5–1
FEATURES
High Current Transfer Ratio
CNY17-1, 40 to 80%
CNY17-2, 63 to 125%
CNY17-3, 100 to 200%
CNY17-4, 160 to 320%
Breakdown V oltage, 5300 V AC
RMS
Field-Effect Stable by TRIOS*
Long Term Stability
Industry Standard Dual-in-Line Package
Underwriters Lab File #E52744
VDE #0884, Available with Option 1
DESCRIPTION
The CNY17 is an optically coupled pair consisting
of a Gallium Arsenide infrared emitting diode opti-
cally coupled to a silicon NPN phototransistor.
Signal information, including a DC level, can be
transmitted by the device while maintaining a high
degree of electrical isolation between input and out-
put.
The CNY17 can be used to replace relays and
transformers in many digital interface applications,
as well as analog applications such as CRT modu-
lation.
Maximum Ratings
(T
A
=25
°
C)
Emitter
Reverse Voltage .................................................6 V
Forward Current............................................ 60 mA
Surge Current (t
10
µ
s)................................... 2.5 A
Power Dissipation.......................................100 mW
Detector
Collector-Emitter Breakdown Voltage...............70 V
Emitter-Base Breakdown Voltage.......................7 V
Collector Current.......................................... 50 mA
Collector Current (t <1 ms)......................... 100 mA
Power Dissipation.......................................150 mW
Package
Isolation Test Voltage (Between emitter &
detector referred to climate DIN 40046,
part 2, Nov. 74)..............................5300 VAC
RMS
Creepage Distance
..........................................
7 mm
Clearance Distance
.........................................
7 mm
Isolation Thickness between
Emitter and Detector
.................................
0.4 mm
Comparative Tracking Index per DIN IEC 112/
VDE0303, part 1.............................................175
Isolation Resistance
V
IO
=500 V, T
A
=25
°
C
...................................
10
12
V
IO
=500 V, T
A
=100
°
C
................................
10
11
Storage Temperature................... –55
°
C to +150
°
C
Operating Temperature ............... –55
°
C to +100
°
C
Junction Temperature....................................100
°
C
Soldering Temperature (max . 10 s, dip soldering:
distance to seating plane
1.5 mm)..........260
°
C
V
DE
Characteristics
(T
A
=25
°
C)
Symbol Unit Condition
Emitter
Forward Voltage V
F
1.25
(
1.65) VI
F
= 60 mA
Breakdown Voltage V
BR
6VI
R
= 10 mA
Reverse Current I
R
0.01 (
10)
µ
AV
R
= 6 V
Capacitance 25 pF V
R
= 0 V, f =1 MHz
Thermal Resistance R
thjamb
750 K/W
Detector
Capacitance C
CE
C
CB
C
EB
5.2
6.5
7.5
pF
pF
pF
V
CE
=5 V, f =1 MHz
V
CB
=5 V, f =1 MHz
V
EB
=5 V, f =1 MHz
Thermal Resistance R
thjamb
500 K/W
Package
Collector-Emitter
Saturation Voltage V
CEsat
0.25 (
0.4) V I
F
=10 mA,
I
C
=2.5 mA
Coupling Capacitance C
C
0.6 pF
Dimensions in inches (mm)
.010 (.25)
.014 (.35)
.110 (2.79
)
.150 (3.81
)
.130 (3.30)
.150 (3.81)
.020 (.051) min.
.300 (7.62)
typ.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
.039
(1.00)
Min.
.018 (0.45)
.022 (0.55)
.
248 (6.30)
.
256 (6.50)
.335 (8.50)
.343 (8.70)
Pin One ID
6
5
4
12
3
18° typ.
.300 (7.62)
.347 (8.82)
4°
typ.
1
2
3
6
5
4
Base
Collector
Emitter
Anode
Cathode
NC
CNY17 SERIES
TRIOS“ PHOTOTRANSISTOR
OPTOCOUPLER
This document was created with FrameMaker 4.0.4
5–2
Current Transfer Ratio and Collector-Emitter Leakage Current
by dash number
(T
A
=25
°
C)
Figure 1. Linear Operation
(without saturation)
I
F
=10 mA, V
CC
=5 V, T
A
=25
°
C
Figure 2. Switching Operation
(with saturation)
-1 -2 -3 -4 Unit
I
C
/I
F
at V
CE
=5 V
(I
F
=10 mA) 40-80 63-
125 100-
200 160-
320 %
I
C
/I
F
at V
CE
=5 V
(I
F
=1 mA) 30
(>13) 45
(>22) 70
(>34) 90
(>56) %
Collector-Emitter
Leakage Current
(V
CE
=10 V)
(I
CEO
)
2 (
50) 2 (
50) 5 (
100) 5 (
100) nA
Load Resistance R
L
75
Turn-On Time t
ON
3.0
µ
s
Rise Time t
R
2.0
µ
s
Turn-Off Time t
OFF
2.3
µ
s
Fall Time t
f
2.0
µ
s
Cut-off Frequency f
CO
250 kHz
-1
(I
F
=20 mA)
-2 and -3
(I
F
=10 mA)
-4
(I
F
=5 mA)
Turn-On Time t
ON
3.0 4.2 6.0
µ
s
Rise Time t
R
2.0 3.0 4.6
µ
s
Turn-Off Time t
OFF
18 23 25
µ
s
Fall Time t
F
11 14 15
µ
s
RL=75
VCC=5
V
IC
47
IF
IF1 KVCC=5
V
47
Figure 3. Current transfer ratio versus
diode current
(T
A
=–25
°
C, V
CE
=5 V)
I
C
/I
F
=f (I
F
)
Figure 4. Current transfer ratio versus
diode current
(T
A
=0
°
C, V
CE=5 V)
IC/IF=f (IF)
Figure 5. Current transfer ratio versus
diode current (TA=25°C, VCE=5 V)
IC/IF=f (IF)
5–3
Figure 6. Current transfer ratio versus
diode current (TA=50°C)
VCE=5 V, IC/IF=f (IF)
Figure 7. Current transfer ratio versus
diode current (TA=75°C) VCE=5 V
Figure 8. Current transfer ratio ver sus
temperature (IF=10 mA, VCE=5 V)
IC/IF=f (T)
Figure 9. Transistor characteristics
(B=550) CNY17-3, -4 IC=f(VCE)
(TA=25°C, IF=0)
Figure 10. Output characteristics
CNY17-3, -4 (TA=25°C) IC=f(VCE)
Figure 11. Forward voltage VF=f (IF)
Figure 12. Collector emitter off-state
current ICEO=f (V, T) (TA=25°C, IF=0)
Figure 13. Saturation voltage versus
collector current and modulation
depth CNY17-1 VCEsat=f (IC) (TA=25°C)
Figure 14. Saturation voltage versus
collector current and modulation
depth CNY17-2 VCEsat=f (IC)
(TA=25°C )
5–4
Figure 15. Saturation voltage versus
collector current and modulation
depth CNY17-3 VCEsat=f (IC) (TA=25°C)
Figure 16. Saturation voltage versus
collector current and modulation
depth CNY17-4 VCEsat=f (IC) (TA=25°C)
Figure 17. Permissible pulse load
D=parameter , TA=25°C, IF=f (tp)
Figure 18. Permissible power dissi-
pation transistor and diode
Ptot=f (TA)
Figure 19. Permissible forward cur-
rent Ptot=f (TA)
Figure 20. Transistor capacitance
C=f(VO) (TA=25°C, f=1 MHz)