This is information on a product in full production.
November 2019 DS6329 Rev 17 1/183
STM32F205xx
STM32F207xx
Arm
®
-based 32-bit MCU, 150 DMIPs, up to 1 MB Flash/128+4KB RAM, USB
OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces and camera
Datasheet - production data
Features
Core: Arm® 32-bit Cortex®-M3 CPU (120 MHz
max) with Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
performance from Flash memory, MPU,
150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1)
Memories
Up to 1 Mbyte of Flash memory
512 bytes of OTP memory
Up to 128 + 4 Kbytes of SRAM
Flexible static memory controller that
supports Compact Flash, SRAM, PSRAM,
NOR and NAND memories
LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
From 1.8 to 3.6 V application supply + I/Os
POR, PDR, PVD and BOR
4 to 26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Low-power modes
Sleep, Stop and Standby modes
–V
BAT supply for RTC, 20 × 32 bit backup
registers, and optional 4 Kbytes backup
SRAM
3 × 12-bit, 0.5 µs ADCs with up to 24 channels
and up to 6 MSPS in triple interleaved mode
2 × 12-bit D/A converters
General-purpose DMA: 16-stream controller
with centralized FIFOs and burst support
Up to 17 timers
Up to twelve 16-bit and two 32-bit timers,
up to 120 MHz, each with up to four
IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
Debug mode: Serial wire debug (SWD), JTAG,
and Cortex®-M3 Embedded Trace Macrocell™
Up to 140 I/O ports with interrupt capability:
Up to 136 fast I/Os up to 60 MHz
Up to 138 5 V-tolerant I/Os
Up to 15 communication interfaces
Up to three I2C interfaces (SMBus/PMBus)
Up to four USARTs and two UARTs
(7.5 Mbit/s, ISO 7816 interface, LIN, IrDA,
modem control)
Up to three SPIs (30 Mbit/s), two with
muxed I2S to achieve audio class accuracy
via audio PLL or external PLL
2 × CAN interfaces (2.0B Active)
SDIO interface
Advanced connectivity
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
8- to 14-bit parallel camera interface
(48 Mbyte/s max.)
CRC calculation unit
96-bit unique ID
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm)
LQFP176 (24 × 24 mm)
UFBGA176
(10 × 10 mm)
WLCSP64+2
(0.400 mm pitch)
&"'!
www.st.com
STM32F20xxx
2/183 DS6329 Rev 17
Table 1. Device summary
Reference Part numbers
STM32F205xx
STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF, STM32F205RG
STM32F205VB, STM32F205VC, STM32F205VE, STM32F205VF, STM32F205VG
STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG
STM32F207xx
STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG
STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG
STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG
DS6329 Rev 17 3/183
STM32F20xxx Contents
6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Arm® Cortex®-M3 core with embedded Flash and SRAM . . . . . . . . . . . . 20
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 20
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 21
3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23
3.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.16.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 29
3.17 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 30
3.18 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.20.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.20.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.20.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Contents STM32F20xxx
4/183 DS6329 Rev 17
3.20.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.20.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.20.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.21 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22 Universal synchronous/asynchronous receiver transmitters
(UARTs/USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.23 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.25 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.26 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 36
3.27 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.28 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 37
3.29 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 37
3.30 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.31 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.32 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.33 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.34 ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.35 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.37 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.38 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DS6329 Rev 17 5/183
STM32F20xxx Contents
6
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 75
6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 75
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 76
6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.7 Wakeup time from Low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 97
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 102
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.21 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.24 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 149
6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 149
6.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.2 WLCSP64+2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.3 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Contents STM32F20xxx
6/183 DS6329 Rev 17
7.4 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.6 UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
DS6329 Rev 17 7/183
STM32F20xxx List of tables
8
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32F205xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. STM32F207xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 7. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 8. STM32F20x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 9. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 10. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 15. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 73
Table 16. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 17. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 75
Table 18. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 75
Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 20. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . . 78
Table 21. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 22. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 85
Table 25. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 85
Table 26. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 27. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 28. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 29. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 30. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 31. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 32. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 33. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 34. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 35. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 36. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 37. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 38. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 39. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 40. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 41. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 42. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 43. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 44. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 45. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 46. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
List of tables STM32F20xxx
8/183 DS6329 Rev 17
Table 47. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 48. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 49. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 50. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 51. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 52. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 53. SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 54. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 55. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 56. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 57. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 58. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 59. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 60. Clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 61. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 62. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 63. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 64. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 65. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 66. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 67. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 68. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 69. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 70. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 71. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 132
Table 73. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 133
Table 74. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 75. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 76. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 77. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 78. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 79. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 80. Switching characteristics for PC Card/CF read and write cycles in
attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 81. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . 146
Table 82. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 83. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 84. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 85. SD/MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 86. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 87. LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 88. WLCSP64+2 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 89. WLCSP64+2 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . 154
Table 90. LQPF100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 91. LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 92. LQFP176 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 93. UFBGA176+25 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 94. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 166
Table 95. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 96. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
DS6329 Rev 17 9/183
STM32F20xxx List of figures
11
List of figures
Figure 1. Compatible board design between STM32F10x and STM32F2xx
for LQFP64 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2. Compatible board design between STM32F10x and STM32F2xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3. Compatible board design between STM32F10x and STM32F2xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4. STM32F20x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 5. Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6. Regulator OFF / internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 7. Regulator OFF / internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 8. Startup in regulator OFF: slow VDD slope,
power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 9. Startup in regulator OFF: fast VDD slope,
power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 10. STM32F20x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 11. STM32F20x WLCSP64+2 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 12. STM32F20x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 13. STM32F20x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 14. STM32F20x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 15. STM32F20x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 16. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 17. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 18. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 19. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 20. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 21. Number of wait states versus fCPU and VDD range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 22. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 23. Typical current consumption vs. temperature, Run mode, code with data
processing running from RAM, and peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 24. Typical current consumption vs. temperature, Run mode, code with data
processing running from RAM, and peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 25. Typical current consumption vs. temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals ON . . . . . . . . . . . . . . . 81
Figure 26. Typical current consumption vs. temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals OFF . . . . . . . . . . . . . . 81
Figure 27. Typical current consumption vs. temperature in Sleep mode,
peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 28. Typical current consumption vs. temperature in Sleep mode,
peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 29. Typical current consumption vs. temperature in Stop mode. . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 30. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 31. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 32. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 33. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 34. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 35. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 36. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 37. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
List of figures STM32F20xxx
10/183 DS6329 Rev 17
Figure 38. FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 39. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 40. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 41. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 42. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 43. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 44. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 45. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 46. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 47. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 120
Figure 48. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 49. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 50. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 51. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 52. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 53. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 54. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 127
Figure 55. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 128
Figure 56. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 132
Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 133
Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 60. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 61. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 62. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 64. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 65. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 142
Figure 66. PC Card/CompactFlash controller waveforms for common memory write access. . . . . . 142
Figure 67. PC Card/CompactFlash controller waveforms for attribute memory read access . . . . . . 143
Figure 68. PC Card/CompactFlash controller waveforms for attribute memory write access . . . . . . 144
Figure 69. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 144
Figure 70. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 145
Figure 71. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 72. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 73. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 148
Figure 74. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 148
Figure 75. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 76. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 77. LQFP64 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 78. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 79. WLCSP64+2 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 80. WLCSP64+2 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 81. LQFP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 82. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 83. LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 84. LQFP144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 85. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 86. LQFP144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 87. LQFP176 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 88. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 89. UFBGA176+25 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
DS6329 Rev 17 11/183
STM32F20xxx List of figures
11
Figure 90. UFBGA176+25 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 91. UFBGA176+25 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Introduction STM32F20xxx
12/183 DS6329 Rev 17
1 Introduction
This datasheet provides the description of the STM32F205xx and STM32F207xx lines of
microcontrollers, based on Arm®(a) cores. For more details on the whole STMicroelectronics
STM32 family, refer to Section 2.1: Full compatibility throughout the family.
The STM32F205xx and STM32F207xx datasheet must be read in conjunction with the
STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices
throughout the document.
For information on programming, erasing and protection of the internal Flash memory, refer
to the STM32F20x/STM32F21x Flash programming manual (PM0059).
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex®-M3 core refer to the Cortex®-M3 Technical Reference
Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS6329 Rev 17 13/183
STM32F20xxx Description
182
2 Description
The STM32F20x family is based on the high-performance Arm® Cortex®-M3 32-bit RISC
core operating at a frequency of up to 120 MHz. The family incorporates high-speed
embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up
to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals
connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.
The devices also feature an adaptive real-time memory accelerator (ART Accelerator™)
that allows to achieve a performance equivalent to 0 wait state program execution from
Flash memory at a CPU frequency up to 120 MHz. This performance has been validated
using the CoreMark® benchmark.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true number random generator (RNG). They also feature standard and advanced
communication interfaces. New advanced peripherals include an SDIO, an enhanced
flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins
and more), and a camera interface for CMOS sensors. The devices also feature standard
peripherals.
Up to three I2Cs
Three SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be
clocked via a dedicated internal audio PLL or via an external PLL to allow
synchronization.
Four USARTs and two UARTs
A USB OTG high-speed with full-speed capability (with the ULPI)
A second USB OTG (full-speed)
Two CANs
An SDIO interface
Ethernet and camera interface available on STM32F207xx devices only.
The STM32F205xx and STM32F207xx devices operate in the –40 to +105 °C temperature
range from a 1.8 V to 3.6 V power supply. On devices in WLCSP64+2 package, if IRROFF
is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to
70 °C temperature range using an external power supply supervisor (see Section 3.16).
A comprehensive set of power-saving modes enables the design of low-power applications.
STM32F205xx and STM32F207xx devices are offered in various packages, ranging from 64
to 176 pins. The set of included peripherals changes with the chosen device.These features
make the STM32F205xx and STM32F207xx microcontroller family suitable for a wide range
of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Figure 4 shows the general block diagram of the device family.
Description STM32F20xxx
14/183 DS6329 Rev 17
Table 2. STM32F205xx features and peripheral counts
Peripherals STM32F205Rx STM32F205Vx STM32F205Zx
Flash memory in Kbytes 128 256 512 768 1024 128 256 512 768 1024 256 512 768 1024
SRAM in Kbytes
System
(SRAM1+SRAM2)
64
(48+16)
96
(80+16)
128
(112+16)
64
(48+16)
96
(80+16)
128
(112+16)
96
(80+16)
128
(112+16)
Backup 4 4 4
FSMC memory controller No Yes(1)
Ethernet No
Timers
General-purpose 10
Advanced-control 2
Basic 2
IWDG Yes
WWDG Yes
RTC Yes
Random number generator Yes
Comm.
interfaces
SPI/(I2S) 3/(2)(2)
I2C 3
USART
UART
4
2
USB OTG FS Yes
USB OTG HS Yes
CAN 2
Camera interface No
GPIOs 51 82 114
SDIO Yes
12-bit ADC
Number of channels
3
16 16 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 120 MHz
Operating voltage 1.8 V to 3.6 V(3)
STM32F20xxx Description
DS6329 Rev 17 15/183
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP64
LQFP64
WLCSP64
+2
LQFP6
4
LQFP64
WLCSP6
4+2
LQFP100 LQFP144
1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not
available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature
range using an external power supply supervisor (see Section 3.16).
Table 3. STM32F207xx features and peripheral counts
Peripherals STM32F207Vx STM32F207Zx STM32F207Ix
Flash memory in Kbytes 256 512 768 1024 256 512 768 1024 256 512 768 1024
SRAM in Kbytes
System
(SRAM1+SRAM2)
128
(112+16)
Backup 4
FSMC memory controller Yes(1)
Ethernet Yes
Timers
General-purpose 10
Advanced-control 2
Basic 2
IWDG Yes
WWDG Yes
RTC Yes
Random number generator Yes
Table 2. STM32F205xx features and peripheral counts (continued)
Peripherals STM32F205Rx STM32F205Vx STM32F205Zx
Description STM32F20xxx
16/183 DS6329 Rev 17
Comm. interfaces
SPI/(I2S) 3/(2)(2)
I2C 3
USART
UART
4
2
USB OTG FS Yes
USB OTG HS Yes
CAN 2
Camera interface Yes
GPIOs 82 114 140
SDIO Yes
12-bit ADC
Number of channels
3
16 24 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 120 MHz
Operating voltage 1.8 V to 3.6 V(3)
Operating temperatures
Ambient temperatures: –40 to +85 °C/–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP100 LQFP144 LQFP176/
UFBGA176
1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not
available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature
range using an external power supply supervisor (see Section 3.16).
Table 3. STM32F207xx features and peripheral counts (continued)
Peripherals STM32F207Vx STM32F207Zx STM32F207Ix
DS6329 Rev 17 17/183
STM32F20xxx Description
182
2.1 Full compatibility throughout the family
The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members
are fully pin-to-pin, software and feature compatible, allowing the user to try different
memory densities and peripherals for a greater degree of freedom during the development
cycle.
The STM32F205xx and STM32F207xx devices maintain a close compatibility with the
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The
STM32F205xx and STM32F207xx, however, are not drop-in replacements for the
STM32F10xxx devices: the two families do not have the same power scheme, and so their
power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x
family remains simple as only a few pins are impacted.
Figure 1, Figure 2 and Figure 3 provide compatible board designs between the STM32F20x
and the STM32F10xxx family.
Figure 1. Compatible board design between STM32F10x and STM32F2xx
for LQFP64 package
MS41486V1
LQFP64
48 0 Ω resistor or soldering bridge
present for the STM32F10x
configuration, not present in the
STM32F2xx configuration
116
33
49
64
32
17
47 31
VSS
VSS VSS
VSS
Description STM32F20xxx
18/183 DS6329 Rev 17
Figure 2. Compatible board design between STM32F10x and STM32F2xx
for LQFP100 package
1. RFU = reserved for future use.
Figure 3. Compatible board design between STM32F10x and STM32F2xx
for LQFP144 package
1. RFU = reserved for future use.
MS41487V1
LQFP100
75
0 Ω resistor or soldering bridge
present for the STM32F10x
configuration, not present in the
STM32F2xx configuration
125
51
76
100
50
26
73 49
VSS
99 (RFU)
19 20
VSS for STM32F10x,
VDD for STM32F2xx
VSS
VDD
VSS
VDD
VSS
Two 0 Ω resistors connected to
- VSS for STM32F10x
- VDD, VSS or NC for STM32F2xx VSS
VSS
MS41488V1
LQFP144
108
0 Ω resistor or soldering bridge
present for the STM32F10x
configuration, not present in the
STM32F2xx configuration
136
73
109
144
72
37
106 71
VSS
143 (RFU)
30 31
VSS
VDD
VSS
VDD
VSS
Two 0 Ω resistors connected to
- VSS for STM32F10x
- VDD, VSS or NC for STM32F2xx
VSS
VSS
DS6329 Rev 17 19/183
STM32F20xxx Description
182
Figure 4. STM32F20x block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 60 MHz.
2. The camera interface and Ethernet are available only in STM32F207xx devices.
GPIO PORT A
AHB/APB2
EXT IT. WKUP
140 AF
PA[15:0]
GPIO PORT B
PB[15:0]
TIM1 / PWM
4 compl. channels (TIM1_CH[1:4]N)
4 channels (TIM1_CH[1:4]), ETR,
BKIN as AF
TIM8 / PWM
GPIO PORT C
PC[15:0]
USART 1
RX, TX, CK,
CTS, RTS as AF
GPIO PORT D
PD[15:0]
GPIO PORT E
PE[15:0]
GPIO PORT F
PF[15:0]
GPIO PORT G
PG[15:0]
SPI1
MOSI, MISO
SCK, NSS as AF
APB2 60MHz
APB1 30MHz
8 analog inputs common
to the 3 ADCs
8 analog inputs common
to the ADC1 & 2
V
DDREF_ADC
8 analog inputs to ADC3
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
4 channels
RX, TX, CK,
USART2
RX, TX, CK
USART3
RX, TX as AF
UART4
RX, TX as AF
UART5
MOSI/DOUT, MISO/DIN, SCK/CK
SPI2/I2S2
NSS/WS, MCK as AF
MOSI/DOUT, MISO/DIN, SCK/CK
SPI3/I2S3
NSS/WS, MCK as AF
SCL, SDA, SMBA as AF
I2C1/SMBUS
SCL, SDA, SMBA as AF
I2C2/SMBUS
TX, RX
bxCAN1
T, XRX
bxCAN2
DAC1_OUT
as AF
DAC2_OUT
as AF
ITF
WWDG
4 KB BKSPRAM
RTC_AF1
OSC32_IN
OSC_IN
OSC_OUT
OSC32_OUT
NRST
V
DDA
, V
SSA
V
CAP1,
V
CAP2
USART 6
RX, TX, CK,
CTS, RTS as AF
smcard
irDA
smcard
irDA
smcard
irDA
smcard
irDA
16b
16b
32b
16b
16b
32b
16b
16b
CTS, RTS as AF
CTS, RTS as AF
SDIO / MMC
D[7:0]
CMD, CK as AF
V
BAT
= 1.65 to 3.6 V
DMA1
AHB/APB1
DMA2
SCL, SDA, SMBA as AF
I2C3/SMBUS
GPIO PORT H
PH[15:0]
GPIO PORT I
PI[11:0]
JTAG & SW
D-BUS
S-BUS
I-BUS
NVIC
ETM
MPU
NJTRST, JTDI,
JTDO/SWD
JTDO/TRACESWO
TRACECLK
TRACED[3:0]
JTCK/SWCLK
Ethernet MAC
DMA/
MII or RMII as AF
MDIO as AF
FIFO
10/100
USB
DMA/
FIFO
OTG HS
DP, DM
ULPI: CK, D(7:0), DIR, STP, NXT
DMA2
8 Streams
FIFO
DMA1
8 Streams
FIFO
ACCEL/
CACHE
SRAM 112 KB
SRAM 16 KB
CLK, NE [3:0], A[23:0]
D[31:0], OEN, WEN,
NBL[3:0], NL, NREG
NWAIT/IORDY, CD
NIORD, IOWR, INT[2:3]
INTN, NIIS16 as AF
SCL, SDA, INTN, ID, VBUS, SOF
Camera
interface
HSYNC, VSYNC
PIXCLK, D[13:0]
USB
PHY
OTG FS
DP
DM
FIFO FIFO
AHB1 120 MHz
PHY
FIFO
USART 2MBps
Temperature sensor
ADC1
ADC2
ADC 3
IF
IF
@VDDA
@VDDA
POR/PDR/
Supply
@VDDA
supervision
PVD
Reset
Int
POR
XTAL OSC
4- 26 MHz
XTAL 32 kHz
HCLKx
MANAGT
RTC
RC HS
FCLK
RC LS
PWR
IWDG
@VBAT
@VDDA
@VDD
AWU
Reset &
clock
control
PLL1&2
PCLKx
interface
VDD
= 1.8 to 3.6 V
V
SS
Voltage
regulator
3.3 V to 1.2 V
V
DD12
Power managmt
@VDD
RTC_AF1
Backup register
SCL/SDA, INTN, ID, VBUS, SOF
AHB bus-matrix 8S7M
APB2 60MHz
AHB2 120 MHz
LSLS
2 channels as AF
1 channel as AF
1 channel as AF
TIM14
16b
16b
16b
TIM9
2 channels as AF
TIM10
1 channel as AF
16b
16b
TIM11
1 channel as AF 16b
BOR
DAC1
DAC2
Flash
1 Mbyte
SRAM, PSRAM, NOR Flash,
PC Card (ATA), NAND Flash
External memory
controller (FSMC)
TIM6
TIM7
TIM2
TIM3
TIM4
TIM5
TIM12
TIM13
ai17614d
4 compl. channels (TIM1_CH[1:4]N)
4 channels (TIM1_CH[1:4]), ETR,
BKIN as AF
FIFO
RNG
Arm Cortex-M3
120 MHz
ART accelerator
APB1 30MHz
AHB3
Functional overview STM32F20xxx
20/183 DS6329 Rev 17
3 Functional overview
3.1 Arm® Cortex®-M3 core with embedded Flash and SRAM
The Arm® Cortex®-M3 processor is the latest generation of processors for embedded
systems. It was developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an Arm core in the memory size usually
associated with 8- and 16-bit devices.
With its embedded Arm® core, the STM32F20x family is compatible with all Arm® tools and
software.
Figure 4 shows the general block diagram of the STM32F20x family.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard Arm® Cortex®-M3 processors. It balances the inherent performance advantage of
the Arm® Cortex®-M3 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher operating frequencies.
To release the processor full 150 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark® benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 120 MHz.
3.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DS6329 Rev 17 21/183
STM32F20xxx Functional overview
182
3.4 Embedded Flash memory
The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes,
512 Kbytes, 768 Kbytes or 1 Mbyte available for storing programs and data.
The devices also feature 512 bytes of OTP memory that can be used to store critical user
data such as Ethernet MAC addresses or cryptographic keys.
3.5 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6 Embedded SRAM
All STM32F20x products embed:
Up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0
wait states
4 Kbytes of backup SRAM.
The content of this area is protected against possible unwanted write accesses, and is
retained in Standby or VBAT mode.
3.7 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
Functional overview STM32F20xxx
22/183 DS6329 Rev 17
Figure 5. Multi-AHB matrix
3.8 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB
peripherals, support burst transfer and are designed to provide the maximum peripheral
bandwidth (AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
ARM
Cortex-M3
GP
DMA1
GP
DMA2
MAC
Ethernet
USB OTG
HS
Bus matrix-S
S0 S1 S2 S3 S4 S5 S6 S7
ICODE
DCODE
ART
ACCEL.
Flash
memory
SRAM
112 Kbyte
SRAM
16 Kbyte
AHB1
periph
AHB2
periph
FSMC
Static MemCtl
M0
M1
M2
M3
M4
M5
M6
I-bus
D-bus
S-bus
DMA_P1
DMA_MEM1
DMA_MEM2
DMA_P2
ETHERNET_M
USB_HS_M
ai15963c
APB1
APB2
DS6329 Rev 17 23/183
STM32F20xxx Functional overview
182
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART and UART
General-purpose, basic and advanced-control timers TIMx
DAC
SDIO
Camera interface (DCMI)
ADC.
3.9 Flexible static memory controller (FSMC)
The FSMC is embedded in all STM32F20x devices. It has four Chip Select outputs
supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR Flash and
NAND Flash.
Functionality overview:
Write FIFO
Code execution from external memory except for NAND Flash and PC Card
Maximum frequency (fHCLK) for external access is 60 MHz
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.10 Nested vectored interrupt controller (NVIC)
The STM32F20x devices embed a nested vectored interrupt controller able to manage 16
priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of
the Cortex®-M3.
The NVIC main features are the following:
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
Functional overview STM32F20xxx
24/183 DS6329 Rev 17
3.11 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected
to the 16 external interrupt lines.
3.12 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.
This clock is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly,
full interrupt management of the PLL clock entry is available when necessary (for example if
an indirectly used external oscillator fails).
The advanced clock controller clocks the core and all peripherals using a single crystal or
oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the
system clock.
Several prescalers and PLLs allow the configuration of the three AHB buses, the high-
speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of
the three AHB buses is 120 MHz and the maximum frequency the high-speed APB domains
is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.
The devices embed a dedicate PLL (PLLI2S) that allow them to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.13 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash memory
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
3.14 Power supply schemes
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins. On devices in WLCSP64+2 package, if
IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device operates
DS6329 Rev 17 25/183
STM32F20xxx Functional overview
182
in the 0 to 70 °C temperature range using an external power supply supervisor (see
Section 3.16).
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock, 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Refer to Figure 19: Power supply scheme for more details.
3.15 Power supply supervisor
The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry.
At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V.
After the 1.8 V POR threshold level is reached, the option byte loading process starts, either
to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three
BOR thresholds are available through option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit. On devices in WLCSP64+2 package,
the BOR, POR and PDR features can be disabled by setting IRROFF pin to VDD. In this
mode an external power supply supervisor is required (see Section 3.16).
The devices also feature an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.16 Voltage regulator
The regulator has five operating modes:
Regulator ON
Main regulator mode (MR)
Low-power regulator (LPR)
Power-down
Regulator OFF
Regulator OFF/internal reset ON
Regulator OFF/internal reset OFF
3.16.1 Regulator ON
The regulator ON modes are activated by default on LQFP packages.On WLCSP64+2
package, they are activated by connecting both REGOFF and IRROFF pins to VSS, while
only REGOFF must be connected to VSS on UFBGA176 package (IRROFF is not available).
VDD minimum value is 1.8 V.
Functional overview STM32F20xxx
26/183 DS6329 Rev 17
There are three power modes configured by software when the regulator is ON:
MR is used in the nominal regulation mode
LPR is used in Stop modes
The LP regulator mode is configured by software when entering Stop mode.
Power-down is used in Standby mode.
The Power-down mode is activated only when entering Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost).
Two external ceramic capacitors must be connected on VCAP_1 and VCAP_2 pin. Refer to
Figure 19: Power supply scheme and Table 16: VCAP1/VCAP2 operating conditions.
All packages have the regulator ON feature.
3.16.2 Regulator OFF
This feature is available only on packages featuring the REGOFF pin. The regulator is
disabled by holding REGOFF high. The regulator OFF mode allows to supply externally a
V12 voltage source through VCAP_1 and VCAP_2 pins.
The two 2.2 µF ceramic capacitors must be replaced by two 100 nF decoupling capacitors.
Refer to Figure 19: Power supply scheme.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor must be used to monitor the V12 of the logic power domain. PA0 pin must
be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic
power domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used at power-on reset. As a
consequence, PA0 and NRST pins must be managed separately if the debug
connection at reset or pre-reset is required.
Regulator OFF/internal reset ON
On WLCSP64+2 package, this mode is activated by connecting REGOFF pin to VDD and
IRROFF pin to VSS. On UFBGA176 package, only REGOFF must be connected to VDD
(IRROFF not available). In this mode, VDD/VDDA minimum value is 1.8 V.
The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage
source through VCAP_1 and VCAP_2 pins, in addition to VDD.
DS6329 Rev 17 27/183
STM32F20xxx Functional overview
182
Figure 6. Regulator OFF / internal reset ON
The following conditions must be respected:
VDD must always be higher than VCAP_1 and VCAP_2 to avoid current injection between
power domains.
If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to
reach 1.8 V, then PA0 must be kept low to cover both conditions: until VCAP_1 and
VCAP_2 reach 1.08 V and until VDD reaches 1.8 V (see Figure 8).
Otherwise, If the time for VCAP_1 and VCAP_2 to reach 1.08 V is slower than the time for
VDD to reach 1.8 V, then PA0 must be asserted low externally (see Figure 9).
If VCAP_1 and VCAP_2 go below 1.08 V and VDD is higher than 1.8 V, then a reset must
be asserted on PA0 pin.
Regulator OFF/internal reset OFF
On WLCSP64+2 package, this mode activated by connecting REGOFF to VSS and IRROFF
to VDD. IRROFF cannot be activated in conjunction with REGOFF. This mode is available
only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source
through VCAP_1 and VCAP_2 pins. In this mode, the integrated power-on reset (POR)/ power-
down reset (PDR) circuitry is disabled.
An external power supply supervisor must monitor both the external 1.2 V and the external
VDD supply voltage, and must maintain the device in reset mode as long as they remain
below a specified threshold. The VDD specified threshold, below which the device must be
maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes
allows the design of low-power applications.
ai18476b
REGOFF
VCAP_1
VCAP_2
PA0
1.2 V
VDD
(1.8 to 3.6 V)
Power-down reset risen
before VCAP_1/VCAP_2 stabilization
NRST
IRROFF
VDD
Application reset
signal (optional)
External VCAP_1/2
power supply supervisor
Ext. reset controller active
when VCAP_1/2 < 1.08 V
Functional overview STM32F20xxx
28/183 DS6329 Rev 17
Figure 7. Regulator OFF / internal reset OFF
The following conditions must be respected:
VDD must always be higher than VCAP_1 and VCAP_2 to avoid current injection between
power domains (see Figure 8).
PA0 must be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach 1.08 V,
and until VDD reaches 1.7 V.
NRST must be controlled by an external reset controller to keep the device under reset
when VDD is below 1.7 V (see Figure 9).
In this mode, when the internal reset is OFF, the following integrated features are no more
supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry is disabled.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin must be connected to VDD.
REGOFF
VCAP_1
ai18477b
VCAP_2
NRST
1.2 V
IRROFF
VDD
1.2 V
VDD
External VDD/VCAP_1/2
power supply supervisor
Ext. reset controller active
when VDD<1.7V and
VCAP_1/2 < 1.08 V
PA0
DS6329 Rev 17 29/183
STM32F20xxx Functional overview
182
Figure 8. Startup in regulator OFF: slow VDD slope,
power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 9. Startup in regulator OFF: fast VDD slope,
power-down reset risen before VCAP_1/VCAP_2 stabilization
3.16.3 Regulator ON/OFF and internal reset ON/OFF availability
V
DD
time
1.08 V
ai18474b
PDR=1.8 V
CAP_1 CAP_2
1.2 V
time
PA0 asserted externally
NRST
VV
/
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package Regulator ON/internal
reset ON
Regulator
OFF/internal reset ON
Regulator OFF/internal
reset OFF
LQFP64
LQFP100
LQFP144
LQFP176
Yes No No
WLCSP 64+2
Yes
REGOFF and IRROFF
set to VSS
Yes
REGOFF set to VDD
and IRROFF set to VSS
Yes
REGOFF set to VSS and
IRROFF set to VDD
UFBGA176 Yes
REGOFF set to VSS
Yes
REGOFF set to VDD No
Functional overview STM32F20xxx
30/183 DS6329 Rev 17
3.17 Real-time clock (RTC), backup SRAM and backup registers
The backup domain of the STM32F20x devices includes:
The real-time clock (RTC)
4 Kbytes of backup SRAM
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Its main features are the
following:
Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
Programmable alarm and programmable periodic interrupts with wakeup from Stop and
Standby modes.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal
low-power RC oscillator or the high-speed external clock divided by 128. The internal
low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an
external 512 Hz output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar
fields can be independently masked for alarm comparison. To generate a periodic
interrupt, a 16-bit programmable binary auto-reload downcounter with programmable
resolution is available and allows automatic wakeup and periodic alarms from every
120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate
a time base of 1 second from a clock at 32.768 kHz.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
The 4-Kbyte backup SRAM is an EEPROM-like area.It can be used to store data which
need to be retained in VBAT and standby mode.This memory area is disabled to minimize
power consumption (see Section 3.18: Low-power modes). It can be enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.18: Low-power
modes).
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or the VBAT pin.
3.18 Low-power modes
The STM32F20x family supports three low-power modes to achieve the best compromise
between low-power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
DS6329 Rev 17 31/183
STM32F20xxx Functional overview
182
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in Low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped when the device
enters the Stop or Standby mode.
3.19 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery or an
external supercapacitor.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When using WLCSP64+2 package, if IRROFF pin is connected to VDD, the VBAT
functionality is no more available and VBAT pin must be connected to VDD.
3.20 Timers and watchdogs
The STM32F20x devices include two advanced-control timers, eight general-purpose
timers, two basic timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 5 compares the features of the advanced-control, general-purpose and basic timers.
Table 5. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
output
Max
interface
clock
Max
timer
clock
Advanced-
control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 Yes 60
MHz
120
MHz
Functional overview STM32F20xxx
32/183 DS6329 Rev 17
3.20.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control
timer features are shared with those of the standard TIMx timers which have the same
architecture. The advanced-control timer can therefore work together with the TIMx timers
via the Timer Link feature for synchronization or event chaining.
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 30
MHz
60
MHz
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 30
MHz
60
MHz
Basic TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No 30
MHz
60
MHz
General
purpose
TIM9 16-bit Up
Any integer
between 1
and 65536
No 2 No 60
MHz
120
MHz
TIM10,
TIM11 16-bit Up
Any integer
between 1
and 65536
No 1 No 60
MHz
120
MHz
TIM12 16-bit Up
Any integer
between 1
and 65536
No 2 No 30
MHz
60
MHz
TIM13,
TIM14 16-bit Up
Any integer
between 1
and 65536
No 1 No 30
MHz
60
MHz
Table 5. Timer feature comparison (continued)
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
output
Max
interface
clock
Max
timer
clock
DS6329 Rev 17 33/183
STM32F20xxx Functional overview
182
3.20.2 General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F20x devices
(see Table 5 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit
timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-
bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based
on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4
independent channels for input capture/output compare, PWM or one-pulse mode output.
This gives up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other
general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link
feature for synchronization or event chaining.
The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these
general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable
of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-
effect sensors.
TIM10, TIM11 and TIM9
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and
TIM11 feature one independent channel, whereas TIM9 has two independent channels for
input capture/output compare, PWM or one-pulse mode output. They can be synchronized
with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be
used as simple time bases.
TIM12, TIM13 and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and
TIM14 feature one independent channel, whereas TIM12 has two independent channels for
input capture/output compare, PWM or one-pulse mode output. They can be synchronized
with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.
They can also be used as simple time bases.
3.20.3 Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
3.20.4 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
Functional overview STM32F20xxx
34/183 DS6329 Rev 17
management. It is hardware- or software-configurable through the option bytes.
The counter can be frozen in debug mode.
3.20.5 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.20.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source
3.21 Inter-integrated circuit interface (I²C)
Up to three I2C bus interfaces can operate in multimaster and slave modes. They can
support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the
7-bit dual addressing mode (as slave). A hardware CRC generation/verification is
embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
3.22 Universal synchronous/asynchronous receiver transmitters
(UARTs/USARTs)
The STM32F20x devices embed four universal synchronous/asynchronous receiver
transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous
receiver transmitters (UART4 and UART5).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 7.5 Mbit/s. The other available interfaces communicate at
up to 3.75 Mbit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
DS6329 Rev 17 35/183
STM32F20xxx Functional overview
182
3.23 Serial peripheral interface (SPI)
The STM32F20x devices feature up to three SPIs in slave and master modes in full-duplex
and simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, while SPI2
and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
3.24 Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can
operate in master or slave mode, in half-duplex communication modes, and can be
configured to operate with a 16-/32-bit resolution as input or output channels. Audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx interfaces can be served by the DMA controller.
3.25 SDIO
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
Table 6. USART feature comparison
USART
name
Standard
features
Modem
(RTS/CTS) LIN SPI
master irDA Smartcard
(ISO 7816)
Max baud rate
in Mbit/s
(oversampling
by 16)
Max baud rate
in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X X X X X 1.87 7.5 APB2 (max.
60 MHz)
USART2 X X X X X X 1.87 3.75 APB1 (max.
30 MHz)
USART3 X X X X X X 1.87 3.75 APB1 (max.
30 MHz)
UART4 X - X - X - 1.87 3.75 APB1 (max.
30 MHz)
UART5 X - X - X - 3.75 3.75 APB1 (max.
30 MHz)
USART6 X X X X X X 3.75 7.5 APB2 (max.
60 MHz)
Functional overview STM32F20xxx
36/183 DS6329 Rev 17
The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the
SD Memory Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.26 Ethernet MAC interface with dedicated DMA and IEEE 1588
support
Peripheral available only on the STM32F207xx devices.
The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard medium-
independent interface (MII) or a reduced medium-independent interface (RMII). The
STM32F207xx requires an external physical interface device (PHY) to connect to the
physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII
port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz
(MII) or 50 MHz (RMII) output from the STM32F207xx.
The STM32F207xx includes the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F20x and STM32F21x reference manual for
details)
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and
group addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes, that is 4 Kbytes in total
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
Triggers interrupt when system time becomes greater than target time
3.27 Controller area network (CAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
DS6329 Rev 17 37/183
STM32F20xxx Functional overview
182
CAN is used). The 256 bytes of SRAM which are allocated for each CAN are not shared
with any other peripheral.
3.28 Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
4 bidirectional endpoints
8 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Internal FS OTG PHY support
3.29 Universal serial bus on-the-go high-speed (OTG_HS)
The STM32F20x devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG
peripheral. The USB OTG HS supports both full-speed and high-speed operations. It
integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin
interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS
mode, an external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
Combined Rx and Tx FIFO size of 1024× 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
6 bidirectional endpoints
12 host channels with periodic OUT support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Functional overview STM32F20xxx
38/183 DS6329 Rev 17
3.30 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 kHz to 192 kHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
3.31 Digital camera interface (DCMI)
The camera interface is not available in STM32F205xx devices.
STM32F207xx products embed a camera interface that can connect with camera modules
and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The
camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz. It
features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw Bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports continuous mode or snapshot (a single frame) mode
Capability to automatically crop the image
3.32 True random number generator (RNG)
All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers
produced by an integrated analog circuit.
3.33 GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O alternate function configuration can be locked if needed by following a specific
sequence in order to avoid spurious writing to the I/Os registers.
To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to
120 MHz that leads to a maximum I/O toggling speed of 60 MHz.
DS6329 Rev 17 39/183
STM32F20xxx Functional overview
182
3.34 ADCs (analog-to-digital converters)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be
internally connected to the ADC start trigger and injection trigger, respectively, to allow the
application to synchronize A/D conversion and timers.
3.35 DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The design structure is composed of integrated resistor
strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
3.36 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.8 and 3.6 V. The temperature sensor is internally connected
to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a
digital value.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part must be used.
Functional overview STM32F20xxx
40/183 DS6329 Rev 17
3.37 Serial wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
3.38 Embedded Trace Macrocell™
The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F20x through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DS6329 Rev 17 41/183
STM32F20xxx Pinouts and pin description
182
4 Pinouts and pin description
Figure 10. STM32F20x LQFP64 pinout
1. The above figure shows the package top view.
Figure 11. STM32F20x WLCSP64+2 ballout
1. The above figure shows the package top view.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0-WKUP
PA1
PA2
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
VDD
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VCAP_1
VDD
LQFP64
ai15969c
PC13-RTC_AF1
PH0-OSC_IN
PH1-OSC_OUT
VDD
VSS
123 8
APA14 PA15 PC12 PB3 PB5 PB7 PB9 VDD
BPA13 PC10 PB4 PB6 BOOT0 PB8 PC13
CPA12 VCAP_2 PC11 PD2 IRROFF
DPC9 PA11 PA10 PC2
EPA8 PA9
FPC7 PC8
GPB15 PC6 PC5 PA3 PC3
HPB14 PB13 PB10 PC4
JPB12 PB11
VCAP_1 PB2 PB0 PA7 PA4
ai18470c
4567 9
VBAT
VSS PC14
PC15
VSS VDD
VDD PA0 NRST PH0-
OSC_IN
VSS VREF+ PC1 PH1-
OSC_OUT
PC0
PA6 PA5 REGOFF PA1 VSS_5
PB1 PA2
Pinouts and pin description STM32F20xxx
42/183 DS6329 Rev 17
Figure 12. STM32F20x LQFP100 pinout
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
2. The above figure shows the package top view.
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PE2
PE3
PE4
PE5
PE6
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
VSS
VDD
PH0-OSC_IN
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0-WKUP
PA1
PA2
VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA 9
PA 8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
RFU
VDD
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ai15970e
LQFP100
PC13-RTC_AF1
PH1-OSC_OUT
DS6329 Rev 17 43/183
STM32F20xxx Pinouts and pin description
182
Figure 13. STM32F20x LQFP144 pinout
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
2. The above figure shows the package top view.
RFU
VDD
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
V
DD
V
SS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
V
DD
V
SS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA 15
PA 14
PE2 V
DD
PE3 V
SS
PE4
PE5 PA 13
PE6 PA 12
VBAT PA 11
PC13-RTC_AF1 PA 10
PC14-OSC32_IN PA 9
PC15-OSC32_OUT PA 8
PF0 PC9
PF1 PC8
PF2 PC7
PF3 PC6
PF4 V
DD
PF5 V
SS
V
SS
PG8
V
DD
PG7
PF6 PG6
PF7 PG5
PF8 PG4
PF9 PG3
PF10 PG2
PH0-OSC_IN PD15
PH1-OSC_OUT PD14
NRST V
DD
PC0 V
SS
PC1 PD13
PC2 PD12
PC3 PD11
V
SSA
PD10
V
DD
PD9
V
REF+
PD8
V
DDA
PB15
PA 0-W KUP PB14
PA 1 PB13
PA 2 PB12
PA 3
V
SS
V
DD
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
V
DD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
V
SS
V
DD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
V
CAP_1
V
DD
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
109
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
72
LQFP144
120
119
118
117
116
115
114
113
112
111
110
61
62
63
64
65
66
67
68
69
70
71
26
27
28
29
30
31
32
33
34
35
36
83
82
81
80
79
78
77
76
75
74
73
ai15971e
V
CAP_2
Pinouts and pin description STM32F20xxx
44/183 DS6329 Rev 17
Figure 14. STM32F20x LQFP176 pinout
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
2. The above figure shows the package top view.
PDR_ON
VDD
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PI7
PI6
PE2
VDD
PE3
VSS
PE4
PE5
PA13
PE6
PA12
VBAT
PA11
PI8-RTC_AF2
PA10
PC14-OSC32_IN
PA9
PC15-OSC32_OUT
PA8
PF0
PC9
PF1
PC8
PF2
PC7
PF3
PC6
PF4
VDD
PF5
VSS
VSS
PG8
VDD
PG7
PF6
PG6
PF7
PG5
PF8
PG4
PF9
PG3
PF10
PG2
PH0-OSC_IN
PD15
PH1-OSC_OUT
PD14
NRST
VDD
PC0
VSS
PC1
PD13
PC2
PD12
PC3
PD11
VSSA
PD10
VDD PD9
VREF+
PD8
VDDA
PB15
PA0-WKUP
PB14
PA1
PB13
PA2
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP_1
VDD
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
141
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
80
LQFP176
152
151
150
149
148
147
146
145
144
143
142
69
70
71
72
73
74
75
76
77
78
79
26
27
28
29
30
31
32
33
34
35
36
107
106
105
104
103
102
101
100
99
98
89
ai15972e
VCAP_2
PI4
PA15
PA14
VDD
VSS
PI3
PI2
PI5
140
139
138
137
136
135
134
133
PH4
PH5
PH6
PH7
PH8
PH9
PH10
PH11
88
81
82
83
84
85
86
87
PI1
PI0
PH15
PH14
PH13
VDD
VSS
PH12
96
95
94
93
92
91
90
97
37
38
39
40
41
42
43
44
PC13-RTC_AF1
PI9
PI10
PI11
VSS
VDD
PH2
PH3
DS6329 Rev 17 45/183
STM32F20xxx Pinouts and pin description
182
Figure 15. STM32F20x UFBGA176 ballout
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
2. The above figure shows the package top view.
1 2 3 9 10 11 12 13 14 15
A PE3 PE2 PE1 PE0 PB8 PB5 PG14 PG13 PB4 PB3 PD7 PC12 PA15 PA14 PA13
B PE4 PE5 PE6 PB9 PB7 PB6 PG15PG12PG11PG10 PD6 PD0 PC11PC10PA12
CVBATPI7PI6PI5 RFU
VDD VDD VDD VDD PG9 PD5 PD1 PI3 PI2 PA11
DPC13-
TAMP1
PI8-
TAMP2 PI9 PI4 BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15 PI1 PA10
EPC14-
OSC32_IN PF0 PI10 PI11 PH13 PH14 PI0 PA9
FPC15-
OSC32_OUT
VSS VDD PH2 VSS VSS VSS VSS VSS VSS VCAP_2 PC9 PA8
GPH0-
OSC_IN VSS VDD PH3 VSS VSS VSS VSS VSS VSS VDD PC8 PC7
HPH1-
OSC_OUT PF2 PF1 PH4 VSS VSS VSS VSS VSS VSS VDD PG8 PC6
J NRST PF3 PF4 PH5 VSS VSS VSS VSS VSS VDD VDD PG7 PG6
K PF7 PF6 PF5 VDD VSS VSS VSS VSS VSS PH12 PG5 PG4 PG3
L PF10 PF9 PF8 REGOFF PH11 PH10 PD15 PG2
M VSSA PC0 PC1 PC2 PC3 PB2 PG1 VSS VSS VCAP_1 PH6 PH8 PH9 PD14 PD13
NVREF-PA1
PA0-
WKUP PA4 PC4 PF13 PG0 VDD VDD VDD PE13 PH7 PD12 PD11 PD10
P VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE8 PE9 PE11 PE14 PB12 PB13 PD9 PD8
R VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PE10 PE12 PE15 PB10 PB11 PB14 PB15
ai17293c
VSS
435678
Table 7. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input/ output pin
I/O structure
FT 5 V tolerant I/O
TTa 3.3 V tolerant I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Pinouts and pin description STM32F20xxx
46/183 DS6329 Rev 17
Table 8. STM32F20x pin and ball definitions
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
- - 1 1 1 A2 PE2 I/O FT - TRACECLK, FSMC_A23,
ETH_MII_TXD3, EVENTOUT -
- - 2 2 2 A1 PE3 I/O FT - TRACED0,FSMC_A19,
EVENTOUT -
- - 3 3 3 B1 PE4 I/O FT - TRACED1,FSMC_A20,
DCMI_D4, EVENTOUT -
- - 4 4 4 B2 PE5 I/O FT -
TRACED2, FSMC_A21,
TIM9_CH1, DCMI_D6,
EVENTOUT
-
- - 5 5 5 B3 PE6 I/O FT -
TRACED3, FSMC_A22,
TIM9_CH2, DCMI_D7,
EVENTOUT
-
1A96 6 6 C1 V
BAT S- - -
----7D2 PI8 I/OFT
(2)(3) EVENTOUT RTC_AF2
2B87 7 8 D1 PC13 I/OFT
(2)(3) EVENTOUT RTC_AF1
3B98 8 9 E1 PC14/OSC32_IN
(PC14) I/O FT (2)(3) EVENTOUT OSC32_IN(4)
4C99 910F1PC15-OSC32_OUT
(PC15) I/O FT (2)(3) EVENTOUT OSC32_OUT(4)
- - - - 11 D3 PI9 I/O FT - CAN1_RX,EVENTOUT -
- - - - 12 E3 PI10 I/O FT - ETH_MII_RX_ER,
EVENTOUT -
- - - - 13 E4 PI11 I/O FT - OTG_HS_ULPI_DIR,
EVENTOUT -
----14F2 V
SS S- - -
----15F3 V
DD S- - -
---1016E2 PF0 I/OFT- FSMC_A0, I2C2_SDA,
EVENTOUT -
---1117H3 PF1 I/OFT- FSMC_A1, I2C2_SCL,
EVENTOUT -
---1218H2 PF2 I/OFT- FSMC_A2, I2C2_SMBA,
EVENTOUT -
---1319J2 PF3 I/OFT
(4) FSMC_A3, EVENTOUT ADC3_IN9
DS6329 Rev 17 47/183
STM32F20xxx Pinouts and pin description
182
---1420J3 PF4 I/OFT
(4) FSMC_A4, EVENTOUT ADC3_IN14
---1521K3 PF5 I/OFT
(4) FSMC_A5, EVENTOUT ADC3_IN15
-H9101622G2 V
SS S- - - -
--111723G3 V
DD S- - - -
---1824K2 PF6 I/OFT
(4) TIM10_CH1, FSMC_NIORD,
EVENTOUT ADC3_IN4
---1925K1 PF7 I/OFT
(4) TIM11_CH1,FSMC_NREG,
EVENTOUT ADC3_IN5
---2026L3 PF8 I/OFT
(4) TIM13_CH1,
FSMC_NIOWR, EVENTOUT ADC3_IN6
---2127L2 PF9 I/OFT
(4) TIM14_CH1, FSMC_CD,
EVENTOUT ADC3_IN7
---2228L1 PF10 I/OFT
(4) FSMC_INTR, EVENTOUT ADC3_IN8
5E9122329G1 PH0/OSC_IN
(PH0) I/O FT - EVENTOUT OSC_IN(4)
6F9132430H1 PH1/OSC_OUT
(PH1) I/O FT - EVENTOUT OSC_OUT(4)
7 E8 14 25 31 J1 NRST I/O - - -
8G9152632M2 PC0 I/OFT (4) OTG_HS_ULPI_STP,
EVENTOUT
ADC123_
IN10
9F8162733M3 PC1 I/OFT(4) ETH_MDC, EVENTOUT ADC123_
IN11
10 D7 17 28 34 M4 PC2 I/O FT (4)
SPI2_MISO,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2, EVENTOUT
ADC123_
IN12
11 G8 18 29 35 M5 PC3 I/O FT (4)
SPI2_MOSI, I2S2_SD,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
EVENTOUT
ADC123_
IN13
- - 19 30 36 - VDD S- - - -
12 - 20 31 37 M1 VSSA S- - - -
-----N1 V
REF- S- - - -
-F7213238P1 V
REF+ S- - - -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
48/183 DS6329 Rev 17
13 - 22 33 39 R1 VDDA S- - - -
14 E7 23 34 40 N3 PA0-WKUP
(PA0) I/O FT (4)(5)
USART2_CTS, UART4_TX,
ETH_MII_CRS,
TIM2_CH1_ETR,
TIM5_CH1, TIM8_ETR,
EVENTOUT
ADC123_IN0,
WKUP
15 H8 24 35 41 N2 PA1 I/O FT (4)
USART2_RTS, UART4_RX,
ETH_RMII_REF_CLK,
ETH_MII_RX_CLK,
TIM5_CH2, TIM2_CH2,
EVENTOUT
ADC123_IN1
16 J9 25 36 42 P2 PA2 I/O FT (4)
USART2_TX,TIM5_CH3,
TIM9_CH1, TIM2_CH3,
ETH_MDIO, EVENTOUT
ADC123_IN2
- - - - 43 F4 PH2 I/O FT - ETH_MII_CRS, EVENTOUT -
- - - - 44 G4 PH3 I/O FT - ETH_MII_COL, EVENTOUT -
----45H4 PH4 I/OFT-
I2C2_SCL,
OTG_HS_ULPI_NXT,
EVENTOUT
-
- - - - 46 J4 PH5 I/O FT - I2C2_SDA, EVENTOUT -
17 G7 26 37 47 R2 PA3 I/O FT (4)
USART2_RX, TIM5_CH4,
TIM9_CH2, TIM2_CH4,
OTG_HS_ULPI_D0,
ETH_MII_COL, EVENTOUT
ADC123_IN3
18 F1 27 38 48 - VSS S- - - -
H7 L4 REGOFF I/O - - - -
19 E1 28 39 49 K4 VDD S- - - -
20 J8 29 40 50 N4 PA4 I/O TTa (4)
SPI1_NSS, SPI3_NSS,
USART2_CK,
DCMI_HSYNC,
OTG_HS_SOF, I2S3_WS,
EVENTOUT
ADC12_IN4,
DAC_OUT1
21 H6 30 41 51 P4 PA5 I/O TTa (4)
SPI1_SCK,
OTG_HS_ULPI_CK,
TIM2_CH1_ETR,
TIM8_CH1N, EVENTOUT
ADC12_IN5,
DAC_OUT2
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DS6329 Rev 17 49/183
STM32F20xxx Pinouts and pin description
182
22 H5 31 42 52 P3 PA6 I/O FT (4)
SPI1_MISO, TIM8_BKIN,
TIM13_CH1, DCMI_PIXCLK,
TIM3_CH1, TIM1_BKIN,
EVENTOUT
ADC12_IN6
23 J7 32 43 53 R3 PA7 I/O FT (4)
SPI1_MOSI, TIM8_CH1N,
TIM14_CH1, TIM3_CH2,
ETH_MII_RX_DV,
TIM1_CH1N,
ETH_RMII_CRS_DV,
EVENTOUT
ADC12_IN7
24 H4 33 44 54 N5 PC4 I/O FT (4)
ETH_RMII_RXD0,
ETH_MII_RXD0,
EVENTOUT
ADC12_IN14
25 G3 34 45 55 P5 PC5 I/O FT (4)
ETH_RMII_RXD1,
ETH_MII_RXD1,
EVENTOUT
ADC12_IN15
26 J6 35 46 56 R5 PB0 I/O FT (4)
TIM3_CH3, TIM8_CH2N,
OTG_HS_ULPI_D1,
ETH_MII_RXD2,
TIM1_CH2N, EVENTOUT
ADC12_IN8
27 J5 36 47 57 R4 PB1 I/O FT (4)
TIM3_CH4, TIM8_CH3N,
OTG_HS_ULPI_D2,
ETH_MII_RXD3,
TIM1_CH3N, EVENTOUT
ADC12_IN9
28 J4 37 48 58 M6 PB2/BOOT1 (PB2) I/O FT - EVENTOUT -
- - - 49 59 R6 PF11 I/O FT - DCMI_D12, EVENTOUT -
- - - 50 60 P6 PF12 I/O FT - FSMC_A6, EVENTOUT -
---5161M8 V
SS S- - -
---5262N8 V
DD S- - -
- - - 53 63 N6 PF13 I/O FT - FSMC_A7, EVENTOUT -
- - - 54 64 R7 PF14 I/O FT - FSMC_A8, EVENTOUT -
- - - 55 65 P7 PF15 I/O FT - FSMC_A9, EVENTOUT -
- - - 56 66 N7 PG0 I/O FT - FSMC_A10, EVENTOUT -
- - - 57 67 M7 PG1 I/O FT - FSMC_A11, EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
50/183 DS6329 Rev 17
- - 38 58 68 R8 PE7 I/O FT - FSMC_D4,TIM1_ETR,
EVENTOUT -
- - 39 59 69 P8 PE8 I/O FT - FSMC_D5,TIM1_CH1N,
EVENTOUT -
- - 40 60 70 P9 PE9 I/O FT - FSMC_D6,TIM1_CH1,
EVENTOUT -
---6171M9 V
SS S- - -
---6272N9 V
DD S- - -
- - 41 63 73 R9 PE10 I/O FT - FSMC_D7,TIM1_CH2N,
EVENTOUT -
- - 42 64 74 P10 PE11 I/O FT - FSMC_D8,TIM1_CH2,
EVENTOUT -
- - 43 65 75 R10 PE12 I/O FT - FSMC_D9,TIM1_CH3N,
EVENTOUT -
- - 44 66 76 N11 PE13 I/O FT - FSMC_D10,TIM1_CH3,
EVENTOUT -
- - 45 67 77 P11 PE14 I/O FT - FSMC_D11,TIM1_CH4,
EVENTOUT -
- - 46 68 78 R11 PE15 I/O FT - FSMC_D12,TIM1_BKIN,
EVENTOUT -
29 H3 47 69 79 R12 PB10 I/O FT -
SPI2_SCK, I2S2_SCK,
I2C2_SCL,USART3_TX,OT
G_HS_ULPI_D3,ETH_MII_R
X_ER,TIM2_CH3,
EVENTOUT
-
30 J2 48 70 80 R13 PB11 I/O FT -
I2C2_SDA, USART3_RX,
OTG_HS_ULPI_D4,
ETH_RMII_TX_EN,
ETH_MII_TX_EN,
TIM2_CH4, EVENTOUT
-
31 J3 49 71 81 M10 VCAP_1 S- - -
32 - 50 72 82 N10 VDD S- - -
----83M11 PH6 I/OFT-
I2C2_SMBA, TIM12_CH1,
ETH_MII_RXD2,
EVENTOUT
-
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DS6329 Rev 17 51/183
STM32F20xxx Pinouts and pin description
182
- - - - 84 N12 PH7 I/O FT - I2C3_SCL, ETH_MII_RXD3,
EVENTOUT -
----85M12 PH8 I/OFT-I2C3_SDA, DCMI_HSYNC,
EVENTOUT -
----86M13 PH9 I/OFT- I2C3_SMBA, TIM12_CH2,
DCMI_D0, EVENTOUT -
- - - - 87 L13 PH10 I/O FT - TIM5_CH1, DCMI_D1,
EVENTOUT -
- - - - 88 L12 PH11 I/O FT - TIM5_CH2, DCMI_D2,
EVENTOUT -
----89K12 PH12 I/OFT- TIM5_CH3, DCMI_D3,
EVENTOUT -
----90H12 V
SS S- - - -
----91J12 V
DD S- - - -
33 J1 51 73 92 P12 PB12 I/O FT -
SPI2_NSS, I2S2_WS,
I2C2_SMBA, USART3_CK,
TIM1_BKIN, CAN2_RX,
OTG_HS_ULPI_D5,
ETH_RMII_TXD0,
ETH_MII_TXD0,
OTG_HS_ID, EVENTOUT
-
34 H2 52 74 93 P13 PB13 I/O FT -
SPI2_SCK, I2S2_SCK,
USART3_CTS, TIM1_CH1N,
CAN2_TX,
OTG_HS_ULPI_D6,
ETH_RMII_TXD1,
ETH_MII_TXD1, EVENTOUT
OTG_HS_
VBUS
35 H1 53 75 94 R14 PB14 I/O FT -
SPI2_MISO, TIM1_CH2N,
TIM12_CH1, OTG_HS_DM
USART3_RTS, TIM8_CH2N,
EVENTOUT
-
36 G1 54 76 95 R15 PB15 I/O FT -
SPI2_MOSI, I2S2_SD,
TIM1_CH3N, TIM8_CH3N,
TIM12_CH2, OTG_HS_DP,
RTC_50Hz
, EVENTOUT
-
- - 55 77 96 P15 PD8 I/O FT - FSMC_D13, USART3_TX,
EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
52/183 DS6329 Rev 17
- - 56 78 97 P14 PD9 I/O FT - FSMC_D14, USART3_RX,
EVENTOUT -
- - 57 79 98 N15 PD10 I/O FT - FSMC_D15, USART3_CK,
EVENTOUT -
- - 58 80 99 N14 PD11 I/O FT - FSMC_A16,USART3_CTS,
EVENTOUT -
- - 59 81 100 N13 PD12 I/O FT - FSMC_A17,TIM4_CH1,
USART3_RTS, EVENTOUT -
- - 60 82 101 M15 PD13 I/O FT - FSMC_A18,TIM4_CH2,
EVENTOUT -
---83102- V
SS S- - - -
---84103J13 V
DD S- - - -
- - 61 85 104 M14 PD14 I/O FT - FSMC_D0,TIM4_CH3,
EVENTOUT -
- - 62 86 105 L14 PD15 I/O FT - FSMC_D1,TIM4_CH4,
EVENTOUT -
- - - 87 106 L15 PG2 I/O FT - FSMC_A12, EVENTOUT -
- - - 88 107 K15 PG3 I/O FT - FSMC_A13, EVENTOUT -
- - - 89 108 K14 PG4 I/O FT - FSMC_A14, EVENTOUT -
- - - 90 109 K13 PG5 I/O FT - FSMC_A15, EVENTOUT -
- - - 91 110 J15 PG6 I/O FT - FSMC_INT2, EVENTOUT -
- - - 92 111 J14 PG7 I/O FT - FSMC_INT3 ,USART6_CK,
EVENTOUT -
- - - 93 112 H14 PG8 I/O FT -
USART6_RTS,
ETH_PPS_OUT,
EVENTOUT
-
---94113G12 V
SS S- - - -
---95114H13 V
DD S- - - -
37 G2 63 96 115 H15 PC6 I/O FT -
I2S2_MCK, TIM8_CH1,
SDIO_D6, USART6_TX,
DCMI_D0, TIM3_CH1,
EVENTOUT
-
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DS6329 Rev 17 53/183
STM32F20xxx Pinouts and pin description
182
38 F2 64 97 116 G15 PC7 I/O FT -
I2S3_MCK, TIM8_CH2,
SDIO_D7, USART6_RX,
DCMI_D1, TIM3_CH2,
EVENTOUT
-
39 F3 65 98 117 G14 PC8 I/O FT -
TIM8_CH3,SDIO_D0,
TIM3_CH3, USART6_CK,
DCMI_D2, EVENTOUT
-
40 D1 66 99 118 F14 PC9 I/O FT -
I2S2_CKIN, I2S3_CKIN,
MCO2, TIM8_CH4,
SDIO_D1, I2C3_SDA,
DCMI_D3, TIM3_CH4,
EVENTOUT
-
41 E2 67 100 119 F15 PA8 I/O FT -
MCO1, USART1_CK,
TIM1_CH1, I2C3_SCL,
OTG_FS_SOF, EVENTOUT
-
42 E3 68 101 120 E15 PA9 I/O FT -
USART1_TX, TIM1_CH2,
I2C3_SMBA, DCMI_D0,
EVENTOUT
OTG_FS_
VBUS
43 D3 69 102 121 D15 PA10 I/O FT -
USART1_RX, TIM1_CH3,
OTG_FS_ID,DCMI_D1,
EVENTOUT
-
44 D2 70 103 122 C15 PA11 I/O FT -
USART1_CTS, CAN1_RX,
TIM1_CH4,OTG_FS_DM,
EVENTOUT
-
45 C1 71 104 123 B15 PA12 I/O FT -
USART1_RTS, CAN1_TX,
TIM1_ETR, OTG_FS_DP,
EVENTOUT
-
46 B2 72 105 124 A15 PA13
(JTMS-SWDIO) I/O FT - JTMS-SWDIO, EVENTOUT -
47 C2 73 106 125 F13 VCAP_2 S- - - -
- B1 74 107 126 F12 VSS S- - - -
48 A8 75 108 127 G13 VDD S- - - -
- - - - 128 E12 PH13 I/O FT - TIM8_CH1N, CAN1_TX,
EVENTOUT -
- - - - 129 E13 PH14 I/O FT - TIM8_CH2N, DCMI_D4,
EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
54/183 DS6329 Rev 17
- - - - 130 D13 PH15 I/O FT - TIM8_CH3N, DCMI_D11,
EVENTOUT -
----131E14 PI0 I/OFT-
TIM5_CH4, SPI2_NSS,
I2S2_WS, DCMI_D13,
EVENTOUT
-
----132D14 PI1 I/OFT- SPI2_SCK, I2S2_SCK,
DCMI_D8, EVENTOUT -
----133C14 PI2 I/OFT- TIM8_CH4 ,SPI2_MISO,
DCMI_D9, EVENTOUT -
----134C13 PI3 I/OFT-
TIM8_ETR, SPI2_MOSI,
I2S2_SD, DCMI_D10,
EVENTOUT
-
----135D9 V
SS S- - - -
----136C9 V
DD S- - - -
49 A1 76 109 137 A14 PA14
(JTCK-SWCLK) I/O FT - JTCK-SWCLK, EVENTOUT -
50 A2 77 110 138 A13 PA15 (JTDI) I/O FT -
JTDI, SPI3_NSS,
I2S3_WS,TIM2_CH1_ETR,
SPI1_NSS, EVENTOUT
-
51 B3 78 111 139 B14 PC10 I/O FT -
SPI3_SCK, I2S3_SCK,
UART4_TX, SDIO_D2,
DCMI_D8, USART3_TX,
EVENTOUT
-
52 C3 79 112 140 B13 PC11 I/O FT -
UART4_RX, SPI3_MISO,
SDIO_D3,
DCMI_D4,USART3_RX,
EVENTOUT
-
53 A3 80 113 141 A12 PC12 I/O FT -
UART5_TX, SDIO_CK,
DCMI_D9, SPI3_MOSI,
I2S3_SD, USART3_CK,
EVENTOUT
-
--81114142B12 PD0 I/OFT- FSMC_D2,CAN1_RX,
EVENTOUT -
- - 82 115 143 C12 PD1 I/O FT - FSMC_D3, CAN1_TX,
EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DS6329 Rev 17 55/183
STM32F20xxx Pinouts and pin description
182
54 C7 83 116 144 D12 PD2 I/O FT -
TIM3_ETR,UART5_RX,
SDIO_CMD, DCMI_D11,
EVENTOUT
-
- - 84 117 145 D11 PD3 I/O FT - FSMC_CLK,USART2_CTS,
EVENTOUT -
- - 85 118 146 D10 PD4 I/O FT - FSMC_NOE, USART2_RTS,
EVENTOUT -
- - 86 119 147 C11 PD5 I/O FT - FSMC_NWE,USART2_TX,
EVENTOUT -
- - - 120 148 D8 VSS S- - - -
- - - 121 149 C8 VDD S- - - -
- - 87 122 150 B11 PD6 I/O FT - FSMC_NWAIT,
USART2_RX, EVENTOUT -
- - 88 123 151 A11 PD7 I/O FT - USART2_CK,FSMC_NE1,
FSMC_NCE2, EVENTOUT -
- - - 124 152 C10 PG9 I/O FT -
USART6_RX,
FSMC_NE2,FSMC_NCE3,
EVENTOUT
-
- - - 125 153 B10 PG10 I/O FT - FSMC_NCE4_1,
FSMC_NE3, EVENTOUT -
- - - 126 154 B9 PG11 I/O FT -
FSMC_NCE4_2,
ETH_MII_TX_EN ,
ETH _RMII_TX_EN,
EVENTOUT
-
- - - 127 155 B8 PG12 I/O FT - FSMC_NE4, USART6_RTS,
EVENTOUT -
- - - 128 156 A8 PG13 I/O FT -
FSMC_A24, USART6_CTS,
ETH_MII_TXD0,
ETH_RMII_TXD0,
EVENTOUT
-
- - - 129 157 A7 PG14 I/O FT -
FSMC_A25, USART6_TX,
ETH_MII_TXD1,
ETH_RMII_TXD1,
EVENTOUT
-
- - - 130 158 D7 VSS S- - - -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
56/183 DS6329 Rev 17
- - - 131 159 C7 VDD S- - - -
- - - 132 160 B7 PG15 I/O FT - USART6_CTS, DCMI_D13,
EVENTOUT -
55 A4 89 133 161 A10 PB3
(JTDO/TRACESWO) I/O FT -
JTDO/ TRACESWO,
SPI3_SCK, I2S3_SCK,
TIM2_CH2, SPI1_SCK,
EVENTOUT
-
56 B4 90 134 162 A9 PB4 I/O FT -
NJTRST, SPI3_MISO,
TIM3_CH1, SPI1_MISO,
EVENTOUT
-
57 A5 91 135 163 A6 PB5 I/O FT -
I2C1_SMBA, CAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT, TIM3_CH2,
SPI1_MOSI, SPI3_MOSI,
DCMI_D10, I2S3_SD,
EVENTOUT
-
58 B5 92 136 164 B6 PB6 I/O FT -
I2C1_SCL,, TIM4_CH1,
CAN2_TX,
DCMI_D5,USART1_TX,
EVENTOUT
-
59 A6 93 137 165 B5 PB7 I/O FT -
I2C1_SDA, FSMC_NL(6),
DCMI_VSYNC,
USART1_RX, TIM4_CH2,
EVENTOUT
-
60 B6 94 138 166 D6 BOOT0 I B - - VPP
61 B7 95 139 167 A5 PB8 I/O FT -
TIM4_CH3,SDIO_D4,
TIM10_CH1, DCMI_D6,
ETH_MII_TXD3, I2C1_SCL,
CAN1_RX, EVENTOUT
-
62 A7 96 140 168 B4 PB9 I/O FT -
SPI2_NSS, I2S2_WS,
TIM4_CH4, TIM11_CH1,
SDIO_D5, DCMI_D7,
I2C1_SDA, CAN1_TX,
EVENTOUT
-
- - 97 141 169 A4 PE0 I/O FT - TIM4_ETR, FSMC_NBL0,
DCMI_D2, EVENTOUT -
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
DS6329 Rev 17 57/183
STM32F20xxx Pinouts and pin description
182
- - 98 142 170 A3 PE1 I/O FT - FSMC_NBL1, DCMI_D3,
EVENTOUT -
-----D5 V
SS S- - - -
63 D8 - - - - VSS S- - - -
- - 99 143 171 C6 RFU - - (7) --
64 D9 100 144 172 C5 VDD S- - - -
----173D4 PI4 I/OFT- TIM8_BKIN, DCMI_D5,
EVENTOUT -
----174C4 PI5 I/OFT-TIM8_CH1, DCMI_VSYNC,
EVENTOUT -
----175C3 PI6 I/OFT- TIM8_CH2, DCMI_D6,
EVENTOUT -
----176C2 PI7 I/OFT- TIM8_CH3, DCMI_D7,
EVENTOUT -
- C8 - - - - IRROFF I/O - - - -
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a
maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics
website: www.st.com.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to VDD (Regulator OFF), then PA0 is
used as an internal Reset (active low).
6. FSMC_NL pin is also named FSMC_NADV on memory devices.
7. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
Table 8. STM32F20x pin and ball definitions (continued)
Pins
Pin name
(function after
reset)(1)
Pin type
I/O structure
Note
Alternate functions Additional
functions
LQFP64
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
Pinouts and pin description STM32F20xxx
58/183 DS6329 Rev 17
Table 9. FSMC pin definition
Pins
FSMC
LQFP100
CF NOR/PSRAM/SRAM NOR/PSRAM Mux NAND 16 bit
PE2 - A23 A23 - Yes
PE3 - A19 A19 - Yes
PE4 - A20 A20 - Yes
PE5 - A21 A21 - Yes
PE6 - A22 A22 - Yes
PF0 A0 A0 - - -
PF1 A1 A1 - - -
PF2 A2 A2 - - -
PF3 A3 A3 - - -
PF4 A4 A4 - - -
PF5 A5 A5 - - -
PF6 NIORD - - - -
PF7 NREG - - - -
PF8 NIOWR - - - -
PF9 CD - - - -
PF10 INTR - - - -
PF12 A6 A6 - - -
PF13 A7 A7 - - -
PF14 A8 A8 - - -
PF15 A9 A9 - - -
PG0 A10 A10 - - -
PG1 - A11 - - -
PE7 D4 D4 DA4 D4 Yes
PE8 D5 D5 DA5 D5 Yes
PE9 D6 D6 DA6 D6 Yes
PE10 D7 D7 DA7 D7 Yes
PE11 D8 D8 DA8 D8 Yes
PE12 D9 D9 DA9 D9 Yes
PE13 D10 D10 DA10 D10 Yes
PE14 D11 D11 DA11 D11 Yes
PE15 D12 D12 DA12 D12 Yes
PD8 D13 D13 DA13 D13 Yes
PD9 D14 D14 DA14 D14 Yes
DS6329 Rev 17 59/183
STM32F20xxx Pinouts and pin description
182
PD10 D15 D15 DA15 D15 Yes
PD11 - A16 A16 CLE Yes
PD12 - A17 A17 ALE Yes
PD13 - A18 A18 - Yes
PD14 D0 D0 DA0 D0 Yes
PD15 D1 D1 DA1 D1 Yes
PG2 - A12 - - -
PG3 - A13 - - -
PG4 - A14 - - -
PG5 - A15 - - -
PG6 - - - INT2 -
PG7 - - - INT3 -
PD0 D2 D2 DA2 D2 Yes
PD1 D3 D3 DA3 D3 Yes
PD3 - CLK CLK - Yes
PD4 NOE NOE NOE NOE Yes
PD5 NWE NWE NWE NWE Yes
PD6 NWAIT NWAIT NWAIT NWAIT Yes
PD7 - NE1 NE1 NCE2 Yes
PG9 - NE2 NE2 NCE3 -
PG10 NCE4_1 NE3 NE3 - -
PG11 NCE4_2 - - - -
PG12 - NE4 NE4 - -
PG13 - A24 A24 - -
PG14 - A25 A25 - -
PB7 - NADV NADV - Yes
PE0 - NBL0 NBL0 - Yes
PE1 - NBL1 NBL1 - Yes
Table 9. FSMC pin definition (continued)
Pins
FSMC
LQFP100
CF NOR/PSRAM/SRAM NOR/PSRAM Mux NAND 16 bit
Pinouts and pin description STM32F20xxx
60/183 DS6329 Rev 17
Table 10. Alternate function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
Port A
PA0-WKUP - TIM2_CH1_ETR TIM 5_CH1 TIM8_ETR - - USART2_CTS UART4_TX - - ETH_MII_CRS - - - EVENTOUT
PA1 - TIM2_CH2 TIM5_CH2 - - - USART2_RTS UART4_RX - -
ETH_MII
_RX_CLK
ETH_RMII
_REF_CLK
---EVENTOUT
PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - USART2_TX - - - ETH_MDIO - - - EVENTOUT
PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - - USART2_RX - - OTG_HS_ULPI_D0 ETH _MII_COL - - - EVENTOUT
PA4 - - - - - SPI1_NSS SPI3_NSS
I2S3_WS USART2_CK - - - OTG_HS_SOF DCMI_HSYNC - EVENTOUT
PA5 - TIM2_CH1_ETR - TIM8_CH1N - SPI1_SCK - - - - OTG_HS_ULPI_C
K - - - - EVENTOUT
PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO - - - TIM13_CH1 - - - DCMI_PIXCK - EVENTOUT
PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N - SPI1_MOSI - - - TIM14_CH1 -
ETH_MII _RX_DV
ETH_RMII
_CRS_DV
---EVENTOUT
PA8 MCO1 TIM1_CH1 - - I2C3_SCL - - USART1_CK - - OTG_FS_SOF - - - - EVENTOUT
PA9 - TIM1_CH2 - - I2C3_SMBA - - USART1_TX - - - - DCMI_D0 - EVENTOUT
PA10 - TIM1_CH3 - - - - - USART1_RX - - OTG_FS_ID - - DCMI_D1 - EVENTOUT
PA11 - TIM1_CH4 - - - - - USART1_CTS - CAN1_RX OTG_FS_DM - - - - EVENTOUT
PA12 - TIM1_ETR - - - - - USART1_RTS - CAN1_TX OTG_FS_DP - - - - EVENTOUT
PA13 JTMS-
SWDIO - - - - - - - - - - - - - - EVENTOUT
PA14 JTCK-
SWCLK - - - - - - - - - - - - - - EVENTOUT
PA15 J TD I TIM 2_CH1
TIM 2_ETR - - - SPI1_NSS SPI3_NSS
I2S3_WS - - - - - - - - EVENTOUT
STM32F20xxx Pinouts and pin description
DS6329 Rev 17 61/183
Port B
PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N - - - - - - OTG_HS_ULPI_D1 ETH _MII_RXD2 - - - EVENTOUT
PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - - - - - - OTG_HS_ULPI_D2 ETH _MII_RXD3 - - - EVENTOUT
PB2 - - - - - - - - - - - - - - - EVENTOUT
PB3 JTDO/
TRACESWO TIM2_CH2 - - - SPI1_SCK
SPI3_SCK
I2S3_SCK - - - - - - - - EVENTOUT
PB4 JTRST - TIM3_CH1 - - SPI1_MISO SPI3_MISO - - - - - - - - EVENTOUT
PB5 - - TIM3_CH2 - I2C1_SMBA SPI1_MOSI
SPI3_MOSI
I2S3_SD - - CAN2_RX OTG_HS_ULPI_D7 ETH _PPS_OUT - DCMI_D10 - EVENTOUT
PB6 - - TIM4_CH1 - I2C1_SCL - - USART1_TX - CAN2_TX - - - DCMI_D5 - EVENTOUT
PB7 - - TIM4_CH2 - I2C1_SDA - - USART1_RX - - - - FSMC_NL DCMI_VSYNC - EVENTOUT
PB8 - - TIM4_CH3 TIM10_CH1 I2C1_SCL - - - - CAN1_RX - ETH _MII_TXD3 SDIO_D4 DCMI_D6 - EVENTOUT
PB9 - - TIM4_CH4 TIM11_CH1 I2C1_SDA SPI2_NSS
I2S2_WS - - - CAN1_TX - - SDIO_D5 DCMI_D7 - EVENTOUT
PB10 - TIM2_CH3 - - I2C2_SCL
SPI2_SCK
I2S2_SCK - USART3_TX - - OTG_HS_ULPI_D3 ETH_ MII_RX_ER - - - EVENTOUT
PB11 - TIM2_CH4 - - I2C2_SDA - - USART3_RX - - OTG_HS_ULPI_D4
ETH _MII_TX_EN
ETH
_RMII_TX_EN
---EVENTOUT
PB12 - TIM1_BKIN - - I2C2_SMBA SPI2_NSS
I2S2_WS - USART3_CK - CAN2_RX OTG_HS_ULPI_D5
ETH _MII_TXD0
ETH _RMII_TXD0 OTG_HS_ID - - EVENTOUT
PB13 - TIM1_CH1N - - - SPI2_SCK
I2S2_SCK - USART3_CTS - CAN2_TX OTG_HS_ULPI_D6
ETH _MII_TXD1
ETH _RMII_TXD1 ---EVENTOUT
PB14 - TIM1_CH2N - TIM8_CH2N - SPI2_MISO - USART3_RTS - TIM12_CH1 - - OTG_HS_DM - - EVENTOUT
PB15 RTC_50Hz TIM1_CH3N - TIM8_CH3N - SPI2_MOSI
I2S2_SD - - - TIM12_CH2 - - OTG_HS_DP - - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
Pinouts and pin description STM32F20xxx
62/183 DS6329 Rev 17
Port C
PC0 - - - - - - - - - - OTG_HS_ULPI_
STP - - - - EVENTOUT
PC1 - - - - - - - - - - - ETH_MDC - - - EVENTOUT
PC2 - - - - - SPI2_MISO - - - - OTG_HS_ULPI_
DIR ETH _MII_TXD2 - - - EVENTOUT
PC3 - - - - - SPI2_MOSI - - - - OTG_HS_ULPI_
NXT
ETH
_MII_TX_CLK ---EVENTOUT
PC4 - - - - - - - - - - - ETH_MII_RXD0
ETH_RMII_RXD0 ---EVENTOUT
PC5 - - - - - - - - - - - ETH _MII_RXD1
ETH _RMII_RXD1 ---EVENTOUT
PC6 - - TIM3_CH1 TIM8_CH1 - I2S2_MCK - - USART6_TX - - - SDIO_D6 DCMI_D0 - EVENTOUT
PC7 - - TIM3_CH2 TIM8_CH2 - - I2S3_MCK - USART6_RX - - - SDIO_D7 DCMI_D1 - EVENTOUT
PC8 - - TIM3_CH3 TIM8_CH3 - - - - USART6_CK - - - SDIO_D0 DCMI_D2 - EVENTOUT
PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_SDA I2S2_CKIN I2S3_CKIN - - - - - SDIO_D1 DCMI_D3 - EVENTOUT
PC10 - - - - - - SPI3_SCK
I2S3_SCK USART3_TX UART4_TX - - - SDIO_D2 DCMI_D8 - EVENTOUT
PC11 - - - - - - SPI3_MISO USART3_RX UART4_RX - - - SDIO_D3 DCMI_D4 - EVENTOUT
PC12 - - - - - - SPI3_MOSI
I2S3_SD USART3_CK UART5_TX - - - SDIO_CK DCMI_D9 - EVENTOUT
PC13 - - - - - - - - - - - - - - - EVENTOUT
PC14-
OSC32_IN -- - - - - - - - - - - - --EVENTOUT
PC15-
OSC32_OU
T
-- - - - - - - - - - - - --EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
STM32F20xxx Pinouts and pin description
DS6329 Rev 17 63/183
Port D
PD0 - - - - - - - - - CAN1_RX - - FSMC_D2 - - EVENTOUT
PD1 - - - - - - - - - CAN1_TX - - FSMC_D3 - - EVENTOUT
PD2 - - TIM3_ETR - - - - - UART5_RX - - - SDIO_CMD DCMI_D11 - EVENTOUT
PD3 - - - - - - - USART2_CTS - - - - FSMC_CLK - - EVENTOUT
PD4 - - - - - - - USART2_RTS - - - - FSMC_NOE - - EVENTOUT
PD5 - - - - - - - USART2_TX - - - - FSMC_NWE - - EVENTOUT
PD6 - - - - - - - USART2_RX - - - - FSMC_NWAIT - - EVENTOUT
PD7 - - - - - - - USART2_CK - - - - FSMC_NE1/
FSMC_NCE2 - - EVENTOUT
PD8 - - - - - - - USART3_TX - - - - FSMC_D13 - - EVENTOUT
PD9 - - - - - - - USART3_RX - - - - FSMC_D14 - - EVENTOUT
PD10 - - - - - - - USART3_CK - - - - FSMC_D15 - - EVENTOUT
PD11 - - - - - - - USART3_CTS - - - - FSMC_A16 - - EVENTOUT
PD12 - - TIM4_CH1 - - - - USART3_RTS - - - - FSMC_A17 - - EVENTOUT
PD13 - - TIM4_CH2 - - - - - - - - - FSMC_A18 - - EVENTOUT
PD14 - - TIM4_CH3 - - - - - - - - - FSMC_D0 - - EVENTOUT
PD15 - - TIM4_CH4 - - - - - - - - - FSMC_D1 - - EVENTOUT
Port E
PE0 - - TIM4_ETR - - - - - - - - - FSMC_NBL0 DCMI_D2 - EVENTOUT
PE1 - - - - - - - - - - - - FSMC_NBL1 DCMI_D3 - EVENTOUT
PE2 TRACECLK - - - - - - - - - - ETH _MII_TXD3 FSMC_A23 - - EVENTOUT
PE3 TRACED0 - - - - - - - - - - - FSMC_A19 - - EVENTOUT
PE4 TRACED1 - - - - - - - - - - - FSMC_A20 DCMI_D4 - EVENTOUT
PE5 TRACED2 - - TIM9_CH1 - - - - - - - - FSMC_A21 DCMI_D6 - EVENTOUT
PE6 TRACED3 - - TIM9_CH2 - - - - - - - - FSMC_A22 DCMI_D7 - EVENTOUT
PE7 - TIM1_ETR - - - - - - - - - - FSMC_D4 - - EVENTOUT
PE8 - TIM1_CH1N - - - - - - - - - - FSMC_D5 - - EVENTOUT
PE9 - TIM1_CH1 - - - - - - - - - - FSMC_D6 - - EVENTOUT
PE10 - TIM1_CH2N - - - - - - - - - - FSMC_D7 - - EVENTOUT
PE11 - TIM1_CH2 - - - - - - - - - - FSMC_D8 - - EVENTOUT
PE12 - TIM1_CH3N - - - - - - - - - - FSMC_D9 - - EVENTOUT
PE13 - TIM1_CH3 - - - - - - - - - - FSMC_D10 - - EVENTOUT
PE14 - TIM1_CH4 - - - - - - - - - - FSMC_D11 - - EVENTOUT
PE15 - TIM1_BKIN - - - - - - - - - - FSMC_D12 - - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
Pinouts and pin description STM32F20xxx
64/183 DS6329 Rev 17
Port F
PF0 - - - - I2C2_SDA - - - - - - - FSMC_A0 - - EVENTOUT
PF1 - - - - I2C2_SCL - - - - - - FSMC_A1 - - EVENTOUT
PF2 - - - - I2C2_SMBA - - - - - - - FSMC_A2 - - EVENTOUT
PF3 - - - - - - - - - - - - FSMC_A3 - - EVENTOUT
PF4 - - - - - - - - - - - - FSMC_A4 - - EVENTOUT
PF5 - - - - - - - - - - - - FSMC_A5 - - EVENTOUT
PF6 - - - TIM10_CH1 - - - - - - - - FSMC_NIORD - - EVENTOUT
PF7 - - - TIM11_CH1 - - - - - - - - FSMC_NREG - - EVENTOUT
PF8 - - - - - - - - - TIM13_CH1 - - FSMC_NIOWR - - EVENTOUT
PF9 - - - - - - - - - TIM14_CH1 - - FSMC_CD - - EVENTOUT
PF10 - - - - - - - - - - - - FSMC_INTR - - EVENTOUT
PF11 - - - - - - - - - - - - DCMI_D12 - EVENTOUT
PF12 - - - - - - - - - - - - FSMC_A6 - - EVENTOUT
PF13 - - - - - - - - - - - - FSMC_A7 - - EVENTOUT
PF14 - - - - - - - - - - - - FSMC_A8 - - EVENTOUT
PF15 - - - - - - - - - - - - FSMC_A9 - - EVENTOUT
Port G
PG0 - - - - - - - - - - - - FSMC_A10 - - EVENTOUT
PG1 - - - - - - - - - - - - FSMC_A11 - - EVENTOUT
PG2 - - - - - - - - - - - - FSMC_A12 - - EVENTOUT
PG3 - - - - - - - - - - - - FSMC_A13 - - EVENTOUT
PG4 - - - - - - - - - - - - FSMC_A14 - - EVENTOUT
PG5 - - - - - - - - - - - - FSMC_A15 - - EVENTOUT
PG6 - - - - - - - - - - - - FSMC_INT2 - - EVENTOUT
PG7 - - - - - - - - USART6_CK - - - FSMC_INT3 - - EVENTOUT
PG8 - - - - - - - - USART6_RTS - - ETH _PPS_OUT - - - EVENTOUT
PG9 - - - - - - - - USART6_RX - - - FSMC_NE2/
FSMC_NCE3 - - EVENTOUT
PG10 - - - - - - - - - - - - FSMC_NCE4_1/
FSMC_NE3 - - EVENTOUT
PG11 - - - - - - - - - - -
ETH _MII_TX_EN
ETH
_RMII_TX_EN
FSMC_NCE4_2 - - EVENTOUT
PG12 - - - - - - - - USART6_RTS - - - FSMC_NE4 - - EVENTOUT
PG13 - - - - - - - - UART6_CTS - - ETH _MII_TXD0
ETH _RMII_TXD0 FSMC_A24 - - EVENTOUT
PG14 - - - - - - - - USART6_TX - - ETH _MII_TXD1
ETH _RMII_TXD1 FSMC_A25 - - EVENTOUT
PG15 - - - - - - - - USART6_CTS - - - - DCMI_D13 - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
STM32F20xxx Pinouts and pin description
DS6329 Rev 17 65/183
Port H
PH0 -
OSC_IN -- - - - - - - - - - - - --EVENTOUT
PH1 -
OSC_OUT - - - - - - - - - - - - EVENTOUT
PH2 - - - - - - - - ETH _MII_CRS - - - EVENTOUT
PH3 - - - - - - - - ETH _MII_COL - - - EVENTOUT
PH4 - - I2C2_SCL - - - - - OTG_HS_ULPI_N
XT - - - - EVENTOUT
PH5 - - I2C2_SDA - - - - - - - - - - EVENTOUT
PH6 - - I2C2_SMBA - - - - TIM12_CH1 - ETH _MII_RXD2 - - - EVENTOUT
PH7 - - I2C3_SCL - - - - - - ETH _MII_RXD3 - - - EVENTOUT
PH8 - - I2C3_SDA - - - - - - - - DCMI_HSYNC - EVENTOUT
PH9 - - I2C3_SMBA - - - - TIM12_CH2 - - - DCMI_D0 - EVENTOUT
PH10 - - TIM5_CH1 - - - - - - - - DCMI_D1 - EVENTOUT
PH11 - - TIM5_CH2 - - - - - - - - DCMI_D2 - EVENTOUT
PH12 - - TIM5_CH3 - - - - - - - - DCMI_D3 - EVENTOUT
PH13 - - TIM8_CH1N - - - - CAN1_TX - - - - - EVENTOUT
PH14 - - TIM8_CH2N - - - - - - - - DCMI_D4 - EVENTOUT
PH15 - - TIM8_CH3N - - - - - - - - DCMI_D11 - EVENTOUT
Port I
PI0 - - TIM5_CH4 SPI2_NSS
I2S2_WS - - - - - - - DCMI_D13 - EVENTOUT
PI1 - - SPI2_SCK
I2S2_SCK - - - - - - - DCMI_D8 - EVENTOUT
PI2 - - TIM8_CH4 SPI2_MISO - - - - - - - DCMI_D9 - EVENTOUT
PI3 - - TIM8_ETR SPI2_MOSI
I2S2_SD - - - - - - - DCMI_D10 - EVENTOUT
PI4 - - TIM8_BKIN - - - - - - - - DCMI_D5 - EVENTOUT
PI5 - - TIM8_CH1 - - - - - - - - DCMI_VSYNC - EVENTOUT
PI6 - - TIM8_CH2 - - - - - - - - DCMI_D6 - EVENTOUT
PI7 - - TIM8_CH3 - - - - - - - - DCMI_D7 - EVENTOUT
PI8 - - - - - - - - - - - - EVENTOUT
PI9 - - - - - - CAN1_RX - - - - - EVENTOUT
PI10 - - - - - - - - ETH _MII_RX_ER - - - EVENTOUT
PI11 - - - - - - - OTG_HS_ULPI_
DIR - - - - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF014 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3 UART4/5/
USART6
CAN1/CAN2/
TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/
OTG_HS DCMI
Memory mapping STM32F20xxx
66/183 DS6329 Rev 17
5 Memory mapping
The memory map is shown in Figure 16.
DS6329 Rev 17 67/183
STM32F20xxx Memory mapping
182
Figure 16. Memory map
512-Mbyte
block 7
Cortex-M3's
internal
peripherals
512-Mbyte
block 6
Not used
512-Mbyte
block 5
FSMC registers
512-Mbyte
block 4
FSMC bank 3
& bank4
512-Mbyte
block 3
FSMC bank1
& bank2
512-Mbyte
block 2
Peripherals
512-Mbyte
block 1
SRAM
0x0000 0000
0x1FFF FFFF
0x2000 0000
0x3FFF FFFF
0x4000 0000
0x5FFF FFFF
0x6000 0000
0x7FFF FFFF
0x8000 0000
0x9FFF FFFF
0xA000 0000
0xBFFF FFFF
0xC000 0000
0xDFFF FFFF
0xE000 0000
0xFFFF FFFF
512-Mbyte
block 0
Code
Flash
0x0810 0000 - 0x0FFF FFFF
0x1FFF 0000 - 0x1FFF 7A0F
0x1FFF C000 - 0x1FFF C007
0x0800 0000 - 0x080F FFFF
0x0001 C000 - 0x07FF FFFF
0x0000 0000 - 0x000F FFFF
System memory + OTP
Reserved
Reserved
Aliased to Flash, system
memory or SRAM depending
on the BOOT pins
SRAM (16 KB aliased
by bit-banding)
Reserved
0x2000 0000 - 0x2001 BFFF
0x2001 C000 - 0x2001 FFFF
0x2002 0000 - 0x3FFF FFFF
TIM2
TIM3
0x4000 0000 - 0x4000 03FF
TIM4
TIM5
TIM6
TIM7
Reserved
0x4000 0400 - 0x4000 07FF
0x4000 0800 - 0x4000 0BFF
0x4000 0C00 - 0x4000 0FFF
0x4000 1000 - 0x4000 13FF
0x4000 2000 - 0x4000 23FF
0x4000 2400 - 0x4000 27FF
RTC & BKP registers 0x4000 2800 - 0x4000 2BFF
WWDG 0x4000 2C00 - 0x4000 2FFF
IWDG 0x4000 3000 - 0x4000 33FF
Reserved 0x4000 3400 - 0x4000 37FF
SPI2/I2S2 0x4000 3800 - 0x4000 3BFF
SPI3/I2S3 0x4000 3C00 - 0x4000 3FFF
Reserved
0x4000 4000 - 0x4000 43FF
USART2 0x4000 4400 - 0x4000 47FF
0x4000 4800 - 0x4000 4BFF
USART3
UART4 0x4000 4C00 - 0x4000 4FFF
UART5 0x4000 5000 - 0x4000 53FF
I2C1 0x4000 5400 - 0x4000 57FF
I2C2 0x4000 5800 - 0x4000 5BFF
Reserved
0x4000 6C00 - 0x4000 6FFF
0x4000 7000 - 0x4000 73FF
PWR
0x4000 7400 - 0x4000 77FF
DAC1/DAC2
0x4000 7800 - 0x4000 FFFF
TIM1 / PWM1 0x4001 0000 - 0x4001 03FF
TIM8 / PWM2 0x4001 0400 - 0x4001 07FF
Port A
USART1 0x4001 1000 - 0x4001 13FF
0x4001 1400 - 0x4001 17FF
Port B
0x4001 1800 - 0x4001 1FFF
Port C
0x4001 2000 - 0x4001 23FF
Port D
0x4001 2400 - 0x4001 27FF
Port E
0x4001 2800 - 0x4001 2BFF
Port F
0x4001 2C00 - 0x4001 2FFF
Port G
0x4001 3000 - 0x4001 33FF
Reserved 0x4001 3400 - 0x4001 37FF
0x4001 3800 - 0x4001 3BFF
0x4001 4000 - 0x4001 43FF
0x4001 4400 - 0x4001 47FF
USART6
0x4001 4800 - 0x4001 4BFF
0x4002 0000 - 0x4002 03FF
0x4002 0C00 - 0x4002 0FFF
0x4002 1000 - 0x4002 13FF
0x4002 1400 - 0x4002 17FF
Reset clock controller (RCC)
0x4002 1800 - 0x4002 1BFF
Port H 0x4002 1C00 - 0x4002 1FFF
Flash interface
0x4002 2000 - 0x4002 23FF
Reserved 0x4002 2400 - 0x4002 2FFF
CRC 0x4002 3000 - 0x4002 33FF
FSMC bank1 NOR/PSRAM 1 0x6000 0000 - 0x63FF FFFF
FSMC bank1 NOR/PSRAM 2 0x6400 0000 - 0x67FF FFFF
FSMC bank1 NOR/PSRAM 3 0x6800 0000 - 0x6BFF FFFF
FSMC bank1 NOR/PSRAM 4 0x6C00 0000 - 0x6FFF FFFF
FSMC bank2 NAND (NAND1) 0x7000 0000 - 0x7FFF FFFF
FSMC bank3 NAND (NAND2) 0x8000 0000 - 0x8FFF FFFF
FSMC bank4 PC Card 0x9000 0000 - 0x9FFF FFFF
FSMC control register 0xA000 0000 - 0xA000 0FFF
0xA000 1000 - 0xBFFF FFFF
ai17615c
Option Bytes
TIM10
SYSCFG
0x4002 0400 - 0x4002 07FF
0x4002 0800 - 0x4002 0BFF
SDIO
Reserved
Reserved 0x4001 4C00 - 0x4001 FFFF
EXTI 0x4001 3C00 - 0x4001 3FFF
Reserved
BxCAN2
0x4000 6000 - 0x4000 63FF
0x4000 6400 - 0x4000 67FF
0x4000 6800 - 0x4000 6BFF
0x5006 1000 - 0x5FFF FFFF
Reserved
0x5005 0000 - 0x5005 03FF
DCMI
0x5004 0000 - 0x5004 0FFF
Reserved
0x5000 0000 - 0x5003 FFFF
USB OTG FS
0x4002 9400 - 0x4FFF FFFF
Reserved
0x4004 0000 - 0x4007 FFFF
USB OTG HS
Reserved 0x4002 9400 - 0x4003 FFFF
0x4002 8000 - 0x4002 93FF
ETHERNET
Reserved 0x4002 6800 - 0x4002 7FFF
0x4002 6400 - 0x4002 67FF
0x4002 6000 - 0x4002 63FF
DMA2
DMA1
Reserved 0x4002 5000 - 0x4002 5FFF
0x4002 4000 - 0x4002 4FFF
BKPSRAM
0x4002 3C00 - 0x4002 3FFF
0x4002 3800 - 0x4002 3BFF
Reserved 0x4002 3400 - 0x4002 37FF
Port I
TIM11
TIM9
SPI1
ADC1 - ADC2 - ADC3
Reserved
BxCAN1
0x4000 5C00 - 0x4000 5FFF
I2C3
Reserved
TIM12
TIM13
TIM14
0x4000 1C00 - 0x4000 1FFF
0x4000 1800 - 0x4000 1BFF
0x4000 1400 - 0x4000 17FF
SRAM (112 KB aliased
by bit-banding)
Reserved 0x1FFF C008 - 0x1FFF FFFF
0x1FFF 7A10 - 0x1FFF 7FFFReserved
Reserved
0x5006 0800 - 0x5006 0FFF
RNG
Reserved 0x5005 0400 - 0x5006 7FFF
0x4001 0800 - 0x4001 0FFF
Reserved
Reserved
Electrical characteristics STM32F20xxx
68/183 DS6329 Rev 17
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.8 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 17.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 18.
Figure 17. Pin loading conditions Figure 18. Pin input voltage
MS19011V2
C = 50 pF
MCU pin
MS19010V2
MCU pin
VIN
DS6329 Rev 17 69/183
STM32F20xxx Electrical characteristics
182
6.1.6 Power supply scheme
Figure 19. Power supply scheme
1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be
placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality
of the device.
2. To connect REGOFF and IRROFF pins, refer to Section 3.16: Voltage regulator.
3. The two 2.2 µF ceramic capacitors must be replaced by two 100 nF decoupling capacitors when the voltage regulator is
OFF.
4. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB, to ensure good device operation. It
is not recommended to remove filtering capacitors to reduce PCB size or cost. This might
cause incorrect device operation.
ai17527f
VDD
1/2/...14/15
VBAT
GP I/Os
OUT
IN Kernel logic
(CPU,
digital
& RAM)
Backup circuitry
(OSC32K,RTC,
Backup registers,
backup RAM)
Wakeup logic
15 × 100 nF
+ 1 × 4.7 μF
1.65-3.6V
VSS
1/2/...14/15
VDDA
VREF+
VREF-
VSSA
ADC
Level shifter
IO
Logic
VDD
100 nF
+ 1 μF
VREF
100 nF
+ 1 μF
VDD
Flash memory
VCAP_1
VCAP_2
2 × 2.2 μF
REGOFF
IRROFF
Power switch
Analog
RCs, PLL,
...
Voltage
regulator
Electrical characteristics STM32F20xxx
70/183 DS6329 Rev 17
6.1.7 Current consumption measurement
Figure 20. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11, Table 12, and Table 13
may cause permanent damage to the device. These are stress ratings only and functional
operation of the device at these conditions is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
ai14126
VBAT
VDD
VDDA
IDD_VBAT
IDD
Table 11. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage (including VDDA, VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on five-volt tolerant pin(2)
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4
Input voltage on any other pin VSS–0.3 4.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all the different ground pins - 50
VESD(HBM) Electrostatic discharge voltage (human body model) see Section 6.3.14 -
DS6329 Rev 17 71/183
STM32F20xxx Electrical characteristics
182
6.3 Operating conditions
6.3.1 General operating conditions
Table 12. Current characteristics
Symbol Ratings Max Unit
IVDD Total current into VDD power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
120
mA
IVSS Total current out of VSS ground lines (sink)(1) 120
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin 25
IINJ(PIN) (2)
2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC
characteristics.
Injected current on five-volt tolerant I/O(3)
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.
–5/+0
Injected current on any other pin(4)
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.
±5
ΣIINJ(PIN)(4) Total injected current (sum of all I/O and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
±25
Table 13. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 125 °C
Table 14. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 120
MHzfPCLK1 Internal APB1 clock frequency - 0 30
fPCLK2 Internal APB2 clock frequency - 0 60
Electrical characteristics STM32F20xxx
72/183 DS6329 Rev 17
VDD Standard operating voltage - 1.8(1) 3.6
V
VDDA(2)
Analog operating voltage
(ADC limited to 1 M samples)
Must be the same potential as VDD(3)
1.8(1) 3.6
Analog operating voltage
(ADC limited to 2 M samples) 2.4 3.6
VBAT Backup operating voltage - 1.65 3.6
VIN
Input voltage on RST and FT pins
2 V VDD 3.6 V –0.3 5.5
1.7 V VDD 2 V –0.3 5.2
Input voltage on TTa pins - –0.3 VDD+0.3
Input voltage on BOOT0 pin - 0 9
VCAP1 Internal core voltage to be supplied
externally in REGOFF mode -1.11.3
VCAP2
PD
Power dissipation at TA = 85 °C for
suffix 6 or TA = 105 °C for suffix 7(4)
LQFP64 - 444
mW
WLCSP64+2 - 392
LQFP100 - 434
LQFP144 - 500
LQFP176 - 526
UFBGA176 - 513
TA
Ambient temperature for 6 suffix
version
Maximum power dissipation –40 85
°C
Low-power dissipation(5) –40 105
Ambient temperature for 7 suffix
version
Maximum power dissipation –40 105
°C
Low-power dissipation(5) –40 125
TJ Junction temperature range
6 suffix version –40 105
°C
7 suffix version –40 125
1. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).
2. When the ADC is used, refer to Table 66: ADC characteristics.
3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 14. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
DS6329 Rev 17 73/183
STM32F20xxx Electrical characteristics
182
Table 15. Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
(fFlashmax)
Number of wait
states at
maximum CPU
frequency
(fCPUmax=
120 MHz)(1)
I/O operation
FSMC_CLK
frequency for
synchronous
accesses
Possible
Flash
memory
operations
VDD =1.8 to
2.1 V(2)
Conversion
time up to
1 Msps
16 MHz with
no Flash
memory wait
state
7(3)
Degraded
speed
performance
No I/O
compensation
Up to 30 MHz
8-bit erase
and program
operations
only
VDD = 2.1 to
2.4 V
Conversion
time up to
1 Msps
18 MHz with
no Flash
memory wait
state
6(3)
Degraded
speed
performance
No I/O
compensation
Up to 30 MHz
16-bit erase
and program
operations
VDD = 2.4 to
2.7 V
Conversion
time up to
2 Msps
24 MHz with
no Flash
memory wait
state
4(3)
Degraded
speed
performance
–I/O
compensation
works
Up to 48 MHz
16-bit erase
and program
operations
VDD = 2.7 to
3.6 V(4)
Conversion
time up to
2 Msps
30 MHz with
no Flash
memory wait
state
3(3)
Full-speed
operation
–I/O
compensation
works
–Up to
60 MHz
when VDD =
3.0 to 3.6 V
–Up to
48 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
1. The number of wait states can be reduced by reducing the CPU frequency (see Figure 21).
2. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).
3. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
4. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.
Electrical characteristics STM32F20xxx
74/183 DS6329 Rev 17
Figure 21. Number of wait states versus fCPU and VDD range
1. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range and
IRROFF is set to VDD.
6.3.2 VCAP1/VCAP2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor to the
VCAP1/VCAP2 pins. CEXT is specified in Table 16.
Figure 22. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
ai18748b
0
1
2
3
4
5
6
7
8
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
Number of Wait states
Fcpu (MHz)
Wait states vs Fcpu and VDD range
1.8 to 2.1V
2.1 to 2.4V
2.4 to 2.7V
2.7 to 3.6V
Table 16. VCAP1/VCAP2 operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and must be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF
ESR ESR of external capacitor < 2 Ω
MS19044V2
ESR
R
Leak
C
DS6329 Rev 17 75/183
STM32F20xxx Electrical characteristics
182
6.3.3 Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 17. Operating conditions at power-up / power-down (regulator ON)
6.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 18. Operating conditions at power-up / power-down (regulator OFF)
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise
time rate Power-up 20
VCAP_1 and VCAP_2 fall
time rate Power-down 20
Electrical characteristics STM32F20xxx
76/183 DS6329 Rev 17
6.3.5 Embedded reset and power control block characteristics
The parameters given in Table 19 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
Table 19. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising
edge) 2.09 2.14 2.19 V
PLS[2:0]=000 (falling
edge) 1.98 2.04 2.08 V
PLS[2:0]=001 (rising
edge) 2.23 2.30 2.37 V
PLS[2:0]=001 (falling
edge) 2.13 2.19 2.25 V
PLS[2:0]=010 (rising
edge) 2.39 2.45 2.51 V
PLS[2:0]=010 (falling
edge) 2.29 2.35 2.39 V
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65 V
PLS[2:0]=011 (falling
edge) 2.44 2.51 2.56 V
PLS[2:0]=100 (rising
edge) 2.70 2.76 2.82 V
PLS[2:0]=100 (falling
edge) 2.59 2.66 2.71 V
PLS[2:0]=101 (rising
edge) 2.86 2.93 2.99 V
PLS[2:0]=101 (falling
edge) 2.65 2.84 3.02 V
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10 V
PLS[2:0]=110 (falling
edge) 2.85 2.93 2.99 V
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21 V
PLS[2:0]=111 (falling
edge) 2.95 3.03 3.09 V
VPVDhyst(1) PVD hysteresis - - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60 1.68 1.76 V
Rising edge 1.64 1.72 1.80 V
VPDRhyst(1) PDR hysteresis - - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24 V
Rising edge 2.23 2.29 2.33 V
DS6329 Rev 17 77/183
STM32F20xxx Electrical characteristics
182
6.3.6 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 20: Current consumption
measurement scheme.
All Run mode current consumption measurements given in this section are performed using
CoreMark® code.
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56 V
Rising edge 2.53 2.59 2.63 V
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88 V
Rising edge 2.85 2.92 2.97 V
VBORhyst(1) BOR hysteresis - - 100 - mV
TRSTTEMPO(1)(2) Reset temporization - 0.5 1.5 3.0 ms
IRUSH(1)
InRush current on
voltage regulator
power-on (POR or
wakeup from Standby)
- - 160 200 mA
ERUSH(1)
InRush energy on
voltage regulator
power-on (POR or
wakeup from Standby)
VDD = 1.8 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. Guaranteed by design, not tested in production.
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
Table 19. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F20xxx
78/183 DS6329 Rev 17
Typical and maximum current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are configured as analog inputs by firmware.
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted to fHCLK frequency (0 wait state from 0 to
30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz and 3 wait
states from 90 to 120 MHz).
When the peripherals are enabled HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2, except is explicitly mentioned.
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature
(TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.
Table 20. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM (1)
Symbol Parameter Conditions fHCLK
Typ Max(2)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply current
in Run mode
External clock(3), all
peripherals enabled(4)
120 MHz 49 63 72
mA
90 MHz 38 51 61
60 MHz 26 39 49
30 MHz 14 27 37
25 MHz 11 24 34
16 MHz(5) 82130
8 MHz 5 17 27
4 MHz 3 16 26
2 MHz 2 15 25
External clock(3), all
peripherals disabled
120 MHz 21 34 44
90 MHz 17 30 40
60 MHz 12 25 35
30 MHz 7 20 30
25 MHz 5 18 28
16 MHz(5) 4.0 17.0 27.0
8 MHz 2.5 15.5 25.5
4 MHz 2.0 14.7 24.8
2 MHz 1.6 14.5 24.6
1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed by characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
5. In this case HCLK = system clock/2.
DS6329 Rev 17 79/183
STM32F20xxx Electrical characteristics
182
Table 21. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Symbol Parameter Conditions fHCLK
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply current
in Run mode
External clock(2), all
peripherals enabled(3)
120 MHz 61 81 93
mA
90 MHz 48 68 80
60 MHz 33 53 65
30 MHz 18 38 50
25 MHz 14 34 46
16 MHz(4) 10 30 42
8 MHz 6 26 38
4 MHz 4 24 36
2 MHz 3 23 35
External clock(2), all
peripherals disabled
120 MHz 33 54 66
90 MHz 27 47 59
60 MHz 19 39 51
30 MHz 11 31 43
25 MHz 8 28 41
16 MHz(4) 62638
8 MHz 4 24 36
4 MHz 3 23 35
2 MHz 2 23 34
1. Guaranteed by characterization results, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
4. In this case HCLK = system clock/2.
Electrical characteristics STM32F20xxx
80/183 DS6329 Rev 17
Figure 23. Typical current consumption vs. temperature, Run mode, code with data
processing running from RAM, and peripherals ON
Figure 24. Typical current consumption vs. temperature, Run mode, code with data
processing running from RAM, and peripherals OFF
MS19014V1
0
10
20
30
40
50
60
0 20406080100120
CPU frequnecy (MHz)
105°C
85°C
70°C
55°C
30°C
C
-4C
IDD(RUN) (mA)
MS19015V1
0
5
10
15
20
25
30
0 20 40 60 80 100 120
CPU Frequency (MHz
)
105°C
85°C
70°C
55°C
30°C
C
-45°C
IDD(RUN) (mA)
DS6329 Rev 17 81/183
STM32F20xxx Electrical characteristics
182
Figure 25. Typical current consumption vs. temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals ON
Figure 26. Typical current consumption vs. temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals OFF
MS19016V1
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
0 20 40 60 80 100 120
105
85
30°C
-4C
IDD(RUN) (mA)
CPU frequnecy (MHz)
MS19017V1
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
0.0 20.0 40.0 60.0 80.0 100.0 120.0
CPU Frequency (MHz
)
105
85
30°C
-45°C
I
DD(RUN) (mA)
Electrical characteristics STM32F20xxx
82/183 DS6329 Rev 17
Table 22. Typical and maximum current consumption in Sleep mode
Symbol Parameter Conditions fHCLK
Typ Max(1)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current in
Sleep mode
External clock(2),
all peripherals enabled(3)
120 MHz 38 51 61
mA
90 MHz 30 43 53
60 MHz 20 33 43
30 MHz 11 25 35
25 MHz 8 21 31
16 MHz 6 19 29
8 MHz 3.6 17.0 27.0
4 MHz 2.4 15.4 25.3
2 MHz 1.9 14.9 24.7
External clock(2), all
peripherals disabled
120 MHz 8 21 31
90 MHz 7 20 30
60 MHz 5 18 28
30 MHz 3.5 16.0 26.0
25 MHz 2.5 16.0 25.0
16 MHz 2.1 15.1 25.0
8 MHz 1.7 15.0 25.0
4 MHz 1.5 14.6 24.6
2 MHz 1.4 14.2 24.3
1. Guaranteed by characterization results, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is on (ADON bit is set in the ADC_CR2 register).
DS6329 Rev 17 83/183
STM32F20xxx Electrical characteristics
182
Figure 27. Typical current consumption vs. temperature in Sleep mode,
peripherals ON
Figure 28. Typical current consumption vs. temperature in Sleep mode,
peripherals OFF
MS19018V1
0
5
10
15
20
25
30
35
40
45
50
0 20 40 60 80 100 120
105°C
85°C
70°C
55°C
30°C
C
-45°C
IDD(SLEEP) (mA)
CPU Frequency (MHz)
MS19019V1
0
2
4
6
8
10
12
14
16
0 20406080100120
105°C
85°C
70°C
55°C
30°C
C
-4C
CPU Frequency (MHz)
IDD(SLEEP) (mA)
Electrical characteristics STM32F20xxx
84/183 DS6329 Rev 17
Figure 29. Typical current consumption vs. temperature in Stop mode
1. All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes
Table 23. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions
Typ Max
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP
Supply current
in Stop mode
with main
regulator in
Run mode
Flash in Stop mode, low-speed and high-speed
internal RC oscillators and high-speed oscillator
OFF (no independent watchdog)
0.55 1.2 11.00 20.00
mA
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.50 1.2 11.00 20.00
Supply current
in Stop mode
with main
regulator in
Low-power
mode
Flash in Stop mode, low-speed and high-speed
internal RC oscillators and high-speed oscillator
OFF (no independent watchdog)
0.35 1.1 8.00 15.00
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.30 1.1 8.00 15.00
MS19020V1
0.01
0.1
1
10
-45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105
Temperature (°C)
Idd_stop_mr_flhstop
Idd_stop_mr_flhdeep
Idd_stop_lp_flhstop
Idd_stop_lp_flhdeep
IDD(STOP) (mA)
DS6329 Rev 17 85/183
STM32F20xxx Electrical characteristics
182
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 26. The MCU is placed
under the following conditions:
At startup, all I/O pins are configured as analog inputs by firmware.
All peripherals are disabled unless otherwise mentioned
The given value is calculated by measuring the current consumption
with all peripherals clocked off
with one peripheral clocked on (with only the clock applied)
The code is running from Flash memory and the Flash memory access time is equal to
3 wait states at 120 MHz
Prefetch and Cache ON
When the peripherals are enabled, HCLK = 120MHz, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2
The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise
specified.
Table 24. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.6 V
IDD_STBY
Supply current
in Standby
mode
Backup SRAM ON, low-speed
oscillator and RTC ON 3.0 3.4 4.0 15.1 25.8
µA
Backup SRAM OFF, low-
speed oscillator and RTC ON 2.4 2.7 3.3 12.4 20.5
Backup SRAM ON, RTC OFF 2.4 2.6 3.0 12.5 24.8
Backup SRAM OFF, RTC OFF 1.7 1.9 2.2 9.8 19.2
1. Guaranteed by characterization results, not tested in production.
Table 25. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.6 V
IDD_VBAT
Backup
domain supply
current
Backup SRAM ON, low-speed
oscillator and RTC ON 1.29 1.42 1.68 12 19
µA
Backup SRAM OFF, low-speed
oscillator and RTC ON 0.62 0.73 0.96 8 10
Backup SRAM ON, RTC OFF 0.79 0.81 0.86 9 16
Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 5 7
1. Guaranteed by characterization results, not tested in production.
Electrical characteristics STM32F20xxx
86/183 DS6329 Rev 17
Table 26. Peripheral current consumption
Peripheral(1) Typical consumption at 25 °C Unit
AHB1
GPIO A 0.45
mA
GPIO B 0.43
GPIO C 0.46
GPIO D 0.44
GPIO E 0.44
GPIO F 0.42
GPIO G 0.44
GPIO H 0.42
GPIO I 0.43
OTG_HS + ULPI 3.64
CRC 1.17
BKPSRAM 0.21
DMA1 2.76
DMA2 2.85
ETH_MAC +
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
2.99
AHB2
OTG_FS 3.16
DCMI 0.60
AHB3 FSMC 1.74
DS6329 Rev 17 87/183
STM32F20xxx Electrical characteristics
182
APB1
TIM2 0.61
mA
TIM3 0.49
TIM4 0.54
TIM5 0.62
TIM6 0.20
TIM7 0.20
TIM12 0.36
TIM13 0.28
TIM14 0.25
USART2 0.25
USART3 0.25
UART4 0.25
UART5 0.26
I2C1 0.25
I2C2 0.25
I2C3 0.25
SPI2 0.20/0.10
SPI3 0.18/0.09
CAN1 0.31
CAN2 0.30
DAC channel 1(2) 1.11
DAC channel 1(3) 1.11
PWR 0.15
WWDG 0.15
Table 26. Peripheral current consumption (continued)
Peripheral(1) Typical consumption at 25 °C Unit
Electrical characteristics STM32F20xxx
88/183 DS6329 Rev 17
6.3.7 Wakeup time from Low-power mode
The wakeup times given in Table 27 is measured on a wakeup phase with a 16 MHz HSI
RC oscillator. The clock source used to wake up the device depends from the current
operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 14.
APB2
SDIO 0.69
mA
TIM1 1.06
TIM8 1.03
TIM9 0.58
TIM10 0.37
TIM11 0.39
ADC1(4) 2.13
ADC2(4) 2.04
ADC3(4) 2.12
SPI1 1.20
USART1 0.38
USART6 0.37
1. External clock is 25 MHz (HSE oscillator with 25 MHz crystal) and PLL is on.
2. EN1 bit is set in DAC_CR register.
3. EN2 bit is set in DAC_CR register.
4. fADC = fPCLK2/2, ADON bit set in ADC_CR2 register.
Table 26. Peripheral current consumption (continued)
Peripheral(1) Typical consumption at 25 °C Unit
Table 27. Low-power mode wakeup timings
Symbol Parameter Min(1) Typ(1) Max(1) Unit
tWUSLEEP(2) Wakeup from Sleep mode - 1 - µs
tWUSTOP(2)
Wakeup from Stop mode (regulator in Run mode) - 13 -
µs
Wakeup from Stop mode (regulator in Low-power mode) - 17 40
Wakeup from Stop mode (regulator in Low-power mode
and Flash memory in Deep power down mode) -110-
tWUSTDBY(2)(3) Wakeup from Standby mode 260 375 480 µs
1. Guaranteed by characterization results, not tested in production.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.
DS6329 Rev 17 89/183
STM32F20xxx Electrical characteristics
182
6.3.8 External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 28 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Low-speed external user clock generated from an external source
The characteristics given in Table 29 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 28. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1)
-
1-26MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design, not tested in production.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --20
Cin(HSE) OSC_IN input capacitance(1) --5-pF
DuCy(HSE) Duty cycle - 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Table 29. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext User External clock source frequency(1)
1. Guaranteed by design, not tested in production.
-
- 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) --5-pF
DuCy(LSE) Duty cycle - 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
Electrical characteristics STM32F20xxx
90/183 DS6329 Rev 17
Figure 30. High-speed external clock source AC timing diagram
Figure 31. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 30. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
ai17528
OSC _I N
External
STM32F
clock source
VHSEH
tf(HSE) tW(HSE)
IL
90 %
10 %
THSE
t
tr(HSE) tW(HSE)
fHSE_ext
VHSEL
ai17529
OSC32_IN
External
STM32F
clock source
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
DS6329 Rev 17 91/183
STM32F20xxx Electrical characteristics
182
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 32). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 32. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 31. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 30. HSE 4-26 MHz oscillator characteristics(1) (2)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 - 26 MHz
RFFeedback resistor - - 200 - kΩ
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 ,
CL=5 pF@25 MHz
-449-
µA
VDD=3.3 V,
ESR= 30 ,
CL=10 pF@25 MHz
-532-
gmOscillator transconductance Startup 5 - - mA/V
tSU(HSE(3)
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
ai17530
OSC_OUT
OSC_IN fHSE
CL1
RF
STM32F
8 MHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
REXT(1)
CL2
Electrical characteristics STM32F20xxx
92/183 DS6329 Rev 17
Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 33. Typical application with a 32.768 kHz crystal
6.3.9 Internal clock source characteristics
The parameters given in Table 32 and Table 33 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
Table 31. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - - 18.4 - MΩ
IDD LSE current consumption - - - 1 µA
gmOscillator Transconductance - 2.8 - - µA/V
tSU(LSE)(2)
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer
startup time VDD is stabilized - 2 - s
ai17531
OSC32_OUT
OSC32_IN fLSE
CL1
RF
STM32F
32.768 kHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
CL2
Table 32. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
HSI user-trimming step(2)
2. Guaranteed by design, not tested in production.
---1%
Accuracy of the
HSI oscillator
TA = –40 to 105 °C(3)
3. Guaranteed by characterization results.
– 8 - 4.5 %
TA = –10 to 85 °C(3) – 4 - 4 %
TA = 25 °C(4)
4. Factory calibrated, parts not soldered.
– 1 - 1 %
tsu(HSI)(2) HSI oscillator startup time - - 2.2 4.0 µs
IDD(HSI)(2) HSI oscillator power consumption - - 60 80 µA
DS6329 Rev 17 93/183
STM32F20xxx Electrical characteristics
182
Figure 34. ACCHSI versus temperature
Low-speed internal (LSI) RC oscillator
Table 33. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed by characterization results, not tested in production.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design, not tested in production.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
MS19012V2
-8
-6
-4
-2
0
2
4
6
-45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Normalized deviation (% )
Temperature (°C)
max
avg
min
Electrical characteristics STM32F20xxx
94/183 DS6329 Rev 17
Figure 35. ACCLSI versus temperature
6.3.10 PLL characteristics
The parameters given in Table 34 and Table 35 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 14.
MS19013V1
-40
-30
-20
-10
0
10
20
30
40
50
-45-35-25-15-5 5 152535455565758595105
Nor mali zed devi at i on (%)
Temperat ure (°C)
max
avg
min
Table 34. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10
(2) MHz
fPLL_OUT PLL multiplier output clock - 24 - 120 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock ---48MHz
fVCO_OUT PLL VCO output - 192 - 432 MHz
tLOCK PLL lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
DS6329 Rev 17 95/183
STM32F20xxx Electrical characteristics
182
Jitter(3)
Cycle-to-cycle jitter
System clock
120 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples -32 -
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples -40 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples - 330 -
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization results, not tested in production.
Table 34. Main PLL characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 35. PLLI2S (audio PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) -0.95
(2) 12.10
(2) MHz
fPLLI2S_OUT PLLI2S multiplier output clock - - - 216 MHz
fVCO_OUT PLLI2S VCO output - 192 - 432 MHz
tLOCK PLLI2S lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Electrical characteristics STM32F20xxx
96/183 DS6329 Rev 17
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 -
ps
peak
to
peak
- ±280 -
Average frequency of
12.288 MHz
N=432, R=5
on 1000 samples
-90 -ps
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design, not tested in production.
3. Value given with main PLL running.
4. Guaranteed by characterization results, not tested in production.
Table 35. PLLI2S (audio PLL) characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS6329 Rev 17 97/183
STM32F20xxx Electrical characteristics
182
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 42: EMI characteristics). It is available only on the main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation
1:
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Table 36. SSCG parameters constraint
Symbol Parameter Min Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - - 2151-
MODEPER round fPLL_IN 4f
Mod
×()[]=
MODEPER round 106410
3
×()[]250==
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2 240××()100 5×250×()[]126md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
mdquantized% 250 126×100×5×()215 1()240×()2.0002%(peak)==
Electrical characteristics STM32F20xxx
98/183 DS6329 Rev 17
Figure 36 and Figure 37 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 36. PLL output clock waveforms in center spread mode
Figure 37. PLL output clock waveforms in down spread mode
6.3.12 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 105 °C unless otherwise specified.
MS39983V1
Frequency
(PLL_OUT)
Time
F0
tmode
md
2x tmode
md
MS39982V1
Frequency
(PLL_OUT)
Time
F0
tmode
2x md
2x tmode
DS6329 Rev 17 99/183
STM32F20xxx Electrical characteristics
182
Table 37. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode
VDD = 1.8 V -5-
mA
Write / Erase 16-bit mode
VDD = 2.1 V -8-
Write / Erase 32-bit mode
VDD = 3.3 V -12-
Table 38. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by characterization results, not tested in production.
Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.32.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -1632
s
Program/erase parallelism
(PSIZE) = x 16 -1122
Program/erase parallelism
(PSIZE) = x 32 -816
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.8 - 3.6 V
Electrical characteristics STM32F20xxx
100/183 DS6329 Rev 17
Table 40. Flash memory endurance and data retention
6.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
Table 39. Flash memory programming with VPP
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
-16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time - 230 -
mstERASE64KB Sector (64 KB) erase time - 490 -
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 6.9 - s
Vprog Programming voltage - 2.7 - 3.6 V
VPP VPP voltage range - 7 - 9 V
IPP
Minimum current sunk on
the VPP pin -10--mA
tVPP(3)
3. VPP must only be connected during programming/erasing.
Cumulative time during
which VPP is applied - - - 1 hour
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization results, not tested in production.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
DS6329 Rev 17 101/183
STM32F20xxx Electrical characteristics
182
The test results are given in Table 41. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. Note that good EMC performance is
highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 41. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP176, TA =
+25 °C, fHCLK = 120 MHz, conforms
to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP176, TA =
+25 °C, fHCLK = 120 MHz, conforms
to IEC 61000-4-2
4A
Electrical characteristics STM32F20xxx
102/183 DS6329 Rev 17
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC® code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
6.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 42. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
25/120 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running with ART
enabled, peripheral clock disabled
0.1 to 30 MHz
25 dBµV30 to 130 MHz
130 MHz to 1 GHz
SAE EMI Level 4 -
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running with ART
enabled, PLL spread spectrum
enabled, peripheral clock disabled
0.1 to 30 MHz 28
dBµV30 to 130 MHz 26
130 MHz to 1 GHz 22
SAE EMI level 4 -
Table 43. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to JESD22-A114 2 2000(2)
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to JESD22-C101 II 500
1. Guaranteed by characterization results, not tested in production.
2. On VBAT pin, VESD(HBM) is limited to 1000 V.
DS6329 Rev 17 103/183
STM32F20xxx Electrical characteristics
182
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.15 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) must be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 45.
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
Table 44. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Table 45. I/O current injection susceptibility(1)
1. NA stands for “not applicable”.
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 pin –0 NA
mA
Injected current on NRST pin –0 NA
Injected current on TTa pins: PA4 and PA5 –0 +5
Injected current on all FT pins –5 NA
Electrical characteristics STM32F20xxx
104/183 DS6329 Rev 17
6.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 50 are derived from tests
performed under the conditions summarized in Table 14: General operating conditions.
All I/Os are CMOS and TTL compliant.
Table 46. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, TTa and NRST I/O
input low level voltage 1.7 V VDD 3.6 V - -
0.35VDD–0.04(1)
V
0.3VDD(2)
BOOT0 I/O
input low level voltage
1.75 V VDD 3.6 V,
–40 °C TA 105 °C --
0.1VDD+0.1(1)
1.7 V VDD 3.6 V,
0 °C TA 105 °C --
VIH
FT, TTa and NRST I/O
input high level voltage(5) 1.7 V VDD 3.6 V
0.45VDD+0.3(1)
--
V
0.7VDD(2)
BOOT0 I/O
input high level voltage
1.75 V VDD 3.6 V,
–40 °C TA 105 °C
0.17VDD+0.7(1) --
1.7 V VDD 3.6 V,
0 °C TA 105 °C
VHYS
FT, TTa and NRST I/O
input hysteresis 1.7 V VDD 3.6 V 0.45VDD+0.3(1) --
V
BOOT0 I/O
input hysteresis
1.75 V VDD 3.6 V,
–40 °C TA 105 °C 10%VDDIO(1)(3) --
1.7 V VDD 3.6 V,
0 °C TA 105 °C 100(1) --
Ilkg
I/O input leakage current (4) VSS VIN VDD -- ±1
µA
I/O FT input leakage current (5) VIN = 5 V - - 3
DS6329 Rev 17 105/183
STM32F20xxx Electrical characteristics
182
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 38.
RPU
Weak pull-up
equivalent
resistor(6)
All pins
except for
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
VIN = VSS 30 40 50
kΩ
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
- 7 10 14
RPD
Weak pull-down
equivalent
resistor(7)
All pins
except for
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
VIN = VDD 30 40 50
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
- 7 10 14
CIO(8) I/O pin capacitance - - 5 - pF
1. Guaranteed by design, not tested in production.
2. Guaranteed by tests in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 45: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 45: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
Table 46. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F20xxx
106/183 DS6329 Rev 17
Figure 38. FT I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed
must not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 12).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 47 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14. All I/Os are CMOS and TTL compliant.
MS33746V3
1.92
1.065
1.22
1.7 2.0 2.4 2.7 3.3 3.6
2.00
0.55
0.80
VDD (V)
VIL/VIH (V)
Tested in production - CMOS requirement VIHmin = 0.7V
DD
Tested in production -
CMOS requirement
VILmax = 0.3V
DD
Based on simulations, VILmax= 0.35V
DD
-0.04
TTL requirement
VIHmin = 2V
TTL requirement
VILmax = 0.8V
0.51
2.52
Area not
determined
1.19
Based on simulations, VIHmin= 0.45V
DD
+0.3
DS6329 Rev 17 107/183
STM32F20xxx Electrical characteristics
182
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 39 and
Table 48, respectively.
Unless otherwise specified, the parameters given in Table 48 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Table 47. Output voltage characteristics(1)
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed
must not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current
source (e.g. to drive an LED).
Symbol Parameter Conditions Min Max Unit
VOL(2)
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time CMOS ports
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4 -
VOL (2) Output low level voltage for an I/O pin
when 8 pins are sunk at same time TTL ports
IIO =+ 8mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin
when 8 pins are sourced at same time 2.4 -
VOL(2)(4)
4. Guaranteed by characterization results, not tested in production.
Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +20 mA
2.7 V < VDD < 3.6 V
-1.3
V
VOH(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–1.3 -
VOL(2)(4) Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO = +6 mA
2 V < VDD < 2.7 V
-0.4
V
VOH(3)(4) Output high level voltage for an I/O pin
when 8 pins are sourced at same time VDD–0.4 -
Table 48. I/O AC characteristics(1)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(2)
CL = 50 pF, VDD > 2.70 V - - 4
MHz
CL = 50 pF, VDD > 1.8 V - - 2
CL = 10 pF, VDD > 2.70 V - - 8
CL = 10 pF, VDD > 1.8 V - - 4
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.8 V to
3.6 V - - 100 ns
Electrical characteristics STM32F20xxx
108/183 DS6329 Rev 17
01
fmax(IO)out Maximum frequency(2)
CL = 50 pF, VDD > 2.70 V - - 25
MHz
CL = 50 pF, VDD > 1.8 V - - 12.5
CL = 10 pF, VDD > 2.70 V - - 50(3)
CL = 10 pF, VDD > 1.8 V - - 20
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD >2.7 V - - 10
ns
CL = 50 pF, VDD > 1.8 V - - 20
CL = 10 pF, VDD > 2.70 V - - 6
CL = 10 pF, VDD > 1.8 V - - 10
10
fmax(IO)out Maximum frequency(2)
CL = 40 pF, VDD > 2.70 V - - 25
MHz
CL = 40 pF, VDD > 1.8 V - - 20
CL = 10 pF, VDD > 2.70 V - - 100(3)
CL = 10 pF, VDD > 1.8 V - - 50(3)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD > 2.70 V - - 6
ns
CL = 40 pF, VDD > 1.8 V - - 10
CL = 10 pF, VDD > 2.70 V - - 4
CL = 10 pF, VDD > 1.8 V - -3 6
11
fmax(IO)out Maximum frequency(2)
CL = 30 pF, VDD > 2.70 V - - 100(3)
MHz
CL = 30 pF, VDD > 1.8 V - - 50(3)
CL = 10 pF, VDD > 2.70 V - - 120(3)
CL = 10 pF, VDD > 1.8 V - - 100(3)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD > 2.70 V - - 4
ns
CL = 30 pF, VDD > 1.8 V - - 6
CL = 10 pF, VDD > 2.70 V - - 2.5
CL = 10 pF, VDD > 1.8 V - - 4
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-10--ns
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a
description of the GPIOx_SPEEDR GPIO port output speed register.
2. The maximum frequency is defined in Figure 39.
3. For maximum frequencies above 50 MHz and VDD above 2.4 V, the compensation cell must be used.
Table 48. I/O AC characteristics(1) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
DS6329 Rev 17 109/183
STM32F20xxx Electrical characteristics
182
Figure 39. I/O AC characteristics definition
6.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 49).
Unless otherwise specified, the parameters given in Table 49 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Figure 40. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 49. Otherwise the reset is not taken into account by the device.
ai14131d
10%
90%
50%
tr(IO)out
OUTPUT
EXTERNAL
ON CL
Maximum frequency is achieved if (tr + tf) ≤ (2/3)T and if the duty cycle is (45-55%)
when loaded by CL specified in the table “ I/O AC characteristics”.
10%
50%
90%
T
tf(IO)out
Table 49. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 kΩ
VF(NRST)(2) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design, not tested in production.
ai14132c
STM32F
RPU
NRST
(2)
VDD
Filter
Internal Reset
0.1 μF
External
reset circuit (1)
Electrical characteristics STM32F20xxx
110/183 DS6329 Rev 17
6.3.18 TIM timer characteristics
The parameters given in Table 50 and Table 51 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 50. Characteristics of TIMx connected to the APB1 domain(1)
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB1
prescaler distinct
from 1, fTIMxCLK =
60 MHz
1-
tTIMxCLK
16.7 - ns
AHB/APB1
prescaler = 1,
fTIMxCLK = 30 MHz
1-
tTIMxCLK
33.3 - ns
fEXT Timer external clock
frequency on CH1 to CH4
fTIMxCLK = 60 MHz
APB1= 30 MHz
0fTIMxCLK/2 MHz
030MHz
ResTIM Timer resolution - 16/32 bit
tCOUNTER
16-bit counter clock period
when internal clock is
selected
1 65536 tTIMxCLK
0.0167 1092 µs
32-bit counter clock period
when internal clock is
selected
1-
tTIMxCLK
0.0167 71582788 µs
tMAX_COUNT Maximum possible count
- 65536 × 65536 tTIMxCLK
- 71.6 s
DS6329 Rev 17 111/183
STM32F20xxx Electrical characteristics
182
6.3.19 Communications interfaces
I2C interface characteristics
STM32F205xx and STM32F207xx I2C interface meets the requirements of the standard I2C
communication protocol with the following restrictions: the I/O pins SDA and SCL are
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 52. Refer also to Section 6.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 51. Characteristics of TIMx connected to the APB2 domain(1)
1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB2
prescaler distinct
from 1, fTIMxCLK =
120 MHz
1-
tTIMxCLK
8.3 - ns
AHB/APB2
prescaler = 1,
fTIMxCLK = 60 MHz
1-
tTIMxCLK
16.7 - ns
fEXT Timer external clock
frequency on CH1 to CH4
fTIMxCLK = 120 MHz
APB2 = 60 MHz
0fTIMxCLK/2 MHz
060MHz
ResTIM Timer resolution - 16 bit
tCOUNTER
16-bit counter clock period
when internal clock is
selected
1 65536 tTIMxCLK
0.0083 546 µs
tMAX_COUNT Maximum possible count
- 65536 × 65536 tTIMxCLK
- 35.79 s
Electrical characteristics STM32F20xxx
112/183 DS6329 Rev 17
Table 52. I2C characteristics
Symbol Parameter
Standard mode
I2C(1)(2)
1. Guaranteed by design, not tested in production.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time - 3450(3) -900
(3)
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of the SCL
signal.
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - μs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - μs
Cb
Capacitive load for each bus
line - 400 - 400 pF
tSP
Pulse width of the spikes
that are suppressed by the
analog filter
050
(4)
4. The minimum width of the spikes filtered by the analog filter is above tSP(max).
050ns
DS6329 Rev 17 113/183
STM32F20xxx Electrical characteristics
182
Figure 41. I2C bus AC waveforms and measurement circuit
1. RS= series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
Table 53. SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x8019
300 0x8021
200 0x8032
100 0x0096
50 0x012C
20 0x02EE
ai14979c
RP
I²C bus
VDD_I2C
STM32Fxx
SDA
SCL
tf(SDA) tr(SDA)
th(STA)
tw(SCLL)
tw(SCLH)
tsu(SDA)
tr(SCL) tf(SCL)
th(SDA)
START REPEATED
tsu(STA)
tsu(STO)
STOP tw(STO:STA)
VDD_I2C
RPRS
RS
START
START
SDA
SCL
Electrical characteristics STM32F20xxx
114/183 DS6329 Rev 17
I2S - SPI interface characteristics
Unless otherwise specified, the parameters given in Table 54 for SPI or in Table 55 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14.
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 54. SPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
SPI1 master/slave mode - 30
MHz
SPI2/SPI3 master/slave mode - 15
tr(SCL)
tf(SCL)
SPI clock rise and fall
time
Capacitive load: C = 30 pF,
fPCLK = 30 MHz - 8ns
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 30 70 %
tsu(NSS)(1)
1. Guaranteed by characterization results, not tested in production.
NSS setup time Slave mode 4tPCLK -
ns
th(NSS)(1) NSS hold time Slave mode 2tPCLK -
tw(SCLH)(1)
tw(SCLL)(1) SCK high and low time Master mode, fPCLK = 30 MHz,
presc = 2 tPCLK-3t
PCLK+3
tsu(MI) (1)
tsu(SI)(1) Data input setup time
Master mode 5 -
Slave mode 5 -
th(MI) (1)
th(SI)(1) Data input hold time
Master mode 5 -
Slave mode 4 -
ta(SO)(1)(2)
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
Data output access
time Slave mode, fPCLK = 30 MHz 0 3tPCLK
tdis(SO)(1)(3)
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
Data output disable
time Slave mode 2 10
tv(SO) (1) Data output valid time Slave mode (after enable edge) - 25
tv(MO)(1) Data output valid time Master mode (after enable edge) - 5
th(SO)(1)
Data output hold time
Slave mode (after enable edge) 15 -
th(MO)(1) Master mode (after enable edge) 2 -
DS6329 Rev 17 115/183
STM32F20xxx Electrical characteristics
182
Figure 42. SPI timing diagram - slave mode and CPHA = 0
Figure 43. SPI timing diagram - slave mode and CPHA = 1
ai14134c
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUTPUT
CPHA=0
MSB O UT
MSB IN
BIT6 OUT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
tSU(NSS)
tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK) tdis(SO)
tsu(SI)
th(SI)
ai14135b
NSS input
tSU(NSS) tc(SCK) th(NSS)
SCK input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
ta(SO) tv(SO) th(SO) tr(SCK)
tf(SCK) tdis(SO)
MISO
OUTPUT
MOSI
INPUT
tsu(SI) th(SI)
MSB OUT
MSB IN
BIT6 OUT LSB OUT
LSB IN
BIT 1 IN
Electrical characteristics STM32F20xxx
116/183 DS6329 Rev 17
Figure 44. SPI timing diagram - master mode
ai14136c
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
DS6329 Rev 17 117/183
STM32F20xxx Electrical characteristics
182
Table 55. I2S characteristics
Symbol Parameter Conditions Min Max Unit
fCK
1/tc(CK)
I2S clock frequency
Master, 16-bit data,
audio frequency = 48 kHz, main
clock disabled
1.23 1.24
MHz
Slave 0 64FS(1)
tr(CK)
tf(CK)
I2S clock rise and fall time Capacitive load CL = 50 pF - (2)
ns
tv(WS) (3) WS valid time Master 0.3 -
th(WS) (3) WS hold time Master 0 -
tsu(WS) (3) WS setup time Slave 3 -
th(WS) (3) WS hold time Slave 0 -
tw(CKH) (3)
tw(CKL) (3) CK high and low time Master fPCLK= 30 MHz 396 -
tsu(SD_MR) (3)
tsu(SD_SR) (3) Data input setup time Master receiver
Slave receiver
45
0-
th(SD_MR)(3)(4)
th(SD_SR) (3)(4) Data input hold time Master receiver: fPCLK= 30 MHz,
Slave receiver: fPCLK= 30 MHz
13
0-
tv(SD_ST) (3)(4) Data output valid time Slave transmitter (after enable
edge) - 30
th(SD_ST) (3) Data output hold time Slave transmitter (after enable
edge) 10 -
tv(SD_MT) (3)(4) Data output valid time Master transmitter (after enable
edge) - 6
th(SD_MT) (3) Data output hold time Master transmitter (after enable
edge) 0 -
1. FS is the sampling frequency. Refer to the I2S section of the STM32F20xxx/21xxx reference manual for more details. fCK
values reflect only the digital peripheral behavior which leads to a minimum of (I2SDIV/(2*I2SDIV+ODD), a maximum of
(I2SDIV+ODD)/(2*I2SDIV+ODD) and FS maximum values for each mode/condition.
2. Refer to Table 48: I/O AC characteristics.
3. Guaranteed by design, not tested in production.
4. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.
Electrical characteristics STM32F20xxx
118/183 DS6329 Rev 17
Figure 45. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 46. I2S master timing diagram (Philips protocol)(1)
1. Guaranteed by characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH) tw(CKL)
tsu(WS) tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive(2)
LSB transmit(2)
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
tf(CK) tr(CK)
tv(WS)
LSB receive
(2)
LSB transmit
(2)
DS6329 Rev 17 119/183
STM32F20xxx Electrical characteristics
182
USB OTG FS characteristics
The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the
USB OTG HS and USB OTG FS controllers.
Table 56. USB OTG FS startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design, not tested in production.
USB OTG FS transceiver startup time 1 µs
Table 57. USB OTG FS DC electrical characteristics
Symbol Parameter Conditions Min(1)
1. All the voltages are measured from the local ground potential.
Typ Max(1) Unit
Input
levels
VDD
USB OTG FS operating
voltage 3.0(2)
2. The STM32F205xx and STM32F207xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
-3.6V
VDI(3)
3. Guaranteed by design, not tested in production.
Differential input sensitivity I(USB_FS_DP/DM,
USB_HS_DP/DM) 0.2 - -
VVCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold 1.3 - 2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB OTG FS drivers
--0.3
V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
RPD
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
VIN = VDD
17 21 24
kΩ
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
0.65 1.1 2.0
RPU
PA12, PB15 (USB_FS_DP,
USB_HS_DP) VIN = VSS 1.5 1.8 2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS 0.25 0.37 0.55
Electrical characteristics STM32F20xxx
120/183 DS6329 Rev 17
Figure 47. USB OTG FS timings: definition of data signal rise and fall time
USB HS characteristics
Table 59 shows the USB HS operating voltage.
Table 58. USB OTG FS electrical characteristics(1)
1. Guaranteed by design, not tested in production.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification -
Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage - 1.3 2.0 V
Table 59. USB HS DC electrical characteristics
Symbol Parameter Min(1)
1. All the voltages are measured from the local ground potential.
Max(1) Unit
Input level VDD USB OTG HS operating voltage 2.7 3.6 V
Table 60. Clock timing parameters
Parameter(1)
1. Guaranteed by design, not tested in production.
Symbol Min Nominal Max Unit
Frequency (first transition) 8-bit ±10% FSTART_8BIT 54 60 66 MHz
Frequency (steady state) ±500 ppm FSTEADY 59.97 60 60.03 MHz
Duty cycle (first transition) 8-bit ±10% DSTART_8BIT 40 50 60 %
Duty cycle (steady state) ±500 ppm DSTEADY 49.975 50 50.025 %
Time to reach the steady state frequency and
duty cycle after the first transition TSTEADY --1.4ms
Clock startup time after the
de-assertion of SuspendM
Peripheral TSTART_DEV --5.6
ms
Host TSTART_HOST ---
PHY preparation time after the first transition
of the input clock TPREP ---µs
ai14137b
Cross over
points
Differential
data lines
V
CRS
V
SS
t
f
t
r
DS6329 Rev 17 121/183
STM32F20xxx Electrical characteristics
182
Figure 48. ULPI timing diagram
Ethernet characteristics
Table 62 shows the Ethernet operating voltage.
Table 63 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 49 shows the corresponding timing diagram.
Table 61. ULPI timing
Symbol Parameter
Value(1)
1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.
Unit
Min Max
tSC
Control in (ULPI_DIR) setup time - 2.0
ns
Control in (ULPI_NXT) setup time - 1.5
tHC Control in (ULPI_DIR, ULPI_NXT) hold time 0 -
tSD Data in setup time - 2.0
tHD Data in hold time 0 -
tDC Control out (ULPI_STP) setup time and hold time - 9.2
tDD Data out available from clock rising edge - 10.7
Table 62. Ethernet DC electrical characteristics
Symbol Parameter Min(1)
1. All the voltages are measured from the local ground potential.
Max(1) Unit
Input level VDD Ethernet operating voltage 2.7 3.6 V
Clock
Control In
(ULPI_DIR,
ULPI_NXT)
data In
(8-bit)
Control out
(ULPI_STP)
data out
(8-bit)
tDD
tDC
tHD
tSD
tHC
tSC
ai17361c
tDC
Electrical characteristics STM32F20xxx
122/183 DS6329 Rev 17
Figure 49. Ethernet SMI timing diagram
Table 64 gives the list of Ethernet MAC signals for the RMII and Figure 50 shows the
corresponding timing diagram.
Figure 50. Ethernet RMII timing diagram
Table 63. Dynamics characteristics: Ethernet MAC signals for SMI
Symbol Rating Min Typ Max Unit
tMDC MDC cycle time (2.38 MHz) 411 420 425 ns
td(MDIO) MDIO write data valid time 6 10 13 ns
tsu(MDIO) Read data setup time 12 - - ns
th(MDIO) Read data hold time 0 - - ns
Table 64. Dynamics characteristics: Ethernet MAC signals for RMII
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time 1 - -
ns
tih(RXD) Receive data hold time 1.5 - -
tsu(CRS) Carrier sense set-up time 0 - -
tih(CRS) Carrier sense hold time 2 - -
td(TXEN) Transmit enable valid delay time 9 11 13
td(TXD) Transmit data valid delay time 9 11.5 14
ETH_MDC
ETH_MDIO(O)
ETH_MDIO(I)
tMDC
td(MDIO)
tsu(MDIO) th(MDIO)
ai15666d
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
td(TXEN)
td(TXD)
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
ai1566
7
DS6329 Rev 17 123/183
STM32F20xxx Electrical characteristics
182
Table 65 gives the list of Ethernet MAC signals for MII and Figure 50 shows the
corresponding timing diagram.
Figure 51. Ethernet MII timing diagram
CAN (controller area network) interface
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANTX and CANRX).
Table 65. Dynamics characteristics: Ethernet MAC signals for MII
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time 7.5 - - ns
tih(RXD) Receive data hold time 1 - - ns
tsu(DV) Data valid setup time 4 - - ns
tih(DV) Data valid hold time 0 - - ns
tsu(ER) Error setup time 3.5 - - ns
tih(ER) Error hold time 0 - - ns
td(TXEN) Transmit enable valid delay time - 11 14 ns
td(TXD) Transmit data valid delay time - 11 14 ns
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
t
d(TXEN)
t
d(TXD)
t
su(RXD)
t
su(ER)
t
su(DV)
t
ih(RXD)
t
ih(ER)
t
ih(DV)
ai15668
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
Electrical characteristics STM32F20xxx
124/183 DS6329 Rev 17
6.3.20 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 66 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 14.
Table 66. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply - 1.8(1) -3.6V
VREF+ Positive reference voltage - 1.8(1)(2) -V
DDA V
fADC ADC clock frequency VDDA = 1.8(1) to 2.4 V 0.6 - 15 MHz
VDDA = 2.4 to 3.6 V 0.6 - 30 MHz
fTRIG(3) External trigger frequency
fADC = 30 MHz with
12-bit resolution - - 1764 kHz
---171/f
ADC
VAIN Conversion voltage range(4) -0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(3) External input impedance See Equation 1 for
details --50kΩ
RADC(3)(5) Sampling switch resistance - 1.5 - 6 kΩ
CADC(3) Internal sample and hold
capacitor --4-pF
tlat(3) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
---3
(6) 1/fADC
tlatr(3) Regular trigger conversion latency fADC = 30 MHz - - 0.067 µs
---2
(6) 1/fADC
tS(3) Sampling time fADC = 30 MHz 0.100 - 16 µs
- 3 - 480 1/fADC
tSTAB(3) Power-up time - - 2 3 µs
tCONV(3) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.5 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.3 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
DS6329 Rev 17 125/183
STM32F20xxx Electrical characteristics
182
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
a
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins must be avoided as this significantly reduces the accuracy of the conversion
fS(3) Sampling rate
(fADC = 30 MHz)
12-bit resolution
Single ADC - - 2 Msps
12-bit resolution
Interleaved Dual
ADC mode
- - 3.75 Msps
12-bit resolution
Interleaved Triple
ADC mode
- - 6 Msps
IVREF+(3) ADC VREF DC current
consumption in conversion mode - - 300 500 µA
IVDDA(3) ADC VDDA DC current
consumption in conversion mode --1.61.8mA
1. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).
2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.
3. Guaranteed by characterization results, not tested in production.
4. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
5. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.
6. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66.
Table 66. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 67. ADC accuracy (1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed by characterization results, not tested in production.
Unit
ET Total unadjusted error
fPCLK2 = 60 MHz,
fADC = 30 MHz, RAIN < 10 kΩ,
VDDA = 1.8(3) to 3.6 V
3. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when
the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see
Section 3.16).
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
RAIN
k0.5()
fADC CADC 2N2+
()ln××
---------------------------------------------------------------- RADC
=
Electrical characteristics STM32F20xxx
126/183 DS6329 Rev 17
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.16 does not affect the ADC accuracy.
Figure 52. ADC accuracy characteristics
1. Example of an actual transfer curve.
2. Ideal transfer curve.
3. End point correlation line.
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 53. Typical connection diagram using the ADC
1. Refer to Table 66 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC must be reduced.
ai14395c
EO
EG
1L SBIDEAL
4095
4094
4093
5
4
3
2
1
0
7
6
1 2 3 456 7 4093 4094 4095 4096
(1)
(2)
ET
ED
EL
(3)
VDDA
VSSA
VREF+
4096 (or depending on package)]
VDDA
4096
[1LSB IDEAL
=
ai17534
STM32F
VDD
AINx
IL±1 μA
0.6 V
VT
RAIN(1)
Cparasitic
VAIN
0.6 V
VT
RADC(1)
CADC(1)
12-bit
converter
Sample and hold ADC
converter
DS6329 Rev 17 127/183
STM32F20xxx Electrical characteristics
182
General PCB design guidelines
Power supply decoupling must be performed as shown in Figure 54 or Figure 55, depending
on whether VREF+ is connected to VDDA or not. The 10 nF capacitors must be ceramic (good
quality), placed as close as possible to the chip.
Figure 54. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176 package. VREF+ is also available on all packages
except for LQFP64. When VREF+ and VREF– are not available, they are internally connected to VDDA and
VSSA.
STM32
1 μF // 10 nF
1 μF // 10 nF
VREF+ (1)
VDDA
VSSA/VREF+
(1)
ai17535c
Electrical characteristics STM32F20xxx
128/183 DS6329 Rev 17
Figure 55. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176 package. VREF+ is also available on all packages
except for LQFP64. When VREF+ and VREF– are not available, they are internally connected to VDDA and
VSSA.
6.3.21 DAC electrical characteristics
STM32F
1 μF // 10 nF
ai17536c
VREF+/VDDA
VREF-/VSSA (1)
(1)
Table 68. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA Analog supply voltage 1.8(1) -3.6 V -
VREF+ Reference supply voltage 1.8(1) -3.6VV
REF+ VDDA
VSSA Ground 0 - 0 V -
RLOAD(2) Resistive load with buffer
ON 5- - k-
RO(2) Impedance output with
buffer OFF -- 15 k
When the buffer is OFF, the Minimum
resistive load between DAC_OUT and
VSS to have a 1% accuracy is 1.5 MΩ
CLOAD(2) Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT
pin (when the buffer is ON).
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
Gives the maximum output excursion of
the DAC.
Corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V
and (0x1C7) to (0xE38) at
VREF+ = 1.8 V
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer ON --V
DDA – 0.2 V
DS6329 Rev 17 129/183
STM32F20xxx Electrical characteristics
182
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer OFF -0.5 - mV
Gives the maximum output excursion of
the DAC.
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer OFF --V
REF+ – 1LSB V
IVREF+(4)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
- 170 240
µA
With no load, worst code (0x800) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-50 75
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
IDDA(4)
DAC DC VDDA current
consumption in quiescent
mode(3)
- 280 380 µA With no load, middle code (0x800) on
the inputs
- 475 625 µA
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
DNL(4)
Differential non linearity
Difference between two
consecutive code-1LSB)
-- ±0.5 LSB
Given for the DAC in 10-bit
configuration.
-- ±2 LSB
Given for the DAC in 12-bit
configuration.
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on
a line drawn between
Code 0 and last Code
1023)
-- ±1 LSB
Given for the DAC in 10-bit
configuration.
-- ±4 LSB
Given for the DAC in 12-bit
configuration.
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal
value = VREF+/2)
-- ±10 mV -
-- ±3 LSB
Given for the DAC in 10-bit at VREF+ =
3.6 V
-- ±12 LSB
Given for the DAC in 12-bit at VREF+ =
3.6 V
Gain
error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING(4)
Settling time (full scale: for
a 10-bit input code
transition between the
lowest and the highest
input codes when
DAC_OUT reaches final
value ±4LSB
-3 6 µs
CLOAD 50 pF,
RLOAD 5 kΩ
THD(4) Total Harmonic Distortion
Buffer ON -- - dB
CLOAD 50 pF,
RLOAD 5 kΩ
Table 68. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
Electrical characteristics STM32F20xxx
130/183 DS6329 Rev 17
Figure 56. 12-bit buffered/non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly, without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.22 Temperature sensor characteristics
Update
rate(2)
Max frequency for a
correct DAC_OUT change
when small variation in the
input code (from code i to
i+1LSB)
-- 1 MS/s
CLOAD 50 pF,
RLOAD 5 kΩ
tWAKEUP(4)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
- 6.5 10 µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and highest
possible ones.
PSRR+ (2)
Power supply rejection
ratio (to VDDA) (static DC
measurement)
- –67 –40 dB No RLOAD, CLOAD = 50 pF
1. On devices in WLCSP64+2 package, if IRROFF is set to VDD, the supply voltage can drop to 1.7 V when the device
operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).
2. Guaranteed by design, not tested in production.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization results, not tested in production.
Table 68. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
R
L
C
L
Buffered/Non-buffered DAC
DAC_OUTx
Buffer(1)
12-bit
digital to
analog
converter
ai17157V2
Table 69. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Guaranteed by characterization results, not tested in production.
VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 - mV/°C
V25(1) Voltage at 25 °C - 0.76 - V
tSTART(2)
2. Guaranteed by design, not tested in production.
Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the
temperature (1 °C accuracy) 10 - - µs
DS6329 Rev 17 131/183
STM32F20xxx Electrical characteristics
182
6.3.23 VBAT monitoring characteristics
6.3.24 Embedded reference voltage
The parameters given in Table 71 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
6.3.25 FSMC characteristics
Asynchronous waveforms and timings
Figure 57 through Figure 60 represent asynchronous waveforms and Table 72 through
Table 75 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
AddressSetupTime = 1
AddressHoldTime = 1
DataSetupTime = 1
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
Table 70. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-K
QRatio on V
BAT measurement - 2 -
Er(1)
1. Guaranteed by design, not tested in production.
Error on Q –1 - +1 %
TS_vbat(2)(2)
2. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the VBAT
(1 mV accuracy) 5--µs
Table 71. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint(1)
1. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when
reading the internal reference
voltage
-10--µs
VRERINT_s
(2)
2. Guaranteed by design, not tested in production.
Internal reference voltage
spread over the temperature
range
VDD = 3 V - 3 5 mV
TCoeff(2) Temperature coefficient - - 30 50 ppm/°C
tSTART(2) Startup time - - 6 10 µs
Electrical characteristics STM32F20xxx
132/183 DS6329 Rev 17
Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 2 THCLK – 0.5 2 THCLK + 0.5 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 2.5 ns
tw(NOE) FSMC_NOE low time 2 THCLK - 1 2 THCLK + 0.5 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 4 ns
th(A_NOE) Address hold time after FSMC_NOE high 0 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns
th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK + 0.5 - ns
tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK + 0.5 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2.5 ns
tw(NADV) FSMC_NADV low time - THCLK – 0.5 ns
Data
FSMC_NE
FSMC_NBL[1:0]
FSMC_D[15:0]
t
v(BL_NE)
th(Data_NE)
FSMC_NOE
Address
FSMC_A[25:0]
t
v(A_NE)
FSMC_NWE
tsu(Data_NE)
tw(NE)
ai14991c
w(NOE)
ttv(NOE_NE) th(NE_NOE)
th(Data_NOE)
th(A_NOE)
th(BL_NOE)
tsu(Data_NOE)
FSMC_NADV(1)
tv(NADV_NE)
tw(NADV)
DS6329 Rev 17 133/183
STM32F20xxx Electrical characteristics
182
Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
NBL
Data
FSMC_NEx
FSMC_NBL[1:0]
FSMC_D[15:0]
t
v(BL_NE)
th(Data_NWE)
FSMC_NOE
Address
FSMC_A[25:0]
t
v(A_NE)
tw(NWE)
FSMC_NWE
tv(NWE_NE) th(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(Data_NE)
tw(NE)
ai14990
FSMC_NADV(1)
tv(NADV_NE)
tw(NADV)
Table 73. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3 THCLK 3 THCLK + 4 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK – 0.5 THCLK + 0.5 ns
tw(NWE) FSMC_NWE low time THCLK – 0.5 THCLK + 3 ns
th(NE_NWE)
FSMC_NWE high to FSMC_NE high hold
time THCLK -ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
th(A_NWE) Address hold time after FSMC_NWE high THCLK - 3 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE
high THCLK – 1 - ns
tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK + 5 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK + 0.5 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns
tw(NADV) FSMC_NADV low time - THCLK + 1.5 ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Electrical characteristics STM32F20xxx
134/183 DS6329 Rev 17
Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms
Table 74. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3 THCLK - 1 3 THCLK + 1 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2 THCLK 2 THCLK + 0.5 ns
tw(NOE) FSMC_NOE low time THCLK - 1 THCLK + 1 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 2 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2.5 ns
tw(NADV) FSMC_NADV low time THCLK – 1.5 THCLK ns
th(AD_NADV)
FSMC_AD(adress) valid hold time after
FSMC_NADV high) THCLK -ns
th(A_NOE) Address hold time after FSMC_NOE high THCLK -ns
th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1 ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK + 2 - ns
tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK + 3 - ns
NBL
Data
FSMC_NBL[1:0]
FSMC_
AD[15:0]
t
v(BL_NE)
th(Data_NE)
Address
FSMC_A[25:16]
t
v(A_NE)
FSMC_NWE
tv(A_NE)
ai14892b
Address
FSMC_NADV
tv(NADV_NE)
tw(NADV)
tsu(Data_NE)
t
h(AD_NADV)
FSMC_NE
FSMC_NOE
tw(NE)
tw(NOE)
tv(NOE_NE) th(NE_NOE)
th(A_NOE)
th(BL_NOE)
tsu(Data_NOE) th(Data_NOE)
DS6329 Rev 17 135/183
STM32F20xxx Electrical characteristics
182
Figure 60. Asynchronous multiplexed PSRAM/NOR write waveforms
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Table 75. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 4 THCLK - 1 4 THCLK + 1 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK - 1 THCLK ns
tw(NWE) FSMC_NWE low tim e 2 THCLK 2 THCLK + 1 ns
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK - 1 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns
tw(NADV) FSMC_NADV low time THCLK – 2 THCLK + 2 ns
th(AD_NADV)
FSMC_AD(adress) valid hold time after
FSMC_NADV high) THCLK -ns
Table 74. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) (continued)
Symbol Parameter Min Max Unit
NBL
Data
FSMC_NEx
FSMC_NBL[1:0]
FSMC_AD[15:0]
t
v(BL_NE)
th(Data_NWE)
FSMC_NOE
Address
FSMC_A[25:16]
t
v(A_NE)
tw(NWE)
FSMC_NWE
tv(NWE_NE) th(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(A_NE)
tw(NE)
ai14891B
Address
FSMC_NADV
tv(NADV_NE)
tw(NADV)
tv(Data_NADV)
t
h(AD_NADV)
Electrical characteristics STM32F20xxx
136/183 DS6329 Rev 17
Synchronous waveforms and timings
Figure 61 through Figure 64 represent synchronous waveforms, and Table 77 through
Table 79 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
BurstAccessMode = FSMC_BurstAccessMode_Enable;
MemoryType = FSMC_MemoryType_CRAM;
WriteBurst = FSMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F20xxx/21xxx reference manual)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period.
th(A_NWE) Address hold time after FSMC_NWE high THCLK – 0.5 - ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK - 1 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns
tv(Data_NADV) FSMC_NADV high to Data valid - THCLK + 2 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK – 0.5 - ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Table 75. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) (continued)
Symbol Parameter Min Max Unit
DS6329 Rev 17 137/183
STM32F20xxx Electrical characteristics
182
Figure 61. Synchronous multiplexed NOR/PSRAM read timings
FSMC_CLK
FSMC_NEx
FSMC_NADV
FSMC_A[25:16]
FSMC_NOE
FSMC_AD[15:0] AD[15:0] D1 D2
FSMC_NWAIT
(WAITCFG = 1b, WAITPOL + 0b)
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKL-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKL-AIV)
td(CLKH-NOEL) td(CLKL-NOEH)
td(CLKL-ADV)
td(CLKL-ADIV)
tsu(ADV-CLKH)
th(CLKH-ADV)
tsu(ADV-CLKH) th(CLKH-ADV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
ai14893h
Table 76. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2 THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1.5 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 2.5 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 0 - ns
td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1 - ns
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3 ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
Electrical characteristics STM32F20xxx
138/183 DS6329 Rev 17
Figure 62. Synchronous multiplexed PSRAM write timings
tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 5 - ns
th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Table 76. Synchronous multiplexed NOR/PSRAM read timings(1)(2) (continued)
Symbol Parameter Min Max Unit
Table 77. Synchronous multiplexed PSRAM write timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2 THCLK - 1 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 2 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 3 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 7 - ns
FSMC_CLK
FSMC_NEx
FSMC_NADV
FSMC_A[25:16]
FSMC_NWE
FSMC_AD[15:0] AD[15:0] D1 D2
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKL-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKL-AIV)
td(CLKL-NWEH)
td(CLKL-NWEL)
td(CLKL-NBLH)
td(CLKL-ADV)
td(CLKL-ADIV) td(CLKL-Data)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
ai14992g
td(CLKL-Data)
FSMC_NBL
DS6329 Rev 17 139/183
STM32F20xxx Electrical characteristics
182
Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 0 - ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 2 ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0.5 - ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Table 78. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2 THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2.5 ns
Table 77. Synchronous multiplexed PSRAM write timings(1)(2) (continued)
Symbol Parameter Min Max Unit
FSMC_CLK
FSMC_NEx
FSMC_A[25:0]
FSMC_NOE
FSMC_D[15:0]
D1 D2
FSMC_NWAIT
(WAITCFG = 1b, WAITPOL + 0b)
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKL-NExH)
td(CLKL-AV) td(CLKL-AIV)
td(CLKH-NOEL) td(CLKL-NOEH)
tsu(DV-CLKH) th(CLKH-DV)
tsu(DV-CLKH) th(CLKH-DV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
ai14894g
FSMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
D3
Electrical characteristics STM32F20xxx
140/183 DS6329 Rev 17
Figure 64. Synchronous non-multiplexed PSRAM write timings
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 4 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 3 - ns
td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns
tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 8 - ns
th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 0 - ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Table 79. Synchronous non-multiplexed PSRAM write timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2 THCLK - 1 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
Table 78. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) (continued)
Symbol Parameter Min Max Unit
FSMC_CLK
FSMC_NEx
FSMC_A[25:0]
FSMC_NWE
FSMC_D[15:0] D1 D2
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKL-NExH)
td(CLKL-AV) td(CLKL-AIV)
td(CLKL-NWEH)
td(CLKL-NWEL)
td(CLKL-Data)
tsu(NWAITV-CLKH)
th(CLKH-NWAITV)
ai14993g
FSMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
td(CLKL-Data)
FSMC_NBL
td(CLKL-NBLH)
DS6329 Rev 17 141/183
STM32F20xxx Electrical characteristics
182
PC Card/CompactFlash controller waveforms and timings
Figure 65 through Figure 70 represent synchronous waveforms, with Table 80 and Table 81
providing the corresponding timings. The results shown in these table are obtained with the
following FSMC configuration:
COM.FSMC_SetupTime = 0x04;
COM.FSMC_WaitSetupTime = 0x07;
COM.FSMC_HoldSetupTime = 0x04;
COM.FSMC_HiZSetupTime = 0x00;
ATT.FSMC_SetupTime = 0x04;
ATT.FSMC_WaitSetupTime = 0x07;
ATT.FSMC_HoldSetupTime = 0x04;
ATT.FSMC_HiZSetupTime = 0x00;
IO.FSMC_SetupTime = 0x04;
IO.FSMC_WaitSetupTime = 0x07;
IO.FSMC_HoldSetupTime = 0x04;
IO.FSMC_HiZSetupTime = 0x00;
TCLRSetupTime = 0;
TARSetupTime = 0;
In all timing tables, the THCLK is the HCLK clock period.
td(CLKL-
NADVL)
FSMC_CLK low to FSMC_NADV low - 5 ns
td(CLKL-
NADVH)
FSMC_CLK low to FSMC_NADV high 6 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1 - ns
td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 2 ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 2 - ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Table 79. Synchronous non-multiplexed PSRAM write timings(1)(2) (continued)
Symbol Parameter Min Max Unit
Electrical characteristics STM32F20xxx
142/183 DS6329 Rev 17
Figure 65. PC Card/CompactFlash controller waveforms for common memory read
access
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
Figure 66. PC Card/CompactFlash controller waveforms for common memory write
access
FSMC_NWE
tw(NOE)
FSMC_N
OE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_2(1)
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NCE4_1-NOE)
tsu(D-NOE) th(NOE-D)
tv(NCEx-A)
td(NREG-NCEx)
td(NIORD-NCEx)
th(NCEx-AI)
th(NCEx-NREG)
th(NCEx-NIORD)
th(NCEx-
NIOWR
)
ai14895b
td(NCE4_1-NWE) tw(NWE)
th(NWE-D)
tv(NCE4_1-A)
td(NREG-NCE4_1)
td(NIORD-NCE4_1)
th(NCE4_1-AI)
MEMxHIZ =1
tv(NWE-D)
th(NCE4_1-NREG)
th(NCE4_1-NIORD)
th(NCE4_1-NIOWR)
ai14896b
FSMC_NWE
FSMC_N
OE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NWE-NCE4_1)
td(D-NWE)
FSMC_NCE4_2 High
DS6329 Rev 17 143/183
STM32F20xxx Electrical characteristics
182
Figure 67. PC Card/CompactFlash controller waveforms for attribute memory read
access
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
td(NCE4_1-NOE) tw(NOE)
tsu(D-NOE) th(NOE-D)
tv(NCE4_1-A) th(NCE4_1-AI)
td(NREG-NCE4_1) th(NCE4_1-NREG)
ai14897b
FSMC_NWE
FSMC_NOE
FSMC_D[15:0](1)
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NOE-NCE4_1)
High
Electrical characteristics STM32F20xxx
144/183 DS6329 Rev 17
Figure 68. PC Card/CompactFlash controller waveforms for attribute memory write
access
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 69. PC Card/CompactFlash controller waveforms for I/O space read access
tw(NWE)
tv(NCE4_1-A)
td(NREG-NCE4_1)
th(NCE4_1-AI)
th(NCE4_1-NREG)
tv(NWE-D)
ai14898b
FSMC_NWE
FSMC_NOE
FSMC_D[7:0](1)
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NWE-NCE4_1)
High
td(NCE4_1-NWE)
td(NIORD-NCE4_1) tw(NIORD)
tsu(D-NIORD) td(NIORD-D)
tv(NCEx-A) th(NCE4_1-AI)
ai14899B
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
DS6329 Rev 17 145/183
STM32F20xxx Electrical characteristics
182
Figure 70. PC Card/CompactFlash controller waveforms for I/O space write access
Table 80. Switching characteristics for PC Card/CF read and write cycles in
attribute/common space(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tv(NCEx-A) FSMC_Ncex low to FSMC_Ay valid - 0 ns
th(NCEx_AI) FSMC_NCEx high to FSMC_Ax invalid 4 - ns
td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 3.5 ns
th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid THCLK+ 4 - ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+ 1 ns
td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low - 5THCLK ns
tw(NOE) FSMC_NOE low width 8THCLK– 0.5 8THCLK+ 1 ns
td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high 5THCLK+ 2.5 - ns
tsu (D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 4 - ns
th (N0E-D) FSMC_N0E high to FSMC_D[15:0] invalid 2 - ns
tw(NWE) FSMC_NWE low width 8THCLK- 1 8THCLK+ 4 ns
td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5THCLK+ 1.5 - ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5HCLK+ 1 ns
tv (NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns
th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 8THCLK -ns
td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13THCLK -ns
td(NCE4_1-NIOWR) tw(NIOWR)
tv(NCEx-A) th(NCE4_1-AI)
th(NIOWR-D)
ATTxHIZ =1
tv(NIOWR-D)
ai14900c
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
Electrical characteristics STM32F20xxx
146/183 DS6329 Rev 17
NAND controller waveforms and timings
Figure 71 through Figure 74 represent synchronous waveforms, together with Table 82 and
Table 83 provides the corresponding timings. The results shown in this table are obtained
with the following FSMC configuration:
COM.FSMC_SetupTime = 0x01;
COM.FSMC_WaitSetupTime = 0x03;
COM.FSMC_HoldSetupTime = 0x02;
COM.FSMC_HiZSetupTime = 0x01;
ATT.FSMC_SetupTime = 0x01;
ATT.FSMC_WaitSetupTime = 0x03;
ATT.FSMC_HoldSetupTime = 0x02;
ATT.FSMC_HiZSetupTime = 0x01;
Bank = FSMC_Bank_NAND;
MemoryDataWidth = FSMC_MemoryDataWidth_16b;
ECC = FSMC_ECC_Enable;
ECCPageSize = FSMC_ECCPageSize_512Bytes;
TCLRSetupTime = 0;
TARSetupTime = 0;
In all timing tables, the THCLK is the HCLK clock period.
Table 81. Switching characteristics for PC Card/CF read and write cycles in I/O space(1)(2)
Symbol Parameter Min Max Unit
tw(NIOWR) FSMC_NIOWR low width 8THCLK - 0.5 - ns
tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5THCLK- 1 ns
th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 8THCLK- 3 - ns
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK+ 1.5 ns
th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK -ns
td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK+ 1 ns
th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5THCLK– 0.5 - ns
tw(NIORD) FSMC_NIORD low width 8THCLK+ 1 - ns
tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 9.5 - ns
td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 0 - ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
DS6329 Rev 17 147/183
STM32F20xxx Electrical characteristics
182
Figure 71. NAND controller waveforms for read access
Figure 72. NAND controller waveforms for write access
FSMC_NWE
FSMC_NOE (NRE)
FSMC_D[15:0]
tsu(D-NOE) th(NOE-D)
ai14901c
ALE (FSMC_A17)
CLE (FSMC_A16)
FSMC_NCEx
td(ALE-NOE) th(NOE-ALE)
ai14902c
th(NWE-D)
tv(NWE-D)
FSMC_NWE
FSMC_NOE (NRE)
FSMC_D[15:0]
ALE (FSMC_A17)
CLE (FSMC_A16)
FSMC_NCEx
td(ALE-NWE) th(NWE-ALE)
Electrical characteristics STM32F20xxx
148/183 DS6329 Rev 17
Figure 73. NAND controller waveforms for common memory read access
Figure 74. NAND controller waveforms for common memory write access
Table 82. Switching characteristics for NAND Flash read cycles(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(N0E) FSMC_NOE low width 4THCLK- 1 4THCLK+ 2 ns
tsu(D-NOE) FSMC_D[15-0] valid data before FSMC_NOE high 9 - ns
th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high 3 - ns
td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 3THCLK ns
th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK+ 2 - ns
FSMC_NWE
FSMC_N
OE
FSMC_D[15:0]
t
w(NOE)
t
su(D-NOE)
t
h(NOE-D)
ai14912c
ALE (FSMC_A17)
CLE (FSMC_A16)
FSMC_NCEx
t
d(ALE-NOE)
t
h(NOE-ALE)
ai14913c
tw(NWE)
th(NWE-D)
tv(NWE-D)
FSMC_NWE
FSMC_N
OE
FSMC_D[15:0]
td(D-NWE)
ALE (FSMC_A17)
CLE (FSMC_A16)
FSMC_NCEx
td(ALE-NOE) th(NOE-ALE)
DS6329 Rev 17 149/183
STM32F20xxx Electrical characteristics
182
6.3.26 Camera interface (DCMI) timing specifications
6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 85 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 14.
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (D[7:0], CMD, CK).
Figure 75. SDIO high-speed mode
Table 83. Switching characteristics for NAND Flash write cycles(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(NWE) FSMC_NWE low width 4THCLK- 1 4THCLK+ 3 ns
tv(NWE-D) FSMC_NWE low to FSMC_D[15-0] valid - 0 ns
th(NWE-D) FSMC_NWE high to FSMC_D[15-0] invalid 3THCLK -ns
td(D-NWE) FSMC_D[15-0] valid before FSMC_NWE high 5THCLK -ns
td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3THCLK+ 2 ns
th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK- 2 - ns
Table 84. DCMI characteristics
Symbol Parameter Conditions Min Max
- Frequency ratio DCMI_PIXCLK/fHCLK DCMI_PIXCLK= 48 MHz - 0.4
Electrical characteristics STM32F20xxx
150/183 DS6329 Rev 17
Figure 76. SD default mode
6.3.28 RTC characteristics
Table 85. SD/MMC characteristics
Symbol Parameter Conditions Min Max Unit
fPP Clock frequency in data transfer
mode CL 30 pF 0 48 MHz
- SDIO_CK/fPCLK2 frequency ratio - - 8/3 -
tW(CKL) Clock low time, fPP = 16 MHz CL 30 pF 32 -
ns
tW(CKH) Clock high time, fPP = 16 MHz CL 30 pF 31 -
trClock rise time CL 30 pF - 3.5
tfClock fall time CL 30 pF - 5
CMD, D inputs (referenced to CK)
tISU Input setup time CL 30 pF 2 -
ns
tIH Input hold time CL 30 pF 0 -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time CL 30 pF - 6
ns
tOH Output hold time CL 30 pF 0.3 -
CMD, D outputs (referenced to CK) in SD default mode(1)
1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.
tOVD Output valid default time CL 30 pF - 7
ns
tOHD Output hold default time CL 30 pF 0.5 -
ai14888
CK
D, CMD
(output)
tOVD tOHD
Table 86. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
DS6329 Rev 17 151/183
STM32F20xxx Package information
182
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
7.1 LQFP64 package information
LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.
Figure 77. LQFP64 outline
1. Drawing is not to scale.
Table 87. LQFP64 mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
5W_ME_V3
A1
A2
A
SEATING PLANE
ccc C
b
C
c
A1
L
L1
K
IDENTIFICATION
PIN 1
D
D1
D3
e
116
17
32
33
48
49
64
E3
E1
E
GAUGE PLANE
0.25 mm
Package information STM32F20xxx
152/183 DS6329 Rev 17
Figure 78. LQFP64 recommended footprint
1. Dimensions are expressed in millimeters.
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 87. LQFP64 mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
48
32
49
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909c
DS6329 Rev 17 153/183
STM32F20xxx Package information
182
7.2 WLCSP64+2 package information
WLCSP64+2 is a 66-ball, 3.639 x 3.971 mm, 0.4 mm pitch wafer level chip scale package.
Figure 79. WLCSP64+2 outline
1. Drawing is not to scale.
Table 88. WLCSP64+2 mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.540 0.570 0.600 0.0213 0.0224 0.0236
A1 - 0.190 - - 0.0075 -
A2 - 0.380 - - 0.0150 -
A3 - 0.025 - - 0.0100 -
b(2) 0.240 0.270 0.300 0.0094 0.0106 0.0118
D 3.604 3.639 3.674 0.1419 0.1433 0.1446
E 3.936 3.971 4.006 0.1550 0.1563 0.1577
e - 0.400 - - 0.0157 -
e1 - 3.200 - - 0.1260 -
e2 - 3.200 - - 0.1260 -
A0FX_ME_V2
Bump sideSide view
Detail A
Wafer back side
A1 ball location
A1
Detail A
rotated by 90 °C
eee
D
Seating plane
A2
A
b
E
e
e1
e
G
F
e2
A3
Package information STM32F20xxx
154/183 DS6329 Rev 17
Figure 80. WLCSP64+2 recommended footprint
F - 0.220 - - 0.0087 -
G - 0.386 - - 0.0152 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Table 89. WLCSP64+2 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
Table 88. WLCSP64+2 mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A0FX_FP_V1
Dpad
Dsm
DS6329 Rev 17 155/183
STM32F20xxx Package information
182
7.3 LQFP100 package information
LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.
Figure 81. LQFP100 outline
1. Drawing is not to scale.
Table 90. LQPF100 mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
e
IDENTIFICATION
PIN 1
GAUGE PLANE
0.25 mm
SEATING PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
125
26
100
76
75 51
50
1L_ME_V5
A2
A
A1
L1
L
c
b
A1
Package information STM32F20xxx
156/183 DS6329 Rev 17
Figure 82. LQFP100 recommended footprint
1. Dimensions are expressed in millimeters.
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3. 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 90. LQPF100 mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
75 51
5076 0.5
0.3
16.7 14.3
100 26
12.3
25
1.2
16.7
1
ai14906c
DS6329 Rev 17 157/183
STM32F20xxx Package information
182
Device marking
The following figure gives an example of topside marking and pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 83. LQFP100 marking (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
MSv36143V2
Product
identification(1)
Date code
Pin 1
identifier
YWW
Revision
code
VFT6 X
STM32F207
Package information STM32F20xxx
158/183 DS6329 Rev 17
7.4 LQFP144 package information
LQFP144 is a 144-pin, 20 x 20 mm low-profile quad flat package.
Figure 84. LQFP144 outline
1. Drawing is not to scale.
e
IDENTIFICATION
PIN 1
GAUGE PLANE
0.25 mm
SEATING
PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
136
37
144
109
108 73
72
1A_ME_V4
A2
A
A1
L1
L
c
b
A1
DS6329 Rev 17 159/183
STM32F20xxx Package information
182
Table 91. LQFP144 mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.6890 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
Package information STM32F20xxx
160/183 DS6329 Rev 17
Figure 85. LQFP144 recommended footprint
1. Dimensions are expressed in millimeters.
0.5
0.35
19.9 17.85
22.6
1.35
22.6
19.9
ai14905e
136
37
72
73108
109
144
DS6329 Rev 17 161/183
STM32F20xxx Package information
182
Device marking
The following figure gives an example of topside marking and pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 86. LQFP144 marking (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
MSv36144V2
Date code
Pin 1 identifier
STM32F207ZGT6
1
Product
identification(1)
Revision code
YWW
Package information STM32F20xxx
162/183 DS6329 Rev 17
7.5 LQFP176 package information
LQFP176 is a 176-pin, 24 x 24 mm low profile quad flat package.
Figure 87. LQFP176 outline
1. Drawing is not to scale.
1T_ME_V2
A2
A
e
EHE
D
HD
ZD
ZE
b
0.25 mm
gauge plane
A1 L
L1
k
c
IDENTIFICATION
PIN 1
Seating plane
C
A1
Table 92. LQFP176 mechanical data
Symbol
Dimensions
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 - 1.450 0.0531 - 0.0571
b 0.170 - 0.270 0.0067 - 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
DS6329 Rev 17 163/183
STM32F20xxx Package information
182
D 23.900 - 24.100 0.9409 - 0.9488
HD 25.900 - 26.100 1.0197 - 1.0276
ZD - 1.250 - - 0.0492 -
E 23.900 - 24.100 0.9409 - 0.9488
HE 25.900 - 26.100 1.0197 - 1.0276
ZE - 1.250 - - 0.0492 -
e - 0.500 - - 0.0197 -
L(2) 0.450 - 0.750 0.0177 - 0.0295
L1 - 1.000 - - 0.0394 -
k0° - 7° 0° - 7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
Table 92. LQFP176 mechanical data (continued)
Symbol
Dimensions
millimeters inches(1)
Min Typ Max Min Typ Max
Package information STM32F20xxx
164/183 DS6329 Rev 17
Figure 88. LQFP176 recommended footprint
1. Dimensions are expressed in millimeters.
1T_FP_V1
133
132
1.2
0.3
0.5
89
88 1.2
44
45
21.8
26.7
1176
26.7
21.8
DS6329 Rev 17 165/183
STM32F20xxx Package information
182
7.6 UFBGA176+25 package information
UFBGA176+25 is a 201-ball, 10 x 10 mm, 0.65 mm pitch ultra fine pitch ball grid array
package.
Figure 89. UFBGA176+25 outline
1. Drawing is not to scale.
Table 93. UFBGA176+25 mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 0.0094
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 9.850 10.000 10.150 0.3878 0.3937 0.3996
D1 - 9.100 - - 0.3583 -
E 9.850 10.000 10.150 0.3878 0.3937 0.3996
E1 - 9.100 - - 0.3583 -
e - 0.650 - - 0.0256 -
Z - 0.450 - - 0.0177 -
ddd - - 0.080 - - 0.0031
A0E7_ME_V7
D1
Seating plane
A2
Cddd
A1 A
eZ
Z
e
R
A
15 1
BOTTOM VIEW
E
D
TOP VIEW
Øb (176 + 25 balls)
B
A
B
eeeØ M
fffØM
C
C
A
C
A1 ball
identifier
A1 ball
index
area
b
A4
E1
A3
Package information STM32F20xxx
166/183 DS6329 Rev 17
Figure 90. UFBGA176+25 recommended footprint
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 94. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)
Dimension Recommended values
Pitch 0.65 mm
Dpad 0.300 mm
Dsm 0.400 mm typ (depends on the soldermask registration tolerance)
Stencil opening 0.300 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
Table 93. UFBGA176+25 mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A0E7_FP_V1
Dpad
Dsm
DS6329 Rev 17 167/183
STM32F20xxx Package information
182
Device marking
The following figure gives an example of topside marking and ball A1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 91. UFBGA176+25 marking (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
MS41484V1
Revision code
R
STM32
F207IGH6
Date code
Product identification(1)
Ball A1
identifier
Package information STM32F20xxx
168/183 DS6329 Rev 17
7.7 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 95. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP 64 - 10 × 10 mm / 0.5 mm pitch 45
°C/W
Thermal resistance junction-ambient
WLCSP64+2 - 0.400 mm pitch 51
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 46
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch 40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch 38
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.5 mm pitch 39
DS6329 Rev 17 169/183
STM32F20xxx Ordering information
182
8 Ordering information
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, contact your nearest ST sales office.
Example: STM32 F 205 R E T 6 V xxx
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
205 = STM32F20x, connectivity
207= STM32F20x, connectivity, camera interface, Ethernet
Pin count
R = 64 pins or 66 pins(1)
V = 100 pins
Z = 144 pins
I = 176 pins
Flash memory size
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
E = 512 Kbytes of Flash memory
F = 768 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
T = LQFP
H = UFBGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Software option
Internal code or Blank
Options
xxx = programmed parts
TR = tape and reel
1. The 66 pins is available on WLCSP package only.
Revision history STM32F20xxx
170/183 DS6329 Rev 17
9 Revision history
Table 96. Document revision history
Date Revision Changes
05-Jun-2009 1 Initial release.
09-Oct-2009 2
Document status promoted from Target specification to Preliminary
data.
In Table 8: STM32F20x pin and ball definitions:
Note 4 updated
–V
DD_SA and VDD_3 pins inverted (Figure 12: STM32F20x LQFP100
pinout, Figure 13: STM32F20x LQFP144 pinout and Figure 14:
STM32F20x LQFP176 pinout corrected accordingly).
Section : In order to meet environmental requirements, ST offers these
devices in different grades of ECOPACK packages, depending on their
level of environmental compliance. ECOPACK specifications, grade
definitions and product status are available at: www.st.com. ECOPACK
is an ST trademark. changed to LQFP with no exposed pad.
01-Feb-2010 3
LFBGA144 package removed. STM32F203xx part numbers removed.
Part numbers with 128 and 256 Kbyte Flash densities added.
Encryption features removed.
PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPER-
RTC renamed to PI8-RTC_AF2.
13-Jul-2010 4
Renamed high-speed SRAM, system SRAM.
Removed combination: 128 KBytes Flash memory in LQFP144.
Added UFBGA176 package. Added note 1 related to LQFP176 package
in Table 2, Figure 14, and Table .
Added information on ART accelerator and audio PLL (PLLI2S).
Added Table 6: USART feature comparison.
Several updates on Table 8: STM32F20x pin and ball definitions and
Table 10: Alternate function mapping. ADC, DAC, oscillator, RTC_AF,
WKUP and VBUS signals removed from alternate functions and moved
to the “other functions” column in Table 8: STM32F20x pin and ball
definitions.
TRACESWO added in Figure 4: STM32F20x block diagram, Table 8:
STM32F20x pin and ball definitions, and Table 10: Alternate function
mapping.
XTAL oscillator frequency updated on cover page, in Figure 4:
STM32F20x block diagram and in Section 3.11: External interrupt/event
controller (EXTI).
Updated list of peripherals used for boot mode in Section 3.13: Boot
modes.
Added Regulator bypass mode in Section 3.16: Voltage regulator, and
Section 6.3.4: Operating conditions at power-up / power-down
(regulator OFF).
Updated Section 3.17: Real-time clock (RTC), backup SRAM and
backup registers.
Added Note Note: in Section 3.18: Low-power modes.
Added SPI TI protocol in Section 3.23: Serial peripheral interface (SPI).
DS6329 Rev 17 171/183
STM32F20xxx Revision history
182
13-Jul-2010 4
(continued)
Added USB OTG_FS features in Section 3.28: Universal serial bus on-
the-go full-speed (OTG_FS).
Updated VCAP_1 and VCAP_2 capacitor value to 2.2 µF in Figure 19:
Power supply scheme.
Removed DAC, modified ADC limitations, and updated I/O
compensation for 1.8 to 2.1 V range in Table 15: Limitations depending
on the operating power supply range.
Added VBORL, VBORM, VBORH and IRUSH in Table 19: Embedded reset
and power control block characteristics.
Removed table Typical current consumption in Sleep mode with Flash
memory in Deep power down mode. Merged typical and maximum
current consumption sections and added Table 21: Typical and
maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled), Table 20:
Typical and maximum current consumption in Run mode, code with data
processing running from Flash memory (ART accelerator enabled) or
RAM, Table 22: Typical and maximum current consumption in Sleep
mode, Table 23: Typical and maximum current consumptions in Stop
mode, Table 24: Typical and maximum current consumptions in Standby
mode, and Table 25: Typical and maximum current consumptions in
VBAT mode.
Update Table 34: Main PLL characteristics and added Section 6.3.11:
PLL spread spectrum clock generation (SSCG) characteristics.
Added Note 8 for CIO in Table 48: I/O AC characteristics.
Updated Section 6.3.18: TIM timer characteristics.
Added TNRST_OUT in Table 49: NRST pin characteristics.
Updated Table 52: I2C characteristics.
Removed 8-bit data in and data out waveforms from Figure 48: ULPI
timing diagram.
Removed note related to ADC calibration in Table 67. Section 6.3.20:
12-bit ADC characteristics: ADC characteristics tables merged into one
single table; tables ADC conversion time and ADC accuracy removed.
Updated Table 68: DAC characteristics.
Updated Section 6.3.22: Temperature sensor characteristics and
Section 6.3.23: VBAT monitoring characteristics.
Update Section 6.3.26: Camera interface (DCMI) timing specifications.
Added Section 6.3.27: SD/SDIO MMC card host interface (SDIO)
characteristics, and Section 6.3.28: RTC characteristics.
Added Section 7.7: Thermal characteristics. Updated Table 91:
LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package
mechanical data and Figure 86: LQFP176 - Low profile quad flat
package 24 × 24 × 1.4 mm, package outline.
Changed tape and reel code to TX in Table : .
Added Table 101: Main applications versus package for STM32F2xxx
microcontrollers. Updated figures in Appendix A.2: USB OTG full speed
(FS) interface solutions and A.3: USB OTG high speed (HS) interface
solutions. Updated Figure 94: Audio player solution using PLL, PLLI2S,
USB and 1 crystal and Figure 95: Audio PLL (PLLI2S) providing
accurate I2S clock.
Table 96. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
172/183 DS6329 Rev 17
25-Nov-2010 5
Update I/Os in Section : Features.
Added WLCSP64+2 package. Added note 1 related to LQFP176 on
cover page.
Added trademark for ART accelerator. Updated Section 3.2: Adaptive
real-time memory accelerator (ART Accelerator™).
Updated Figure 5: Multi-AHB matrix.
Added case of BOR inactivation using IRROFF on WLCSP devices in
Section 3.15: Power supply supervisor.
Reworked Section 3.16: Voltage regulator to clarify regulator off modes.
Renamed PDROFF, IRROFF in the whole document.
Added Section 3.19: VBAT operation.
Updated LIN and IrDA features for UART4/5 in Table 6: USART feature
comparison.
Table 8: STM32F20x pin and ball definitions: Modified VDD_3 pin, and
added note related to the FSMC_NL pin; renamed BYPASS-REG
REGOFF, and add IRROFF pin; renamed USART4/5 UART4/5.
USART4 pins renamed UART4.
Changed VSS_SA to VSS, and VDD_SA pin reserved for future use.
Updated maximum HSE crystal frequency to 26 MHz.
Section 6.2: Absolute maximum ratings: Updated VIN minimum and
maximum values and note related to five-volt tolerant inputs in Table 11:
Voltage characteristics. Updated IINJ(PIN) maximum values and related
notes in Table 12: Current characteristics.
Updated VDDA minimum value in Table 14: General operating
conditions.
Added Note 2 and updated Maximum CPU frequency in Table 15:
Limitations depending on the operating power supply range, and added
Figure 21: Number of wait states versus fCPU and VDD range.
Added brownout level 1, 2, and 3 thresholds in Table 19: Embedded
reset and power control block characteristics.
Changed fOSC_IN maximum value in Table 30: HSE 4-26 MHz oscillator
characteristics.
Changed fPLL_IN maximum value in Table 34: Main PLL characteristics,
and updated jitter parameters in Table 35: PLLI2S (audio PLL)
characteristics.
Section 6.3.16: I/O port characteristics: updated VIH and VIL in Table 48:
I/O AC characteristics.
Added Note 1 below Table 47: Output voltage characteristics.
Updated RPD and RPU parameter description in Table 57: USB OTG FS
DC electrical characteristics.
Updated VREF+ minimum value in Table 66: ADC characteristics.
Updated Table 71: Embedded internal reference voltage.
Removed Ethernet and USB2 for 64-pin devices in Table 101: Main
applications versus package for STM32F2xxx microcontrollers.
Added A.2: USB OTG full speed (FS) interface solutions, removed
“OTG FS connection with external PHY” figure, updated Figure 87,
Figure 88, and Figure 90 to add STULPI01B.
Table 96. Document revision history (continued)
Date Revision Changes
DS6329 Rev 17 173/183
STM32F20xxx Revision history
182
22-Apr-2011 6
Changed datasheet status to “Full Datasheet”.
Introduced concept of SRAM1 and SRAM2.
LQFP176 package now in production and offered only for 256 Kbyte
and 1 Mbyte devices. Availability of WLCSP64+2 package limited to
512 Kbyte and 1 Mbyte devices.
Updated Figure 3: Compatible board design between STM32F10x and
STM32F2xx for LQFP144 package and Figure 2: Compatible board
design between STM32F10x and STM32F2xx for LQFP100 package.
Added camera interface for STM32F207Vx devices in Table 2:
STM32F205xx features and peripheral counts.
Removed 16 MHz internal RC oscillator accuracy in Section 3.12:
Clocks and startup.
Updated Section 3.16: Voltage regulator.
Modified I2S sampling frequency range in Section 3.12: Clocks and
startup, Section 3.24: Inter-integrated sound (I2S), and Section 3.30:
Audio PLL (PLLI2S).
Updated Section 3.17: Real-time clock (RTC), backup SRAM and
backup registers and description of TIM2 and TIM5 in Section 3.20.2:
General-purpose timers (TIMx).
Modified maximum baud rate (oversampling by 16) for USART1 in
Table 6: USART feature comparison.
Updated note related to RFU pin below Figure 12: STM32F20x
LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout, Figure 14:
STM32F20x LQFP176 pinout, Figure 15: STM32F20x UFBGA176
ballout, and Table 8: STM32F20x pin and ball definitions.
In Table 8: STM32F20x pin and ball definitions,:changed I2S2_CK and
I2S3_CK to I2S2_SCK and I2S3_SCK, respectively; added PA15 and
TT (3.6 V tolerant I/O).
Added RTC_50Hz as PB15 alternate function in Table 8: STM32F20x
pin and ball definitions and Table 10: Alternate function mapping.
Removed
ETH _RMII_TX_CLK for PC3/AF11 in
Table 10: Alternate
function mapping.
Updated Table 11: Voltage characteristics and Table 12: Current
characteristics.
TSTG updated to –65 to +150 in Table 13: Thermal characteristics.
Added CEXT, ESL, and ESR in Table 14: General operating conditions
as well as Section 6.3.2: VCAP1/VCAP2 external capacitor.
Modified Note 4 in Table 15: Limitations depending on the operating
power supply range.
Updated Table 17: Operating conditions at power-up / power-down
(regulator ON), and Table 18: Operating conditions at power-up / power-
down (regulator OFF).
Added OSC_OUT pin in Figure 17: Pin loading conditions. and
Figure 18: Pin input voltage.
Updated Figure 19: Power supply scheme to add IRROFF and
REGOFF pins and modified notes.
Updated VPVD, VBOR1, VBOR2, VBOR3, TRSTTEMPO typical value, and
IRUSH, added ERUSH and Note 2 in Table 19: Embedded reset and
power control block characteristics.
Table 96. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
174/183 DS6329 Rev 17
22-Apr-2011 6
(continued)
Updated Typical and maximum current consumption conditions, as well
as Table 21: Typical and maximum current consumption in Run mode,
code with data processing running from Flash memory (ART
accelerator disabled) and Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM. Added Figure 23,
Figure 24, Figure 25, and Figure 26.
Updated Table 22: Typical and maximum current consumption in Sleep
mode, and added Figure 27 and Figure 28.
Updated Table 23: Typical and maximum current consumptions in Stop
mode. Added Figure 29: Typical current consumption vs. temperature in
Stop mode.
Updated Table 24: Typical and maximum current consumptions in
Standby mode and Table 25: Typical and maximum current
consumptions in VBAT mode.
Updated On-chip peripheral current consumption conditions and
Table 26: Peripheral current consumption.
Updated tWUSTDBY and tWUSTOP, and added Note 3 in Table 27: Low-
power mode wakeup timings.
Maximum fHSE_ext and minimum tw(HSE) values updated in Table 28:
High-speed external user clock characteristics.
Updated C and gm in Table 30: HSE 4-26 MHz oscillator characteristics.
Updated RF, I2, gm, and tsu(LSE) in Table 31: LSE oscillator
characteristics (fLSE = 32.768 kHz).
Added Note 1 and updated ACCHSI, IDD(HSI, and tsu(HSI) in Table 32:
HSI oscillator characteristics. Added Figure 34: ACCHSI versus
temperature.
Updated fLSI, tsu(LSI) and IDD(LSI) in Table 33: LSI oscillator
characteristics. Added Figure 35: ACCLSI versus temperature
Table 34: Main PLL characteristics: removed note 1, updated tLOCK,
jitter, IDD(PLL) and IDDA(PLL), added Note 2 for fPLL_IN minimum and
maximum values.
Table 35: PLLI2S (audio PLL) characteristics: removed note 1, updated
tLOCK, jitter, IDD(PLLI2S) and IDDA(PLLI2S), added Note 2 for fPLLI2S_IN
minimum and maximum values.
Added Note 1 in Table 36: SSCG parameters constraint.
Updated Table 37: Flash memory characteristics. Modified Table 38:
Flash memory programming and added Note 2 for tprog. Updated tprog
and added Note 1 in Table 39: Flash memory programming with VPP.
Modified Figure 40: Recommended NRST pin protection.
Updated Table 42: EMI characteristics and EMI monitoring conditions in
Section : Electromagnetic Interference (EMI). Added Note 2 related to
VESD(HBM)in Table 43: ESD absolute maximum ratings.
Updated Table 48: I/O AC characteristics.
Added Section 6.3.15: I/O current injection characteristics.
Modified maximum frequency values and conditions in Table 48: I/O AC
characteristics.
Updated tres(TIM) in Table 50: Characteristics of TIMx connected to the
APB1 domain. Modified tres(TIM) and fEXT Table 51: Characteristics of
TIMx connected to the APB2 domain.
Table 96. Document revision history (continued)
Date Revision Changes
DS6329 Rev 17 175/183
STM32F20xxx Revision history
182
22-Apr-2011 6
(continued)
Changed tw(SCKH) to tw(SCLH), tw(SCKL) to tw(SCLL), tr(SCK) to tr(SCL), and
tf(SCK) to tf(SCL) in Table 52: I2C characteristics and in Figure 41: I2C bus
AC waveforms and measurement circuit.
Added Table 57: USB OTG FS DC electrical characteristics and
updated Table 58: USB OTG FS electrical characteristics.
Updated VDD minimum value in Table 62: Ethernet DC electrical
characteristics.
Updated Table 66: ADC characteristics and RAIN equation.
Updated RAIN equation. Updated Table 68: DAC characteristics.
Updated tSTART in Table 69: Temperature sensor characteristics.
Updated R typical value in Table 70: VBAT monitoring characteristics.
Updated Table 71: Embedded internal reference voltage.
Modified FSMC_NOE waveform in Figure 57: Asynchronous non-
multiplexed SRAM/PSRAM/NOR read waveforms. Shifted end of
FSMC_NEx/NADV/addresses/NWE/NOE/NWAIT of a half FSMC_CLK
period, changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKL-
AIV), td(CLKH-NOEH) to td(CLKL-NOEH), and td(CLKH-NWEH) to td(CLKL-NWEH),
and updated data latency from 1 to 0 in Figure 61: Synchronous
multiplexed NOR/PSRAM read timings, Figure 62: Synchronous
multiplexed PSRAM write timings, Figure 63: Synchronous non-
multiplexed NOR/PSRAM read timings, and Figure 64: Synchronous
non-multiplexed PSRAM write timings,
Changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKL-AIV),
td(CLKH-NOEH) to td(CLKL-NOEH), td(CLKH-NWEH) to td(CLKL-NWEH), and
modified tw(CLK) minimum value in Table 76, Table 77, Table 78, and
Table 79.
Updated note 2 in Table 72, Table 73, Table 74, Table 75, Table 76,
Table 77, Table 78, and Table 79.
Modified th(NIOWR-D) in Figure 70: PC Card/CompactFlash controller
waveforms for I/O space write access.
Modified FSMC_NCEx signal in Figure 71: NAND controller waveforms
for read access, Figure 72: NAND controller waveforms for write
access, Figure 73: NAND controller waveforms for common memory
read access, and Figure 74: NAND controller waveforms for common
memory write access
Specified Full speed (FS) mode for Figure 89: USB OTG HS peripheral-
only connection in FS mode and Figure 90: USB OTG HS host-only
connection in FS mode.
Table 96. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
176/183 DS6329 Rev 17
14-Jun-2011 7
Added SDIO in Table 2: STM32F205xx features and peripheral counts.
Updated VIN for 5V tolerant pins in Table 11: Voltage characteristics.
Updated jitter parameters description in Table 34: Main PLL
characteristics.
Remove jitter values for system clock in Table 35: PLLI2S (audio PLL)
characteristics.
Updated Table 42: EMI characteristics.
Update Note 2 in Table 52: I2C characteristics.
Updated Avg_Slope typical value and TS_temp minimum value in
Table 69: Temperature sensor characteristics.
Updated TS_vbat minimum value in Table 70: VBAT monitoring
characteristics.
Updated TS_vrefint minimum value in Table 71: Embedded internal
reference voltage.
Added Software option in Section 8: Ordering information.
In Table 101: Main applications versus package for STM32F2xxx
microcontrollers, renamed USB1 and USB2, USB OTG FS and USB
OTG HS, respectively; and removed USB OTG FS and camera
interface for 64-pin package; added USB OTG HS on 64-pin package;
added Note 1 and Note 2.
20-Dec-2011 8
Updated SDIO register addresses in Figure 16: Memory map.
Updated Figure 3: Compatible board design between STM32F10x and
STM32F2xx for LQFP144 package, Figure 2: Compatible board design
between STM32F10x and STM32F2xx for LQFP100 package, Figure 1:
Compatible board design between STM32F10x and STM32F2xx for
LQFP64 package, and added Figure 4: Compatible board design
between STM32F10xx and STM32F2xx for LQFP176 package.
Updated Section 3.3: Memory protection unit.
Updated Section 3.6: Embedded SRAM.
Updated Section 3.28: Universal serial bus on-the-go full-speed
(OTG_FS) to remove external FS OTG PHY support.
In Table 8: STM32F20x pin and ball definitions: changed SPI2_MCK
and SPI3_MCK to I2S2_MCK and I2S3_MCK, respectively. Added ETH
_RMII_TX_EN alternate function to PG11. Added EVENTOUT in the list
of alternate functions for I/O pin/balls. Removed OTG_FS_SDA,
OTG_FS_SCL and OTG_FS_INTN alternate functions.
In Table 10: Alternate function mapping: changed I2S3_SCK to
I2S3_MCK for PC7/AF6, added FSMC_NCE3 for PG9, FSMC_NE3 for
PG10, and FSMC_NCE2 for PD7. Removed OTG_FS_SDA,
OTG_FS_SCL and OTG_FS_INTN alternate functions. Changed
I2S3_SCK into I2S3_MCK for PC7/AF6. Updated peripherals
corresponding to AF12.
Removed CEXT and ESR from Table 14: General operating conditions.
Table 96. Document revision history (continued)
Date Revision Changes
DS6329 Rev 17 177/183
STM32F20xxx Revision history
182
20-Dec-2011 8
(continued)
Added maximum power consumption at TA=25 °C in Table 23: Typical
and maximum current consumptions in Stop mode.
Updated md minimum value in Table 36: SSCG parameters constraint.
Added examples in Section 6.3.11: PLL spread spectrum clock
generation (SSCG) characteristics.
Updated Table 54: SPI characteristics and Table 55: I2S characteristics.
Updated Figure 48: ULPI timing diagram and Table 61: ULPI timing.
Updated Table 63: Dynamics characteristics: Ethernet MAC signals for
SMI, Table 64: Dynamics characteristics: Ethernet MAC signals for
RMII, and Table 65: Dynamics characteristics: Ethernet MAC signals for
MII.
Section 6.3.25: FSMC characteristics: updated Table 72 toTable 83,
changed CL value to 30 pF, and modified FSMC configuration for
asynchronous timings and waveforms. Updated Figure 62:
Synchronous multiplexed PSRAM write timings.
UpdatedTable 84: DCMI characteristics.
Updated Table 92: UFBGA176+25 - ultra thin fine pitch ball grid array 10
× 10 × 0.6 mm mechanical data.
Updated Table : .
Appendix A.2: USB OTG full speed (FS) interface solutions: updated
Figure 87: USB OTG FS (full speed) host-only connection and added
Note 2, updated Figure 88: OTG FS (full speed) connection dual-role
with internal PHY and added Note 3 and Note 4, modified Figure 89:
OTG HS (high speed) device connection, host and dual-role in high-
speed mode with external PHY and added Note 2.
Appendix A.3: USB OTG high speed (HS) interface solutions:
removed figures USB OTG HS device-only connection in FS mode and
USB OTG HS host-only connection in FS mode, updated Figure 89:
OTG HS (high speed) device connection, host and dual-role in high-
speed mode with external PHY.
Added Appendix A.4: Ethernet interface solutions.
Updated disclaimer on last page.
24-Apr-2012 9
Updated VDD minimum value in Section 2: Description.
Updated number of USB OTG HS and FS, modified packages for
STM32F207Ix part numbers, added Note 1 related to FSMC and Note 2
related to SPI/I2S, and updated Note 3 in Table 2: STM32F205xx
features and peripheral counts and Table 3: STM32F207xx features and
peripheral counts.
Added Note 2 and update TIM5 in Figure 4: STM32F20x block diagram.
Updated maximum number of maskable interrupts in Section 3.10:
Nested vectored interrupt controller (NVIC).
Updated VDD minimum value in Section 3.14: Power supply schemes.
Updated Note a in Section 3.16.1: Regulator ON.
Removed STM32F205xx in Section 3.28: Universal serial bus on-the-go
full-speed (OTG_FS).
Table 96. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
178/183 DS6329 Rev 17
24-Apr-2012 9
(continued)
Removed support of I2C for OTG PHY in Section 3.29: Universal serial
bus on-the-go high-speed (OTG_HS).
Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 8:
STM32F20x pin and ball definitions and Table 10: Alternate function
mapping.
Renamed PH10 alternate function into TIM5_CH1 in Table 10: Alternate
function mapping.
Added Table 9: FSMC pin definition.
Updated Note 1 in Table 14: General operating conditions, Note 2 in
Table 15: Limitations depending on the operating power supply range,
and Note 1 below Figure 21: Number of wait states versus fCPU and VDD
range.
Updated VPOR/PDR in Table 19: Embedded reset and power control
block characteristics.
Updated typical values in Table 24: Typical and maximum current
consumptions in Standby mode and Table 25: Typical and maximum
current consumptions in VBAT mode.
Updated Table 30: HSE 4-26 MHz oscillator characteristics and
Table 31: LSE oscillator characteristics (fLSE = 32.768 kHz).
Updated Table 37: Flash memory characteristics, Table 38: Flash
memory programming, and Table 39: Flash memory programming with
VPP.
Updated Section : Output driving current.
Updated Note 3 and removed note related to minimum hold time value
in Table 52: I2C characteristics.
Updated Table 64: Dynamics characteristics: Ethernet MAC signals for
RMII.
Updated Note 1, CADC, IVREF+, and IVDDA in Table 66: ADC
characteristics.
Updated Note 3 and note concerning ADC accuracy vs. negative
injection current in Table 67: ADC accuracy.
Updated Note 1 in Table 68: DAC characteristics.
Updated Section Figure 88.: UFBGA176+25 - ultra thin fine pitch ball
grid array 10 × 10 × 0.6 mm, package outline.
Appendix A.1: Main applications versus package: removed number of
address lines for FSMC/NAND in Table 101: Main applications versus
package for STM32F2xxx microcontrollers.
Appendix A.4: Ethernet interface solutions: updated Figure 92:
Complete audio player solution 1 and Figure 93: Complete audio player
solution 2.
Table 96. Document revision history (continued)
Date Revision Changes
DS6329 Rev 17 179/183
STM32F20xxx Revision history
182
29-Oct-2012 10
Changed minimum supply voltage from 1.65 to 1.8 V.
Updated number of AHB buses in Section 2: Description and
Section 3.12: Clocks and startup.
Removed Figure 4. Compatible board design between STM32F10xx
and STM32F2xx for LQFP176 package.
Updated Note 2 below Figure 4: STM32F20x block diagram.
Changed System memory to System memory + OTP in Figure 16:
Memory map.
Added Note 1 below Table 16: VCAP1/VCAP2 operating conditions.
Updated VDDA and VREF+ decoupling capacitor in Figure 19: Power
supply scheme and updated Note 3.
Changed simplex mode into half-duplex mode in Section 3.24: Inter-
integrated sound (I2S).
Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and
DAC_OUT2, respectively.Changed TIM2_CH1/TIM2_ETR into
TIM2_CH1_ETR for PA0 and PA5 in Table 10: Alternate function
mapping.
Updated note applying to IDD (external clock and all peripheral disabled)
in Table 21: Typical and maximum current consumption in Run mode,
code with data processing running from Flash memory (ART
accelerator disabled). Updated Note 3 below Table 22: Typical and
maximum current consumption in Sleep mode.
Removed fHSE_ext typical value in Table 28: High-speed external user
clock characteristics.
Updated master I2S clock jitter conditions and values in Table 35:
PLLI2S (audio PLL) characteristics.
Updated equations in Section 6.3.11: PLL spread spectrum clock
generation (SSCG) characteristics.
Swapped TTL and CMOS port conditions for VOL and VOH in Table 47:
Output voltage characteristics.
Updated VIL(NRST) and VIH(NRST) in Table 49: NRST pin characteristics.
Updated Table 54: SPI characteristics and Table 55: I2S characteristics.
Removed note 1 related to measurement points below Figure 43: SPI
timing diagram - slave mode and CPHA = 1, Figure 44: SPI timing
diagram - master mode, and Figure 45: I2S slave timing diagram
(Philips protocol)(1).
Updated tHC in Table 61: ULPI timing.
Updated Figure 49: Ethernet SMI timing diagram, Table 63: Dynamics
characteristics: Ethernet MAC signals for SMI and Table 65: Dynamics
characteristics: Ethernet MAC signals for MII.
Update fTRIG in Table 66: ADC characteristics.
Updated IDDA description in Table 68: DAC characteristics.
Updated note below Figure 54: Power supply and reference decoupling
(VREF+ not connected to VDDA) and Figure 55: Power supply and
reference decoupling (VREF+ connected to VDDA).
Table 96. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
180/183 DS6329 Rev 17
29-Oct-2012 10
(continued)
Replaced td(CLKL-NOEL) by td(CLKH-NOEL) in Table 76: Synchronous
multiplexed NOR/PSRAM read timings, Table 78: Synchronous non-
multiplexed NOR/PSRAM read timings, Figure 61: Synchronous
multiplexed NOR/PSRAM read timings and Figure 63: Synchronous
non-multiplexed NOR/PSRAM read timings.
Added Figure 87: LQFP176 recommended footprint.
Added Note 2 below Figure 86: Regulator OFF/internal reset ON.
Updated device subfamily in Table : .
Remove reference to note 2 for USB IOTG FS in Table 101: Main
applications versus package for STM32F2xxx microcontrollers.
04-Nov-2013 11
In the whole document, updated notes related to WLCSP64+2 usage
with IRROFF set to VDD. Updated Section 3.14: Power supply schemes,
Section 3.15: Power supply supervisor, Section 3.16.1: Regulator ON
and Section 3.16.2: Regulator OFF. Added Section 3.16.3: Regulator
ON/OFF and internal reset ON/OFF availability. Added note related to
WLCSP64+2 package.
Restructured RTC features and added reference clock detection in
Section 3.17: Real-time clock (RTC), backup SRAM and backup
registers.
Added note indicating the package view below Figure 10: STM32F20x
LQFP64 pinout, Figure 12: STM32F20x LQFP100 pinout, Figure 13:
STM32F20x LQFP144 pinout, and Figure 14: STM32F20x LQFP176
pinout.
Added Table 7: Legend/abbreviations used in the pinout table. Table 8:
STM32F20x pin and ball definitions: content reformatted; removed
indexes on VSS and VDD; updated PA4, PA5, PA6, PC4, BOOT0;
replaced DCMI_12 by DCMI_D12, TIM8_CHIN by TIM8_CH1N,
ETH_MII_RX_D0 by ETH_MII_RXD0, ETH_MII_RX_D1 by
ETH_MII_RXD1, ETH_RMII_RX_D0 by ETH_RMII_RXD0,
ETH_RMII_RX_D1 by ETH_RMII_RXD1, and RMII_CRS_DV by
ETH_RMII_CRS_DV.
Table 10: Alternate function mapping: replaced FSMC_BLN1 by
FSMC_NBL1, added EVENTOUT as AF15 alternated function for
PC13, PC14, PC15, PH0, PH1, and PI8.
Updated Figure 17: Pin loading conditions and Figure 18: Pin input
voltage.
Added VIN in Table 14: General operating conditions.
Table 96. Document revision history (continued)
Date Revision Changes
DS6329 Rev 17 181/183
STM32F20xxx Revision history
182
04-Nov-2013 11
(continued)
Removed note applying to VPOR/PDR minimum value in Table 19:
Embedded reset and power control block characteristics.
Updated notes related to CL1 and CL2 in Section : Low-speed external
clock generated from a crystal/ceramic resonator.
Updated conditions in Table 41: EMS characteristics. Updated Table 42:
EMI characteristics. Updated VIL, VIH and VHys in Table 46: I/O static
characteristics. Added Section : Output driving currentand updated
Figure 39: I/O AC characteristics definition.
Updated VIL(NRST) and VIH(NRST) in Table 49: NRST pin characteristics,
updated Figure 39: I/O AC characteristics definition.
Removed tests conditions in Section : I2C interface characteristics.
Updated Table 52: I2C characteristics and Figure 41: I2C bus AC
waveforms and measurement circuit.
Updated IVREF+ and IVDDA in Table 66: ADC characteristics. Updated
Offset comments in Table 68: DAC characteristics.
Updated minimum th(CLKH-DV) value in Table 78: Synchronous non-
multiplexed NOR/PSRAM read timings.Removed Appendix A
Application block diagrams.
Updated Figure 77: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat
package outline and Table 87: LQFP64 – 10 x 10 mm 64 pin low-profile
quad flat package mechanical data. Updated Figure 80: LQFP100, 14 x
14 mm 100-pin low-profile quad flat package outline, Figure 83:
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline,
Figure 86: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm,
package outline. Updated Figure 88: UFBGA176+25 - ultra thin fine
pitch ball grid array 10 × 10 × 0.6 mm, package outline and Figure 88:
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline.
27-Oct-2014 12
Updated VBAT voltage range in Figure 19: Power supply scheme. Added
caution note in Section 6.1.6: Power supply scheme.
Updated VIN in Table 14: General operating conditions.
Removed note 1 in Table 23: Typical and maximum current
consumptions in Stop mode.
Updated Table 45: I/O current injection susceptibility, Section 6.3.16:
I/O port characteristics and Section 6.3.17: NRST pin characteristics.
Removed note 3 in Table 69: Temperature sensor characteristics.
Updated Figure 79: WLCSP64+2 - 0.400 mm pitch wafer level chip size
package outline and Table 88: WLCSP64+2 - 0.400 mm pitch wafer
level chip size package mechanical data. Added Figure 83: LQFP100
marking (package top view) and Figure 86: LQFP144 marking (package
top view).
2-Feb-2016 13
Updated Section 1: Introduction.
Updated Table 32: HSI oscillator characteristics and its footnotes.
Updated Figure 36: PLL output clock waveforms in center spread mode,
Figure 37: PLL output clock waveforms in down spread mode,
Figure 54: Power supply and reference decoupling (VREF+ not
connected to VDDA) and Figure 55: Power supply and reference
decoupling (VREF+ connected to VDDA).
Updated Section 7: Package information and its subsections.
Table 96. Document revision history (continued)
Date Revision Changes
Revision history STM32F20xxx
182/183 DS6329 Rev 17
24-Jun-2016 14
Updated figures 1, 2 and 3 in Section 2.1: Full compatibility throughout
the family.
Updated Device marking and Figure 83 in Section 7.3: LQFP100
package information.
Updated Device marking and Figure 86 in Section 7.4: LQFP144
package information.
Updated Section 7.6: UFBGA176+25 package information with
introduction of Device marking and Figure 91.
Updated Table 96: Ordering information scheme.
11-Aug-2016 15
Updated Features, Section 7.2: WLCSP64+2 package information and
title of Section 8: Ordering information.
Updated Figure 54: Power supply and reference decoupling (VREF+ not
connected to VDDA).
29-Mar-2019 16
Updated Section 1: Introduction and Section 2: Description.
Updated Table 72: Asynchronous non-multiplexed SRAM/PSRAM/NOR
read timings.
Updated Figure 38: FT I/O input characteristics.
Updated paragraph introducing all package marking schematics to add
the new sentence “The printed markings may differ depending on the
supply chain”.
Minor text edits across the whole document.
26-Nov-2019 17 Updated caption of figures and tables in Section 7: Package
information.
Table 96. Document revision history (continued)
Date Revision Changes
DS6329 Rev 17 183/183
STM32F20xxx
183
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved