50 k,AV = 1,
RL = 50 k,25°C 30 30 kHz
φmPhase margin at
unity gain R
L
= 50 k
, C
L
= 100 pF
25°C 63°63°
Gain margin
L,
L
25°C 15 15 dB
Full range is 40°C to 125°C.
Referenced to 2.5 V
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLC2252I TLC2252AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
VV
25°C 200 1500 200 850
µV
V
IO
Input
offset
voltage
VV
Full range 1750 1000 µ
V
αVIO Temperature coefficient of
input offset voltage
VV
25°C
to 85°C0.5 0.5 µV/°C
Input offset voltage long-
term drift (see Note 4)
V
IC = 0,
V
O = 0,
RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
S
25°C 0.5 60 0.5 60 p
A
I
IO
Input
offset
current
Full range 1000 1000
pA
IIB
In
p
ut bias current
25°C 1 60 1 60 p
A
I
IB
Input
bias
current
Full range 1000 1000
pA
VICR
Common-mode input
RS=50Ω|VIO |≤5mV
25°C5
to
4
5.3
to
4.2
5
to
4
5.3
to
4.2
V
V
ICR voltage range
R
S =
50
,
|V
IO
|
5
mV
Full range 5
to
3.5
5
to
3.5
V
IO = 20 µA 25°C 4.98 4.98
VOM
Maximum positive peak
IO= 100 µA
25°C 4.9 4.93 4.9 4.93
V
V
OM+ output voltage
I
O =
100
µ
A
Full range 4.7 4.7
V
IO = 200 µA 25°C 4.8 4.86 4.8 4.86
VIC = 0, IO = 50 µA 25°C4.99 4.99
Mi ti
VIC =0 I
O= 500 µA
25°C4.85 4.91 4.85 4.91
VOMMaximum negative
p
eak out
p
ut voltage
V
IC =
0
,
I
O =
500
µ
A
Full range 4.85 4.85 V
eak
out ut
voltage
VIC =0 I
O=4
m
A
25°C44.3 44.3
V
IC =
0
,
I
O =
4
m
A
Full range 3.8 3.8
L i l diff ti l
RL=50k
25°C 40 150 40 150
AVD Large-signal differential
voltage am
p
lification
VO = ±4 V
R
L =
50
k
Full range 10 10 V/mV
voltage
am lification
RL = 1 M25°C 3000 3000
rid Differential input
resistance 25°C1012 1012
ric Common-mode input
resistance 25°C1012 1012
cic Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 190 190
CMRR
Common-mode V
IC
= 5 V to 2.7 V, 25°C 75 88 75 88
dB
CMRR
rejection ratio
IC ,
VO = 0, RS = 50 Full range 75 75
dB
kSVR
Suppl
y
-volta
g
e rejection V
DD
= 4.4 V to 16 V, 25°C 80 95 80 95
dB
k
SVR
ygj
ratio (VDD± /VIO)
DD ,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO= 2 5 V No load
25°C 80 125 80 125
µA
I
DD
Supply
current
V
O =
2
.
5
V
,
No
load
Full range 150 150 µ
A
Full range is 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD± = ±5 V
PARAMETER
TEST CONDITIONS
T
TLC2252I TLC2252AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VO=±19V R
L= 100 k
25°C 0.07 0.12 0.07 0.12
SR Slew rate at unity gain
V
O =
±1
.
9
V
,
R
L =
100
k
,
CL = 100 pF Full
range 0.05 0.05 V/µs
V
Equivalent input noise f = 10 Hz 25°C 38 38
nV/Hz
V
n
q
voltage f = 1 kHz 25°C 19 19 n
V/H
z
VN(PP)
Peak-to-peak equivalent f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
µV
V
N(PP)
q
input noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µ
V
InEquivalent input noise
current 25°C 0.6 0.6 fAHz
THD+N
Total harmonic distortion VO = ±2.3 V,
RL50 k
AV = 1
25°C
0.2% 0.2%
THD
+
N
plus noise
R
L =
50
k
,
f = 10 kHz AV = 10
25°C
1% 1%
Gain-bandwidth product f =10 kHz, RL = 50 k,
CL = 100 pF 25°C 0.21 0.21 MHz
BOM Maximum output-swing
bandwidth VO(PP) = 4.6 V, AV = 1,
RL = 50 k, CL = 100 pF 25°C 14 14 kHz
φmPhase margin at unity
gain RL = 50 k, CL = 100 pF 25°C 63°63°
Gain margin
L L
25°C 15 15 dB
Full range is 40°C to 125°C.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLC2254I TLC2254AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 200 1500 200 850
µV
VIO
In ut
offset
voltage
Full range 1750 1000
µV
αVIO Temperature
coefficient of input
offset voltage
VDD±
=
±2.5 V,
25°C
to 125°C0.5 0.5 µV/°C
Input offset voltage
long-term drift
(see Note 4)
VDD±
=
±2
.
5
V
,
VIC = 0,
VO = 0,
RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
S
25°C 0.5 60 0.5 60 p
A
IIO
In ut
offset
current
Full range 1000 1000
A
IIB
In
p
ut bias current
25°C 1 60 1 60 p
A
IIB
In ut
bias
current
Full range 1000 1000
A
VICR
Common-mode input
RS=50
|VIO |≤5mV
25°C0
to
4
0.3
to
4.2
0
to
4
0.3
to
4.2
V
VICR
voltage range
RS
=
50
,
|VIO
|
5
mV
Full range 0
to
3.5
0
to
3.5
V
IOH = 20 µA 25°C 4.98 4.98
VOH
High-level output
IOH =75 µA
25°C 4.9 4.94 4.9 4.94
V
VOH
g
voltage
IOH
=
75
µA
Full range 4.8 4.8
V
IOH = 150 µA 25°C 4.8 4.88 4.8 4.88
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
Low level out
p
ut
VIC =25V
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
VOL
Low
-
level
output
voltage
VIC
=
2
.
5
V
,
IOL
=
500
µA
Full range 0.15 0.15 V
voltage
VIC =25V
IOL =4
m
A
25°C 0.8 1 0.7 1
VIC
=
2
.
5
V
,
IOL
=
4
m
A
Full range 1.2 1.2
Lar
g
e-si
g
nal
V25V
RL100 k
25°C 100 350 100 350
AVD
Large signal
differential
V
IC =
2
.
5
V
,
VO=1Vto4V
R
L =
100
k
Full range 10 10 V/mV
voltage amplification
VO
=
1
V
to
4
V
RL = 1 M25°C 1700 1700
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 200 200
CMRR
Common-mode VIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83 70 83
dB
CMRR
rejection ratio
IC O
RS = 50 Full range 70 70
dB
kSVR
Supply-voltage
rejection ratio
VDD = 4.4 V to 16 V, 25°C 80 95 80 95
dB
kSVR
rejection
ratio
(VDD/VIO)
DD
VIC = VDD/2, No load Full range 80 80
dB
IDD
Supply current
VO=25V
No load
25°C 140 250 140 250
µA
IDD
y
(four amplifiers)
VO
=
2
.
5
V
,
No
load
Full range 300 300
µA
Full range is 40°C to 125°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
T
TLC2254I TLC2254AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
Slew rate at unity
V
O
= 1.4 V to 2.6 V, 25°C0.07 0.12 0.07 0.12
SR
Slew
rate
at
unity
gain
O,
RL = 100 k,
CL = 100 pFFull
range 0.05 0.05 V/µs
V
Equivalent input f = 10 Hz 25°C 36 36
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 19 19 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
µV
V
N(PP) equ
i
va
l
en
t
i
npu
t
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
f 20 kHz
AV = 1
25°C
0.2% 0.2%
THD
+
N
di
s
t
or
ti
on p
l
us
noise
f
=
20
kH
z,
RL = 50 kAV = 10
25°C
1% 1%
Gain-bandwidth
product f = 50 kHz,
CL = 100 pFRL = 50 k,25°C 0.2 0.2 MHz
BOM Maximum output-
swing bandwidth VO(PP) = 2 V,
RL = 50 k,AV = 1,
CL = 100 pF25°C 30 30 kHz
φmPhase margin at
unity gain R
L
= 50 k
, C
L
= 100 pF
25°C 63°63°
Gain margin
L,
L
25°C 15 15 dB
Full range is 40°C to 125°C.
Referenced to 2.5 V
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLC2254I TLC2254AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 200 1500 200 850
µV
V
IO
Input
offset
voltage
Full range 1750 1000 µ
V
αVIO Temperature coefficient of
input offset voltage 25°C
to 125°C0.5 0.5 µV/°C
Input offset voltage
long-term drift (see Note 4) VIC = 0,
RS = 50 VO = 0, 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
S
25°C 0.5 60 0.5 60 p
A
I
IO
Input
offset
current
Full range 1000 1000
pA
IIB
In
p
ut bias current
25°C 1 60 1 60 p
A
I
IB
Input
bias
current
Full range 1000 1000
pA
VICR
Common-mode input
RS=50
|VIO |≤5mV
25°C5
to
4
5.3
to
4.2
5
to
4
5.3
to
4.2
V
V
ICR voltage range
R
S =
50
,
|V
IO
|
5
mV
Full range 5
to
3.5
5
to
3.5
V
IO = 20 µA 25°C 4.98 4.98
VOM
Maximum positive peak
IO= 100 µA
25°C 4.9 4.93 4.9 4.93
V
V
OM+ output voltage
I
O =
100
µ
A
Full range 4.7 4.7
V
IO = 200 µA 25°C 4.8 4.86 4.8 4.86
VIC = 0, IO = 50 µA 25°C4.99 4.99
M i ti k
VIC =0
IO= 500 µA
25°C4.85 4.91 4.85 4.91
VOMMaximum negative peak
out
p
ut voltage
V
IC =
0
,
I
O =
500
µ
A
Full range 4.85 4.85 V
out ut
voltage
VIC =0
IO=4
m
A
25°C44.3 44.3
V
IC =
0
,
I
O =
4
m
A
Full range 3.8 3.8
L i l diff ti l
RL= 100 k
25°C 40 150 40 150
AVD Large-signal differential
voltage am
p
lification
VO = ±4 V
R
L =
100
k
Full range 10 10 V/mV
voltage
am lification
RL = 1 M25°C 3000 3000
ri(d) Differential input resistance 25°C1012 1012
ri(c) Common-mode input
resistance 25°C1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 190 190
CMRR
Common-mode rejection V
IC
= 5 V to 2.7 V, 25°C 75 88 75 88
dB
CMRR
j
ratio
IC ,
VO = 0, RS = 50 Full range 75 75
dB
kSVR
Suppl
y
-volta
g
e rejection V
DD±
= ±2.2 V to ±8 V, 25°C 80 95 80 95
dB
k
SVR
ygj
ratio (VDD±/VIO)
DD±,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Suppl
y
current
VO=0
No load
25°C 160 250 160 250
µA
I
DD
y
(four amplifiers)
V
O =
0
,
No
load
Full range 300 300 µ
A
Full range is 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD± = ±5 V
PARAMETER
TEST CONDITIONS
T
TLC2254I TLC2254AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VO=±19V
RL= 100 k
25°C 0.07 0.12 0.07 0.12
SR Slew rate at unity gain
V
O =
±1
.
9
V
,
CL = 100 pF
R
L =
100
k
,Full
range 0.05 0.05 V/µs
V
Equivalent input noise f = 10 Hz 25°C 38 38
nV/Hz
V
n
q
voltage f = 1 kHz 25°C 19 19 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut noise
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
µV
V
N(PP) equ
i
va
l
en
t
i
npu
t
no
i
se
voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µ
V
InEquivalent input noise
current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic VO = ±2.3 V,
RL50 k
AV = 1
25°C
0.2% 0.2%
THD
+
N
distortion plus noise
R
L =
50
k
,
f = 20 kHz AV = 10
25°C
1% 1%
Gain-bandwidth product f =10 kHz,
CL = 100 pF RL = 50 k,25°C 0.21 0.21 MHz
BOM Maximum output-swing
bandwidth VO(PP) = 4.6 V,
RL = 50 k,AV = 1,
CL = 100 pF 25°C 14 14 kHz
φmPhase margin at unity
gain RL = 50 k, CL = 100 pF 25°C 63°63°
Gain margin
L
L
25°C 15 15 dB
Full range is 40°C to 125°C.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLC2252Q
TLC2252M TLC2252AQ
TLC2252AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
V V
V
25°C 200 1500 200 850
µV
V
IO
Input
offset
voltage
V V
V
Full range 1750 1000 µ
V
αVIO Temperature coefficient
of input offset voltage
V V
V
25°C
to 125°C0.5 0.5 µV/°C
Input offset voltage
long-term drift
(see Note 4)
V
DD± = ±2.5
V
,
VO = 0,
V
IC = 0,
RS = 50 25°C0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 60 0.5 60 p
A
I
IO
Input
offset
current
Full range 1000 1000
pA
IIB
In
p
ut bias current
25°C 1 60 1 60 p
A
I
IB
Input
bias
current
Full range 1000 1000
pA
VICR
Common-mode input
RS=50
|VIO |≤5mV
25°C0
to
4
0.3
to
4.2
0
to
4
0.3
to
4.2
V
V
ICR voltage range
R
S =
50
,
|V
IO
|
5
mV
Full range 0
to
3.5
0
to
3.5
V
IOH = 20 µA 25°C 4.98 4.98
VOH
High-level output
IOH = 75 µA
25°C 4.9 4.94 4.9 4.94
V
V
OH
g
voltage
I
OH =
75
µ
A
Full range 4.8 4.8
V
IOH = 150 µA 25°C 4.8 4.88 4.8 4.88
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
Low level output
VIC =25V
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
VOL
L
ow-
l
eve
l
ou
t
pu
t
voltage
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.15 0.15 V
voltage
VIC =25V
IOL =4
m
A
25°C 0.8 1 0.7 1
V
IC =
2
.
5
V
,
I
OL =
4
m
A
Full range 1.2 1.2
Large signal differential
V25V
RL100 k
25°C 100 350 100 350
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
V
IC =
2
.
5
V
,
VO=1Vto4V
R
L =
100
k
Full range 10 10 V/mV
VD
voltage
am lification
VO
=
1
V
to
4
V
RL = 1 M25°C 1700 1700
rid Differential input
resistance 25°C 1012 1012
ric Common-mode input
resistance 25°C 1012 1012
cic Common-mode input
capacitance f = 10 kHz, f = 10 kHz, 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 200 200
CMRR
Common-mode V
IC
= 0 to 2.7 V, V
O
= 2.5 V, 25°C 70 83 70 83
dB
CMRR
rejection ratio
IC ,
RS = 50
O,
Full range 70 70
dB
kSVR
Supply-voltage
rejection ratio
VDD = 4.4 V to 16 V, 25°C 80 95 80 95
dB
k
SVR
rejection
ratio
(VDD/VIO)
DD
VIC = VDD/2, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO= 2 5 V No load
25°C 70 125 70 125
µA
IDD
Su ly
current
VO
=
2
.
5
V
,
No
load
Full range 150 150
µA
Full range is 40°C to 125°C for Q suffix, 55°C to 125°C for M suffix.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS T
A
TLC2252Q
TLC2252M TLC2252AQ
TLC2252AM UNIT
A
MIN TYP MAX MIN TYP MAX
Slew rate at unity
VO=05Vto35V
25°C0.07 0.12 0.07 0.12
SR
Slew
rate
at
unity
gain
V
O =
0
.
5
V
to
3
.
5
V
,
RL = 100 k,C
L = 100 pFFull
range 0.05 0.05 V/µs
V
Equivalent input f = 10 Hz 25°C 36 36
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 19 19 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
µV
V
N(PP) equ
i
va
l
en
t
i
npu
t
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fAHz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
f 10 kHz
AV = 1
25°C
0.2% 0.2%
THD
+
N
di
s
t
or
ti
on p
l
us
noise
f
=
10
kH
z,
RL = 50 kAV = 10
25°C
1% 1%
Gain-bandwidth
product f = 50 kHz, RL = 50 k,
CL = 100 pF25°C 0.2 0.2 MHz
BOM Maximum output-
swing bandwidth VO(PP) = 2 V, AV = 1,
RL = 50 k, CL = 100 pF25°C 30 30 kHz
φmPhase margin at
unity gain R
L
= 50 k
,C
L
= 100 pF
25°C 63°63°
Gain margin
L,L
25°C 15 15 dB
Full range is 40°C to 125°C for Q suffix, 55°C to 125°C for M suffix.
Referenced to 2.5 V
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLC2252Q
TLC2252M TLC2252AQ
TLC2252AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
VV
25°C 200 1500 200 850
µV
V
IO
Input
offset
voltage
VV
Full range 1750 1000 µ
V
αVIO Temperature coefficient of
input offset voltage
VV
25°C
to 125°C0.5 0.5 µV/°C
Input offset voltage long-
term drift (see Note 4)
V
IC = 0,
V
O = 0,
RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
S
25°C 0.5 60 0.5 60 p
A
I
IO
Input
offset
current
Full range 1000 1000
pA
IIB
In
p
ut bias current
25°C 1 60 1 60 p
A
I
IB
Input
bias
current
Full range 1000 1000
pA
VICR
Common-mode input
RS=50Ω|VIO |≤5mV
25°C5
to
4
5.3
to
4.2
5
to
4
5.3
to
4.2
V
V
ICR voltage range
R
S =
50
,
|V
IO
|
5
mV
Full range 5
to
3.5
5
to
3.5
V
IO = 20 µA 25°C 4.98 4.98
VOM
Maximum positive peak
IO= 100 µA
25°C 4.9 4.93 4.9 4.93
V
V
OM+ output voltage
I
O =
100
µ
A
Full range 4.7 4.7
V
IO = 200 µA 25°C 4.8 4.86 4.8 4.86
VIC = 0, IO = 50 µA 25°C4.99 4.99
Mi ti
VIC =0 I
O= 500 µA
25°C4.85 4.91 4.85 4.91
VOMMaximum negative
p
eak out
p
ut voltage
V
IC =
0
,
I
O =
500
µ
A
Full range 4.85 4.85 V
eak
out ut
voltage
VIC =0 I
O=4
m
A
25°C44.3 44.3
V
IC =
0
,
I
O =
4
m
A
Full range 3.8 3.8
L i l diff ti l
RL= 100 k
25°C 40 150 40 150
AVD Large-signal differential
voltage am
p
lification
VO = ±4 V
R
L =
100
k
Full range 10 10 V/mV
voltage
am lification
RL = 1 M25°C 3000 3000
rid Differential input
resistance 25°C1012 1012
ric Common-mode input
resistance 25°C1012 1012
cic Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 190 190
CMRR
Common-mode V
IC
= 5 V to 2.7 V, 25°C 75 88 75 88
dB
CMRR
rejection ratio
IC ,
VO = 0, RS = 50 Full range 75 75
dB
kSVR
Supply-volta
g
e rejection V
DD
= ±2.2 V to ±8 V, 25°C 80 95 80 95
dB
k
SVR
ygj
ratio (VDD± /VIO)
DD ,
VIC = 0, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO= 2 5 V No load
25°C 80 125 80 125
µA
I
DD
Supply
current
V
O =
2
.
5
V
,
No
load
Full range 150 150 µ
A
Full range is 40°C to 125°C for Q suffix, 55°C to 125°C for M suffix.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD± = ±5 V
PARAMETER TEST CONDITIONS T
A
TLC2252Q
TLC2252M TLC2252AQ
TLC2252AM UNIT
A
MIN TYP MAX MIN TYP MAX
VO=±2V R
L= 100 k
25°C 0.07 0.12 0.07 0.12
SR Slew rate at unity gain
V
O =
±2
V
,
R
L =
100
k
,
CL = 100 pF Full
range 0.05 0.05 V/µs
V
Equivalent input noise f = 10 Hz 25°C 38 38
nV/Hz
V
n
q
voltage f = 1 kHz 25°C 19 19 n
V/H
z
VN(PP)
Peak-to-peak equivalent f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
µV
V
N(PP)
q
input noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µ
V
InEquivalent input noise
current 25°C 0.6 0.6 fAHz
THD+N
Total harmonic distortion VO = ±2.3 V,
RL50 k
AV = 1
25°C
0.2% 0.2%
THD
+
N
plus noise
R
L =
50
k
,
f = 10 kHz AV = 10
25°C
1% 1%
Gain-bandwidth product f =10 kHz, RL = 50 k,
CL = 100 pF 25°C 0.21 0.21 MHz
BOM Maximum output-swing
bandwidth VO(PP) = 4.6 V, AV = 1,
RL = 50 k, CL = 100 pF 25°C 14 14 kHz
φmPhase margin at unity
gain RL = 50 k, CL = 100 pF 25°C 63°63°
Gain margin
L L
25°C 15 15 dB
Full range is 40°C to 125°C for Q suffix, 55°C to 125°C for M suffix.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLC2254Q
TLC2254M TLC2254AQ
TLC2254AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
25°C 200 1500 200 850
µV
VIO
In ut
offset
voltage
Full range 1750 1000
µV
αVIO Temperature
coefficient of input
offset voltage
25°C
to 125°C0.5 0.5 µV/°C
Input offset voltage
long-term drift
(see Note 4)
VDD± = ±2.5 V,
VO = 0, VIC = 0,
RS = 50 25°C0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 60 0.5 60 p
A
IIO
In ut
offset
current
125°C 1000 1000
A
IIB
In
p
ut bias current
25°C 1 60 1 60 p
A
IIB
In ut
bias
current
125°C 1000 1000
A
VICR
Common-mode input
RS=50
|VIO |≤5mV
25°C0
to
4
0.3
to
4.2
0
to
4
0.3
to
4.2
V
VICR
voltage range
RS
=
50
,
|VIO
|
5
mV
Full range 0
to
3.5
0
to
3.5
V
IOH = 20 µA 25°C 4.98 4.98
VOH
High-level output
IOH =75 µA
25°C 4.9 4.94 4.9 4.94
V
VOH
g
voltage
IOH
=
75
µA
Full range 4.8 4.8
V
IOH = 150 µA 25°C 4.8 4.88 4.8 4.88
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
Low level out
p
ut
VIC =25V
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
VOL
Low
-
level
output
voltage
VIC
=
2
.
5
V
,
IOL
=
500
µA
Full range 0.15 0.15 V
voltage
VIC =25V
IOL =4
m
A
25°C 0.8 1 0.7 1
VIC
=
2
.
5
V
,
IOL
=
4
m
A
Full range 1.2 1.2
Lar
g
e-si
g
nal
V25V
RL100 k
25°C 100 350 100 350
AVD
Large signal
differential
V
IC =
2
.
5
V
,
VO=1Vto4V
R
L =
100
k
Full range 10 10 V/mV
voltage amplification
VO
=
1
V
to
4
V
RL = 1 M25°C 1700 1700
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 200 200
CMRR
Common-mode VIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83 70 83
dB
CMRR
rejection ratio
IC O
RS = 50 Full range 70 70
dB
kSVR
Supply-voltage
rejection ratio
VDD = 4.4 V to 16 V, 25°C 80 95 80 95
dB
kSVR
rejection
ratio
(VDD/VIO)
DD
VIC = VDD/2, No load Full range 80 80
dB
IDD
Supply current
VO=25V
No load
25°C 140 250 140 250
µA
IDD
y
(four amplifiers)
VO
=
2
.
5
V
,
No
load
Full range 300 300
µA
Full range is 40°C to 125°C for Q suffix, 55°C to 125°C for M suffix.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS T
A
TLC2254Q
TLC2254M TLC2254AQ
TLC2254AM UNIT
A
MIN TYP MAX MIN TYP MAX
Slew rate at unity
V
O
= 0.5 V to 3.5 V, 25°C0.07 0.12 0.07 0.12
SR
Slew
rate
at
unity
gain
O,
RL = 100 k,
CL = 100 pFFull
range 0.05 0.05 V/µs
V
Equivalent input f = 10 Hz 25°C 36 36
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 19 19 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
µV
V
N(PP) equ
i
va
l
en
t
i
npu
t
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
f 20 kHz
AV = 1
25°C
0.2% 0.2%
THD
+
N
di
s
t
or
ti
on p
l
us
noise
f
=
20
kH
z,
RL = 50 kAV = 10
25°C
1% 1%
Gain-bandwidth
product f = 50 kHz,
CL = 100 pFRL = 50 k,25°C 0.2 0.2 MHz
BOM Maximum output-
swing bandwidth VO(PP) = 2 V,
RL = 50 k,AV = 1,
CL = 100 pF25°C 30 30 kHz
φmPhase margin at
unity gain R
L
= 50 k
, C
L
= 100 pF
25°C 63°63°
Gain margin
L,
L
25°C 15 15 dB
Full range is 40°C to 125°C for Q suffix, 55°C to 125°C for M suffix.
Referenced to 2.5 V
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLC2254Q
TLC2254M TLC2254AQ
TLC2254AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
25°C 200 1500 200 850
µV
V
IO
Input
offset
voltage
Full range 1750 1000 µ
V
αVIO Temperature coefficient of
input offset voltage 25°C
to 125°C0.5 0.5 µV/°C
Input offset voltage
long-term drift (see Note 4) VIC = 0,
RS = 50 VO = 0, 25°C0.003 0.003 µV/mo
IIO
In
p
ut offset current
S
25°C 0.5 60 0.5 60 p
A
I
IO
Input
offset
current
125°C 1000 1000
pA
IIB
In
p
ut bias current
25°C 1 60 1 60 p
A
I
IB
Input
bias
current
125°C 1000 1000
pA
VICR
Common-mode input
RS=50
|VIO |≤5mV
25°C5
to
4
5.3
to
4.2
5
to
4
5.3
to
4.2
V
V
ICR voltage range
R
S =
50
,
|V
IO
|
5
mV
Full range 5
to
3.5
5
to
3.5
V
IO = 20 µA 25°C 4.98 4.98
VOM
Maximum positive peak
IO= 100 µA
25°C 4.9 4.93 4.9 4.93
V
V
OM+ output voltage
I
O =
100
µ
A
Full range 4.7 4.7
V
IO = 200 µA 25°C 4.8 4.86 4.8 4.86
VIC = 0, IO = 50 µA 25°C4.99 4.99
M i ti k
VIC =0
IO= 500 µA
25°C4.85 4.91 4.85 4.91
VOMMaximum negative peak
out
p
ut voltage
V
IC =
0
,
I
O =
500
µ
A
Full range 4.85 4.85 V
out ut
voltage
VIC =0
IO=4
m
A
25°C44.3 44.3
V
IC =
0
,
I
O =
4
m
A
Full range 3.8 3.8
L i l diff ti l
RL= 100 k
25°C 40 150 40 150
AVD Large-signal differential
voltage am
p
lification
VO = ±4 V
R
L =
100
k
Full range 10 10 V/mV
voltage
am lification
RL = 1 M25°C 3000 3000
ri(d) Differential input resistance 25°C1012 1012
ri(c) Common-mode input
resistance 25°C1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 25 kHz, AV = 10 25°C 190 190
CMRR
Common-mode rejection V
IC
= 5 V to 2.7 V, 25°C 75 88 75 88
dB
CMRR
j
ratio
IC ,
VO = 0, RS = 50 Full range 75 75
dB
kSVR
Suppl
y
-volta
g
e rejection V
DD±
= ±2.2 V to ±8 V, 25°C 80 95 80 95
dB
k
SVR
ygj
ratio (VDD±/VIO)
DD±,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Suppl
y
current
VO=0
No load
25°C 160 250 160 250
µA
I
DD
y
(four amplifiers)
V
O =
0
,
No
load
Full range 300 300 µ
A
Full range is 40°C to 125°C for Q suffix, 55°C to 125°C for M suffix.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD± = ±5 V
PARAMETER TEST CONDITIONS T
A
TLC2254Q
TLC2254M TLC2254AQ
TLC2254AM UNIT
A
MIN TYP MAX MIN TYP MAX
VO=±2V
RL= 100 k
25°C 0.07 0.12 0.07 0.12
SR Slew rate at unity gain
V
O =
±2
V
,
CL = 100 pF
R
L =
100
k
,Full
range 0.05 0.05 V/µs
V
Equivalent input noise f = 10 Hz 25°C 38 38
nV/Hz
V
n
q
voltage f = 1 kHz 25°C 19 19 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut noise
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
µV
V
N(PP) equ
i
va
l
en
t
i
npu
t
no
i
se
voltage f = 0.1 Hz to 10 Hz 25°C 1.1 1.1 µ
V
InEquivalent input noise
current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic VO = ±2.3 V,
RL50 k
AV = 1
25°C
0.2% 0.2%
THD
+
N
distortion plus noise
R
L =
50
k
,
f = 20 kHz AV = 10
25°C
1% 1%
Gain-bandwidth product f =10 kHz,
CL = 100 pF RL = 50 k,25°C 0.21 0.21 MHz
BOM Maximum output-swing
bandwidth VO(PP) = 4.6 V,
RL = 50 k,AV = 1,
CL = 100 pF 25°C 14 14 kHz
φmPhase margin at unity
gain RL = 50 k, CL = 100 pF 25°C 63°63°
Gain margin
L
L
25°C 15 15 dB
Full range is 40°C to 125°C for Q suffix, 55°C to 125°C for M suffix.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
In
p
ut offset voltage
Distribution 2 5
V
IO
Input
offset
voltage
vs Common-mode input voltage 6, 7
αVIO Input offset voltage temperature coef ficient Distribution 8 11
IIB/IIO Input bias and input offset currents vs Free-air temperature 12
VI
In
p
ut voltage range
vs Suppl
y
volta
g
e 13
V
I
Input
voltage
range
yg
vs Free-air temperature 14
VOH High-level output voltage vs High-level output current 15
VOL Low-level output voltage vs Low-level output current 16, 17
VOM+ Maximum positive peak output voltage vs Output current 18
VOMMaximum negative peak output voltage vs Output current 19
VO(PP) Maximum peak-to-peak output voltage vs Frequency 20
IOS
Short circuit out
p
ut current
vs Supply volta
g
e 21
I
OS
Short
-
circuit
output
current
yg
vs Free-air temperature 22
VOOutput voltage vs Differential input voltage 23, 24
Differential gain vs Load resistance 25
AVD
Large signal differential voltage am
p
lification
vs Frequenc
y
26, 27
A
VD
Large
-
signal
differential
voltage
amplification
qy
vs Free-air temperature
,
28, 29
zoOutput impedance vs Frequency 30, 31
CMRR
Common mode rejection ratio
vs Frequenc
y
32
CMRR
Common
-
mode
rejection
ratio
qy
vs Free-air temperature 33
kSVR
Su
pp
ly voltage rejection ratio
vs Frequency 34, 35
k
SVR
Supply
-
voltage
rejection
ratio
qy
vs Free-air temperature
,
36
IDD
Su
pp
ly current
vs Suppl
y
volta
g
e 37
I
DD
Supply
current
yg
vs Free-air temperature 38
SR
Slew rate
vs Load capacitance 39
SR
Slew
rate
vs Free-air temperature 40
VOInverting large-signal pulse response 41, 42
VOVoltage-follower large-signal pulse response 43, 44
VOInverting small-signal pulse response 45, 46
VOVoltage-follower small-signal pulse response 47, 48
VnEquivalent input noise voltage vs Frequency 49, 50
Noise voltage (referred to input) Over a 10-second period 51
Integrated noise voltage vs Frequency 52
THD + N Total harmonic distortion plus noise vs Frequency 53
Gain bandwidth
p
roduct
vs Free-air temperature 54
Gain
-
bandwidth
product
vs Supply voltage 55
φ
Phase margin
vs Frequency 26, 27
φ
m
Phase
margin
qy
vs Load capacitance
,
56
AmGain margin vs Load capacitance 57
B1Unity-gain bandwidth vs Load capacitance 58
Overestimation of phase margin vs Load capacitance 59
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
Percentage of Amplifiers %
DISTRIBUTION OF TLC2252
INPUT OFFSET VOLTAGE
VIO Input Offset Voltage mV
10
5
30
0
20
15
25
35
1.6 0.8 0 0.8 1.6
682 Amplifiers From 1 W afer Lots
VDD± = ±2.5 V
P Package
TA = 25°C
Figure 3
Percentage of Amplifiers %
DISTRIBUTION OF TLC2252
INPUT OFFSET VOLTAGE
VIO Input Offset Voltage mV
10
5
30
0
20
15
25
35
1.6 0.8 0 0.8 1.6
682 Amplifiers From 1 W afer Lots
VDD± = ±5 V
P Package
TA = 25°C
Figure 4
Percentage of Amplifiers %
DISTRIBUTION OF TLC2254
INPUT OFFSET VOLTAGE
VIO Input Offset Voltage mV
15
10
5
0
20
1.6 0 0.8 1.6
0.8
1020 Amplifiers From 1 W afer Lot
VDD = ±2.5 V
TA = 25°C
Figure 5
Percentage of Amplifiers %
DISTRIBUTION OF TLC2254
INPUT OFFSET VOLTAGE
VIO Input Offset Voltage mV
15
10
5
0
20
25
1.6 0 0.8 1.6
0.8
1020 Amplifiers From 1 W afer Lot
VDD±= ±5 V
TA = 25°C
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
VIO Input Offset Voltage mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
ÁÁÁ
ÁÁÁ
VIO
VIC Common-Mode Input Voltage V
1
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
1012345
VDD = 5 V
RS = 50
TA = 25°C
Figure 7
VIO Input Offset Voltage mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
ÁÁ
ÁÁ
ÁÁ
VIO
VIC Common-Mode Input Voltage V
VDD± = ±5 V
RS = 50
TA = 25°C
1
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
6543210 12 3 45
Figure 8
Precentage of Amplifiers %
15
10
5
0
20
25
10 12
P Package
TA = 25°C to 125°C
DISTRIBUTION OF TLC2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO Temperature Coefficient µV/°C
62 Amplifiers From
1 W afer Lot
VDD = ±2.5 V
Figure 9
Percentage of Amplifiers %
15
10
5
0
20
25
10 12
62 Amplifiers From
1 W afer Lot
VDD = ±5 V
P Package
TA = 25°C to 125°C
DISTRIBUTION OF TLC2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO Temperature Coefficient µV/°C
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
Percentage of Amplifiers %
DISTRIBUTION OF TLC2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO Temperature Coefficient of
Input Offset Voltage µV/°C
15
10
5
0
20
25
210 12
62 Amplifiers From
1 W afer Lot
VDD± = ±2.5 V
P Package
TA = 25°C to 125°C
Figure 11
Percentage of Amplifiers %
DISTRIBUTION OF TLC2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO Temperature Coefficient of
Input Offset Voltage µV/°C
15
10
5
0
20
25
210 12
62 Amplifiers From
1 W afer Lot
VDD± = ±5 V
P Package
TA = 25°C to 125°C
Figure 12
10
5
30
025 45 65 85
IIB and IIO Input Bias and Input Offset Currents pA
20
15
25
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
35
105 125
IIB
IIO
VDD± = ±2.5 V
VIC = 0
VO = 0
RS = 50
TA Free-Air Temperature °C
ÁÁ
ÁÁ
IIB IIO
Figure 13
0
2345
VI Input Voltage Range V
4
8
INPUT VOLTAGE RANGE
vs
SUPPLY VOLTAGE
10
678
6
2
2
4
6
8
10
| VIO | 5 mV
RS = 50
TA = 25°C
VI
| VDD± | Supply Voltage V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
5
2
1
0
VI Input Voltage Range V
3
4
INPUT VOLTAGE RANGE
vs
FREE-AIR TEMPERATURE
5
1
75 55 35 15 25 45 65 85 105 125
VDD = 5 V
ÁÁ
ÁÁ
VI
TA Free-Air Temperature °C
Figure 15
VOH High-Level Output Voltage V
HIGH-LEVEL OUTPUT VOLTAGE†‡
vs
HIGH-LEVEL OUTPUT CURRENT
|IOH| High-Level Output Current µA
ÁÁ
ÁÁ
ÁÁ
VOH
3
2
1
00 200 400
4
5
600 800
VDD = 5 V
TA = 40°C
TA = 25°C
TA = 125°C
TA = 55°C
Figure 16
0.6
0.4
0.2
00123
VOL Low-Level Output Voltage V
0.8
1
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.2
45
VIC = 0 VIC = 1.25 V
VIC = 2.5 V
VDD = 5 V
TA = 25°C
ÁÁÁ
ÁÁÁ
ÁÁÁ
VOL
IOL Low-Level Output Current mA
Figure 17
0.8
0.4
0.2
00123
VOL Low-Level Output Voltage V
1
1.2
LOW-LEVEL OUTPUT VOLTAGE†‡
vs
LOW-LEVEL OUTPUT CURRENT
1.4
456
0.6
IOL Low-Level Output Current mA
TA = 125°C
TA = 25°C
TA = 55°C
VDD = 5 V
VIC = 2.5 V
ÁÁ
ÁÁ
ÁÁ
VOL
TA = 40°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 18
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
IO Output Current µA
3
2
1
00 200 400
4
5
600 800
TA = 125°C
TA = 25°C
VOM + Maximum Positive Peak Output Voltage V
ÁÁ
ÁÁ
ÁÁ
VOM +
TA = 40°C
VDD = ±5 V
TA = 55°C
Figure 19
01 2
VOM Maximum Negative Peak Output Voltage V
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
3456
3.8
4
4.2
4.4
4.6
4.8
5
VDD± = ±5 V
VIC = 0
TA = 125°C
TA = 25°C
TA = 40°C
IO Output Current mA
ÁÁ
ÁÁ
ÁÁ
VOM
TA = 55°C
Figure 20
VO(PP) Maximum Peak-to-Peak Output Voltage V
f Frequency Hz
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
VO(PP)
6
5
3
1
0
10
4
8
7
9
2
102103104105
VDD = 5 V
VDD± = ±5 V RL = 50 k
TA = 25°C
Figure 21
IOS Short-Circuit Output Current mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
IOS
| VDD± | Supply Voltage V
5
3
1
2345
7
8
10
678
9
6
4
2
0
1
VID = 100 mV
VID = 100 mV
VO = 0
TA = 25°C
VIC = 0
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
36 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 22
IOS Short-Circuit Output Current mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
TA Free-Air Temperature °C
IOS
11
10
9
8
7
6
5
4
3
2
1
0
1
75 50 25 0 25 50 75 100 125
VID = 100 mV
VID = 100 mV
VO = 0
VDD± = ±5 V
Figure 23
3
2
1
00 250
4
5
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
500 750 1000
VID Differential Input Voltage µV
Output Voltage V
VO
1000 750 250500
VDD = 5 V
RL = 50 k
VIC = 2.5 V
TA = 25°C
Figure 24
1
1
3
50 250
3
5
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
500 750 1000
VID Differential Input Voltage µV
VDD± = ±5 V
VIC = 0
RL = 50 k
TA = 25°C
Output Voltage V
VO
1000 750 250500
Figure 25
Differential Gain V/ mV
DIFFERENTIAL GAIN
vs
LOAD RESISTANCE
RL Load Resistance k
104
103
102
10 110
1102103
VO (PP) = 2 V
TA = 25°C
VDD = ±5 V
VDD = 5 V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
om Phase Margin
φm
f Frequency Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification dB
20
80
60
40
0
20
40
103104105106107
180°
135°
90°
45°
0°
45°
90°
Gain
VDD = 5 V
RL = 50 k
CL= 100 pF
TA = 25°C
Phase Margin
Figure 26
om Phase Margin
φm
f Frequency Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification dB
20
80
60
40
0
20
40
103104105106107
180°
135°
90°
45°
0°
45°
90°
Gain
VDD = ±10 V
RL= 50 k
CL= 100 pF
TA = 25°C
Phase Margin
Figure 27
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
38 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 28
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION†‡
vs
FREE-AIR TEMPERATURE
TA Free-Air Temperature °C
AVD Large-Signal Differential
Á
Á
AVD
V oltage Amplification V/mV
50 25 0 25 50 75 100 125
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 50 k
RL = 1 M
104
103
102
75
101
Figure 29
TA Free-Air Temperature °C
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
AVD Large-Signal Differential
ÁÁ
ÁÁ
AVD
V oltage Amplification V/mV
50 25 0 25 50 75 100 125
VDD± = ±5 V
VIC = 0
VO = ±4 V
RL = 50 k
104
103
102
RL = 1 M
75
101
Figure 30
zo Output Impedance 0
OUTPUT IMPEDANCE
vs
FREQUENCY
f Frequency Hz
zo
10
1
0.1
1000
100
102103104105106
VDD = 5 V
TA = 25°C
AV = 100
AV = 10
AV = 1
Figure 31
OUTPUT IMPEDANCE
vs
FREQUENCY
f Frequency Hz
zo Output Impedance 0
zo
10
1
0.1
1000
100
102103104105106
VDD± = ±5 V
TA = 25°C
AV = 100
AV = 10
AV = 1
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
39
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 32
f Frequency Hz
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR Common-Mode Rejection Ratio dB
80
40
20
0
100
60
101102103104105166
VDD = 5 V
VDD± = ±5 V
Figure 33
COMMON-MODE REJECTION RATIO†‡
vs
FREE-AIR TEMPERATURE
TA Free-Air Temperature °C
CMRR Common-Mode Rejection Ratio dB
84
82
92
80
88
86
90
94
50 25 0 25 50 75 100 125
VDD = 5 V
VDD± = ±5 V
75
Figure 34
f Frequency Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
KSVR Supply-Voltage Rejection Ratio dB
ÁÁ
ÁÁ
ÁÁ
kSVR
100
80
60
40
20
0
20
101102103104105106
kSVR
VDD = 5 V
TA = 25°C
kSVR+
Figure 35
KSVR Supply-Voltage Rejection Ratio dB
f Frequency Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
ÁÁÁ
ÁÁÁ
ÁÁÁ
kSVR
100
80
60
40
20
0
20
101102103104105106
kSVR+
kSVR
VDD± = ±5 V
TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
40 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 36
KSVR Supply-Voltage Rejection Ratio dB
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
ÁÁ
kSVR
TA Free-Air Temperature °C
100
95
90
105
110
50 25 0 25 50 75 100 125
VDD± = ±2.2 V to ±8 V
VO = 0
75
Figure 37
IDD Supply Current uA
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
| VDD± | Supply Voltage V
ÁÁ
ÁÁ
ÁÁ
IDD Aµ
120
80
40
0012345
160
200
240
678
TA = 25°C
TA = 125°C
VO = 0
No Load
TA = 55°C
TA = 40°C
Figure 38
SUPPLY CURRENT†‡
vs
FREE-AIR TEMPERATURE
IDD Supply Current uA
ÁÁ
ÁÁ
IDD Aµ
TA Free-Air Temperature °C
120
80
40
0
160
200
240
50 25 0 25 50 75 100 125
VDD± = ±5 V
VO = 0
VDD = 5 V
VO = 2.5 V
75
Figure 39
SR Slew Rate v/us
SLEW RATE
vs
LOAD CAPACITANCE
sµ
V/
CL Load Capacitance pF
0.16
0.08
0.04
0
0.2
0.12
101102103104
VDD = 5 V
AV = 1
TA = 25°C
SR
0.18
0.14
0.1
0.06
0.02
SR+
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
41
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 40
SLEW RATE†‡
vs
FREE-AIR TEMPERATURE
TA Free-Air Temperature °C
SR Slew Rate v/ussµ
V/
0.12
0.08
0.04
0
0.16
0.2
50 25 0 25 50 75 100 125
SR+
SR
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
75
Figure 41
VO Output Voltage V
INVERTING LARGE-SIGNAL PULSE
RESPONSE
VO
t Time µs
2
1
00 102030405060
3
4
5
70 80 90 100
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
Figure 42
t Time µs
VO Output Voltage V
VO
INVERTING LARGE-SIGNAL PULSE
RESPONSE
0
4
0 102030405060
2
1
3
5
70 80 90 100
VDD± = ±5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
1
2
3
4
5
Figure 43
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
t Time µs
VO Output Voltage V
VO
2
1
00 102030405060
3
4
5
70 80 90 100
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
42 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 44
VO Output Voltage V
VO
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
0
4
0 102030405060
2
1
3
5
70 80 90 100
VDD±= ±5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
1
2
3
4
5
t Time µs
Figure 45
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VO Output Voltage V
VO
t Time µs
2.5
2.45
2.40102030
2.55
2.6
2.65
40 50
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
Figure 46
INVERTING SMALL-SIGNAL
PULSE RESPONSE
t Time µs
VO Output Voltage mV
VO
0
0102030
0.1
40 50
0.05
0.05
0.1
VDD± = ±5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
Figure 47
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
VO Output Voltage V
VO
t Time µs
2.5
2.45
2.40102030
2.55
2.6
2.65
40 50
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
43
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 48
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
VO Output Voltage V
VO
t Time µs
01020304050
VDD± = ±5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
0.1
0.05
0
0.05
0.1
Figure 49
VN Equivalent Input Noise Voltage nv//Hz
f Frequency Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
nV/ Hz
Vn
40
20
10
0
60
30
50
101102103104
VDD = 5 V
RS = 20
TA = 25°C
Figure 50
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
f Frequency Hz
VN Equivalent Input Noise Voltage nv//Hz
nV/ Hz
Vn
40
20
10
0
60
30
50
101102103104
VDD± = ±5 V
RS = 20
TA = 25°C
Figure 51
Noise Voltage nV
t Time s
EQUIVALENT INPUT NOISE VOLTAGE OVER
A 10-SECOND PERIOD
0246
0
750
1000
810
500
250
500
750
1000
250
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
44 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 52
0.1
Integrated Noise Voltage
f Frequency Hz
INTEGRATED NOISE VOLTAGE
vs
FREQUENCY
1
10
100
110
1102103104105
Calculated Using Ideal Pass-Band Filter
Low Frequency = 1 Hz
TA = 25°C
Vµ
Figure 53
THD + N Total Harmonic Distortion Plus Noise %
f Frequency Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
0.01
1
0.001
101102103104105
AV = 10
AV = 1 VDD = 5 V
RL = 50 k
TA = 25°C
0.1
AV = 100
Figure 54
Gain-Bandwidth Product kHz
GAIN-BANDWIDTH PRODUCT†‡
vs
FREE-AIR TEMPERATURE
TA Free-Air Temperature °C
200
120
80
240
280
75 25 0 25 50 75 100 125
VDD = 5 V
f = 10 kHz
RL = 50 k
CL = 100 pF
50
160
Figure 55
Gain-Bandwidth Product kHz
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
| VDD ±| Supply Voltage V
210
190
170
150 0235
230
250
78
146
TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
45
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 56
om Phase Margin
PHASE MARGIN
vs
LOAD CAPACITANCE
CL Load Capacitance pF
m
φ
101102103105
75°
60°
45°
30°
15°
0°
Rnull = 200
Rnull = 500
Rnull = 50
Rnull = 0
TA = 25°C
Rnull = 10
104
50 k
50 k
VDD
VDD+ Rnull
CL
VI+
Rnull = 100
Figure 57
Gain Margin dB
GAIN MARGIN
vs
LOAD CAPACITANCE
CL Load Capacitance pF
20
10
5
0
15
101102103105
Rnull = 100
TA = 25°C
Rnull = 50
104
Rnull = 500
Rnull = 200
Rnull = 0
Rnull = 10
Figure 58
Unity-Gain Bandwidth kHz
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
CL Load Capacitance pF
ÁÁ
ÁÁ
B1
150
25
100
0
200
125
175
50
75
101102103104105
TA = 25°C
Figure 59
Overestimation of Phase Margin
OVERESTIMATION OF PHASE MARGIN
vs
LOAD CAPACITANCE
CL Load Capacitance pF
15
10
5
0
20
25
101102103104105
TA = 25°C
Rnull = 100
Rnull = 50
Rnull = 10
Rnull = 500
Rnull = 200
See application information
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
46 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
driving large capacitive loads
The TLC225x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56
and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins
(Rnull = 0).
A smaller series resistor (Rnull) at the output of the device (see Figure 60) improves the gain and phase margins
when driving large capacitive loads. Figure 56 and Figure 57 show the effects of adding series resistances of
10 , 50 , 100 , 200 , and 500 . The addition of this series resistor has two effects: the first is that it adds
a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the
output load in the transfer function.
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To
calculate the improvement in phase margin, equation 1 can be used.
∆φm1
+
tan1
ǒ
2×π×UGBW×Rnull ×CL
Ǔ
Where :
(1)
∆φm1
+
Improvement in phase margin
UGBW
+
Unity-gain bandwidth frequency
Rnull
+
Output series resistance
CL
+
Load capacitance
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To
use equation 1, UGBW must be approximated from Figure 58.
Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 59. The
overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing
additional phase shift and reducing the overall improvement in phase margin.
Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to
optimize the design of circuits driving large capacitance loads.
50 k
50 k
VDD/GND
VDD+
Rnull
CL
VI+
Figure 60. Series-Resistance Circuit
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176D FEBRUARY 1997 REVISED MARCH 2001
47
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using MicroSim Parts, the model generation software used
with MicroSim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using
the TLC225x typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
D
Unity-gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, Macromodeling of Integrated Circuit Operational Amplifiers, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
+
.SUBCKT TLC225x 1 2 3 4 5
C1 11 12 6.369E12
C2 6 7 25.00E12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 43DX
EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5
FB 7 99 POLY (5) VB VC VE VLP
+ VLN 0 57.62E6 60E6 60E6 60E6 60E6
GA 6 0 11 12 26.86E6
GCM 0 6 10 99 2.686E9
ISS 3 10 DC 3.1E6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.0E3
RD1 60 11 37.23E3
RD2 60 12 37.23E3
R01 8 5 84
R02 7 99 84
RP 3 4 71.43E3
RSS 10 99 64.52E6
VAD 60 4 .5
VB 9 0 DC 0
VC 3 53 DC .605
VE 54 4 DC .605
VLIM 7 8 DC 0
VLP 91 0 DC .235
VLN 0 92 DC 7.5
.MODEL DX D (IS=800.0E18)
.MODEL JX PJF (IS=500.0E15 BETA=139E6
+ VTO=.05)
.ENDS
VCC+
RP
IN 2
IN+ 1
VCC
VAD
RD1
11
J1 J2
10
RSS ISS
3
12
RD2
60
VE
54 DE
DP
VC
DC
4
C1
53
R2 6
9
EGND
VB
FB
C2
GCM GA VLIM
8
5RO1
RO2
HLIM
90 DLP
91
DLN
92
VLNVLP
99
7
Figure 61. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
5962-9564001NXD ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
5962-9564001NXDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
5962-9564001Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9564001QHA ACTIVE CFP U 10 1 TBD Call TI Call TI
5962-9564001QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9564002NYDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
5962-9564002Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9564002QCA ACTIVE CDIP J 14 1 TBD Call TI Call TI
5962-9564002QDA ACTIVE CFP W 14 1 TBD Call TI Call TI
5962-9564003NXD ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
5962-9564003NXDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
5962-9564003Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9564003QHA ACTIVE CFP U 10 1 TBD Call TI Call TI
5962-9564003QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9564004NYDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
5962-9564004Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9564004QCA ACTIVE CDIP J 14 1 TBD Call TI Call TI
5962-9564004QDA ACTIVE CFP W 14 1 TBD Call TI Call TI
TLC2252AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC2252AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2252AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2252AIPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AIPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AIPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI
TLC2252AIPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AIPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLC2252AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLC2252AMUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type
TLC2252AQD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AQDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AQDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252AQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2252CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2252CPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC2252CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252CPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI
TLC2252CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2252IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2252MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLC2252MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLC2252MUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type
TLC2252QD ACTIVE SOIC D 8 TBD Call TI Call TI
TLC2252QDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2252QDR ACTIVE SOIC D 8 TBD Call TI Call TI
TLC2252QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AIDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AIDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 4
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC2254AINE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2254AIPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AIPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AIPWLE OBSOLETE TSSOP PW 14 TBD Call TI Call TI
TLC2254AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AIPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLC2254AMJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
TLC2254AMWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type
TLC2254AQD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AQDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AQDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254AQDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254CD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) Call TI Level-1-260C-UNLIM
TLC2254CDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) Call TI Level-1-260C-UNLIM
TLC2254CDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2254CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2254CPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 5
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC2254CPWLE OBSOLETE TSSOP PW 14 TBD Call TI Call TI
TLC2254CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254ID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254IDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254IDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2254INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC2254MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLC2254MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
TLC2254MWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type
TLC2254QD ACTIVE SOIC D 14 TBD Call TI Call TI
TLC2254QDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC2254QDR ACTIVE SOIC D 14 TBD Call TI Call TI
TLC2254QDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 6
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLC2252, TLC2252A, TLC2252AM, TLC2252M, TLC2254, TLC2254A, TLC2254AM, TLC2254M :
Catalog: TLC2252A, TLC2252, TLC2254A, TLC2254
Automotive: TLC2252-Q1, TLC2252A-Q1, TLC2252A-Q1, TLC2252-Q1, TLC2254-Q1, TLC2254A-Q1, TLC2254A-Q1, TLC2254-Q1
Enhanced Product: TLC2252-EP, TLC2252A-EP, TLC2252A-EP, TLC2252-EP, TLC2254-EP, TLC2254A-EP, TLC2254A-EP, TLC2254-EP
Military: TLC2252M, TLC2252AM, TLC2254M, TLC2254AM
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Enhanced Product - Supports Defense, Aerospace and Medical Applications
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
5962-9564001NXDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
5962-9564002NYDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
5962-9564003NXDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
5962-9564004NYDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLC2252AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC2252AIPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLC2252CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC2252CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLC2252IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC2254AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLC2254AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TLC2254AQDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLC2254CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLC2254CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TLC2254IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 17-Aug-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
5962-9564001NXDR SOIC D 8 2500 367.0 367.0 35.0
5962-9564002NYDR SOIC D 14 2500 367.0 367.0 38.0
5962-9564003NXDR SOIC D 8 2500 367.0 367.0 35.0
5962-9564004NYDR SOIC D 14 2500 367.0 367.0 38.0
TLC2252AIDR SOIC D 8 2500 340.5 338.1 20.6
TLC2252AIPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLC2252CDR SOIC D 8 2500 340.5 338.1 20.6
TLC2252CPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLC2252IDR SOIC D 8 2500 340.5 338.1 20.6
TLC2254AIDR SOIC D 14 2500 367.0 367.0 38.0
TLC2254AIPWR TSSOP PW 14 2000 367.0 367.0 35.0
TLC2254AQDR SOIC D 14 2500 367.0 367.0 38.0
TLC2254CDR SOIC D 14 2500 367.0 367.0 38.0
TLC2254CPWR TSSOP PW 14 2000 367.0 367.0 35.0
TLC2254IDR SOIC D 14 2500 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 17-Aug-2012
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated