SGS-THOMSON MICROELECTROMICS SH LF147 - LF247 LF347/B WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS = LOW POWER CONSUMPTION s WIDE COMMON-MODE (UP TO Vcc) AND DIFFERENTIAL VOLTAGE RANGE a LOW INPUT BIAS AND OFFSET CURRENT a OUTPUT SHORT-CIRCUIT PROTECTION a HIGH INPUT IMPEDANCE J-FET INPUT STAGE a INTERNAL FREQUENCY COMPENSATION a LATCH UP FREE OPERATION = HIGH SLEW RATE : 16V/us (typ) DIP14 (Plastic Package) D so14 (Plastic Micropackage) DESCRIPTION These circuits are high speed J-FET input quad ORDER CODES : Operational amplifiers incorporating well matched, high Packs ' voltage J-FET and bipolar transistors in a monolithic nent er Temperature ge integrated circuit. - . N D The devices feature high slew rates, low input bias and LFS47/B oC, +70C . _ Offset currents, and low offset voltage temperature LF247 40C, +105C . . coefficient. LF147 ~55C, +125C PIN CONNECTIONS (top view) X7/ Output 1 1 O | I 14 Output 4 Inverting Input 1 2 sl <f 13 Inverting Input 4 Non-inverting Input 1 3 C a 12 Non-inverting Input 4 Vec+ 4 rT] 11 Vec- Non-inverting Input 2 5 C + ] 10 Non-inverting Input 3 Inverting Input 2 6 O Hy 9 Inverting Input 3 Output2 7 T] 8 Output 3 147-01.EPS ! October 1992 8 253 147-01.TBLLF147 - LF247 - LF347/8 SCHEMATIC DIAGRAM (each amplifier) Voo* : i | i ~ A | Non- rinverting Invertin: : inpu 1009 | 5992 {_] Output : 1009 30k , Ct 8.2k | 1.3k 35k 1.3k a5k | | 1000 { i Vee 4 | 147-02.EPS 1 | ABSOLUTE MAXIMUM RATINGS | Symbol! Parameter Value Unit Vcc | Supply Voltage - (note 1) +18 v | Vi Input Voltage - (note 3) +15 Vv ' Vig Differential Input Voltage - (note 2) +30 v ; Pit | Power Dissipation 680 mw Output Short-circuit Duration - (note 4) Infinite Toper | Operating Free Air Temperature Range F347, B Oto 70 C F247 40 to 105 LF147 55 to 125 Tsig | Storage Temperature Range -65 to 150 c Notes: = 1. All voltage values, except difierentlal voltage, are with respect to the zero reference fevel (ground) of the supply voltages where the Zero reterence level is the midpoint between Vec* and Voc". 2. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. 4. The output may be shorted to ground or fo either supply. Temperature and for cusply vertages must be limited to ensure that the dissipation rating is not exceeded. | = AY, BiSclternes 254i { ELECTRICAL CHARACTERISTICS Vcc = +15V, Tamp = 25C (unless otherwise specified) LF147 - LF247 - LF347/B LF147 - LF247 Symbol Parameter LF347/B Unit Min. Typ. | Max. Vio Input Offset voltage (Rg = 10k82) mv Tame = 25 3 10 LF347B 5 Trin. < Tamb Tmax. 13 LF347B 7 DVio | Input Offset Voltage Drift 10 pvc lio Input Offset Current * Tam = 25C 5 100 pA Trin. S Tamb S Tmax. 4 nA lio Input Bias Current * Tamb = 25C 20 200 pA Trin. S$ Tamb < Tmax. 20 nA Aud Large Signal. yoliage Gain (Ri = 2kQ, Vo = +tOV) VimV amb = 50 200 Trin. fo < Tmax. 25 SVR Supply Voltage | Rejection Ratio (Rs = 10kQ) dB amb = 80 86 Trin. S ag < Tmax. 80 lec Supply Current, per Amp, no Load mA amp = 25C 1.4 27 Tin. S Tamb S Tmax. 2.7 Vicm Input Common Mode Voltage Range +11 +15 v -12 CMR | Common Mode Rejection Ratio (Rg = 10kQ) dB Tamp = 25C 70 86 Trin, $ Tamb Tmax. 70 los Output Short-circuit Current mA amb = 25C 10 40 60 Tin. = Tamb S Tmax. 10 60 +Vopp | Output Voltage ' Swing Vv Tamb = 25 Re= 2kQ 10 12 Ri = 10kQ 12 13.5 Tin, S Tamb & Tmax. Rir= 2kQ 10 Ri = 10kQ 12 SR Slew Rate Vius (Vi = 10V, AL = 2kQ, Cy = 100pF, Tamp = 25C, unity gain) 12 16 ; t Rise Time ys (Vi = 20mV, Ri = 2kQ, CL = 100pF, Tam = 25C, unity gain) Qt Kov Overshoot % (Vj = 20mV, Ri = 2kQ, CL = 100pF, Tamb = 25C, unity gain) 10 GBP | Gain Bandwidth Product MHz (f = 100kHz, Tamp = 25C, Vin = 10mV, Ri = 2kQ, C, = 100pF) 25 4 Ri Input Resistance 10!? Q THD Total Harmonic Distortion (f = 1kHz, Ay = 20d0B, Ri = 2kQ, % Ci = 1009F, Tamb = 25C, Vo = 2Vpp) 0.01 . . nv en Equivalent Input Noise Voltage (f = 1kHz, As = 100Q) 15 Var Om Phase Margin 45 Degrees VovVoz | Channel Separation (Ay = 100, Tamb = 25C) 120 dB " The input bias currents are junction leakage currents which approximately double for every 10C increase in the junction temperature. 255 147-03. TBLLF147 - LF247 - LF347/B MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY Vog = + 15V R= 2k amb = +25" See Figure 2 Voc = + 10V MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V) 100 20K 10K -100K 1M 10M FREQUENCY (Hz) 147-03.EPS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY 30 Tamb = +25C Voc = + 16V 2s R, = 2k Q 20 See Figure 2 Tamb = -55'C VOLTAGE (V) Tam = +125C tok 40k 100k. 400k: 1M 4M 10M MAXIMUM PEAK-TO-PEAK OUTPUT FREQUENCY (Hz) 147-05.EPS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS LOAD RESISTANCE 30 - z a 25 ps a ee 15 #3 10 3 2 5 2 0.102 04 07 1 2 4 7 10 LOAD RESISTANCE (kQ) 147-07.EPS 4/8 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY R= 10kQ Tamb = +25" See Figure 2 Veo= +1 iit 714) v 10V = +10 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V) FREQUENCY (Hz) 147-04.EPS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREE AIR TEMP. 75-50 -25 0 25 60 75 -50 125 TEMPERATURE (C) 5 LE 7 3 T ope 20 t z= R, = 100 WwW 15 | og o+e-A, = 2kO Po 610 39 a 5 tVec = t15V 2 See Figure 2 5 flail 3 = 147-06.EPS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS SUPPLY VOLTAGE 30 VOLTAGE (V) MAXIMUM PEAK-TO-PEAK OUTPUT 0 2 4 6 8 10 12 #14 16 SUPPLY VOLTAGE (V) 147-08.EPSINPUT BIAS CURRENT (nA) INPUT BIAS CURRENT VERSUS FREE AIR TEMPERATURE $0 = -25 0 5 5 7 100 125 TEMPERATURE (C) 147-09.EPS LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT VERSUS FREQUENCY Vog = 1 5V 10 t15V Ww 10 =~ RL = 2kQ = = 4 NM, Tamb = +25C 0 3 10 \ DIFFERENTIAL =5 3 VOLTAGE | ge ae 10 AMPLIFICATION ES NK (eft scale) a2 10 a 90 Wi 3 1 PHASE SHIFT N \ x 10! } {right seate) 135 | 4 \\ \ 00 1 10 100 ik 10k 100k 1M 10M FREQUENCY (Hz) 147-11.EPS SUPPLY CURRENT PER AMPLIFIER VERSUS FREE AIR TEMPERATURE 2.0 18 Veo = + 15V 1.6 No signal 14 No load 12 1.0 08 06 0.4 02 0 SUPPLY CURRENT (mA) 76 50 25 0 2 50 75 100 125 TEMPERATURE (C) 147-13.EPS y SGS-THOMSON IF inence ecrnowics LF147 - LF247 - LF347/B LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION VERSUS FREE AiR TEMPERATURE 1000 Vog = L18V Vg = ttov 400 200 100 40 20 10 4 2 (R,=%ka DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) 1 7% 50 -25 OO 2 50 75 TEMPERATURE (C) 100 125 147-10.EPS TOTAL POWER DISSIPATION VERSUS FREE AIR TEMPERATURE 250 225 200 175 180 125 100 vis} 50 25 0 TOTAL POWER DISSIPATION (mW) 75 50-25 0 00 25 50 75 100 125 TEMPERATURE ('C) 147-12.EPS SUPPLY CURRENT PER AMPLIFIER VERSUS SUPPLY VOLTAGE 2.0 1.8 | Tame = +25C 1.6 -No signal 14 [No load 1.2 1.0 0.8 0.6 0.4 0.2 0 SUPPLY CURRENT (mA) 0 2 4 6 68 10 12 14 16 SUPPLY VOLTAGE (V) 147-14.EPS 5/8 % 257i ! i i I i i LF147 - LF247 - LF347/B COMMON MODE REJECTION RATIO VERSUS FREE AIR TEMPERATURE VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE 6 3 4 : OuTPUT_* 3 |_\ 2- ' : 5 INPUT: ES oO; t; 3 i/ Noce 21) > 2 2( R, =2k2 5 2 : 5 4 | C, = 100pF eee 0 05 1 #15 2 25 3 35 TIME (us) 147-16.EPS EQUIVALENT INPUT NOISE VOLTAGE VERSUS FREQUENCY Veco = +15V wu Ay =10 oF Rg =1002 -s Tamb = +25C a> ae Zu _ z8 > gS Ww 10 40 100 400 tk 4k 10k 40k 100k FREQUENCY (Hz) 147-18.EPS TOTAL HARMONIC DISTORTION VERSUS FREQUENCY 4k 10k 40k = 100k FREQUENCY (Hz) z R. =10kQ oO = Ve os t15V 2 ce ee wo So se we 8 = 8 3 75-50 -2 0 2 50 75 100 125 TEMPERATURE (C) 147-15.EPS OUTPUT VOLTAGE VERSUS ELAPSED TIME > E ui = 8 Ee 2 Voc =+15V 3 Ry = 2k Tamb =+25C 0 04 02 03 04 05 06 07 TIME (ts) 147-17.EPS 1 Viog = HEV ae & 04 Ay =1 Vv =6V 5 oe Toe 105 ge ~ s 0.01 = x 0.004 =z 4 0.001 100 = 400 6/8 i SGS-THOMSON JE Sachoriscrnomes 147-19.EPSLF147 - LF247 - LF347/B PARAMETER MEASUREMENT INFORMATION Figure 1 : Voltage Follower Figure 2 : Gain-of-10 Inverting Amplifier 147-20.EPS 147-21.EPS TYPICAL APPLICATIONS AUDIO DISTRIBUTION AMPLIFIER fo = 100kHz 1/4 | a | ; 1/4 L . 1pF LF347 mn i Input off e+ LF347 " Output B i 100kQ 100kQ * 100kQ Ved 10 7 OuF 100kQ 1/4 LE347 "c Output C 147-22.EPS . z 7/8 ki 259LF147 - LF247 - LF347/B TYPICAL APPLICATIONS (continued) POSITIVE FEEDBACK BANDPASS FILTER Output A 147-23.EPS OUTPUT A OUTPUT B 147-24.EPS SECOND ORDER BANDPASS FILTER fo = 100kHz ; Q = 30; Gain=4 147-25.EPS CASCADED BANDPASS FILTER fo = 100kHz ; Q = 69 ; Gain = 16 8/8 a Ses THOMSON 260