LM2904 LOW POWER DUAL OPERATIONAL AMPLIFIERS .. . . . .. . . INTERNALLY FREQUENCY COMPENSATED LARGE DC VOLTAGE GAIN : 100dB WIDE BANDWIDTH (unity gain) : 1.1MHz (temperature compensated) VERY LOW SUPPLY CURRENT/OP (500A) ESSENTIALLY INDEPENDENT OF SUPPLY VOLTAGE LOW INPUT BIAS CURRENT : 20nA (temperature compensated) LOW INPUT OFFSET CURRENT : 2nA INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND DIFFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE POWER SUPPLY VOLTAGE LARGE OUTPUT VOLTAGE SWING 0V TO (VCC - 1.5V) N DIP8 (Plastic Package) D SO8 (Plastic Micropackage) P TSSOP8 (Thin Shrink Small Outline Package) ORDER CODES Part Number LM2904 DESCRIPTION This circuit consists of two independent,high gain, internally frequency compensated which were designed specifically for automotive and industrial control system. It operates from a single power supply over a wide range of voltages. The low power supply drain is independentof the magnitude of the power supply voltage. Application areas include transducer amplifiers, dc gain blocks and all the conventional op-amp circuits which now can be more easily implementedin single power supply systems. For example, these circuits can be directly supplied with off the standard + 5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. January 1999 Package Temperature Range N D P -40oC, +125oC * * * Example : LM2904D PIN CONNECTIONS (top view) 1 8 2 - 3 + 4 1 2 3 4 - Output 1 - Inverting input 1 - Non-inverting input 1 - VCC 7 - 6 + 5 5 - Non-inverting input 2 6 - Inverting input 2 7 - Ouput 2 + 8 - VCC 1/12 LM2904 SCHEMATIC DIAGRAM (1/2 LM2904) VCC 6 A 4 A 100 A Q5 Q6 CC Inve rting input Q2 Q3 Q1 Q7 Q4 R SC Q11 Non-inve rting input Output Q13 Q10 Q8 Q12 Q9 50 A GND ABSOLUTE MAXIMUM RATINGS Symbol VCC Parameter LM2904 Unit +32 V -0.3 to +32 V +32 V Power Dissipation 500 mW Input Current - (note 1) 50 mA Supply Voltage Vi Input Voltage Vid Differential Input Voltage Output Short-circuit Duration - (note 2) Ptot Iin 2/12 Toper Operating Free-air Temperature Range -40 to +125 o C Tstg Storage Temperature Range -65 to +150 o C LM2904 ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC- = Ground, VO = 1.4V, Tamb = 25oC (unless otherwise specified) Symbol Vio Iio Iib Avd SVR ICC Vicm CMR Isource Isink VOPP VOH VOL SR GBP THD Parameter Input Offset Voltage - (note 3) o Tamb = 25 C Tmin. Tamb Tmax. Input Offset Current o Tamb = 25 C Tmin. Tamb Tmax. Input Bias Current - (note 4) Tamb = 25oC Tmin. Tamb Tmax. Large Signal Voltage Gain (VCC = +15V, RL = 2k, VO = 1.4V to 11.4V) o Tamb = 25 C Tmin. Tamb Tmax. Supply Voltage Rejection Ratio (RS = 10k) + (VCC = 5 to 30V) Tamb = 25oC Tmin. Tamb Tmax. Supply Current, all Amp, no Load VCC = +5V, Tmin. Tamb Tmax. VCC = +30V, Tmin. Tamb Tmax. Input Common Mode Voltage Range (VCC = +30V) - (note 6) o Tamb = 25 C Tmin. Tamb Tmax. Common-mode Rejection Ratio (RS = 10k) Tamb = 25oC Tmin. Tamb Tmax. Output Source Current (VCC = +15V, Vo = 2V, Vid = +1V) Output Current Sink (Vid = -1V) VCC = +15V, V O = 2V VCC = +15V, V O = +0.2V Output Voltage Swing (RL = 2k) Tamb = 25oC Tmin. Tamb Tmax. + High Level Output Voltage (VCC = 30V) o R L = 2k Tamb = 25 C Tmin. Tamb Tmax. o R L = 10k Tamb = 25 C Tmin. Tamb Tmax. Low Level Output Voltage (R L = 10k) Tamb = 25oC Tmin. Tamb Tmax. Slew Rate (VCC = 15V, VI = 0.5 to 3V, RL = 2k, CL = 100pF, unity gain) Gain Bandwidth Product (VCC = 30V, f = 100kHz, Vin = 10mV, RL = 2k, C L = 100pF) Total Harmonic Distortion (f = 1kHz, Av = 20dB, RL = 2k, VCC = 30V, C L = 100pF, VO = 2 PP) Min. Typ. Max. 2 7 9 2 30 40 20 150 200 Unit mV nA nA V/mV 50 25 100 dB 65 65 100 mA 0.7 1.2 2 V + VCC -1.5 VCC+-2 0 0 dB 70 60 85 20 40 10 12 20 50 mA 60 VCC+-1.5 VCC+-2 0 0 mA A V V 26 26 27 27 27 28 mV 5 20 20 V/s 0.3 0.6 MHz 0.7 1.1 % 0.02 3/12 LM2904 ELECTRICAL CHARACTERISTICS (continued) Symbol DVio DIio VO1/VO2 N otes : Parameter Input Offset Voltage Drift Input Offset Current Drift Channel Separation (note 5) 1kHz f 20kHz Min. Unit o A/ C o pA/ C dB 120 LARGE S IGNAL FR EQUENCY R ES P ONSE 20 140 VI VCC /2 OUTPUT SWING (Vpp) VCC - 100 VO + 80 VCC = 30V & -55 C Tamb +125 C 60 40 20 100k 10M 0.1 F 120 VOLTAGE GAIN (dB) Max 30 300 1. This input current only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 2. Short-circuits from the output to VCC can cause excessive heating if VCC + > 15V. The maximum output current is approximatively 40mA independent of the magnitude of VCC . Destructive dissipation can result from simultaneous short-circuits on all amplifi ers. 3. VO = 1.4V, RS = 0, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V. 4. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 5. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. 6. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V. But either or both inputs can go to +32V without damage. O PEN LOOP FREQUENCY RES PO NS E (NOTE 3) 1k +7V 2k + 10 5 0 10 100 1k 10k 100k 1M 10M 1k 10k 100k 1M FR EQUENCY (Hz) OUTPUT CHARACTERISTICS FREQUENCY (Hz) VOLAGE FOLLOWER P ULSE R ES PONSE 10 4 RL 2 k VCC = +15V 3 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) VO VI VCC = +10 to + 15V & -55 C Tamb +125 C 1.0 2 1 0 INPUT VOLTAGE (V) +15V - 15 0 3 2 VCC = +5V VCC = +15V VCC = +30V 1 v cc v cc /2 IO 10 20 30 40 VO + T amb = +25 C 0.01 0 - 0.1 1 TIME (s ) 4/12 Typ. 7 10 0,001 0,01 0,1 1 10 100 OUTP UT S INK CURRENT (mA) LM2904 + 450 eO el - 50pF 400 Inp ut 350 Outpu t 300 Tamb = +25 C VCC = 30 V 250 0 1 2 3 4 5 6 7 8 VCC 7 6 TO VCC+ (V) OUTPUT VOLTAGE (mV) 500 OUTP UT CHARACTERISTICS OUTPUT VOLTAGE REFERENCED VOLTAGE FOLLOWER P ULSS E RES PONSE (SMALL S IGNAL) 5 VO IO - 4 3 Inde pendent of V CC T amb = +25 C 2 1 8 0,001 0,01 TIME (s) INPUT CURRENT (Note 1) 0,1 1 10 100 OUTP UT SOURCE CURRENT (mA) CURRENT LIMITING (Note 1) 90 90 VI = 0 V OUTPUT CURRENT (mA) 80 INPUT CURRENT (mA) + VCC /2 70 VCC = +30 V 60 50 VCC = +15 V 40 30 VCC = +5 V 20 - 80 IO 70 60 + 50 40 30 20 10 10 0 0 -55 -35 -15 5 25 45 65 85 105 -55 -35 125 TEMPERATURE ( C) INPUT VOLTAGE RANGE -15 5 25 45 65 85 105 125 TEMPERATURE ( C) S UPP LY CURRENT 4 15 SUPPLY CURRENT (mA) INPUT VOLTAGE (V) VCC 10 NOga tive P os itive 5 ID mA 3 - 2 + Ta mb = 0 C to +125 C 1 Tamb = -55 C 0 5 10 POWER S UPP LY VOLTAGE (-V) 15 0 10 20 30 POS ITIVE SUPP LY VOLTAGE (V) 5/12 LM2904 160 100 INPUT CURRENT (nA) VOLTAGE GAIN (dB) R L = 20k 120 R L = 2k 80 40 0 10 20 30 75 50 25 40 0 10 20 30 P OS ITIVE S UP P LY VOLTAGE (V) VOLTAGE GAIN (dB) R L = 20k 120 R L = 2k 80 40 0 10 20 30 GAIN BANDWIDTH PRODUCT (MHz) P OS ITIVE S UP P LY VOLTAGE (V) 160 1.5 1.35 1.2 1.05 0.9 0.75 15V 0.45 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE ( C) COMMON MODE REJECTION RATIO (dB) POWER SUPPLY REJECTION RATIO (dB) 6/12 TEMPERATURE ( C) VCC = 0.6 P OS ITIVE S UP P LY VOLTAGE (V) 115 110 S VR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 Tamb= +25 C 115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE ( C) LM2904 TYPICAL APPLICATIONS (single supply voltage) VCC = +5V DC AC COUPLED INVERTING AMPLIFIER Rf 100k 1/2 LM29 04 eI ~ R2 VCC 100k R1 100k Rf R1 (as shown AV = -10) R1 10k CI A V= - AC COUPLED NON-INVERTING AMPLIFIER Co RB 6.2k R3 100k A V= 1 + R2 R1 (as s hown AV = 11) C1 0.1 F 2VP P e o0 R2 1M Co 1 /2 LM290 4 CI RL 10k e o0 RB 6.2k eI ~ R3 1M 2VP P RL 10k R4 100k VCC C1 10 F C2 10 F NON-INVERTING DC AMPLIFIER R5 100k DC SUMMING AMPLIFIER e1 100k AV= 1 + R2 R1 10k (As s hown AV = 101) R2 1M R1 10k 100k +5V e O (V) 1/2 LM2904 eO e2 100k e3 100k 1/2 LM2904 eO 100k 0 e I (mV) e4 100k eo = e 1 + e2 - e3 - e4 where (e1 + e2) (e 3 + e4) to keep eo 0V 7/12 LM2904 HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER USING SYMMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT 1/2 II eI R4 100k R2 100k R1 100k 1/2 LM29 04 IB 2N 929 0.001 F R3 100k 1/2 LM29 04 +V1 +V2 eo IB LM2904 IB IB Vo 3M HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER Input curre nt compensa tion IB 1.5M if R1 = R 5 and R 3 = R 4 = R 6 = R7 2R1 eo = [ 1+ ] (e2 - e1) R2 As shown eo = 101 (e2 - e1). 1/2 LM2904 LOW DRIFT PEAK DETECTOR R1 100k IB e1 R2 2k 1/2 LM2904 R4 100k 1/2 1/2 LM2904 R5 100k eO eI C 1 F ZI R7 100k R 1M Zo 2IB 2N 929 2IB R6 100k 0.001 F IB 3R 3M IB 2 if R 1 = R 5 and R 3 = R 4 = R 6 = R 7 2R1 e o = [ 1+ ] (e2 - e 1) R2 As shown eo = 101 (e2 - e 1) 8/12 eo I B LM2904 1/2 LM2904 G ain adjus t 1/2 LM2904 e R3 100k 1/2 LM2904 Inp ut curre nt c ompe ns a tion LM2904 ACTIVE BAND-PASS FILTER R1 100k C1 330pF R2 100k +V1 1/2 LM2904 R5 470k R4 10M R3 100k C2 330pF 1/2 LM2904 R6 470k Vo 1/2 LM2904 R7 100k VCC Fo = 1kHz Q = 50 AV = 100 (40dB) R8 100k C3 10 F 9/12 LM2904 PM-DIP8.EPS PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP A a1 B b b1 D E e e3 e4 F i L Z 10/12 Min. Millimeters Typ. 3.32 0.51 1.15 0.356 0.204 Max. 1.65 0.55 0.304 10.92 9.75 7.95 Min. 0.020 0.045 0.014 0.008 Max. 0.065 0.022 0.012 0.430 0.384 0.313 2.54 7.62 7.62 3.18 Inches Typ. 0.131 0.100 0.300 0.300 6.6 5.08 3.81 1.52 0.125 0260 0.200 0.150 0.060 DIP8.TBL Dimensions LM2904 PM-SO8.EPS PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) A a1 a2 a3 b b1 C c1 D E e e3 F L M S Min. Millimeters Typ. 0.1 0.65 0.35 0.19 0.25 Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 Min. Inches Typ. 0.026 0.014 0.007 0.010 Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.189 0.228 0.197 0.244 0.004 o 45 (typ.) 4.8 5.8 5.0 6.2 1.27 3.81 3.8 0.4 0.050 0.150 4.0 1.27 0.6 0.150 0.016 0.157 0.050 0.024 SO8.TBL Dimensions o 8 (max.) 11/12 LM2904 PACKAGE MECHANICAL DATA 8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE Dim. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b 0.19 c 0.09 D 2.90 E E1 PREVIEW 0.15 1.00 3.00 0.05 0.01 1.05 0.031 0.30 0.007 0.20 0.003 3.10 0.114 6.40 4.30 e 4.40 o 0 l 0.50 4.50 0.039 0.041 0.15 0.012 0.118 0.122 0.169 0.173 0.177 0.025 o 0.60 0.006 0.252 0.65 k Max. o 8 0 0.75 0.09 o 8 0.0236 0.030 1999 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdo m - U.S.A. 12/12 ORDER CODE : Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST log o is a trademark of STMicroelectronics