VNP35N07FI
VNB35N07/VNV35N07
OMNIFET”:
FULLY AUTOPROTECTED POWER MOSFET
June 1998
BLOCK DIAGRAM ()
TYPE Vclamp RDS(on) Ilim
VNP35N07FI
VNB35N07
VNV35N07
70 V
70 V
70 V
0.028
0.028
0.028
35 A
35 A
35 A
LINEAR CURRENT LIMITATION
THERMAL SHUTDOWN
SHORTCIRCUIT PROTECTION
INTEGRATED CLAMP
LOW CURRENT DRAWN FROM INPUT PIN
DIAGNOSTIC FEEDBACK THROUGH INPUT
PIN
ESD PROTECTION
DIRECT ACCESS TO THE GATE OF THE
POWER MOSFET (ANALOG DRIVING)
COMPATIBLEWITH STANDARD POWER
MOSFET
DESCRIPTION
The VNP35N07FI, VNB35N07 and VNV35N07
are monolithic devices made using
STMicroelectronics VIPower M0 Technology,
intended for replacement of standard power
MOSFETS in DC to 50 KHz applications. Built-in
thermal shut-down, linear current limitation and
overvoltage clamp protect the chip in harsh
enviroments.
Faultfeedbackcan be detected by monitoringthe
voltage at the input pin.
1
10
PowerSO-10
123
13
D2PAK
TO-263
ISOWATT220
() PowerSO-10 PinConfiguration : INPUT = 6,7,8,9,10;SOURCE =1,2,4,5; DRAIN = TAB
1/13
ABSOLUTE MAXIMUMRATING
Symbol Parameter Value Unit
PowerSO-10
D2PAK ISOWATT220
VDS Drain-source Voltage (Vin = 0) Internally Clamped V
Vin Input Voltage 18 V
IDDrain Current Internally Limited A
IRReverse DC Output Current -50 A
Vesd Electrostatic Discharge (C= 100 pF, R=1.5 K) 2000 V
Ptot Total Dissipation at Tc=25o
C 125 40 W
TjOperating Junction Temperature Internally Limited oC
TcCase Operating Temperature Internally Limited oC
Tstg Storage Temperature -55 to 150 oC
THERMAL DATA
ISOWATT220 PowerSO-10 D2PAK
Rthj-case
Rthj-amb Thermal Resistance Junction-case Max
Thermal Resistance Junction-ambient Max 3.12
62.5 1
50 1
62.5
oC/W
oC/W
ELECTRICAL CHARACTERISTICS (Tcase =25oC unlessotherwise specified)
OFF
Symbol Parameter Test Conditions Min. Typ. Max. Unit
VCLAMP Drain-source Clamp
Voltage ID= 200 mA Vin = 0 60 70 80 V
VCLTH Drain-source Clamp
Threshold Voltage ID=2mA V
in =0 55 V
V
INCL Input-Source Reverse
Clamp Voltage Iin =-1mA -1 -0.3 V
I
DSS Zero Input Voltage
Drain Current (Vin =0) V
DS =13V V
in =0
V
DS =25V V
in =0 50
200 µA
µA
IISS Supply Current from
Input Pin VDS =0V V
in = 10 V 250 500 µA
ON ()
Symbol Parameter Test Conditions Min. Typ. Max. Unit
VIN(th) Input Threshold
Voltage VDS =V
in ID+Ii
n=1mA 0.8 3 V
R
DS(on) Static Drain-source On
Resistance Vin =10V I
D=18A
V
in =5V I
D=18A 0.028
0.035
DYNAMIC
Symbol Parameter Test Conditions Min. Typ. Max. Unit
gfs ()Forward
Transconductance VDS =13V I
D=18A 20 25 S
C
oss Output Capacitance VDS =13V f=1MHz V
in = 0 980 1400 pF
VNP35N07FI-VNB35N07-VNV35N07
2/13
ELECTRICAL CHARACTERISTICS (continued)
SWITCHING (∗∗)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
td(on)
tr
td(off)
tf
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
VDD =28V I
d=18A
V
gen =10V R
gen =10
(see figure 3)
100
350
650
200
200
600
1000
350
ns
ns
ns
ns
td(on)
tr
td(off)
tf
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
VDD =28V I
d=18A
V
gen =10V R
gen = 1000
(see figure 3)
500
2.7
10
4.3
800
4.2
16
6.5
ns
µs
µs
µs
(di/dt)on Turn-on Current Slope VDD =28V I
D=18A
V
in =10V R
gen =1060 A/µs
QiTotal Input Charge VDD =12V I
D=18A V
in = 10 V 100 nC
SOURCE DRAIN DIODE
Symbol Parameter Test Conditions Min. Typ. Max. Unit
VSD ()ForwardOnVoltage I
SD =18A V
in =0 1.6 V
t
rr(∗∗)
Qrr(∗∗)
IRRM(∗∗)
Reverse Recovery
Time
Reverse Recovery
Charge
Reverse Recovery
Current
ISD = 18 A di/dt = 100 A/µs
VDD =30V T
j=25o
C
(see test circuit, figure 5)
250
1
8
ns
µC
A
PROTECTION
Symbol Parameter Test Conditions Min. Typ. Max. Unit
Ilim Drain Current Limit Vin =10V V
DS =13V
V
in =5V V
DS =13V 25
25 35
35 45
45 A
A
tdlim(∗∗) Step Response
Current Limit Vin =10V
V
in =5V 35
70 60
140 µs
µs
Tjsh(∗∗) Overtemperature
Shutdown 150 oC
Tjrs(∗∗) Overtemperature Reset 135 oC
Igf(∗∗) Fault Sink Current Vin =10V V
DS =13V
V
in =5V V
DS =13V 50
20 mA
mA
Eas(∗∗) Single Pulse
Avalanche Energy starting Tj=25o
CV
DD =20V
V
in =10V R
gen =1KL=10mH 2.5 J
() Pulsed: Pulse duration =300 µs, duty cycle1.5 %
(∗∗) Parameters guaranteed by design/characterization
VNP35N07FI-VNB35N07-VNV35N07
3/13
During normal operation, the Input pin is
electrically connected to the gate of the internal
power MOSFET. The device then behaves like a
standard power MOSFET and can be used as a
switch from DC to 50 KHz. The only difference
from the user’s standpoint is that a small DC
current (Iiss) flows into the Input pin in order to
supplythe internalcircuitry.
The deviceintegrates:
-OVERVOLTAGE CLAMP PROTECTION:
internally set at 70V, along with the rugged
avalanche characteristics of the Power
MOSFET stage give this device unrivalled
ruggedness and energy handling capability.
This feature is mainly important when driving
inductiveloads.
-LINEAR CURRENT LIMITER CIRCUIT: limits
the drain current Id to Ilim whatever the Input
pin voltage. When the current limiter is active,
the device operates in the linear region, so
power dissipation may exceed the capability of
the heatsink. Both case and junction
temperatures increase, and if this phase lasts
long enough, junction temperature may reach
the overtemperaturethreshold Tjsh.
-OVERTEMPERATURE AND SHORT CIRCUIT
PROTECTION: these are based on sensing
the chip temperatureand are not dependenton
the input voltage. The location of the sensing
element on the chip in the power stage area
ensures fast, accurate detection of the junction
temperature. Overtemperaturecutout occurs at
minimum 150oC. The device is automatically
restarted when the chip temperature falls
below135oC.
-STATUS FEEDBACK: In the case of an
overtemperature fault condition, a Status
Feedback is provided through the Input pin.
The internal protection circuit disconnects the
input from the gate and connects it instead to
ground via an equivalent resistance of 100 .
The failure can be detected by monitoring the
voltage at the Input pin, which will be close to
ground potential.
Additional features of this device are ESD
protection according to the Human Body model
and the ability to be driven from a TTL Logic
circuit (with a small increase in RDS(on)).
PROTECTION FEATURES
VNP35N07FI-VNB35N07-VNV35N07
4/13
Thermal ImpedanceFor ISOWATT220
Derating Curve
Transconductance
Thermal ImpedanceFor D2PAK / PowerSO-10
OutputCharacteristics
Static Drain-Source On Resistance vs Input
Voltage
VNP35N07FI-VNB35N07-VNV35N07
5/13
StaticDrain-Source On Resistance
Input Chargevs InputVoltage
Normalized Input Threshold Voltage vs
Temperature
Static Drain-Source On Resistance
CapacitanceVariations
Normalized OnResistance vs Temperature
VNP35N07FI-VNB35N07-VNV35N07
6/13
Normalized OnResistance vs Temperature
Turn-onCurrent Slope
Turn-offDrain-Source VoltageSlope
Turn-on Current Slope
Turn-off Drain-SourceVoltage Slope
Switching Time Resistive Load
VNP35N07FI-VNB35N07-VNV35N07
7/13
Switching Time Resistive Load
CurrentLimit vs JunctionTemperature
SourceDrain DiodeForward Characteristics
Switching Time Resistive Load
Step Response Current Limit
VNP35N07FI-VNB35N07-VNV35N07
8/13
Fig. 2: UnclampedInductiveWaveforms
Fig. 3: Switching Times Test Circuits For
ResistiveLoad Fig. 4: InputCharge Test Circuit
Fig. 1: UnclampedInductive Load Test Circuits
Fig. 5: TestCircuit For InductiveLoad Switching
And Diode RecoveryTimes Fig. 6: Waveforms
VNP35N07FI-VNB35N07-VNV35N07
9/13
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.4 4.6 0.173 0.181
B 2.5 2.7 0.098 0.106
D 2.5 2.75 0.098 0.108
E 0.4 0.7 0.015 0.027
F 0.75 1 0.030 0.039
F1 1.15 1.7 0.045 0.067
F2 1.15 1.7 0.045 0.067
G 4.95 5.2 0.195 0.204
G1 2.4 2.7 0.094 0.106
H 10 10.4 0.393 0.409
L2 16 0.630
L3 28.6 30.6 1.126 1.204
L4 9.8 10.6 0.385 0.417
L6 15.9 16.4 0.626 0.645
L7 9 9.3 0.354 0.366
Ø 3 3.2 0.118 0.126
L2
A
B
D
E
H
G
L6
¯
F
L3
G1
123
F2
F1
L7
L4
ISOWATT220 MECHANICAL DATA
P011G
VNP35N07FI-VNB35N07-VNV35N07
10/13
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.3 4.6 0.169 0.181
A1 2.49 2.69 0.098 0.106
B 0.7 0.93 0.027 0.036
B2 1.25 1.4 0.049 0.055
C 0.45 0.6 0.017 0.023
C2 1.21 1.36 0.047 0.053
D 8.95 9.35 0.352 0.368
E 10 10.28 0.393 0.404
G 4.88 5.28 0.192 0.208
L 15 15.85 0.590 0.624
L2 1.27 1.4 0.050 0.055
L3 1.4 1.75 0.055 0.068
L2
L3
L
B2
B
G
EA
C2
D
C
A1
P011P6/C
TO-263 (D2PAK) MECHANICAL DATA
VNP35N07FI-VNB35N07-VNV35N07
11/13
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 3.35 3.65 0.132 0.144
A1 0.00 0.10 0.000 0.004
B 0.40 0.60 0.016 0.024
c 0.35 0.55 0.013 0.022
D 9.40 9.60 0.370 0.378
D1 7.40 7.60 0.291 0.300
E 9.30 9.50 0.366 0.374
E1 7.20 7.40 0.283 0.291
E2 7.20 7.60 0.283 0.300
E3 6.10 6.35 0.240 0.250
E4 5.90 6.10 0.232 0.240
e 1.27 0.050
F 1.25 1.35 0.049 0.053
H 13.80 14.40 0.543 0.567
h 0.50 0.002
L 1.20 1.80 0.047 0.071
q 1.70 0.067
α0o8o
DETAIL”A”
PLANE
SEATING
α
L
A1
F
A1
h
A
D
D1
==
==
==
E4
0.10 A
E1E3
C
Q
A
==
B
B
DETAIL”A”
SEATING
PLANE
==
==
E2
610
51
eB
HE
M
0.25
==
==
0068039-C
PowerSO-10 MECHANICAL DATA
VNP35N07FI-VNB35N07-VNV35N07
12/13
Information furnished is believed tobe accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject tochange without notice. This publication supersedes andreplaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical componentsin life support devices or systems without express written approval of STMicroelectronics.
The ST logo isa trademarkof STMicroelectronics
1998 STMicroelectronics Printed in Italy All Rights Reserved
STMicroelectronicsGROUP OFCOMPANIES
Australia - Brazil - Canada- China - France- Germany- Italy- Japan- Korea- Malaysia- Malta - Mexico- Morocco- TheNetherlands -
Singapore- Spain- Sweden- Switzerland- Taiwan -Thailand - United Kingdom- U.S.A.
.
VNP35N07FI-VNB35N07-VNV35N07
13/13