RBO40-40G/T (R) Application Specific Discretes A.S.D.TM REVERSED BATTERY AND OVERVOLTAGE PROTECTION FEATURES PROTECTION AGAINST "LOAD DUMP" PULSE 40A DIODE TO GUARD AGAINST BATTERY REVERSAL MONOLITHIC STRUCTURE FOR GREATER RELIABILITY BREAKDOWN VOLTAGE : 24 V min. CLAMPING VOLTAGE : 40 V max. COMPLIANT WITH ISO / DTR 7637 D2PAK RBO40-40G DESCRIPTION Designed to protect against battery reversal and load dump overvoltages in automotive applications, this monolithic component offers multiple functions in the same package : D1 : reversed battery protection T1 : clamping against negative overvoltages T2 : Transil function against "load dump" effect. TO220-AB RBO40-40T FUNCTIONAL DIAGRAM 3 1 2 TM : TRANSIL and ASD are trademarks of STMicroelectronics. September 2005 - Ed:6 1/10 RBO40-40G / RBO40-40T ABSOLUTE MAXIMUM RATINGS Symbol IFSM IF Parameter tp = 10 ms 120 A DC forward current (Diode D1) Tc = 75C 40 A 80 V 1500 W - 40 to + 150 C Peak load dump voltage (see note 1and 2) 5 pulses (1 minute between each pulse) PPP Peak pulse power between Input and Output (Transil T1) Tj initial = 25C 10/1000 s Storage and operating junction temperature range Maximum lead temperature for soldering during 10 s at 4.5mm from case for TO220-AB TL Unit Non repetitive surge peak forward current (Diode D1) VPP Tstg/Tj Value 260 C Note 1 : for a surge greater than the maximum value, the device will fail in short-circuit. Note 2 : see Load Dump curves. THERMAL RESISTANCE Symbol Parameter Value Unit Rth (j-c) Junction to case RBO40-40G RBO40-40T 1.0 1.0 C/W Rth (j-a) Junction to ambient RBO40-40T 60 C/W I32 D1 1 3 I13 Ipp32 IF T1 2 IR 32 T2 IR M 32 VCL 31 VBR 31 VR M 31 VF 13 IR M 31 IR 31 V13 Ipp31 Ex :VF 13 . between Pin 1 and Pin 3 VBR 32 . between Pin 3 and Pin 2 2/10 VR M 32 VB R 32 VC L 32 V32 3 1 2 RBO40-40G / RBO40-40T Symbol Parameter VRM31/VRM32 Stand-off voltage Transil T1 / Transil T2. VBR31/VBR32 Breakdown voltage Transil T1 / Transil T2. IR31/IR32 Leakage current Transil T1 / Transil T2. VCL31/VCL32 Clamping voltage Transil T1 / Transil T2. VF13 Forward voltage drop Diode D1. IPP Peak pulse current. T Temperature coefficient of VBR. C31/C32 C13 Capacitance Transil T1 / Transil T2. Capacitance of Diode D1 ELECTRICAL CHARACTERISTICS : DIODE D1 (- 40C < Tamb < + 85C) Symbol Value Test Conditions Min. Typ. Max. Unit VF 13 IF = 40 A 1.9 V VF 13 IF = 20A 1.45 V VF 13 IF = 1 A 1 V VF 13 IF = 100 mA 0.95 V C13 F = 1MHz VR= 0 V 3000 pF ELECTRICAL CHARACTERISTICS : TRANSIL T1 (- 40C < Tamb < + 85C) Symbol Value Test Conditions Min. Typ. Max. Unit VBR 31 IR = 1 mA 22 35 V VBR 31 IR = 1 mA, Tamb = 25C 24 32 V IRM 31 VRM = 20 V 100 A IRM 31 VRM = 20 V, Tamb = 25C 10 A VCL 31 IPP = 37.5A, Tj initial = 25C T Temperature coefficient of VBR C 31 F = 1MHz 10/1000s VR = 0 V 40 V 9 -4 3000 10 /C pF ELECTRICAL CHARACTERISTICS : TRANSIL T2 (- 40C < Tamb < + 85C) Symbol Test Conditions Value Min. Typ. Max. Unit VBR 32 IR = 1 mA 22 35 V VBR 32 IR = 1 mA, Tamb = 25C 24 32 V IRM 32 VRM = 20 V 100 A IRM 32 VRM = 20 V, Tamb = 25C 10 A VCL 32 IPP = 20 A (note 1) 40 V 9 -4 T Temperature coefficient of VBR C32 F = 1MHz VR = 0 V 8000 10 /C pF Note 1 : One pulse, see pulse definition in load dump test generator circuit. 3/10 RBO40-40G / RBO40-40T PRODUCT DESCRIPTION 3 1 The RBO has 3 functions integrated on the same chip. D1 : "Diode function" in order to protect against reversed battery operation. T2 : "Transil function" in order to protect against positive surge generated by electric systems (ignition, relay. ...). T1 : Protection for motor drive application (See below). 2 BASIC APPLICATION * The monolithic multi-function protection (RBO) has been developed to protect sensitive semiconductors in car electronic modules against both overvoltage and battery reverse. * In addition, the RBO circuit prevents overvoltages generated by the module from affecting the car supply network. MOTOR DRIVER APPLICATION BATTERY Filter D1 T2 MOTOR T1 RBO DEVICE MOTOR CONTROL In this application, one half of the motor drive circuit is supplied through the "RBO" and is thus protected as per its basic function application. The second part is connected directly to the "car supply network" and is protected as follows : - For positive surges : T2 (clamping phase) and D1 in forward-biased. - For negative surges : T1 (clamping phase) and T2 in forward-biased. 4/10 RBO40-40G / RBO40-40T PINOUT configuration in D2PAK : - Input (1) : - Output (3) : - Gnd (2) : Pin 1 Pin 3 Connected to base Tab Marking Logo, date code, RBO40-40G : D1 T2 T1 TAB PINOUT configuration in TO220AB : - Input (1) : - Output (3) : - GND (2) : Pin 1 Pin 3 Connected to base Tab D1 T2 Marking : Logo, date code, RBO40-40T T1 (TAB) 5/10 RBO40-40G / RBO40-40T LOAD DUMP TEST GENERATOR CIRCUIT (SCHAFFNER NSG 506 C). Issued from ISO / DTR 7637. Open circuit (voltage curve) (pulse test n5) Corresponding current wave with D.U.T. I t tr U(V) Ipp offset 10% / 13.5V 90% Vs 10% Vbat Ipp/2 0 t 0 Impulse tp = 40ms t N5 Vs (V) 66.5 Vbat (V) 13.5 Ri () 2 t (ms) 200 (*) tr (ms) <10 Number 5 60s between each pulse (*) Generator setting CALIBRATION METHOD FOR SCHAFFNER NSG 506 C 1) With open circuit (generator is in open circuit): - calibrate Vs 2) With short circuit (generator is in short circuit): - calibrate Ri (Ri = 2) 3) With D.U.T. - calibrate tp (tp = 40ms @ Ipp/2) Typical Voltage curve (open circuit) Typical Voltage and Current curve with D.U.T. typ. Vpp typ. VCL Ipp 20ms/div. 5.0V/div. VBat 20ms/div. 10.0V/div. 6/10 20ms/div. 3A/div. RBO40-40G / RBO40-40T Fig. 1 : Peak pulse power versus exponential pulse duration (Tj initial = 85C). Fig. 2-1 : Clamping voltage versus peak pulse current (Tj initial = 85C). Exponential waveform tp = 40 ms and tp = 1 ms (TRANSIL T2). VCL(V) Ppp(kW) 10.0 45.0 5.0 42.5 2.0 40.0 Transil T2 tp = 40ms 1.0 37.5 Transil T1 0.5 0.2 0.1 32.5 tp(ms) 2 1 5 10 Ipp(A) 20 50 100 Fig. 2-2 : Clamping voltage versus peak pulse current (Tj initial = 85C). Exponential waveform tp = 1 ms and tp = 20 s (TRANSIL T1). 55 tp = 1ms 35.0 30.0 0.1 0.2 0.5 1 2 5 10 20 50 100 Fig. 3 : Relative variation of peak pulse power versus junction temperature. Ppp[Tj]/Ppp[Tj initial=85C] VCL(V) 1.20 50 1.00 45 0.80 40 tp = 1ms 0.60 tp = 20s 35 0.40 30 25 0.20 1 2 5 Ipp(A) 10 20 Tj initial (C) 50 100 200 500 0.00 0 25 50 75 100 125 150 175 7/10 RBO40-40G / RBO40-40T Fig. 4 : Relative variation of thermal impedance junction to case versus pulse duration. Fig. 5-1 : Peak forward voltage drop versus peak forward current (typical values) - (TRANSIL T2). Zth(j-c)/Rth(j-c) VFM(V) 2.0 1.0 1.8 1.6 0.5 1.4 1.2 1.0 0.2 Tj = 25C 0.8 tp (s) 0.1 1E-3 1E-2 Tj = 150C 0.6 1E-1 1E+0 1E+1 Fig. 5-2 : Peak forward voltage drop versus peak forward current (typical values) - (DIODE D1). 0.4 0.1 IFM(A) 0.2 0.5 1 2 3.5 3.0 2.5 2.0 1.5 Tj = 25C Tj = 150C IFM(A) 0.5 0.1 0.2 0.5 1 2 5 10 20 50 100 ORDERING INFORMATION RBO 40 Reverse Battery & Overvoltage Protection 8/10 - 40 G VCL = 40V IF(AV) = 40A 10 20 50 Fig. 6 : Relative variation of leakage current versus junction temperature. VFM(V) 1.0 5 Package: G = D2PAK T = TO-220AB 100 RBO40-40G / RBO40-40T PACKAGE MECHANICAL DATA D2PAK Plastic DIMENSIONS REF. A E C2 L2 D L Millimeters Min. Typ. Max. Min. Typ. Max. A 4.30 4.60 0.169 0.181 A1 2.49 2.69 0.098 0.106 A2 0.03 0.23 0.001 0.009 B 0.70 0.93 0.027 0.037 B2 L3 A1 B2 R C B G A2 2.0 MIN. FLAT ZONE 1.40 0.055 C 0.45 0.60 0.017 0.024 C2 1.21 1.36 0.047 0.054 D 8.95 9.35 0.352 0.368 E 10.00 10.28 0.393 0.405 G 4.88 5.28 0.192 0.208 L 15.00 15.85 0.590 0.624 L2 1.27 1.40 0.050 0.055 L3 1.40 1.75 0.055 0.069 R V2 Inches V2 0.40 0 0.016 8 0 8 FOOT-PRINT (in millimeters) D2PAK 16.90 10.30 5.08 1.30 3.70 8.90 9/10 RBO40-40G / RBO40-40T PACKAGE MECHANICAL DATA TO-220AB Plastic DIMENSIONS REF. B C Millimeters Min. Typ. Max. Min. Typ. Max. b2 A 15.20 a1 L F I A l4 c2 a1 Inches 15.90 0.598 3.75 0.625 0.147 a2 13.00 14.00 0.511 0.551 B 10.00 10.40 0.393 0.409 b1 0.61 0.88 0.024 0.034 b2 1.23 1.32 0.048 0.051 C 4.40 4.60 0.173 0.181 c1 0.49 0.70 0.019 0.027 c2 2.40 2.72 0.094 0.107 e 2.40 2.70 0.094 0.106 F 6.20 6.60 0.244 0.259 I 3.75 3.85 0.147 0.151 I4 15.80 16.40 16.80 0.622 0.646 0.661 L 2.65 2.95 0.104 0.116 l2 1.14 1.70 0.044 0.066 l3 1.14 1.70 0.044 0.066 l3 l2 a2 b1 M c1 e M 2.60 0.102 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. (c) 2005 STMicroelectronics - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - United States www.st.com 10/10