1
Data sheet acquired from Harris Semiconductor
SCHS123B
Features
Retriggerable/Resettable Capability
Trigger and Reset Propagation Delays Independent of
RX, CX
Triggering from the Leading or Trailing Edge
Q and Q Buffered Outputs Available
Separate Resets
Wide Range of Output Pulse Widths
Schmitt Trigger Input on A and B Inputs
Retrigger Time is Independent of CX
Fanout (Over Temperature Range)
- Standard Outputs. . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
Wide Operating T emperature Range . . . -55oC to 125oC
Balanced Propagation Delay and Transition Times
Significant Power Reduction Compared to LSTTL
Logic ICs
HC Types
- 2V to 6V Operation
- High Noise Immunity: NIL = 30%, NIH = 30% of VCC
at VCC = 5V
HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
VIL= 0.8V (Max), VIH = 2V (Min)
- CMOS Input Compatibility, Il1µA at VOL, VOH
Pinout CD54HC4538, CD54HCT4538
(CERDIP)
CD74HC4538
(PDIP, SOIC, SOP)
CD74HCT4538
(PDIP, SOIC)
TOP VIEW
Description
The ’HC4538 and ’HCT4538 are dual
retriggerable/resettable monostable precision multivibrators
for fixed voltage timing applications. An external resistor
(RX) and an external capacitor (CX) control the timing and
the accuracy for the circuit. Adjustment of RXand CX
provides a wide range of output pulse widths from the Q and
Q terminals. The propagation delay from trigger input-to-
output transition and the propagation delay from reset input-
to-output transition are independent of RX and CX.
Leading-edge triggering (A) and trailing edge triggering (B)
inputs are provided for triggering from either edge of the
input pulse. An unused “A” input should be tied to GND and
an unused B should be tied to VCC. On power up the IC is
reset. Unused resets and sections must be terminated. In
normal operation the circuit retriggers on the application of
each new trigger pulse. To operate in the non-triggerable
mode Q is connected to B when leading edge triggering (A)
is used or Q is connected to A when trailing edge triggering
(B) is used. The period (τ) can be calculated from τ= (0.7)
RX, CX; RMIN is 5k. CMIN is 0pF.
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
1C
X
1R
X
C
X
1R
1A
1B
1Q
GND
1Q
V
CC
2R
X
C
X
2R
2A
2B
2Q
2Q
2C
X
Ordering Information
PART NUMBER TEMP. RANGE
(oC) PACKAGE
CD54HC4538F -55 to 125 16 Ld CERDIP
CD54HC4538F3A -55 to 125 16 Ld CERDIP
CD74HC4538E -55 to 125 16 Ld PDIP
CD74HC4538M -55 to 125 16 Ld SOIC
CD74HC4538NSR -55 to 125 16 Ld SOP
CD54HCT4538F3A -55 to 125 16 Ld CERDIP
CD74HCT4538E -55 to 125 16 Ld PDIP
CD74HCT4538M -55 to 125 16 Ld SOIC
NOTES:
1. When ordering, use the entire part number. Add the suffix 96 to
obtain the variant in the tape and reel.
2. Wafer and die for this part number is available which meets all
electrical specifications. Please contact your local TI sales office
or customer service for ordering information.
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © 2002, Texas Instruments Incorporated
CD54/74HC4538,
CD54/74HCT4538
High Speed CMOS Logic Dual Retriggerable
Precision Monostable Multivibrator
[ /Title
(CD54
HC453
8,
CD74
HC453
8,
CD74
HCT45
38)
/
Sub-
j
ect
(High
Speed
CMOS
Logic
June 1998 - Revised March 2002
2
Functional Diagram
2R 13
2A 12
11
10
92Q
2Q
2B MONO 2
VCC
15 14
2Cx 2RxCx
1R 3
1A
5
46
71Q
1Q
1B
MONO 1
VCC
12
1Cx 1RxCx
1Cx 1Rx
2Cx 2Rx
GND = 8
VCC = 16
TRUTH TABLE
INPUTS OUTPUTS
RABQQ
LXXLH
XHXLH
XXLLH
HL
HH
NOTE: H = High Level, L = Low Level, = Transition from Low to
High, = Transition from High to Low, One High Level Pulse,
One Low Level Pulse, X = Irrelevant. FIGURE 1. FF DETAIL
CL
CL
CL
CL
p
np
n
p
n
CL
R1
R2
CL
R1
Q
Q
CL
D
CD54/74HC4538, CD54/74HCT4538
3
FIGURE 2. LOGIC DIAGRAM (1 MONO)
FUNCTIONAL TERMINAL CONNECTIONS
FUNCTION
VCC TO
TERMINAL NUMBER GND TO
TERMINAL NUMBER INPUT PULSE TO
TERMINAL NUMBER OTHER
CONNECTIONS
MONO1MONO2MONO1MONO2MONO1MONO2MONO1MONO2
Leading-Edge
Trigger/Retriggerable 3, 5 11, 13 4 12
Leading-Edge
Trigger/Non-Retriggerable 3 13 4 12 5-7 11-9
Trailing-Edge
Trigger/Retriggerable 313412511
Trailing-Edge
Trigger/Non-Retriggerable 3 13 5 11 4-6 12-10
NOTES:
3. A retriggerable one-shot multivibrator has an output pulse width which is extended one full time period (T) after application of the last
trigger pulse.
4. A non-triggerable one-shot multivibrator has a time period (T) referenced from the application of the first trigger pulse.
FIGURE 3. INPUT PULSE TRAIN FIGURE 4. RETRIGGERABLE MODE
PULSE WIDTH (A MODE) FIGURE5. NON-RETRIGGERABLEMODE
PULSE WIDTH
(A MODE)
D
CL CL Q
Q
R2R1 FF
VCC
VCC
RX
CX
2(14)
1(15)
8
R
A
B
3(13)
4(12)
5(11)
VCC
VCC
HIGH Z
VCC
VCC
R1
R2
COMP II
-
+6(10)
7(9)
Q
Q
VCC
16
TT
CD54/74HC4538, CD54/74HCT4538
4
Absolute Maximum Ratings Thermal Information
DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Source or Sink Current per Output Pin, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA
Operating Conditions
Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC (Note 5)
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
Input Rise and Fall Times, tr, tf
Reset Input:
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
Trigger Inputs A or B:
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unlimited (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unlimited (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unlimited (Max)
External Timing Resistor, RX (Note 6) . . . . . . . . . . . . . . . .5k (Min)
External Timing Capacitor, CX (Note 6) . . . . . . . . . . . . . . . . .0 (Min)
Package Thermal Impedance, θJA (see Note 7):
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67oC/W
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73oC/W
SOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64oC/W
Maximum Junction Temperature. . . . . . . . . . . . . . . . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . .300oC
(SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
5. Unless otherwise specified, all voltages are referenced to ground.
6. The maximum allowable values of RXand CXare a function of leakage of capacitor CX, the leakage of the ’HC4538, and leakage due to
board layout and surface resistance. Values of RXand CXshould be chosen so that the maximum current into pin 2 or pin 14 is 30mA.
Susceptibility to externally induced noise signals may occur for RX > 1M.
7. The package thermal impedance is calculated in accordance with JESD 51-7.
DC Electrical Specifications
PARAMETER SYMBOL
TEST
CONDITIONS VCC
(V)
25oC -40oC TO 85oC -55oC TO 125oC
UNITSVI(V) IO(mA) MIN TYP MAX MIN MAX MIN MAX
HC TYPES
High Level Input
Voltage VIH - - 2 1.5 - - 1.5 - 1.5 - V
4.5 3.15 - - 3.15 - 3.15 - V
6 4.2 - - 4.2 - 4.2 - V
Low Level Input
Voltage VIL - - 2 - - 0.5 - 0.5 - 0.5 V
4.5 - - 1.35 - 1.35 - 1.35 V
6 - - 1.8 - 1.8 - 1.8 V
High Level Output
Voltage
CMOS Loads
VOH VIH or VIL -0.02 2 1.9 - - 1.9 - 1.9 - V
-0.02 4.5 4.4 - - 4.4 - 4.4 - V
-0.02 6 5.9 - - 5.9 - 5.9 - V
High Level Output
Voltage
TTL Loads
- - ---- - - -V
-4 4.5 3.98 - - 3.84 - 3.7 - V
-5.2 6 5.48 - - 5.34 - 5.2 - V
CD54/74HC4538, CD54/74HCT4538
5
Low Level Output
Voltage
CMOS Loads
VOL VIH or VIL 0.02 2 - - 0.1 - 0.1 - 0.1 V
0.02 4.5 - - 0.1 - 0.1 - 0.1 V
0.02 6 - - 0.1 - 0.1 - 0.1 V
Low Level Output
Voltage
TTL Loads
- - ---- - - -V
4 4.5 - - 0.26 - 0.33 - 0.4 V
5.2 6 - - 0.26 - 0.33 - 0.4 V
Input Leakage
Current A, B, R IIVCC or
GND -6--±0.1 - ±1-±1µA
Input Leakage
Current RXCX
(Note 9)
-6--±0.05 - ±0.5 - ±0.5 µA
Quiescent Device
Current ICC VCC or
GND 0 6 - - 8 - 80 - 160 µA
Active Device Current
Q = High & Pins 2, 14
at VCC/4
ICC VCC or
GND 0 6 - - 0.6 - 0.8 - 1 mA
HCT TYPES
High Level Input
Voltage VIH - - 4.5 to
5.5 2--2 - 2 - V
Low Level Input
Voltage VIL - - 4.5 to
5.5 - - 0.8 - 0.8 - 0.8 V
High Level Output
Voltage
CMOS Loads
VOH VIH or VIL -0.02 4.5 4.4 - - 4.4 - 4.4 - V
High Level Output
Voltage
TTL Loads
-4 4.5 3.98 - - 3.84 - 3.7 - V
Low Level Output
Voltage
CMOS Loads
VOL VIH or VIL 0.02 4.5 - - 0.1 - 0.1 - 0.1 V
Low Level Output
Voltage
TTL Loads
4 4.5 - - 0.26 - 0.33 - 0.4 V
Input Leakage
Current IIVCC and
GND - 5.5 - ±0.1 - ±1-±1µA
Input Leakage
Current RXCX
(Note 9)
- 5.5 - - ±0.05 - ±0.5 - ±0.5 µA
Quiescent Device
Current ICC VCC or
GND 0 5.5 - - 8 - 80 - 160 µA
Active Device Current
Q = High & Pins 2, 14
at VCC/4
ICC VCC or
GND 0 5.5 - - 0.6 - 0.8 - 1 mA
Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load
ICC
(Note 8) VCC
-2.1 - 4.5 to
5.5 - 100 360 - 450 - 490 µA
NOTES:
8. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
9. When testing IIL the Q output must be high. If Q is low (device not triggered) the pull-up P device will be ON and the low resistance path
from VDD to the test pin will cause a current far exceeding the specification.
DC Electrical Specifications (Continued)
PARAMETER SYMBOL
TEST
CONDITIONS VCC
(V)
25oC -40oC TO 85oC -55oC TO 125oC
UNITSVI(V) IO(mA) MIN TYP MAX MIN MAX MIN MAX
CD54/74HC4538, CD54/74HCT4538
6
HCT Input Loading Table
INPUT UNIT LOADS
All 0.5
NOTE: Unit Load is ICC limit specified in DC Electrical Table, e.g.
360µA max at 25oC.
Prerequisite for Switching Specifications
PARAMETER SYMBOL VCC (V)
25oC -40oC TO 85oC -55oC TO 125oC
UNITSMIN TYP MAX MIN TYP MAX MIN TYP MAX
HC TYPES
Input Pulse Widths tWH, tWL
A, B 2 80 - - 100 - - 120 - - ns
4.5 16 - - 20 - - 24 - - ns
614--17- -20--ns
Rt
WL 2 80 - - 100 - - 120 - - ns
4.5 16 - - 20 - - 24 - - ns
614--17- -20--ns
Reset Recovery Time tREC 25--5--5--ns
4.5 5 - - 5 - - 5 - - ns
65--5--5--ns
Retrigger Time
(Figure 11) trr 5 - 175 - - - - - - - ns
HCT TYPES
Input Pulse Widths tWH, tWL
A, B 4.5 16 - - 20 - - 24 - - ns
Rt
WL 4.5 20 - - 25 - - 30 - - ns
Reset Recovery Time tREC 4.5 5 - - 5 - - 5 - - ns
Retrigger Time
(Figure 11) trr 5 - 175 - - - - - - - ns
CD54/74HC4538, CD54/74HCT4538
7
Switching Specifications CL = 50pF, Input tr, tf= 6ns, RX = 10K, CX = 0
PARAMETER SYMBOL TEST
CONDITIONS VCC (V)
25oC-40oC TO
85oC-55oC TO
125oC
UNITSMIN TYP MAX MIN MAX MIN MAX
HC TYPES
Propagation Delay tPLH CL = 50pF
A, B to Q 2 - - 250 - 315 - 375 ns
4.5 - - 50 - 63 - 75 ns
CL = 15pF 5 - 21 - - - - - ns
CL = 50pF 6 - - 43 - 54 - 64 ns
A, B to Qt
PHL CL = 50pF 2 - - 250 - 315 - 375 ns
4.5 - - 50 - 63 - 75 ns
CL = 15pF 5 - 21 - - - - - ns
CL = 50pF 6 - - 43 - 54 - 64 ns
R to Q tPHL CL = 50pF 2 - - 250 - 315 - 375 ns
4.5 - - 50 - 63 - 75 ns
CL = 15pF 5 - 21 - - - - - ns
CL = 50pF 6 - - 43 - 54 - 64 ns
R to Qt
PLH CL = 50pF 2 - - 250 - 315 - 375 ns
4.5 - - 50 - 63 - 75 ns
CL = 15pF 5 - 21 - - - - - ns
CL = 50pF 6 - - 43 - 54 - 64 ns
Output Transition Time tTLH, tTHL CL = 50pF 2 - - 75 - 95 - 110 ns
4.5 - - 15 - 19 - 22 ns
6 - - 13 - 16 - 19 ns
Output Pulse Width
RX = 10k, CX = 0.1µFτCL = 50pF 3 0.64 - 0.78 0.612 0.812 0.605 0.819 ms
5 0.63 - 0.77 0.602 0.798 0.595 0.805 ms
Output Pulse Width Match,
Same Package -- -±1- - - - - %
Power Dissipation Capacitance
(Notes 10, 11) CPD CL = 15pF 5 - 136 - - - - - pF
Input Capacitance CICL = 50pF - 10 - 10 - 10 - 10 pF
HCT TYPES
Propagation Delay tPLH
A, B to Q CL = 50pF 4.5 - - 55 - 69 - 83 ns
CL = 15pF 5 - 23 - - - - - ns
A, B to Qt
PHL CL = 50pF 4.5 - - 55 - 69 - 83 ns
CL = 15pF 5 - 23 - - - - - ns
CD54/74HC4538, CD54/74HCT4538
8
R to Q tPHL CL = 50pF 4.5 - - 40 - 50 - 60 ns
CL = 15pF 5 - 17 - - - - - ns
R to Qt
PLH CL = 50pF 4.5 - - 50 - 63 - 75 ns
CL = 15pF 5 - 21 - - - - - ns
Output Transition Time tTLH, tTHL CL = 50pF 4.5 - - 15 - 19 - 22 ns
Output Pulse Width
RX = 10k, CX = 0.1µFτCL = 50pF 5 0.63 - 0.77 0.602 0.798 0.595 0.805 ms
Output Pulse Width Match,
Same Package ----±1- - - - - %
Power Dissipation Capacitance
(Notes 10, 11) CPD CL = 15pF 5 - 134 - - - - - pF
Input Capacitance CICL = 50pF - 10 - 10 - 10 - 10 pF
NOTES:
10. CPD is used to determine the dynamic power consumption, per one shot.
11. PD=(C
PD +C
X)V
CC2fi(CLVCC2fO) where fi= input frequency, fO= output frequency, CL= output load capacitance,
CX = external capacitance VCC = supply voltage assuming fi «
Switching Specifications CL = 50pF, Input tr, tf= 6ns, RX = 10K, CX = 0 (Continued)
PARAMETER SYMBOL TEST
CONDITIONS VCC (V)
25oC-40oC TO
85oC-55oC TO
125oC
UNITSMIN TYP MAX MIN MAX MIN MAX
I
τ
--
Test Circuits and Waveforms
FIGURE 6. HC AND HCU TRANSITION TIMES AND PROPAGA-
TION DELAY TIMES, COMBINATION LOGIC FIGURE 7. HCT TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
tPHL tPLH
tTHL tTLH
90%
50%
10%
50%
10%
INVERTING
OUTPUT
INPUT
GND
VCC
tr = 6ns tf = 6ns
90%
tPHL tPLH
tTHL tTLH
2.7V
1.3V
0.3V
1.3V
10%
INVERTING
OUTPUT
INPUT
GND
3V
tr = 6ns tf = 6ns
90%
CD54/74HC4538, CD54/74HCT4538
9
Typical Performance Curves
FIGURE 8. K FACTOR vs DC SUPPLY VOLTAGE (VCC) - V FIGURE 9. K FACTOR vs DC SUPPLY VOLTAGE (VCC) - V
FIGURE 10. K FACTOR vs CXFIGURE 11. MINIMUM RETRIGGER TIME vs TIMING
CAPACITANCE
0.70
0.69
0.68
0.67
2 3 4 4.5 5 5.5 6
VCC, DC SUPPLY VOLTAGE (V)
K FACTOR
10k, 10nF
10k, 100nF
100k, 100nF
100k, 10nF
HC4538 - TA11646C
TA = 25oC0.70
0.69
0.68
0.67
2 3 4 4.5 5 5.5 6
VCC, DC SUPPLY VOLTAGE (V)
K FACTOR
10k, 10nF
10k, 100nF
100k, 100nF
100k, 10nF
HCT4538 - TA13646C
TA = 25oC
1.3
1.1
0.9
0.6
10 102103104105
CX, TIMING CAPACITANCE (pF)
K FACTOR
2k
10k
100k
HC/HCT4538
VCC = 5V, TA = 25oC
1.2
1.0
0.8
0.7
104
102
10 102103104
CX, TIMING CAPACITANCE (pF)
trr, TYP MIN RETRIGGER TIME (ns)
VCC = 4.5V
TA = 25oC
RX = 10k
103
VCC = 5V
CD54/74HC4538, CD54/74HCT4538
10
Power-Down Mode
During a rapid power-down condition, as would occur with a
power-supply short circuit with a poorly filtered power supply,
the energy stored in CXcould discharge into Pin 2 or 14. To
aviod possible device damage in this mode, when CXis
0.5µF, a protection diode with a 1 ampere or higher rating
(1N5395 or equivalent) and a separate ground return for CX
should be provided as shown in Figure 12.
An alternate protection method is shown in Figure 13, where
a51current-limiting resistor is inserted in series with CX.
Note that a small pulse width decrease will occur however,
and RXmust be appropriately increased to obtain the origi-
nally desired pulse width.
FIGURE 12. RAPID POWER-DOWN PROTECTION CIRCUIT
IN5395
OR
EQUIVALENT RX
CX
0.5µF
1(15)
2(14)
VCC
16
8
+
FIGURE 13. ALTERNATE RAPID POWER-DOWN PROTECTION
CIRCUIT
RX
CX
0.5µF1(15)
2(14)
VCC
16
8
51
CD54/74HC4538, CD54/74HCT4538
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TIs terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TIs standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty . Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding thirdparty products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265
Copyright 2002, Texas Instruments Incorporated