MOTOROLA SEMICONDUCTOR TECHNICAL DATA Darlington Complementary Silicon Power Transistors ... designed for general purpose and low speed switching applications. High DC Current Gain hfe = 2500 (typ.) at Ic = 4.0 e Collector-Emitter Sustaining Voltage at 100 mAdc VGEO(sus) = 80 Vde (min.) BDX33B, 34B 100 Vde (min.) BDX33C, 34C e Low Collector-Emitter Saturation Voltage VCE(sat) = 2-5 Vde (max.) at ic = 3.0 Ade BDX33B, 33C/34B, 346 NPN BDX33B BDX33C* PNP BDX34B BDX34C Motorola Preferred Device e Monolithic Construction with Build-In BaseEmitter Shunt resistors DARLINGTON e TO-220AB Gompact Package 10 AMPERE COMPLEMENTARY MAXIMUM RATINGS SILICON BDX33B | BDX33C power oes. Symbol | BDX34B | BDX34C Unit ~ Rating ymbo n 70 WATTS Collector-Emitter Voltage VCEO 80 100 Vde Collector-Base Voltage VCB 80 100 Vde Emitter-Base Voltage VEB 5.0 Vde Collector Current Continuous tc 10 Ade Peak 16 Base Current IB 0.25 Adc Total Device Dissipation Pp @ To = 25C 70 Watts Derate above 25C 0.56 WIG Operating and Storage Junction TJ: Tstg 65 to +150 C Temperature Range CASE 2214-06 THERMAL CHARACTERISTICS TO-220AB Characteristic Symbo! Max Unit Thermal Resistance, Junction to Case Rao 1.78 Cw 80 = 60 e B 40 oa oc 5 ay a a 0 0 20 40 60 80 100 120 Tg, GASE TEMPERATURE (C) Figure 1. Power Derating Preferred devices are Motorola recommended choices for future use and best overall value. REV7 3-217 Motorola Bipolar Power Transistor Device Data BDX33B BDX33C BDX34B BDX34C ELECTRICAL CHARACTERISTICS (Tg = 25C unless otherwise noted) Characteristic i Symbol Min | Max Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage? VGEO(sus) Vde (Ic = 100 mAdc, Ip = 0) BDX33B/BDX34B 80 _ BDX33C/BDX34C 100 ad Collector-Emitter Sustaining Voltage! VCER(sus) Vee (I = 100 mAde, Ip = 0, RRF = 100) BDX33B/BDX34B 80 ~ BDX33C/BDX383C 100 _ Collector-Emitter Sustaining Voltage VCEX(sus) Vde (ic 100 mAde, Ip = 0, Vag = 1.5 Vde) BDX33B/BDX34B 80 _ BDX33C/BDX346 100 Collector Cutoff Current IcEO mAde (VCE = 1/2 rated VGEOC, Ip = 0) To = 25C _ 0.5 To = 100C _ 10 Collector Cutoff Current IcBo mAdc (Vcp = tated Vogo, le = 0) To = 26C _ 1.0 To = 100C 5.0 Emitter Cutoff Current lIEBO 10 mAds (VBE = 5.0 Vde, Io = 0) ON CHARACTERISTICS DC Current Gain! hFE 750 (Ic = 3.0 Adc, Voge = 3.0 Vde) BDX33B, 33C/34B, 34G Colfector-Emitter Saturation Voltage VCE (sal) _ 2.5 Vde (Ig = 3.0 Ade, Ip = 6.0 mAdc) BDX33B, 33C/34B, 346 BaseEmitter On Voltage VBE(on) _ 2.5 Vde {Ig = 3.0 Ade, Vog = 3.0 Vde) BDX33B, 330/34B, 34C Diode Forward Voltage VE _ 4.0 Vde (Ic = 8.0 Adc) 1 Pulse Test: Pulse Width = 300 ps, Duty Cycle = 2.0%. 2 Pulse Test non repetitive: Pulse Width = 0.25 s. 3-218 Motorola Bipolar Power Transistor Device Data 03 2 0.01 SINGLE PULSE r() EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) t, TIME OR PULSE WIDTH (ms) 02 ~ (GINGLE PULSE) _ SECOND BREAKDOWN LIMITED 0.1 f= CURVES APPLY BELOW RATED $0.05 0.01 Lt. 0.01 0.02003 005 04 02 03 05 1.0 Figure 1. 20 10 g 6.0 To = 25C be 2.0 c ud e 1.0 - 3 - BONDING WIRE LIMITED ce 05 THERMALLY LIMITED @ To 5 0,02 10 203.0 50 7.0 10 20 Voce, COLLECTOR-EMITTER VOLTAGE (VOLTS) 50 70 100 BDX33B BDX33C BDX34B BDX34C Rasctt =r(t} Raye Reve = 1.92C/W D CURVES APPLY FOR POWER TL PULSE TRAIN SHOWN ig Pn SINGLE 2 PI PULSE READ TIME AT ty DUTY CYCLE, D=tytg Tipk) ~ To = Pip) Reuctt 20 30 50 10 20 30 50 100 200 300 500 1000 Thermal Response 20 10 = = Tg = 25C B20 Ge wo 5 10 B 'YE - sonpinc WIRE LIMITED 7 g 0.5E THERMALLY LIMITED @ To's (SINGLE PULSE) =| 02) SECOND BREAKDOWN 3 0.1 }- CURVES APPLY BELOW RATED Veo - Oo 0,05 BDX33B BDX336 0,02 10 2.03.0 50 7.0 10 20 30 50 70 100 Vigg, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 2. Active-Region Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second break- down. Safe operating area curves indicate Ic VcE limits of the transistor that must be observed for reliable operation, i.@., the transistor must not be subjected to greater dissipa- tion than the curves indicate. The data of Fig. 3 is based on TJ(pk) = 150C; Tc is variable depending on conditions. Se- cond breakdown pulse limits are valid for duty cycles to 10% provided TJ(pk) = 150C. Ty(pk) may be calculated from the data in Fig. . At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown. 10,000 300 = 5000 3 3000 200 be 2000 = 1000 ; & S500 Tj =25C Z 2 300 VoE = 4.0 Vde E 100 3 Ig = 3.0 Ade x 3 100 _ & 70 50 49 PNP 50 PNP = 99+ NPN NPN 10 30 10 20 50 10 20 50 100 200 500 1000 Of 02 O08 10 20 60 10 20 50 100 { FREQUENGY (KHz) Vp, REVERSE VOLTAGE (VOLTS) Figure 3. Small-Signal Current Gain Figure 4. Capacitance Motorola Bipolar Power Transistor Device Data 3-219 BDX33B BDX33C BDX34B BDX34C NPN BDX33B, 33C 20,000 10,000 Ty = 150C 5000 3000 2000 1000 hee, DG CURRENT GAIN 500 300 200 0.1 02 03 085 07 1.0 20 30 Ic, COLLECTOR CURRENT (AMP) 3.0 2.6 22 18 1.4 Voce, COLLECTOR-EMITTER VOLTAGE (VOLTS} 1.0 03 0.5 0.7 1.0 20 30 5.0 7.0 10 Ip, BASE CURRENT (mA) PNP BDX34B, 346 20,000 10,000 = S 5000} 7). 150C FH 3000 re B 1000 ta E ~55C 500 300 200 5.0 7.0 10 0.1 02 03 05 07 1.0 20 30 5.0 7.0 10 Ic, COLLECTOR CURRENT (AMP) Figure 5. DC Current Gain x nn N gs ct to na 2 VCE; COLLEGTOR-EMITTER VOLTAGE (VOLTS) = 1.0 20 30 03 05 07 1.0 20 30 50 70 10 Ip, BASE CURRENT (mA) 20 30 Figure 6. Collector Saturation Region 3.0 3.0 Ty = 25C m 28 25 5 5 S = wu 2.0 in 2.0 oO o 5 Ei g 1.5 + VBE(sat) @ Ie/lg = 250 S 15 VBE@Vop~4.0V VBE @ Voge =4.0V 10 @ Ic/lp = 250 VCE (sat) @ Ic/lg = 250 @ = 250 0.5 5 04 03 O58 O87 1.0 20 30 50 7.0 10 O01 02 038 O58 O7 1.0 20 30 50 7.0 10 Ig, COLLECTOR CURRENT (AMP) Ig, COLLECTOR CURRENT (AMP} Figure 7. On Voltages 3-220 Motorola Bipolar Power Transistor Device Data