January 2013 I
© 2013 Microsemi Corporation
Automotive ProASIC3 Flash Family FPGAs
Features and Benefits
Extended Temperature AEC-Q100–Qualified Devices
Grade 2: –40°C to 105°C TA (115°C TJ)
Grade 1: –40°C to 125°C TA (135°C TJ)
PPAP Documentation
Firm-Error Immune
Only Automotive FPGAs to Offer Firm-Error Immunity
Can Be Used without Configuration Upset Risk
High Capacity
60 k to 1 M System Gates
Up to 144 kbits of SRAM
Up to 300 User I/Os
Reprogrammable Flash Technology
130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS
Automotive Process
Instant On Level 0 Support
Single-Chip Solution
Retains Programmed Design when Powered Off
On-Chip User Nonvolatile Memory
1 kbit of FlashROM with Synchronous Interface
High Performance
350 MHz System Performance
3.3 V, 66 MHz 64-Bit PCI
In-System Programming (ISP) and Security
ISP Using On-Chip 128-Bit Advanced Encryption Standard
(AES) Decryption via JTAG (IEEE 1532–compliant)
FlashLock® Designed to Provide High-Level Security for FPGA
Contents (anti-tampering)
Low Power
1.5 V Core Voltage
Support for 1.5-V-Only Systems
Low-Impedance Flash Switches
High-Performance Routing Hierarchy
Segmented, Hierarchical Routing and Clock Structure
High-Performance, Low-Skew Global Network
Architecture Supports Ultra-High Utilization
Advanced I/O
700 Mbps DDR, LVDS-Capable I/Os
1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
Bank-Selectable I/O Voltages—up to 4 Banks per Chip
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /
2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS
2.5 V / 5.0 V Input
Differential I/O Standards: LVPECL, LVDS, B-LVDS, and
M-LVDS (A3P250 and A3P1000)
I/O Registers on Input, Output, and Enable Paths
Hot-Swappable and Cold-Sparing I/Os
Programmable Output Slew Rate and Drive Strength
Weak Pull-Up/-Down
IEEE 1149.1 (JTAG) Boundary Scan Test
Pin-Compatible Packages across the Automotive ProASIC®3
Family
Clock Conditioning Circuit (CCC) and PLL
Six CCC Blocks, One with an Integrated PLL
Configurable Phase Shift, Multiply/Divide, Delay Capabilities,
and External Feedback
Wide Input Frequency Range (1.5 MHz up to 350 MHz)
SRAMs
Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,
and ×18 organizations available)
Table 1 • Automotive ProASIC3 Product Family
ProASIC3 Devices A3P060 A3P125 A3P250 A3P1000
System Gates 60 k 125 k 250 k 1 M
VersaTiles (D-flip-flops) 1,536 3,072 6,144 24,576
RAM kbits (1,024 bits) 18 36 36 144
4,608-Bit Blocks 4 8 8 32
FlashROM Bits 1 k 1 k 1 k 1 k
Secure (AES) ISP Yes Yes Yes Yes
Integrated PLL in CCCs1111
VersaNet Globals1 18 18 18 18
I/O Banks 2244
Maximum User I/Os 96 133 157 300
Package Pins
VQFP
FBGA
QFN2
VQ100
FG144
VQ100
FG144
QNG132
VQ100
FG144, FG256
QNG132
FG144, FG256, FG484
Notes:
1. Six chip-wide (main) globals and three additional global networks in each quadrant are available.
2. QFN packages are available as RoHS compliant only.
Revision 5
Automotive ProASIC3 Flash Family FPGAs
II Revision 5
I/Os Per Package
Automotive ProASIC3 Device Status
ProASIC3 Devices A3P060 A3P125 A3P250 A3P1000
Package
I/O Type
Single-Ended I/O
Single-Ended I/O
Single-Ended I/O 2
Differential
I/O Pairs
Single-Ended I/O 2
Differential
I/O Pairs
VQ100 71716813
FG144 969797249725
FG256 157 38 177 44
FG484 300 74
QNG132 84 87 19
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 FPGA Fabric User’s Guide
to ensure complying with design and board migration requirements.
2. Each used differential I/O pair reduces the number of available single-ended I/Os by two.
3. FG256 and FG484 are footprint-compatible packages.
Automotive ProASIC3 Devices Status
A3P060 Production
A3P125 Production
A3P250 Production
A3P1000 Production
Automotive ProASIC3 Flash Family FPGAs
Revision 5 III
Automotive ProASIC3 Ordering Information
Notes:
1. TA = Ambient temperature and TJ = Junction temperature.
2. Minimum order quantities apply. Contact your local Microsemi SoC Products Group sales office for details.
Blank = Device Does Not Include License to Implement IP Based
on the Cryptography Research, Inc. (CRI) Patent Portfolio
Speed Grade
Blank = Standard
1 = 15% Faster than Standard
A3P1000 FG
_
Part Number
Automotive ProASIC3 Devices
1
Package Type
VQ =Very Thin Quad Flat Pack (0.5 mm pitch)
144 YT
Package Lead Count
Lead-Free Packaging
Application (Temperature Range)
T = Grade 2 and Grade 1 AEC-Q100
Grade 2 = 105°C TA and 115°C TJ1
Blank = Standard Packaging
Grade 1 = 125°C TA and 135°C TJ1
60,000 System Gates
A3P060 =
125,000 System Gates
A3P125 =
250,000 System Gates
A3P250 =
1,000,000 System Gates
A3P1000 =
FG =Fine Pitch Ball Grid Array (1.0 mm pitch)
QN =Quad Flat Pack (0.5 mm pitch)
G= RoHS-Compliant (Green) Packaging
G
Security Feature
Y = Device Includes License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio
Automotive ProASIC3 Flash Family FPGAs
IV Revision 5
Temperature Grade Offerings
Speed Grade and Temperature Grade Matrix
Contact your local Microsemi SoC Products Group representative for device availability:
http://www.microsemi.com/soc/contact/default.aspx.
Package A3P060 A3P125 A3P250 A3P1000
VQ100 C, I, T C, I, T C, I, T
FG144 C, I, T C, I, T C, I, T C, I, T
FG256 C, I, T C, I, T
FG484 C, I, T
QNG132 C, I, T C, I, T
Notes:
1. C = Commercial temperature range: 0°C to 70°C
2. I = Industrial temperature range: –40°C to 85°C
3. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100
Grade 2 = 105°C TA and 115°C TJ
Grade 1 = 125°C TA and 135°C TJ
4. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs datasheet.
Temperature Grade Std. –1
T (Grade 1 and Grade 2), Commercial, Industrial 33
Notes:
1. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100
Grade 2 = 105°C TA and 115°C TJ
Grade 1 = 125°C TA and 135°C TJ
2. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs datasheet.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 V
Table of Contents
Automotive ProASIC3 Device Family Overview
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Automotive ProASIC3 DC and Switching Characteristics
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-75
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-96
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97
Pin Descriptions and Packaging
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Package Pin Assignments
VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
QN132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
FG144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
FG256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
FG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Revision 5 1-1
1 – Automotive ProASIC3 Device Family Overview
General Description
Automotive ProASIC3 nonvolatile flash technology gives automotive system designers the advantage of
a secure, low-power, single-chip solution that is Instant On. Automotive ProASIC3 is reprogrammable
and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create
high-density systems using existing ASIC or FPGA design flows and tools.
Automotive ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as
well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). Automotive
ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of SRAM and up to
300 user I/Os.
Automotive ProASIC3 devices are the only firm-error-immune automotive grade FPGAs. Firm-error
immunity makes them ideally suited for demanding applications in powertrain, safety, and telematics-
based subsystems, where firm-error failure is not an option.
Firm errors in SRAM-based FPGAs can result in high defect levels in field-deployed systems. These
unavoidable defects must be considered separately from standard defects and failure mechanisms when
looking at overall system quality and reliability.
Flash Advantages
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-
based FPGAs, flash-based Automotive ProASIC3 devices allow all functionality to be Instant On; no
external boot PROM is required. On-board security mechanisms prevent access to all the programming
information and enable secure remote updates of the FPGA logic. Flash-based FPGAs are LAPU Class
0 devices, offering the lowest available power in a single-chip device and providing firm-error immunity.
The Automotive ProASIC3 family device architecture mitigates the need for ASIC migration at high user
volumes. This makes the Automotive ProASIC3 family a cost-effective ASIC replacement solution,
especially for automotive applications.
Security
Nonvolatile, flash-based Automotive ProASIC3 devices do not require a boot PROM, so there is no
vulnerable external bitstream that can be easily copied. Automotive ProASIC3 devices incorporate
FlashLock, which provides a unique combination of reprogrammability and design security without
external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.
Automotive ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the
highest level of protection in the FPGA industry for intellectual property and configuration data. In
addition, all FlashROM data in Automotive ProASIC3 devices can be encrypted prior to loading, using
the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES was adopted by
the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard.
Automotive ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that
make them the most comprehensive programmable logic device security solution available today.
Automotive ProASIC3 devices with AES-based security provide a high level of protection for secure,
remote field updates over public networks such as the Internet, and are designed to ensure that valuable
IP remains out of the hands of system overbuilders, system cloners, and IP thieves. Additionally, security
features of Automotive ProASIC3 devices provide anti-tampering protection.
Security, built into the FPGA fabric, is an inherent component of the Automotive ProASIC3 family. The
flash cells are located beneath seven metal layers, and many device design and layout techniques have
been used to make invasive attacks extremely difficult. The Automotive ProASIC3 family, with FlashLock
and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your
valuable IP is protected with industry-standard security, making remote ISP possible. An Automotive
ProASIC3 device provides the best available security for programmable logic designs.
Automotive ProASIC3 Device Family Overview
1-2 Revision 5
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Automotive
ProASIC3 FPGAs do not require system configuration components such as EEPROMs or
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area,
and increases security and system reliability.
Instant On
The Microsemi flash-based Automotive ProASIC3 devices support Level 0 of the Instant On classification
standard. This feature helps in system component initialization, execution of critical tasks before the
processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity
management. The Instant On feature of flash-based Automotive ProASIC3 devices greatly simplifies
total system design and reduces total system cost, often eliminating the need for CPLDs and external
clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the
Automotive ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not
have to be reloaded when system power is restored. This enables the reduction or complete removal of
the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices
from the PCB design. Flash-based Automotive ProASIC3 devices simplify total system design and
reduce cost and design risk while increasing system reliability and improving system initialization time.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of Automotive ProASIC3
flash-based FPGAs. Once it is programmed, the flash cell configuration element of Automotive ProASIC3
FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or
soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using
error detection and correction (EDAC) circuitry built into the FPGA fabric.
Low Power
Flash-based Automotive ProASIC3 devices exhibit very low power characteristics, similar to those of an
ASIC, making them an ideal choice for power-sensitive applications. Automotive ProASIC3 devices have
only a very limited power-on current surge and no high-current transition period, both of which occur on
many FPGAs.
Automotive ProASIC3 devices also have low dynamic power consumption to further maximize power
savings.
Advanced Flash Technology
The Automotive ProASIC3 family offers many benefits, including nonvolatility and reprogrammability,
through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard
CMOS design techniques are used to implement logic and control functions. The combination of fine
granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic
utilization without compromising device routability or performance. Logic functions within the device are
interconnected through a four-level routing hierarchy.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 1-3
Advanced Architecture
The proprietary Automotive ProASIC3 architecture provides granularity comparable to standard-cell
ASICs. The Automotive ProASIC3 device consists of five distinct and programmable architectural
features (Figure 1-1 and Figure 1-2 on page 1-4):
FPGA VersaTiles
Dedicated FlashROM
Dedicated SRAM memory
Extensive CCCs and PLLs
Advanced I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch
interconnections. The versatility of the Automotive ProASIC3 core tile as either a three-input lookup table
(LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The
VersaTile capability is unique to the Microsemi ProASIC family of third-generation-architecture flash
FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are
distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming.
Maximum core utilization is possible for virtually any design.
Figure 1-1 Automotive ProASIC3 Device Architecture Overview with Two I/O Banks (A3P060 and A3P125)
RAM Block
4,608-Bit SRAM
or FIFO Block
VersaTile
CCC
I/Os
ISP AES
Decryption
User Nonvolatile
FlashROM Charge Pumps
Bank 0
Bank 1Bank 1
Bank 0Bank 0
Bank 1
Automotive ProASIC3 Device Family Overview
1-4 Revision 5
VersaTiles
The Automotive ProASIC3 core consists of VersaTiles, which have been enhanced beyond the
ProASICPLUS® core tiles. The Automotive ProASIC3 VersaTile supports the following:
All 3-input logic functions—LUT-3 equivalent
Latch with clear or set
D-flip-flop with clear or set
Enable D-flip-flop with clear or set
Refer to Figure 1-3 for VersaTile configurations.
Figure 1-2 Automotive ProASIC3 Device Architecture Overview with Four I/O Banks (A3P600 and A3P1000)
RAM Block
4,608-Bit SRAM
or FIFO Block
(A3P600 and A3P1000)
RAM Block
4,608-Bit SRAM
or FIFO Block
VersaTile
CCC
I/Os
ISP AES
Decryption
User Nonvolatile
FlashROM Charge Pumps
Bank 0
Bank 3Bank 3
Bank 1Bank 1
Bank 2
Figure 1-3 VersaTile Configurations
X1
Y
X2
X3
LUT-3
Data Y
CLK
Enable
CLR
D-FF
Data Y
CLK
CLR
D-FF
LUT-3 Equivalent D-Flip-Flop with Clear or Set Enable D-Flip-Flop with Clear or Set
Automotive ProASIC3 Flash Family FPGAs
Revision 5 1-5
User Nonvolatile FlashROM
Automotive ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The
FlashROM can be used in diverse system applications:
Unique protocol addressing (wireless or fixed)
System calibration settings
Device serialization and/or inventory control
Subscription-based business models (for example, infotainment systems)
Secure key storage for secure communications algorithms
Asset management/tracking
Date stamping
Version management
The FlashROM is written using the standard Automotive ProASIC3 IEEE 1532 JTAG programming
interface.
The FlashROM can be programmed via the JTAG programming interface, and its contents can be read
back either through the JTAG programming interface or via direct FPGA core addressing. Note that the
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the
internal logic array.
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte
basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks
and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM
address define the byte.
Automotive ProASIC3 development software solutions, Libero® System-on-Chip (SoC) and Designer,
have extensive support for the FlashROM. One such feature is auto-generation of sequential
programming files for applications requiring a unique serial number in each part. Another feature allows
the inclusion of static data for system version control. Data for the FlashROM can be generated quickly
and easily using Libero SoC and Designer software tools. Comprehensive programming file support is
also included to allow for easy programming of large numbers of parts with differing FlashROM contents.
SRAM
Automotive ProASIC3 devices have embedded SRAM blocks along their north and south sides. Each
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can
be configured with different bit widths on each port. For example, data can be sent through a 4-bit port
and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port
(ROM emulation mode) using the UJTAG macro.
PLL and CCC
Automotive ProASIC3 devices provide designers with very flexible clock conditioning circuit (CCC)
capabilities. Each member of the Automotive ProASIC3 family contains six CCCs. One CCC (center west
side) has a PLL.
The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC
(center west side) has a PLL.
All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay
operations as well as clock spine access.
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs
located near the CCC that have dedicated connections to the CCC block.
The CCC block has these key features:
Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz
Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz
Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns
2 programmable delay types for clock skew minimization
Clock frequency synthesis (for PLL only)
Automotive ProASIC3 Device Family Overview
1-6 Revision 5
Additional CCC specifications:
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider
configuration (for PLL only).
Output duty cycle = 50% ± 1.5% or better (for PLL only)
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global
network used (for PLL only)
Maximum acquisition time is 300 µs (for PLL only)
Low power consumption of 5 mW
Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only)
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 350 MHz /
fOUT_CCC (for PLL only)
Global Clocking
Automotive ProASIC3 devices have extensive support for multiple clocking domains. In addition to the
CCC and PLL support described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid
distribution of high-fanout nets.
I/Os with Advanced I/O Standards
The Automotive ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of
voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). Automotive ProASIC3 FPGAs support many different I/O
standards—single-ended and differential.
The I/Os are organized into banks, with two or four banks per device. The configuration of these banks
determines the I/O standards supported.
Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following:
Single-Data-Rate applications
Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point
communications
Automotive ProASIC3 banks for the A3P250 and A3P1000 devices support LVPECL, LVDS, B-LVDS,
and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.
Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for
PDB files generated from Designer v8.5 or greater. See the FlashPro Users Guide for more information.
Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have
limited display of Pin Numbers only.
1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.
2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator
window appears.
3. Click the Specify I/O States During Programming button to display the Specify I/O States During
Programming dialog box.
4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (Figure 1-4 on page 1-7).
Automotive ProASIC3 Flash Family FPGAs
Revision 5 1-7
5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state
settings:
1 – I/O is set to drive out logic High
0 – I/O is set to drive out logic Low
Last Known State – I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming
Z -Tristate: I/O is tristated
6. Click OK to return to the FlashPoint – Programming File Generator window.
Note: I/O States During programming are saved to the ADB and resulting programming files after
completing programming file generation.
Figure 1-4 • I/O States During Programming Window
Revision 5 2-1
2 – Automotive ProASIC3 DC and Switching
Characteristics
General Specifications
Operating Conditions
Stresses beyond those listed in Tab l e 2- 1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute Maximums are stress ratings only; functional operation of the device at these or any other
conditions beyond those listed under the Recommended Operating Conditions specified in Ta bl e 2 -2 o n
page 2-2 is not implied.
Table 2-1 • Absolute Maximum Ratings
Symbol Parameter Limits Units
VCC DC core supply voltage –0.3 to 1.65 V
VJTAG JTAG DC voltage –0.3 to 3.75 V
VPUMP Programming voltage –0.3 to 3.75 V
VCCPLL Analog power supply (PLL) –0.3 to 1.65 V
VCCI DC I/O output buffer supply voltage –0.3 to 3.75 V
VMV DC I/O input buffer supply voltage –0.3 to 3.75 V
VI I/O input voltage –0.3 V to 3.6 V (when I/O hot insertion mode is enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower
(when I/O hot-insertion mode is disabled)
V
TSTG 2Storage temperature –65 to +150 °C
TJ2Junction temperature +150 °C
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 2-3 on page 2-3.
2. For flash programming and retention maximum limits, refer to Figure 2-1 on page 2-2. For recommended operating
limits, refer to Table 2-2 on page 2-2.
Automotive ProASIC3 DC and Switching Characteristics
2-2 Revision 5
Table 2-2 • Recommended Operating Conditions
Symbol Parameter Automotive Grade 1 Automotive Grade 2 Units
TJJunction temperature –40 to +135 –40 to +115 °C
VCC 1.5 V DC core supply voltage 1.425 to 1.575 1.425 to 1.575 V
VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V
VPUMP Programming voltage Programming Mode 33.15 to 3.45 3.15 to 3.45 V
Operation 40 to 3.6 0 to 3.6 V
VCCPLL Analog power supply (PLL) 1.425 to 1.575 1.425 to 1.575 V
VCCI and
VMV
1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V
1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V
2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V
3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V
LVDS/B-LVDS/M-LVDS differential I/O 2.375 to 2.625 2.375 to 2.625 V
LVPECL differential I/O 3.0 to 3.6 3.0 to 3.6 V
Notes:
1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-14 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank.
2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
3. The programming temperature range supported is Tambient = 0°C to 85°C.
4. VPUMP can be left floating during operation (not programming mode).
Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage.
Figure 2-1 High-Temperature Data Retention (HTR)
0
10
20
30
40
50
60
70
80
90
100
110
70 85 100 105 110 115 120 125 130 135 140 145 150
Temperature (ºC)
Years
Tj (°C)
HTR
Lifetime
(yrs)
70 102.7
85 43.8
100 20.0
105 15.6
110 12.3
115 9.7
120 7.7
125 6.2
130 5.0
135 4.0
140 3.3
145 2.7
150 2.2
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-3
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These circuits
ensure easy transition from the powered-off state to the powered-up state of the device. The many
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-2
on page 2-4.
There are five regions to consider during power-up.
ProASIC3 I/Os are activated only if ALL of the following three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-4).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
VCC Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:
During programming, I/Os become tristated and weakly pulled up to VCCI.
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
3. Output buffers, after 200 ns delay from input buffer activation
Table 2-3 • Overshoot and Undershoot Limits (as measured on quiet I/Os)
VCCI and
VMV
Average VCCI–GND Overshoot or Undershoot
Duration as a Percentage of Clock Cycle
Maximum Overshoot/
Undershoot (115°C)
Maximum Overshoot/
Undershoot (135°C)
2.7 V or less 10% 0.81 V 0.72 V
5% 0.90 V 0.82 V
3 V 10% 0.80 V 0.72 V
5% 0.90 V 0.81 V
3.3 V 10% 0.79 V 0.69 V
5% 0.88 V 0.79 V
3.6 V 10% N/A N/A
5% N/A N/A
Notes:
1. The duration is allowed at one out of six clock cycles (estimated SSO density over cycles). If the overshoot/undershoot
occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.
2. This table refers only to overshoot/undershoot limits for simultaneously switching I/Os and does not provide PCI
overshoot/undershoot limits.
Automotive ProASIC3 DC and Switching Characteristics
2-4 Revision 5
Thermal Characteristics
Introduction
The temperature variable in Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction because dynamic and static power consumption cause the
chip junction to be higher than the ambient temperature.
EQ 1 can be used to calculate junction temperature.
TJ = Junction Temperature = T + TA
EQ 1
where:
TA = Ambient Temperature
T = Temperature gradient between junction (silicon) and ambient T = ja * P
ja = Junction-to-ambient of the package. ja numbers are located in Table 2-4 on page 2-5.
P = Power dissipation
Figure 2-2 I/O State as a Function of VCCI and VCC Voltage Levels
Region 1: I/O buffers are OFF
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input
buffers do not meet VIH / VIL levels, and
output buffers do not meet VOH / VOL levels.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
VCC
VCC = 1.425 V
Region 1: I/O Buffers are OFF
Activation trip point:
Va = 0.85 V ± 0.25 V
Deactivation trip point:
Vd = 0.75 V ± 0.25 V
Activation trip point:
Va = 0.9 V ± 0.3 V
Deactivation trip point:
Vd = 0.8 V ± 0.3 V
VCC = 1.575 V
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL, VOH / VOL,
etc.
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential
but slower because VCCI
is below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCCI
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
VCC = VCCI + VT
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-5
Package Thermal Characteristics
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is
ja. The thermal characteristics for ja are shown for two air flow rates. The absolute maximum junction
temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation
allowed for a 484-pin FBGA package at commercial temperature and in still air.
EQ 2
Temperature and Voltage Derating Factors
Table 2-4 • Package Thermal Resistivities
Package Type Device
Pin
Count jc
ja
Units
Still
Air
200
ft./min.
500
ft./min.
Very Thin Quad Flat Pack (VQFP) All devices 100 10.0 35.3 29.4 27.1 °C/W
Fine Pitch Ball Grid Array (FBGA) See note* 144 3.8 26.9 22.9 21.5 °C/W
See note* 256 3.8 26.6 22.8 21.5 °C/W
See note* 484 3.2 20.5 17.0 15.9 °C/W
A3P1000 144 6.3 31.6 26.2 24.2 °C/W
A3P1000 256 6.6 28.1 24.4 22.7 °C/W
A3P1000 484 8.0 23.3 19.0 16.7 °C/W
Note: *This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package
thermal information will be available in future revisions of the datasheet.
Table 2-5 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 115°C, VCC = 1.425 V)
Array Voltage VCC (V) –40°C 0°C 25°C 70°C 85°C 115°C 125°C 135°C
1.425 0.83 0.88 0.90 0.95 0.97 1.00 1.01 1.02
1.5 0.79 0.83 0.85 0.90 0.92 0.95 0.96 0.97
1.575 0.76 0.80 0.82 0.87 0.88 0.91 0.93 0.94
Automotive ProASIC3 DC and Switching Characteristics
2-6 Revision 5
Calculating Power Dissipation
Quiescent Supply Current
Power per I/O Pin
Table 2-6 • Quiescent Supply Current Characteristics
A3P060 A3P125 A3P250 A3P1000
Typical (25°C) 2 mA 2 mA 3 mA 8 mA
Maximum (Automotive Grade 1) – 135°C 53 mA 53 mA 106 mA 265 mA
Maximum (Automotive Grade 2) – 115°C 26 mA 26 mA 53 mA 131 mA
Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static
contribution, which is shown in Table 2-7 and Table 2-10 on page 2-8.
Table 2-7 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Advanced I/O Banks
VMV (V)
Static Power
PDC2 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
Single-Ended
3.3 V LVTTL / 3.3 V LVCMOS 3.3 16.69
2.5 V LVCMOS 2.5 5.12
1.8 V LVCMOS 1.8 2.13
1.5 V LVCMOS (JESD8-11) 1.5 1.45
3.3 V PCI 3.3 18.11
3.3 V PCI-X 3.3 18.11
Differential
LVDS 2.5 2.26 1.20
LVPECL 3.3 5.72 1.87
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-7
Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Standard Plus I/O Banks
VMV (V)
Static Power
PDC2 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
Single-Ended
3.3 V LVTTL / 3.3 V LVCMOS 3.3 16.72
2.5 V LVCMOS 2.5 5.14
1.8 V LVCMOS 1.8 2.13
1.5 V LVCMOS (JESD8-11) 1.5 1.48
3.3 V PCI 3.3 18.13
3.3 V PCI-X 3.3 18.13
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Advanced I/O Banks
CLOAD (pF) VCCI (V)
Static Power
PDC3 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
Single-Ended
3.3 V LVTTL /
3.3 V LVCMOS
35 3.3 468.67
2.5 V LVCMOS 35 2.5 267.48
1.8 V LVCMOS 35 1.8 149.46
1.5 V LVCMOS
(JESD8-11)
35 1.5 103.12
3.3 V PCI 10 3.3 201.02
3.3 V PCI-X 10 3.3 201.02
Differential
LVDS – 2.5 7.74 88.92
LVPECL – 3.3 19.54 166.52
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output
slew.
2. PDC3 is the static power (where applicable) measured on VMV.
3. PAC10 is the total dynamic power measured on VCCI and VMV.
Automotive ProASIC3 DC and Switching Characteristics
2-8 Revision 5
Table 2-10 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Standard Plus I/O Banks
CLOAD (pF) VCCI (V)
Static Power
PDC3 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
Single-Ended
3.3 V LVTTL /
3.3 V LVCMOS
35 3.3 452.67
2.5 V LVCMOS 35 2.5 258.32
1.8 V LVCMOS 35 1.8 133.59
1.5 V LVCMOS
(JESD8-11)
35 1.5 92.84
3.3 V PCI 10 3.3 184.92
3.3 V PCI-X 10 3.3 184.92
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output
slew.
2. PDC3 is the static power (where applicable) measured on VMV.
3. PAC10 is the total dynamic power measured on VCCI and VMV.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-9
Power Consumption of Various Internal Resources
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more
accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.
The power calculation methodology described below uses the following variables:
The number of PLLs as well as the number and the frequency of each output clock generated
The number of combinatorial and sequential cells used in the design
The internal clock frequencies
The number and the standard of I/O pins used in the design
The number of RAM blocks used in the design
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-12 on
page 2-11.
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-13 on
page 2-12.
Read rate and write rate to the memory—guidelines are provided for typical applications in
Table 2-13 on page 2-12. The calculation should be repeated for each clock domain defined in the
design.
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Table 2-11 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices
Parameter Definition
Device Specific Dynamic Power
(µW/MHz)
A3P1000 A3P250 A3P125 A3P060
PAC1 Clock contribution of a Global Rib 14.50 11.00 11.00 9.30
PAC2 Clock contribution of a Global Spine 2.48 1.58 0.81 0.81
PAC3 Clock contribution of a VersaTile row 0.81
PAC4 Clock contribution of a VersaTile used as a sequential module 0.12
PAC5 First contribution of a VersaTile used as a sequential module 0.07
PAC6 Second contribution of a VersaTile used as a sequential module 0.29
PAC7 Contribution of a VersaTile used as a combinatorial module 0.29
PAC8 Average contribution of a routing net 0.70
PAC9 Contribution of an I/O input pin (standard-dependent) See Table 2-7 on page 2-6.
PAC10 Contribution of an I/O output pin (standard-dependent) See Ta bl e 2 -7 and Table 2-10 on
page 2-8.
PAC11 Average contribution of a RAM block during a read operation 25.00
PAC12 Average contribution of a RAM block during a write operation 30.00
PAC13 Static PLL contribution 2.55 mW
PAC14 Dynamic contribution for PLL 2.60
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero SoC.
Automotive ProASIC3 DC and Switching Characteristics
2-10 Revision 5
Total Static Power Consumption—PSTAT
PSTAT = PDC1 + NINPUTS * PDC2 + NOUTPUTS * PDC3
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided in the "Spine
Architecture" section of the Global Resources chapter in the Automotive ProASIC3 FPGA
Fabric User's Guide.
NROW is the number of VersaTile rows used in the design—guidelines are provided in the Automotive
ProASIC3 FPGA Fabric User's Guide.
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile
sequential cell is used, it should be accounted for as 1.
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11.
FCLK is the global clock signal frequency.
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK
NS-CELL is the number VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-12 on page 2-11.
FCLK is the global clock signal frequency.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-11
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Ta bl e 2- 1 2 .
1 is the I/O buffer enable rate—guidelines are provided in Table 2-13 on page 2-12.
FCLK is the global clock signal frequency.
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
2 is the RAM enable rate for read operations.
FWRITE-CLOCK is the memory write clock frequency.
3 is the RAM enable rate for write operations—guidelines are provided in Table 2-13 on page 2-12.
PLL Contribution—PPLL
PPLL = PAC13 + PAC14 * FCLKOUT
FCLKIN is the input clock frequency.
FCLKOUT is the output clock frequency.1
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are
some examples:
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the
clock frequency.
The average toggle rate of an 8-bit counter is 25%:
Bit 0 (LSB) = 100%
Bit 1 = 50%
Bit 2 = 25%
–…
Bit 7 (MSB) = 0.78125%
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
nontristate output buffers are used, the enable rate should be 100%.
1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the
PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output
clock in the formula by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL contribution.
Table 2-12 • Toggle Rate Guidelines Recommended for Power Calculation
Component Definition Guideline
1Toggle rate of VersaTile outputs 10%
2I/O buffer toggle rate 10%
Automotive ProASIC3 DC and Switching Characteristics
2-12 Revision 5
User I/O Characteristics
Timing Model
Table 2-13 • Enable Rate Guidelines Recommended for Power Calculation
Component Definition Guideline
1I/O output buffer enable rate 100%
2RAM enable rate for read operations 12.5%
3RAM enable rate for write operations 12.5%
Figure 2-3 Timing Model
Operating Conditions: –1 Speed, Automotive Grade 2 Temp. Range (TJ = 115°C), Worst Case
VCC = 1.425 V
DQ
Y
Y
DQ
DQ DQ
Y
Combinational Cell
Combinational Cell
Combinational Cell
I/O Module
(registered)
I/O Module
(non-registered)
Register Cell Register Cell
I/O Module
(registered)
I/O Module
(non-registered)
LVPECL (applicable to
Advanced I/O banks only)
LVPECL
(applicable
to Advanced
I/O banks only)
LVDS,
BLVDS,
M-LVDS
(Applicable for
Advanced I/O
Banks only)
LVTTL 3.3 V Output Drive
Strength = 12 mA
High Slew Rate
Y
Combinational Cell
Y
Combinational Cell
Y
Combinational Cell
I/O Module
(non-registered)
LVTTLOutput drive Strength = 8 mA
High Slew Rate
I/O Module
(non-registered)
LVCMOS 1.5 V Output Drive Strength = 4 mA
High Slew Rate
LVTTLOutput Drive Strength = 12 mA
High Slew Rate
I/O Module
(non-registered)
Input LVTTL
Clock
Input LVTTL
Clock
Input LVTTL
Clock
t
PD
= 0.67 ns t
PD
= 0.58 ns
t
DP
= 1.66 ns
t
PD
= 1.04 ns t
DP
= 3.25 ns (Advanced I/O banks)
t
PD
= 0.60 ns
t
DP
= 4.52 ns (Advanced I/O banks)
t
PD
= 0.56 ns t
DP
= 4.89 ns (Advanced I/O banks)
t
PD
= 0.56 ns
t
PY
= 0.94 ns
(Advanced I/O banks)
t
CLKQ
= 0.66 ns t
OCLKQ
= 0.70 ns
t
SUD
= 0.51 ns t
OSUD
= 0.37 ns
t
DP
= 3.25 ns
(Advanced I/O banks)
t
PY
= 0.94 ns (Advanced I/O banks)
t
PY
= 1.47 ns
t
CLKQ
= 0.66 ns
t
SUD
= 0.51 ns
t
PY
= 0.94 ns
(Advanced I/O banks)
t
ICLKQ
= 0.29 ns
t
ISUD
= 0.31 ns
t
PY
= 1.29 ns
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-13
Figure 2-4 Input Buffer Timing Model and Delays (example)
tPY
(R)
PAD
Y
Vtrip
GND tPY
(F)
Vtrip
50%
50%
VIH
VCC
VIL
tDIN
(R)
DIN
GND tDIN
(F)
50%50%
VCC
PAD Y
tPY
D
CLK
Q
I/O Interface
DIN
tDIN
To Array
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
Automotive ProASIC3 DC and Switching Characteristics
2-14 Revision 5
Figure 2-5 Output Buffer Model and Delays (example)
tDP
(R)
PAD VOL
tDP
(F)
Vtrip
Vtrip
VOH
VCC
D50% 50%
VCC
0 V
DOUT 50% 50% 0 V
tDOUT
(R)
tDOUT
(F)
From Array
PAD
tDP
Std
Load
D
CLK
Q
I/O Interface
DOUT
D
tDOUT
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-15
Figure 2-6 Tristate Output Buffer Timing Model and Delays (example)
D
CLK
Q
D
CLK
Q
10% V
CCI
t
ZL
Vtrip
50%
t
HZ
90% VCCI
t
ZH
Vtrip
50% 50% t
LZ
50%
EOUT
PAD
D
E50%
t
EOUT (R)
50%t
EOUT (F)
PAD
DOUT
EOUT
D
I/O Interface
E
t
EOUT
t
ZLS
Vtrip
50%
t
ZHS
Vtrip
50%
EOUT
PAD
D
E50% 50%
t
EOUT (R)
t
EOUT (F)
50%
VCC
VCC
VCC
VCCI
VCC
VCC
VCC
VOH
VOL
VOL
t
ZL
, t
ZH
, t
HZ
, t
LZ
, t
ZLS
, t
ZHS
t
EOUT
= MAX(t
EOUT
(r), t
EOUT
(f))
Automotive ProASIC3 DC and Switching Characteristics
2-16 Revision 5
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software
Settings
Table 2-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Advanced I/O Banks
I/O Standard
Drive
Strength
Slew
Rate
VIL VIH VOL VOH IOL IOH
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
3.3 V LVTTL /
3.3 V LVCMOS
12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12
2.5 V LVCMOS 12 mA High –0.3 0.7 1.7 3.6 0.7 1.7 12 12
1.8 V LVCMOS 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 12 12
1.5 V LVCMOS 12 mA High –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12
3.3 V PCI Per PCI specifications
3.3 V PCI-X Per PCI-X specifications
Note: Currents are measured at 125°C junction temperature.
Table 2-15 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard Plus I/O Banks
I/O Standard
Drive
Strength
Slew
Rate
VIL VIH VOL VOH IOL IOH
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
3.3 V LVTTL /
3.3 V
LVCMOS
12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12
2.5 V
LVCMOS
12 mA High –0.3 0.7 1.7 3.6 0.7 1.7 12 12
1.8 V
LVCMOS
8 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8
1.5 V
LVCMOS
4 mA High –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4
3.3 V PCI Per PCI specifications
3.3 V PCI-X Per PCI-X specifications
Note: Currents are measured at 125°C junction temperature.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-17
Summary of I/O Timing Characteristics – Default I/O Software Settings
Table 2-16 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard I/O Banks
I/O Standard
Drive
Strength
Slew
Rate
VIL VIH VOL VOH IOL IOH
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
3.3 V LVTTL /
3.3 V LVCMOS
8 mA High –0.3 0.8 2 3.6 0.4 2.4 8 8
2.5 V LVCMOS 8 mA High –0.3 0.7 1.7 3.6 0.7 1.7 8 8
1.8 V LVCMOS 4 mA High 0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4
1.5 V LVCMOS 2 mA High 0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2
Note: Currents are measured at 125°C junction temperature.
Table 2-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Automotive Grade 1 and
Grade 2
DC I/O Standards
Automotive Grade 1 1Automotive Grade 2 2
IIL IIH IIL IIH
µA µA µA µA
3.3 V LVTTL / 3.3 V LVCMOS 10 10 15 15
2.5 V LVCMOS 10 10 15 15
1.8 V LVCMOS 10 10 15 15
1.5 V LVCMOS 10 10 15 15
3.3 V PCI 10 10 15 15
3.3 V PCI-X 10 10 15 15
Notes:
1. Automotive range Grade 1 (–40°C < TJ < 135°C)
2. Automotive range Grade 2 (–40°C < TJ < 115°C)
Table 2-18 • Summary of AC Measuring Points
Standard Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS 1.4 V
2.5 V LVCMOS 1.2 V
1.8 V LVCMOS 0.90 V
1.5 V LVCMOS 0.75 V
3.3 V PCI 0.285 * VCCI (RR)
0.615 * VCCI (FF)
3.3 V PCI-X 0.285 * VCCI (RR)
0.615 * VCCI (FF)
Automotive ProASIC3 DC and Switching Characteristics
2-18 Revision 5
Table 2-19 • I/O AC Parameter Definitions
Parameter Parameter Definition
tDP Data-to-Pad delay through the Output Buffer
tPY Pad-to-Data delay through the Input Buffer
tDOUT Data–to–Output Buffer delay through the I/O interface
tEOUT Enable–to–Output Buffer Tristate Control delay through the I/O interface
tDIN Input Buffer–to–Data delay through the I/O interface
tHZ Enable-to-Pad delay through the Output Buffer—High to Z
tZH Enable-to-Pad delay through the Output Buffer—Z to High
tLZ Enable-to-Pad delay through the Output Buffer—Low to Z
tZL Enable-to-Pad delay through the Output Buffer—Z to Low
tZHS Enable-to-Pad delay through the Output Buffer with delayed enable—Z to High
tZLS Enable-to-Pad delay through the Output Buffer with delayed enable—Z to Low
Table 2-20 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V
Worst Case VCCI = 3.0 V
Advanced I/O Banks
I/O Standard
Drive Strength (mA)
Slew Rate
Capacitive Load (pF)
External Resistor ()
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS
12 mA High35 pF 0.533.250.040.940.383.311.512.961.885.372.71ns
2.5 V LVCMOS 12 mA High35 pF 0.533.280.041.190.383.343.161.771.805.395.22ns
1.8 V LVCMOS 12 mA High35 pF 0.533.250.041.120.381.891.633.413.753.062.82ns
1.5 V LVCMOS 12 mA High35 pF 0.533.750.041.320.382.181.913.633.873.353.11ns
3.3 V PCI Per PCI
spec
High 10 pF 25 20.53 2.12 0.04 0.78 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns
3.3 V PCI-X Per PCI-X
spec
High 10 pF 25 20.53 2.47 0.04 0.77 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns
LVDS 24 mA High 0.53 1.68 0.04 1.47 – – – – – – – ns
LVPECL 24 mA High 0.53 1.66 0.04 1.29 – – – – – – – ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-48 for
connectivity. This resistor is not required during normal operation.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-19
Table 2-21 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V
Worst Case VCCI = 3.0 V
Standard Plus I/O Banks
I/O Standard
Drive Strength (mA)
Slew Rate
Capacitive Load (pF)
External Resistor
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
3.3 V LVTTL /
3.3 V LVCMOS
12 mA High 35 pF 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.43 ns
2.5 V LVCMOS 12 mA High 35 pF 0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns
1.8 V LVCMOS 8 mA High 35 pF 0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns
1.5 V LVCMOS 4 mA High 35 pF 0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns
3.3 V PCI Per PCI
spec
High 10 pF 25 20.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns
3.3 V PCI-X Per PCI-X
spec
High 10 pF 25 20.55 2.19 0.04 0.79 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-48 for
connectivity. This resistor is not required during normal operation.
Automotive ProASIC3 DC and Switching Characteristics
2-20 Revision 5
Table 2-22 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Automotive-Case Conditions: TJ = 135°C, Worst Case VCC = 1.425 V
Worst Case VCCI = 3.0 V
Advanced I/O Banks
I/O Standard
Drive Strength (mA)
Slew Rate
Capacitive Load (pF)
External Resistor ()
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS
12 mA High 35 pF 0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns
2.5 V LVCMOS 12 mA High 35 pF 0.55 3.39 0.04 1.23 0.39 3.45 3.27 1.83 1.86 5.58 5.39 ns
1.8 V LVCMOS 12 mA High 35 pF 0.55 3.36 0.04 1.16 0.39 1.95 1.68 3.52 3.88 3.16 2.92 ns
1.5 V LVCMOS 12 mA High 35 pF 0.55 3.88 0.04 1.37 0.39 2.25 1.98 3.75 4.00 3.46 3.21 ns
3.3 V PCI Per PCI
spec
High 10 pF 25 20.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
3.3 V PCI-X Per PCI-X
spec
High 10 pF 25 20.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
LVDS 24 mA High 0.55 1.74 0.04 1.52 – – – – – – – ns
LVPECL 24 mA High 0.55 1.71 0.04 1.34 – – – – – – – ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-48 for
connectivity. This resistor is not required during normal operation.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-21
Table 2-23 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V
Worst Case VCCI = 3.0 V
Standard Plus I/O Banks
I/O Standard
Drive Strength (mA)
Slew Rate
Capacitive Load (pF)
External Resistor
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS
12 mA High 35 pF 0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns
2.5 V LVCMOS 12 mA High 35 pF 0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns
1.8 V LVCMOS 8 mA High 35 pF 0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns
1.5 V LVCMOS 4 mA High 35 pF 0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns
3.3 V PCI Per PCI
spec
High 10 pF 25 20.55 2.55 0.04 0.82 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
3.3 V PCI-X Per PCI-X
spec
High 10 pF 25 20.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-48 for
connectivity. This resistor is not required during normal operation.
Automotive ProASIC3 DC and Switching Characteristics
2-22 Revision 5
Detailed I/O DC Characteristics
Table 2-24 • Input Capacitance
Symbol Definition Conditions Min. Max. Units
CIN Input capacitance VIN = 0, f = 1.0 MHz 8 pF
CINCLK Input capacitance on the clock pin VIN = 0, f = 1.0 MHz 8 pF
Table 2-25 • I/O Output Buffer Maximum Resistances1
Applicable to Advanced I/O Banks
Standard Drive Strength
RPULL-DOWN
()2
RPULL-UP
()3
3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300
4 mA 100 300
6 mA 50 150
8 mA 50 150
12 mA 25 75
16 mA 17 50
24 mA 11 33
2.5 V LVCMOS 2 mA 100 200
6 mA 50 100
12 mA 25 50
16 mA 20 40
24 mA 11 22
1.8 V LVCMOS 2 mA 200 225
4 mA 100 112
6 mA 50 56
8 mA 50 56
12 mA 20 22
16 mA 20 22
1.5 V LVCMOS 2 mA 200 224
4 mA 100 112
6 mA 67 75
8 mA 33 37
12 mA 33 37
3.3 V PCI/PCI-X Per PCI/PCI-X specification 25 75
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance
values depend on VCCI, drive strength selection, temperature, and process. For board design
considerations and detailed output buffer resistances, use the corresponding IBIS models located at
http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-23
Table 2-26 • I/O Output Buffer Maximum Resistances1
Applicable to Standard Plus I/O Banks
Standard Drive Strength
RPULL-DOWN
()2
RPULL-UP
()3
3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300
4 mA 100 300
6 mA 50 150
8 mA 50 150
12 mA 25 75
16 mA 25 75
2.5 V LVCMOS 2 mA 100 200
6 mA 50 100
12 mA 25 50
1.8 V LVCMOS 2 mA 200 225
4 mA 100 112
6 mA 50 56
8 mA 50 56
1.5 V LVCMOS 2 mA 200 224
4 mA 100 112
3.3 V PCI/PCI-X Per PCI/PCI-X specification 0 0
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance
values depend on VCCI, drive strength selection, temperature, and process. For board design
considerations and detailed output buffer resistances, use the corresponding IBIS models located at
http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
Table 2-27 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
VCCI
R(WEAK PULL-UP)1
()
R(WEAK PULL-DOWN)2
()
Min. Max. Min. Max.
3.3 V 10 k 45 k 10 k 45 k
2.5 V 11 k 55 k 12 k 74 k
1.8 V 18 k 70 k 17 k 110 k
1.5 V 19 k 90 k 19 k 140 k
Notes:
1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)
Automotive ProASIC3 DC and Switching Characteristics
2-24 Revision 5
Table 2-28 • I/O Short Currents IOSH/IOSL
Applicable to Advanced I/O Banks
Drive Strength IOSL (mA)* IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS 2 mA 27 25
4 mA 27 25
6 mA 54 51
8 mA 54 51
12 mA 109 103
16 mA 127 132
24 mA 181 268
3.3 V LVCMOS 2 mA 27 25
4 mA 27 25
6 mA 54 51
8 mA 54 51
12 mA 109 103
16 mA 127 132
24 mA 181 268
2.5 V LVCMOS 2 mA 18 16
6 mA 37 32
12 mA 74 65
16 mA 87 83
24 mA 124 169
1.8 V LVCMOS 2 mA 11 9
4 mA 22 17
6 mA 44 35
8 mA 51 45
12 mA 74 91
16 mA 74 91
1.5 V LVCMOS 2 mA 16 13
4 mA 33 25
6 mA 39 32
8 mA 55 66
12 mA 55 66
3.3 V PCI/PCI-X Per PCI/PCI-X specification 109 103
Note: *TJ = 100°C
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-25
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of
analysis.
For example, at 110°C, the short current condition would have to be sustained for more than three
months to cause a reliability concern. The I/O design does not contain any short circuit protection, but
such protection would only be needed in extremely prolonged stress conditions.
Table 2-29 • I/O Short Currents IOSH/IOSL
Applicable to Standard Plus I/O Banks
Drive Strength IOSL (mA)* IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS 2 mA 27 25
4 mA 27 25
6 mA 54 51
8 mA 54 51
12 mA 109 103
16 mA 109 103
2.5 V LVCMOS 2 mA 18 16
6 mA 37 32
12 mA 74 65
1.8 V LVCMOS 2 mA 11 9
4 mA 22 17
6 mA 44 35
8 mA 44 35
1.5 V LVCMOS 2 mA 16 13
4 mA 33 25
3.3 V PCI/PCI-X Per PCI/PCI-X specification 109 103
Note: *TJ = 100°C
Table 2-30 • Duration of Short Circuit Event before Failure
Temperature Time before Failure
–40°C > 20 years
0°C > 20 years
25°C > 20 years
70°C 5 years
85°C 2 years
100°C 6 months
110°C 3 months
125°C 25 days
135° 12 days
Automotive ProASIC3 DC and Switching Characteristics
2-26 Revision 5
Table 2-31 • I/O Input Rise Time, Fall Time, and Related I/O Reliability
Input Buffer
Input Rise/Fall Time
(min.)
Input Rise/Fall Time
(max.) Reliability
LVTTL/LVCMOS No requirement 10 ns * 20 years (110°C)
LVDS/B-LVDS/M-
LVDS/LVPECL
No requirement 10 ns * 10 years (100°C)
Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the
noise is low, the rise time and fall time of input buffers can be increased beyond the maximum
value. The longer the rise/fall times, the more susceptible the input signal is to the board noise.
Microsemi recommends signal integrity evaluation/characterization of the system to ensure there
is no excessive noise coupling into input signals.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-27
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V
applications. It uses an LVTTL input buffer and push-pull output buffer.
Table 2-32 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
Max.
mA1
Max.
mA1µA2µA2
2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 27 25 10 10
4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10
6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 54 51 10 10
8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10
12 mA –0.3 0.8 23.6 0.4 2.4 12 12 109 103 10 10
16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 10 10
24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 181 268 10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-33 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
Max.
mA1
Max.
mA1µA2µA2
2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 27 25 10 10
4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10
6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 54 51 10 10
8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10
12 mA –0.3 0.8 23.6 0.4 2.4 12 12 109 103 10 10
16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 109 103 10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Automotive ProASIC3 DC and Switching Characteristics
2-28 Revision 5
Figure 2-7 AC Loading
Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) CLOAD (pF)
03.31.435
Note: *Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
Test Point
Test Point
Enable Path
Datapath 35 pF
R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-29
Timing Characteristics
Table 2-35 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA STD 0.64 8.56 0.05 1.14 0.46 8.72 7.37 1.46 1.42 11.22 9.866 ns
-1 0.55 7.28 0.04 0.97 0.39 7.42 6.27 1.46 1.42 9.54 8.393 ns
6 mA STD 0.64 5.49 0.05 1.14 0.46 5.59 4.55 1.65 1.74 8.09 7.05 ns
-1 0.55 4.67 0.04 0.97 0.39 4.75 3.87 1.65 1.74 6.88 5.997 ns
8 mA STD 0.64 5.49 0.05 1.14 0.46 5.59 4.55 1.65 1.74 8.09 7.05 ns
-1 0.55 4.67 0.04 0.97 0.39 4.75 3.87 1.65 1.74 6.88 5.997 ns
12 mA STD 0.64 3.95 0.05 1.14 0.46 4.02 1.56 3.59 1.94 6.52 2.795 ns
-1 0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.797 ns
16 mA STD 0.64 3.73 0.05 1.14 0.46 1.84 1.42 3.65 4.11 3.05 2.651 ns
-1 0.55 3.17 0.04 0.97 0.39 1.84 1.42 3.10 3.50 3.05 2.653 ns
24 mA STD 0.64 3.44 0.05 1.14 0.46 1.70 1.17 3.72 4.54 2.91 2.405 ns
-1 0.55 2.92 0.04 0.97 0.39 1.70 1.17 3.16 3.86 2.91 2.407 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA STD 0.64 11.47 0.05 1.14 0.46 11.68 9.95 1.46 1.33 14.18 12.449 ns
-1 0.55 9.75 0.04 0.97 0.39 9.94 8.46 1.46 1.33 12.06 10.59 ns
6 mA STD 0.64 8.13 0.05 1.14 0.46 8.28 7.03 1.65 1.65 10.79 9.526 ns
-1 0.55 6.92 0.04 0.97 0.39 7.05 5.98 1.65 1.65 9.17 8.103 ns
8 mA STD 0.64 8.13 0.05 1.14 0.46 8.28 7.03 1.65 1.65 10.79 9.526 ns
-1 0.55 6.92 0.04 0.97 0.39 7.05 5.98 1.65 1.65 9.17 8.103 ns
12 mA STD 0.64 6.24 0.05 1.14 0.46 6.36 5.45 1.77 1.85 8.86 7.946 ns
-1 0.55 5.31 0.04 0.97 0.39 5.41 4.63 1.77 1.85 7.53 6.76 ns
16 mA STD 0.64 5.82 0.05 1.14 0.46 5.93 5.10 1.80 1.90 8.43 7.604 ns
-1 0.55 4.95 0.04 0.97 0.39 5.04 4.34 1.80 1.90 7.17 6.468 ns
24 mA STD 0.64 5.42 0.05 1.14 0.46 5.52 5.08 1.83 2.10 8.02 7.581 ns
-1 0.55 4.61 0.04 0.97 0.39 4.70 4.32 1.83 2.11 6.82 6.449 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-30 Revision 5
Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA STD 0.64 8.06 0.05 1.12 0.46 8.20 7.03 1.26 1.27 8.20 7.027 ns
-1 0.55 6.85 0.04 .095 0.39 6.98 5.98 1.26 1.27 6.98 5.978 ns
6 mA STD 0.64 5.03 0.05 1.12 0.46 5.13 4.27 1.42 1.56 5.13 4.267 ns
-1 0.55 4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36 3.63 ns
8 mA STD 0.64 5.03 0.05 1.12 0.46 5.13 4.27 1.42 1.56 5.13 4.267 ns
-1 0.55 4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36 3.63 ns
12 mA STD 0.64 3.53 0.05 1.12 0.46 1.74 1.43 3.12 3.60 1.74 1.427 ns
-1 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.428 ns
16 mA STD 0.64 3.53 0.05 1.12 0.46 1.74 1.43 3.12 3.60 1.74 1.427 ns
-1 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.428 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA STD 0.64 10.82 0.05 1.12 0.46 11.02 9.42 1.26 1.20 11.02 9.419 ns
-1 0.55 9.21 0.04 0.95 0.39 9.38 8.01 1.26 1.20 9.38 8.012 ns
6 mA STD 0.64 7.49 0.05 1.12 0.46 7.63 6.58 1.43 1.48 7.63 6.58 ns
-1 0.55 6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49 5.598 ns
8 mA STD 0.64 7.49 0.05 1.12 0.46 7.63 6.58 1.43 1.48 7.63 6.58 ns
-1 0.55 6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49 5.598 ns
12 mA STD 0.64 5.64 0.05 1.12 0.46 5.75 5.04 1.54 1.67 5.75 5.042 ns
-1 0.55 4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89 4.289 ns
16 mA STD 0.64 5.64 0.05 1.12 0.46 5.75 5.04 1.54 1.67 5.75 5.042 ns
-1 0.55 4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89 4.289 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-31
Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA STD 0.63 8.28 0.05 1.10 0.45 8.44 7.13 1.42 1.37 10.85 9.55 ns
-1 0.53 7.05 0.04 0.94 0.38 7.18 6.06 1.42 1.37 9.23 8.12 ns
6 mA STD 0.63 5.31 0.05 1.10 0.45 5.41 4.40 1.60 1.68 7.83 6.82 ns
-1 0.53 4.52 0.04 0.94 0.38 4.60 3.74 1.60 1.68 6.66 5.80 ns
8 mA STD 0.63 5.31 0.05 1.10 0.45 5.41 4.40 1.60 1.68 7.83 6.82 ns
-1 0.53 4.52 0.04 0.94 0.38 4.60 3.74 1.60 1.68 6.66 5.80 ns
12 mA STD 0.63 3.82 0.05 1.10 0.45 3.89 1.51 3.47 1.88 6.31 2.70 ns
-1 0.53 3.25 0.04 0.94 0.38 3.31 1.51 2.96 1.88 5.37 2.71 ns
16 mA STD 0.63 3.60 0.05 1.10 0.45 1.78 1.37 3.53 3.98 2.95 2.57 ns
-1 0.53 3.07 0.04 0.94 0.38 1.78 1.37 3.00 3.38 2.95 2.57 ns
24 mA STD 0.63 3.33 0.05 1.10 0.45 1.64 1.13 3.60 4.39 2.81 2.33 ns
-1 0.53 2.83 0.04 0.94 0.38 1.64 1.13 3.06 3.74 2.82 2.33 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-40 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA STD 0.63 11.09 0.05 1.10 0.45 11.30 9.63 1.41 1.29 13.72 12.04 ns
-1 0.53 9.44 0.04 0.94 0.38 9.61 8.19 1.41 1.29 11.67 10.25 ns
6 mA STD 0.63 7.87 0.05 1.10 0.45 8.02 6.80 1.59 1.59 10.43 9.22 ns
-1 0.53 6.69 0.04 0.94 0.38 6.82 5.78 1.59 1.60 8.88 7.84 ns
8 mA STD 0.63 7.87 0.05 1.10 0.45 8.02 6.80 1.59 1.59 10.43 9.22 ns
-1 0.53 6.69 0.04 0.94 0.38 6.82 5.78 1.59 1.60 8.88 7.84 ns
12 mA STD 0.63 6.04 0.05 1.10 0.45 6.15 5.27 1.71 1.79 8.57 7.69 ns
-1 0.53 5.14 0.04 0.94 0.38 5.23 4.48 1.71 1.79 7.29 6.54 ns
16 mA STD 0.63 5.63 0.05 1.10 0.45 5.74 4.94 1.74 1.84 8.16 7.36 ns
-1 0.53 4.79 0.04 0.94 0.38 4.88 4.20 1.74 1.84 6.94 6.26 ns
24 mA STD 0.63 5.25 0.05 1.10 0.45 5.34 4.92 1.77 2.04 7.76 7.34 ns
-1 0.53 4.46 0.04 0.94 0.38 4.55 4.18 1.77 2.04 6.60 6.24 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-32 Revision 5
Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA STD 0.63 7.79 0.05 1.08 0.45 7.94 6.80 1.22 1.23 7.94 6.80 ns
-1 0.55 6.85 0.04 0.95 0.39 6.98 5.98 1.26 1.27 6.98 5.98 ns
6 mA STD 0.63 4.87 0.05 1.08 0.45 4.96 4.13 1.38 1.51 4.96 4.13 ns
-1 0.55 4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36 3.63 ns
8 mA STD 0.63 4.87 0.05 1.08 0.45 4.96 4.13 1.38 1.51 4.96 4.13 ns
-1 0.55 4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36 3.63 ns
12 mA STD 0.63 3.42 0.05 1.08 0.45 1.69 1.38 3.02 3.48 1.69 1.38 ns
-1 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.43 ns
16 mA STD 0.63 3.42 0.05 1.08 0.45 1.69 1.38 3.02 3.48 1.69 1.38 ns
-1 0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.43 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA STD 0.63 10.47 0.05 1.08 0.45 10.66 9.11 1.22 1.16 10.66 9.11 ns
-1 0.55 9.21 0.04 0.95 0.39 9.38 8.01 1.26 1.20 9.38 8.01 ns
6 mA STD 0.63 7.25 0.05 1.08 0.45 7.38 6.37 1.38 1.44 7.38 6.37 ns
-1 0.55 6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49 5.60 ns
8 mA STD 0.63 7.25 0.05 1.08 0.45 7.38 6.37 1.38 1.44 7.38 6.37 ns
-1 0.55 6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49 5.60 ns
12 mA STD 0.63 5.46 0.05 1.08 0.45 5.56 4.88 1.49 1.61 5.56 4.88 ns
-1 0.55 4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89 4.29 ns
16 mA STD 0.63 5.46 0.05 1.08 0.45 5.56 4.88 1.49 1.61 5.56 4.88 ns
-1 0.55 4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89 4.29 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-33
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 2.5 V applications.
Table 2-43 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
2.5 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
Max.
mA1
Max.
mA1µA2µA2
2 mA –0.3 0.7 1.7 3.6 0.7 1.7 2 2 18 16 10 10
6 mA –0.3 0.7 1.7 3.6 0.7 1.7 6 6 37 32 10 10
12 mA –0.3 0.7 1.7 3.6 0.7 1.7 12 12 74 65 10 10
16 mA 0.3 0.7 1.7 3.6 0.7 1.7 16 16 87 83 10 10
24 mA 0.3 0.7 1.7 3.6 0.7 1.7 24 24 124 169 10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-44 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
2.5 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmAMax., mA
1Max., mA1µA2µA2
2 mA –0.3 0.7 1.7 3.6 0.7 1.7 2 2 18 16 10 10
6 mA –0.3 0.7 1.7 3.6 0.7 1.7 6 6 37 32 10 10
12 mA –0.3 0.7 1.7 3.6 0.7 1.7 12 12 74 65 10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-8 AC Loading
Table 2-45 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) CLOAD (pF)
02.51.235
Note: *Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
Test Point
Test Point
Enable Path
Datapath 35 pF
R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
Automotive ProASIC3 DC and Switching Characteristics
2-34 Revision 5
Timing Characteristics
Table 2-46 • 2.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 9.69 0.05 1.45 0.46 8.76 9.69 1.48 1.25 11.26 12.187 ns
-1 0.55 8.24 0.04 1.23 0.39 7.45 8.24 1.48 1.25 9.58 10.367 ns
6 mA STD 0.64 5.78 0.05 1.45 0.46 5.63 5.78 1.68 1.62 8.13 8.277 ns
-1 0.55 4.91 0.04 1.23 0.39 4.79 4.91 1.69 1.63 6.92 7.04 ns
12 mA STD 0.64 3.98 0.05 1.45 0.46 4.05 3.84 1.82 1.86 6.55 6.338 ns
-1 0.55 3.39 0.04 1.23 0.39 3.45 3.27 1.83 1.86 5.58 5.392 ns
16 mA STD 0.64 3.75 0.05 1.45 0.46 1.85 1.69 3.76 3.97 3.06 2.926 ns
-1 0.55 3.19 0.04 1.23 0.39 1.85 1.69 3.20 3.38 3.06 2.929 ns
24 mA STD 0.64 3.45 0.05 1.45 0.46 1.70 1.35 3.84 4.47 2.92 2.585 ns
-1 0.55 2.94 0.04 1.23 0.39 1.71 1.35 3.27 3.80 2.92 2.586 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-47 • 2.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 12.12 0.05 1.45 0.46 12.54 12.74 1.48 1.19 15.04 15.243 ns
-1 0.55 10.31 0.04 1.23 0.39 10.67 10.84 1.48 1.20 12.80 12.966 ns
6 mA STD 0.64 8.24 0.05 1.45 0.46 9.07 8.74 1.68 1.57 11.57 11.237 ns
-1 0.55 7.01 0.04 1.23 0.39 7.71 7.43 1.69 1.57 9.84 9.559 ns
12 mA STD 0.64 6.91 0.05 1.45 0.46 7.04 6.62 1.82 1.80 9.54 9.117 ns
-1 0.55 5.88 0.04 1.23 0.39 5.99 5.63 1.83 1.80 8.11 7.756 ns
16 mA STD 0.64 6.44 0.05 1.45 0.46 6.56 6.18 1.86 1.86 9.06 8.678 ns
-1 0.55 5.48 0.04 1.23 0.39 5.58 5.26 1.86 1.86 7.71 7.382 ns
24 mA STD 0.64 6.16 0.05 1.45 0.46 6.15 6.16 1.90 2.10 8.65 8.657 ns
-1 0.55 5.24 0.04 1.23 0.39 5.23 5.24 1.90 2.10 7.36 7.364 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-35
Table 2-48 • 2.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 9.26 0.05 1.45 0.46 8.28 9.26 1.24 1.12 10.78 11.756 ns
-1 0.55 7.87 0.04 1.23 0.39 7.05 7.87 1.24 1.13 9.17 10 ns
6 mA STD 0.64 5.43 0.05 1.45 0.46 5.19 5.43 1.43 1.47 7.69 7.926 ns
-1 0.55 4.62 0.04 1.23 0.39 4.42 4.62 1.43 1.47 6.55 6.743 ns
12 mA STD 0.64 3.59 0.05 1.45 0.46 3.65 3.51 1.56 1.69 6.15 6.012 ns
-1 0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.114 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-49 • 2.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 12.12 0.05 1.45 0.46 11.89 12.12 1.25 1.08 14.39 14.622 ns
-1 0.55 10.31 0.04 1.23 0.39 10.12 10.31 1.25 1.08 12.24 12.438 ns
6 mA STD 0.64 8.24 0.05 1.45 0.46 8.39 8.23 1.43 1.42 10.89 10.73 ns
-1 0.55 7.01 0.04 1.23 0.39 7.14 7.00 1.43 1.42 9.26 9.128 ns
12 mA STD 0.64 6.30 0.05 1.45 0.46 6.41 6.16 1.56 1.63 8.91 8.656 ns
-1 0.55 5.35 0.04 1.23 0.39 5.45 5.24 1.56 1.63 7.58 7.364 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-36 Revision 5
Table 2-50 • 2.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 9.37 0.05 1.40 0.45 8.47 9.37 1.43 1.21 10.89 11.79 ns
-1 0.53 7.97 0.04 1.19 0.38 7.21 7.97 1.43 1.21 9.27 10.03 ns
6 mA STD 0.63 5.59 0.05 1.40 0.45 5.45 5.59 1.63 1.57 7.87 8.01 ns
-1 0.53 4.75 0.04 1.19 0.38 4.63 4.75 1.63 1.57 6.69 6.81 ns
12 mA STD 0.63 3.85 0.05 1.40 0.45 3.92 3.71 1.77 1.80 6.34 6.13 ns
-1 0.53 3.28 0.04 1.19 0.38 3.34 3.16 1.77 1.80 5.39 5.22 ns
16 mA STD 0.63 3.63 0.05 1.40 0.45 1.79 1.64 3.64 3.84 2.96 2.83 ns
-1 0.53 3.08 0.04 1.19 0.38 1.79 1.64 3.09 3.27 2.96 2.83 ns
24 mA STD 0.63 3.34 0.05 1.40 0.45 1.65 1.31 3.72 4.32 2.82 2.50 ns
-1 0.53 2.84 0.04 1.19 0.38 1.65 1.31 3.16 3.68 2.82 2.50 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-51 • 2.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 11.73 0.05 1.40 0.45 12.14 12.33 1.43 1.16 14.55 14.75 ns
-1 0.53 9.98 0.04 1.19 0.38 10.32 10.49 1.43 1.16 12.38 12.55 ns
6 mA STD 0.63 7.97 0.05 1.40 0.45 8.77 8.45 1.63 1.51 11.19 10.87 ns
-1 0.53 6.78 0.04 1.19 0.38 7.46 7.19 1.63 1.52 9.52 9.25 ns
12 mA STD 0.63 6.68 0.05 1.40 0.45 6.81 6.40 1.77 1.74 9.23 8.82 ns
-1 0.53 5.69 0.04 1.19 0.38 5.79 5.45 1.77 1.74 7.85 7.50 ns
16 mA STD 0.63 6.24 0.05 1.40 0.45 6.35 5.98 1.80 1.80 8.77 8.40 ns
-1 0.53 5.30 0.04 1.19 0.38 5.40 5.08 1.80 1.80 7.46 7.14 ns
24 mA STD 0.63 5.96 0.05 1.40 0.45 5.95 5.96 1.84 2.03 8.37 8.38 ns
-1 0.53 5.07 0.04 1.19 0.38 5.06 5.07 1.84 2.03 7.12 7.12 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-37
Table 2-52 • 2.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 8.95 0.05 1.40 0.45 8.01 8.95 1.20 1.09 10.43 11.37 ns
-1 0.53 7.62 0.04 1.19 0.38 6.82 7.62 1.20 1.09 8.87 9.68 ns
6 mA STD 0.63 5.25 0.05 1.40 0.45 5.03 5.25 1.38 1.42 7.44 7.67 ns
-1 0.53 4.47 0.04 1.19 0.38 4.27 4.47 1.38 1.42 6.33 6.52 ns
12 mA STD 0.63 3.47 0.05 1.40 0.45 3.53 3.40 1.51 1.63 5.95 5.82 ns
-1 0.53 2.95 0.04 1.19 0.38 3.01 2.89 1.51 1.63 5.06 4.95 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-53 • 2.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 11.73 0.05 1.40 0.45 11.51 11.73 1.21 1.04 13.93 14.15 ns
-1 0.53 9.98 0.04 1.19 0.38 9.79 9.98 1.21 1.04 11.85 12.03 ns
6 mA STD 0.63 7.97 0.05 1.40 0.45 8.12 7.96 1.38 1.37 10.54 10.38 ns
-1 0.53 6.78 0.04 1.19 0.38 6.91 6.77 1.39 1.37 8.96 8.83 ns
12 mA STD 0.63 6.09 0.05 1.40 0.45 6.20 5.96 1.51 1.58 8.62 8.38 ns
-1 0.53 5.18 0.04 1.19 0.38 5.28 5.07 1.51 1.58 7.33 7.12 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-38 Revision 5
1.8 V LVCMOS
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-54 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.8 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
Max.
mA1
Max.
mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10
4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10
6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 10 10
8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 51 45 10 10
12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 12 12 74 91 10 10
16 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 16 16 74 91 10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Table 2-55 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O I/O Banks
1.8 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
Max.
mA1
Max.
mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10
4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10
6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 10 10
8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 44 35 10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-9 AC Loading
Table 2-56 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) CLOAD (pF)
01.80.935
Note: *Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
Test Point
Test Point
Enable Path
Datapath 35 pF
R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-39
Timing Characteristics
Table 2-57 • 1.8 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 13.26 0.05 1.36 0.46 10.22 13.26 1.53 0.90 12.72 15.764 ns
-1 0.55 11.28 0.04 1.16 0.39 8.69 11.28 1.53 0.90 10.82 13.41 ns
4 mA STD 0.64 7.73 0.05 1.36 0.46 6.55 7.73 1.78 1.54 9.05 10.232 ns
-1 0.55 6.58 0.04 1.16 0.39 5.58 6.58 1.78 1.54 7.70 8.704 ns
6 mA STD 0.64 4.97 0.05 1.36 0.46 4.67 4.97 1.95 1.83 7.17 7.472 ns
-1 0.55 4.23 0.04 1.16 0.39 3.98 4.23 1.95 1.83 6.10 6.356 ns
8 mA STD 0.64 4.39 0.05 1.36 0.46 4.39 4.39 1.99 1.91 6.89 6.888 ns
-1 0.55 3.73 0.04 1.16 0.39 3.74 3.73 1.99 1.91 5.86 5.859 ns
12 mA STD 0.64 3.95 0.05 1.36 0.46 1.95 1.68 4.14 4.56 3.16 2.915 ns
-1 0.55 3.36 0.04 1.16 0.39 1.95 1.68 3.52 3.88 3.16 2.918 ns
16 mA STD 0.64 3.95 0.05 1.36 0.46 1.95 1.68 4.14 4.56 3.16 2.915 ns
-1 0.55 3.36 0.04 1.16 0.39 1.95 1.68 3.52 3.88 3.16 2.918 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-40 Revision 5
Table 2-58 • 1.8 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 17.36 0.05 1.45 0.46 15.78 17.36 1.53 0.87 18.28 19.864 ns
-1 0.55 14.77 0.04 1.23 0.39 13.42 14.77 1.54 0.87 15.55 16.897 ns
4 mA STD 0.64 11.71 0.05 1.45 0.46 11.64 11.71 1.78 1.48 14.14 14.214 ns
-1 0.55 9.96 0.04 1.23 0.39 9.90 9.96 1.78 1.48 12.03 12.091 ns
6 mA STD 0.64 9.00 0.05 1.45 0.46 9.17 8.77 1.95 1.77 11.67 11.267 ns
-1 0.55 7.66 0.04 1.23 0.39 7.80 7.46 1.95 1.77 9.92 9.585 ns
8 mA STD 0.64 8.39 0.05 1.45 0.46 8.54 8.16 1.99 1.85 11.04 10.66 ns
-1 0.55 7.14 0.04 1.23 0.39 7.27 6.94 1.99 1.85 9.40 9.068 ns
12 mA STD 0.64 8.15 0.05 1.45 0.46 8.09 8.15 2.05 2.14 10.59 10.654 ns
-1 0.55 6.94 0.04 1.23 0.39 6.88 6.94 2.05 2.14 9.01 9.063 ns
16 mA STD 0.64 8.15 0.05 1.45 0.46 8.09 8.15 2.05 2.14 10.59 10.654 ns
-1 0.55 6.94 0.04 1.23 0.39 6.88 6.94 2.05 2.14 9.01 9.063 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-59 • 1.8 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 13.26 0.05 1.36 0.46 9.75 12.67 1.24 0.82 12.26 15.17 ns
-1 0.55 11.28 0.04 1.16 0.39 8.30 10.78 1.24 0.83 10.43 12.905 ns
4 mA STD 0.64 7.73 0.05 1.36 0.46 6.13 7.25 1.46 1.41 8.63 9.749 ns
-1 0.55 6.58 0.04 1.16 0.39 5.21 6.17 1.46 1.41 7.34 8.293 ns
6 mA STD 0.64 4.97 0.05 1.36 0.46 4.29 4.54 1.62 1.68 6.79 7.039 ns
-1 0.55 4.23 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.987 ns
8 mA STD 0.64 4.39 0.05 1.36 0.46 4.29 4.54 1.62 1.68 6.79 7.039 ns
-1 0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.987 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-41
Table 2-60 • 1.8 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 17.36 0.05 1.45 0.46 15.09 16.55 1.24 0.79 17.59 19.052 ns
-1 0.55 14.77 0.04 1.23 0.39 12.84 14.08 1.24 0.79 14.96 16.207 ns
4 mA STD 0.64 11.71 0.05 1.45 0.46 10.88 11.07 1.47 1.35 13.38 13.567 ns
-1 0.55 9.96 0.04 1.23 0.39 9.26 9.41 1.47 1.35 11.38 11.541 ns
6 mA STD 0.64 9.00 0.05 1.45 0.46 8.47 8.18 1.62 1.62 10.97 10.685 ns
-1 0.55 7.66 0.04 1.23 0.39 7.21 6.96 1.62 1.62 9.33 9.089 ns
8 mA STD 0.64 8.39 0.05 1.45 0.46 8.47 8.18 1.62 1.62 10.97 10.685 ns
-1 0.55 7.14 0.04 1.23 0.39 7.21 6.96 1.62 1.62 9.33 9.089 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-61 • 1.8 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 12.83 0.05 1.32 0.45 9.88 12.83 1.48 0.87 12.30 15.25 ns
-1 0.53 10.92 0.04 1.12 0.38 8.41 10.92 1.48 0.87 10.46 12.97 ns
4 mA STD 0.63 7.48 0.05 1.32 0.45 6.34 7.48 1.72 1.49 8.76 9.90 ns
-1 0.53 6.36 0.04 1.12 0.38 5.39 6.36 1.72 1.49 7.45 8.42 ns
6 mA STD 0.63 4.81 0.05 1.32 0.45 4.52 4.81 1.89 1.77 6.94 7.23 ns
-1 0.53 4.09 0.04 1.12 0.38 3.85 4.09 1.89 1.77 5.90 6.15 ns
8 mA STD 0.63 4.25 0.05 1.32 0.45 4.25 4.25 1.92 1.85 6.67 6.66 ns
-1 0.53 3.61 0.04 1.12 0.38 3.61 3.61 1.93 1.85 5.67 5.67 ns
12 mA STD 0.63 3.82 0.05 1.32 0.45 1.89 1.63 4.00 4.41 3.06 2.82 ns
-1 0.53 3.25 0.04 1.12 0.38 1.89 1.63 3.41 3.75 3.06 2.82 ns
16 mA STD 0.63 3.82 0.05 1.32 0.45 1.89 1.63 4.00 4.41 3.06 2.82 ns
-1 0.53 3.25 0.04 1.12 0.38 1.89 1.63 3.41 3.75 3.06 2.82 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-42 Revision 5
Table 2-62 • 1.8 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 16.80 0.05 1.40 0.45 15.27 16.80 1.48 0.84 17.69 19.22 ns
-1 0.53 14.29 0.04 1.19 0.38 12.99 14.29 1.49 0.84 15.05 16.35 ns
4 mA STD 0.63 11.33 0.05 1.40 0.45 11.26 11.33 1.73 1.43 13.68 13.75 ns
-1 0.53 9.64 0.04 1.19 0.38 9.58 9.64 1.73 1.43 11.64 11.70 ns
6 mA STD 0.63 8.71 0.05 1.40 0.45 8.87 8.48 1.89 1.72 11.29 10.90 ns
-1 0.53 7.41 0.04 1.19 0.38 7.54 7.22 1.89 1.72 9.60 9.27 ns
8 mA STD 0.63 8.12 0.05 1.40 0.45 8.27 7.89 1.93 1.79 10.69 10.31 ns
-1 0.53 6.90 0.04 1.19 0.38 7.03 6.72 1.93 1.79 9.09 8.77 ns
12 mA STD 0.63 7.89 0.05 1.40 0.45 7.83 7.89 1.98 2.07 10.25 10.31 ns
-1 0.53 6.71 0.04 1.19 0.38 6.66 6.71 1.98 2.07 8.72 8.77 ns
16 mA STD 0.63 7.89 0.05 1.40 0.45 7.83 7.89 1.98 2.07 10.25 10.31 ns
-1 0.53 6.71 0.04 1.19 0.38 6.66 6.71 1.98 2.07 8.72 8.77 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-63 • 1.8 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 12.83 0.05 1.32 0.45 9.44 12.26 1.20 0.80 11.86 14.68 ns
-1 0.53 10.92 0.04 1.12 0.38 8.03 10.43 1.20 0.80 10.09 12.49 ns
4 mA STD 0.63 7.48 0.05 1.32 0.45 5.93 7.01 1.41 1.36 8.35 9.43 ns
-1 0.53 6.36 0.04 1.12 0.38 5.04 5.97 1.42 1.37 7.10 8.02 ns
6 mA STD 0.63 4.81 0.05 1.32 0.45 4.15 4.39 1.57 1.63 6.57 6.81 ns
-1 0.53 4.09 0.04 1.12 0.38 3.53 3.74 1.57 1.63 5.59 5.79 ns
8 mA STD 0.63 4.25 0.05 1.32 0.45 4.15 4.39 1.57 1.63 6.57 6.81 ns
-1 0.53 3.61 0.04 1.12 0.38 3.53 3.74 1.57 1.63 5.59 5.79 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-43
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.
Table 2-64 • 1.8 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 16.80 0.05 1.40 0.45 14.60 16.01 1.20 0.77 17.02 18.43 ns
-1 0.53 14.29 0.04 1.19 0.38 12.42 13.62 1.20 0.77 14.48 15.68 ns
4 mA STD 0.63 11.33 0.05 1.40 0.45 10.53 10.71 1.42 1.31 12.95 13.13 ns
-1 0.53 9.64 0.04 1.19 0.38 8.96 9.11 1.42 1.31 11.01 11.17 ns
6 mA STD 0.63 8.71 0.05 1.40 0.45 8.19 7.92 1.57 1.57 10.61 10.34 ns
-1 0.53 7.41 0.04 1.19 0.38 6.97 6.74 1.57 1.57 9.03 8.79 ns
8 mA STD 0.63 8.12 0.05 1.40 0.45 8.19 7.92 1.57 1.57 10.61 10.34 ns
-1 0.53 6.90 0.04 1.19 0.38 6.97 6.74 1.57 1.57 9.03 8.79 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-65 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.5 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
Max.
mA1
Max.
mA1µA2µA2
2 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10
4 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10
6 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10
8 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10
12 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Automotive ProASIC3 DC and Switching Characteristics
2-44 Revision 5
Table 2-66 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.5 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
Max.
mA1
Max.
mA1µA2µA2
2 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 0 0 10 10
4 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 0 0 10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-10 • AC Loading
Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) CLOAD (pF)
0 1.5 0.75 35
Note: *Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
Test Point
Test Point
Enable Path
Datapath 35 pF
R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-45
Timing Characteristics
Table 2-68 • 1.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 9.35 0.05 1.61 0.46 7.63 9.35 1.87 1.50 10.13 11.851 ns
-1 0.55 7.95 0.04 1.37 0.39 6.49 7.95 1.87 1.50 8.62 10.081 ns
4 mA STD 0.64 5.94 0.05 1.61 0.46 5.42 5.94 2.07 1.84 7.92 8.442 ns
-1 0.55 5.05 0.04 1.37 0.39 4.61 5.05 2.07 1.85 6.74 7.181 ns
6 mA STD 0.64 5.22 0.05 1.61 0.46 5.09 5.22 2.11 1.93 7.59 7.718 ns
-1 0.55 4.44 0.04 1.37 0.39 4.33 4.44 2.11 1.93 6.45 6.566 ns
8 mA STD 0.64 4.56 0.05 1.61 0.46 2.25 1.98 4.41 4.70 3.46 3.211 ns
-1 0.55 3.88 0.04 1.37 0.39 2.25 1.98 3.75 4.00 3.46 3.213 ns
12 mA STD 0.64 4.56 0.05 1.61 0.46 2.25 1.98 4.41 4.70 3.46 3.211 ns
-1 0.55 3.88 0.04 1.37 0.39 2.25 1.98 3.75 4.00 3.46 3.213 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-69 • 1.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 14.29 0.05 1.45 0.46 14.32 14.29 1.88 1.43 16.82 16.794 ns
-1 0.55 12.16 0.04 1.23 0.39 12.18 12.16 1.88 1.43 14.31 14.286 ns
4 mA STD 0.64 11.19 0.05 1.45 0.46 11.40 10.67 2.07 1.77 13.90 13.175 ns
-1 0.55 9.52 0.04 1.23 0.39 9.70 9.08 2.07 1.77 11.82 11.207 ns
6 mA STD 0.64 10.44 0.05 1.45 0.46 10.63 9.94 2.12 1.86 13.13 12.442 ns
-1 0.55 8.88 0.04 1.23 0.39 9.04 8.46 2.12 1.86 11.17 10.584 ns
8 mA STD 0.64 9.96 0.05 1.45 0.46 10.15 9.94 2.18 2.19 12.65 12.445 ns
-1 0.55 8.47 0.04 1.23 0.39 8.63 8.46 2.19 2.20 10.76 10.586 ns
12 mA STD 0.64 9.96 0.05 1.45 0.46 10.15 9.94 2.18 2.19 12.65 12.445 ns
-1 0.55 8.47 0.04 1.23 0.39 8.63 8.46 2.19 2.20 10.76 10.586 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-46 Revision 5
Table 2-70 • 1.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 8.76 0.05 1.59 0.46 7.63 9.35 1.87 1.50 10.13 11.851 ns
-1 0.55 7.45 0.04 1.35 0.39 6.49 7.95 1.87 1.50 8.62 10.081 ns
4 mA STD 0.64 5.41 0.05 1.59 0.46 5.42 5.94 2.07 1.84 7.92 8.442 ns
-1 0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.181 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-71 • 1.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.64 13.51 0.05 1.45 0.46 14.32 14.29 1.88 1.43 16.82 16.794 ns
-1 0.55 11.49 0.04 1.23 0.39 12.18 12.16 1.88 1.43 14.31 14.286 ns
4 mA STD 0.64 10.38 0.05 1.45 0.46 11.40 10.67 2.07 1.77 13.90 13.175 ns
-1 0.55 8.83 0.04 1.23 0.39 9.70 9.08 2.07 1.77 11.82 11.207 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-72 • 1.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 9.05 0.05 1.56 0.45 7.38 9.05 1.81 1.45 9.80 11.47 ns
-1 0.53 7.70 0.04 1.32 0.38 6.28 7.70 1.81 1.45 8.34 9.75 ns
4 mA STD 0.63 5.75 0.05 1.56 0.45 5.25 5.75 2.00 1.78 7.67 8.17 ns
-1 0.53 4.89 0.04 1.32 0.38 4.46 4.89 2.00 1.78 6.52 6.95 ns
6 mA STD 0.63 5.05 0.05 1.56 0.45 4.92 5.05 2.04 1.87 7.34 7.47 ns
-1 0.53 4.29 0.04 1.32 0.38 4.19 4.29 2.04 1.87 6.24 6.35 ns
8 mA STD 0.63 4.41 0.05 1.56 0.45 2.18 1.91 4.27 4.55 3.35 3.11 ns
-1 0.53 3.75 0.04 1.32 0.38 2.18 1.91 3.63 3.87 3.35 3.11 ns
12 mA STD 0.63 4.41 0.05 1.56 0.45 2.18 1.91 4.27 4.55 3.35 3.11 ns
-1 0.53 3.75 0.04 1.32 0.38 2.18 1.91 3.63 3.87 3.35 3.11 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-47
Table 2-73 • 1.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 13.83 0.05 1.40 0.45 13.86 13.83 1.82 1.39 16.28 16.25 ns
-1 0.53 11.76 0.04 1.19 0.38 11.79 11.76 1.82 1.39 13.85 13.82 ns
4 mA STD 0.63 10.83 0.05 1.40 0.45 11.03 10.33 2.00 1.71 13.45 12.75 ns
-1 0.53 9.21 0.04 1.19 0.38 9.38 8.79 2.01 1.72 11.44 10.84 ns
6 mA STD 0.63 10.10 0.05 1.40 0.45 10.28 9.62 2.05 1.80 12.70 12.04 ns
-1 0.53 8.59 0.04 1.19 0.38 8.75 8.18 2.05 1.80 10.81 10.24 ns
8 mA STD 0.63 9.64 0.05 1.40 0.45 9.82 9.62 2.11 2.12 12.23 12.04 ns
-1 0.53 8.20 0.04 1.19 0.38 8.35 8.18 2.11 2.12 10.41 10.24 ns
12 mA STD 0.63 9.64 0.05 1.40 0.45 9.82 9.62 2.11 2.12 12.23 12.04 ns
-1 0.53 8.20 0.04 1.19 0.38 8.35 8.18 2.11 2.12 10.41 10.24 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-74 • 1.5 V LVCMOS High Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 8.47 0.05 1.54 0.45 7.38 9.05 1.81 1.45 9.80 11.47 ns
-1 0.53 7.21 0.04 1.31 0.38 6.28 7.70 1.81 1.45 8.34 9.75 ns
4 mA STD 0.63 5.24 0.05 1.54 0.45 5.25 5.75 2.00 1.78 7.67 8.17 ns
-1 0.53 4.45 0.04 1.31 0.38 4.46 4.89 2.00 1.78 6.52 6.95 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-75 • 1.5 V LVCMOS Low Slew
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA STD 0.63 13.07 0.05 1.40 0.45 13.86 13.83 1.82 1.39 16.28 16.25 ns
-1 0.53 11.12 0.04 1.19 0.38 11.79 11.76 1.82 1.39 13.85 13.82 ns
4 mA STD 0.63 10.04 0.05 1.40 0.45 11.03 10.33 2.00 1.71 13.45 12.75 ns
-1 0.53 8.54 0.04 1.19 0.38 9.38 8.79 2.01 1.72 11.44 10.84 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-48 Revision 5
3.3 V PCI, 3.3 V PCI-X
The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI
Bus applications.
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable
path characterization are described in Figure 2-11.
AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is
described in Tab l e 2- 7 7.
Timing Characteristics
Table 2-76 • Minimum and Maximum DC Input and Output Levels
3.3 V
PCI/PCI-X VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
VmAmA
Max.
mA1
Max.
mA1µA2µA2
Per PCI
specification
Per PCI curves 10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 125°C junction temperature.
Figure 2-11 • AC Loading
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
10 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
R to GND for tHZ / tZH / tZHS
R = 1 k
Test Point
Datapath
R = 25 R to VCCI for tDP (F)
R to GND for tDP (R)
Table 2-77 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) CLOAD (pF)
0 3.3 0.285 * VCCI for tDP(R)
0.615 * VCCI for tDP(F)
10
Note: *Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
Table 2-78 • 3.3 V PCI/PCI-X
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.64 2.58 0.05 0.95 0.46 1.27 0.94 3.12 3.60 2.49 2.18 ns
–1 0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-79 • 3.3 V PCI/PCI-X
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.64 3.00 0.05 0.93 0.46 1.27 0.94 3.12 3.60 2.49 2.18 ns
–1 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-49
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by Actel Designer software when the
user instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-12 on
page 2-50. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver
macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for
the three driver resistors are different from those used in the LVPECL implementation because the output
standard specifications are different.
Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)
configuration (up to 40 nodes).
Table 2-80 • 3.3 V PCI/PCI-X
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.628 2.50 0.05 0.92 0.45 1.23 0.91 3.02 3.48 2.40 2.11 ns
–1 0.53 2.12 0.04 0.78 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-81 • 3.3 V PCI/PCI-X
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.628 2.90 0.05 0.90 0.45 1.23 0.91 3.02 3.48 2.40 2.11 ns
–1 0.53 2.47 0.04 0.77 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-50 Revision 5
Timing Characteristics
Figure 2-12 • LVDS Circuit Diagram and Board-Level Implementation
Table 2-82 • Minimum and Maximum DC Input and Output Levels
DC Parameter Description Min. Typ. Max. Units
VCCI Supply Voltage 2.375 2.5 2.625 V
VOL Output Low Voltage 0.9 1.075 1.25 V
VOH Output High Voltage 1.25 1.425 1.6 V
VI Input Voltage 0 2.925 V
VODIFF Differential Output Voltage 250 350 450 mV
VOCM Output Common-Mode Voltage 1.125 1.25 1.375 V
VICM Input Common-Mode Voltage 0.05 1.25 2.35 V
VIDIFF Input Differential Voltage 100 350 mV
Table 2-83 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V)
1.075 1.325 Cross point
Note: *Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
140 100
Z
0
= 50
Z
0
= 50
165
165
+
P
N
P
N
INBUF_LVDS
OUTBUF_LVDS
FPGA FPGA
Bourns Part Number: CAT16-LV4F12
Table 2-84 • LVDS
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.64 2.05 0.05 1.79 ns
–1 0.55 1.74 0.04 1.52 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-85 • LVDS
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.63 1.98 0.05 1.73 ns
–1 0.53 1.68 0.04 1.47 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-51
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain
any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the higher drive
current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus since the driver can be located anywhere on the bus. These configurations can be
implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Actel LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A
sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS
section in Table 2-84 on page 2-50.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required
differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS=60 and
RT=70, given Z0=50 (2") and Zstub =50 (~1.5").
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14 on
page 2-52. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one
receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The
values for the three driver resistors are different from those used in the LVDS implementation because
the output standard specifications are different.
Figure 2-13 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
...
R
T
R
T
BIBUF_LVDS
R
+
-
T
+
-
R
+
-
T
+
-
D
+
-
EN EN EN EN EN
Receiver Transceiver Receiver TransceiverDriver
RSRSRSRSRSRSRSRS
RSRS
Zstub Zstub Zstub Zstub Zstub Zstub Zstub Zstub
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Automotive ProASIC3 DC and Switching Characteristics
2-52 Revision 5
Timing Characteristics
Figure 2-14 • LVPECL Circuit Diagram and Board-Level Implementation
Table 2-86 • Minimum and Maximum DC Input and Output Levels
DC Parameter Description Min. Max. Min. Max. Min. Max. Units
VCCI Supply Voltage 3.0 3.3 3.6 V
VOL Output Low Voltage 0.96 1.27 1.06 1.43 1.30 1.57 V
VOH Output High Voltage 1.8 2.11 1.92 2.28 2.13 2.41 V
VIL, VIH Input Low, Input High Voltages 0 3.6 0 3.6 0 3.6 V
VODIFF Differential Output Voltage 0.625 0.97 0.625 0.97 0.625 0.97 V
VOCM Output Common-Mode Voltage 1.762 1.98 1.762 1.98 1.762 1.98 V
VICM Input Common-Mode Voltage 1.01 2.57 1.01 2.57 1.01 2.57 V
VIDIFF Input Differential Voltage 300 300 300 mV
Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V)
1.64 1.94 Cross point
Note: *Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.
187 W 100
Z
0
= 50
Z
0
= 50
100
100
+
P
N
P
N
INBUF_LVPECL
OUTBUF_LVPECL
FPGA FPGA
Bourns Part Number: CAT16-PC4F12
Table 2-88 • LVPECL
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.64 2.01 0.05 1.57 ns
–1 0.55 1.71 0.04 1.34 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-89 • LVPECL
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.63 1.95 0.05 1.52 ns
–1 0.53 1.66 0.04 1.29 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-53
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Preset
Figure 2-15 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
INBUF
INBUF INBUF
TRIBUF
CLKBUF
INBUF
INBUF
CLKBUF
Data Input I/O Register with:
Active High Enable
Active High Preset
Positive-Edge Triggered
Data Output Register and
Enable Output Register with:
Active High Enable
Active High Preset
Postive-Edge Triggered
Pad Out
CLK
Enable
Preset
Data_out
Data
EOUT
DOUT
Enable
CLK
DQ
DFN1E1P1
PRE
DQ
DFN1E1P1
PRE
DQ
DFN1E1P1
PRE
D_Enable
A
B
C
D
EE
E
EF
G
H
I
J
L
K
Y
Core
Array
Automotive ProASIC3 DC and Switching Characteristics
2-54 Revision 5
Table 2-90 • Parameter Definition and Measuring Nodes
Parameter Name Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ Clock-to-Q of the Output Data Register H, DOUT
tOSUD Data Setup Time for the Output Data Register F, H
tOHD Data Hold Time for the Output Data Register F, H
tOSUE Enable Setup Time for the Output Data Register G, H
tOHE Enable Hold Time for the Output Data Register G, H
tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register L, DOUT
tOREMPRE Asynchronous Preset Removal Time for the Output Data Register L, H
tORECPRE Asynchronous Preset Recovery Time for the Output Data Register L, H
tOECLKQ Clock-to-Q of the Output Enable Register H, EOUT
tOESUD Data Setup Time for the Output Enable Register J, H
tOEHD Data Hold Time for the Output Enable Register J, H
tOESUE Enable Setup Time for the Output Enable Register K, H
tOEHE Enable Hold Time for the Output Enable Register K, H
tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register I, EOUT
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register I, H
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register I, H
tICLKQ Clock-to-Q of the Input Data Register A, E
tISUD Data Setup Time for the Input Data Register C, A
tIHD Data Hold Time for the Input Data Register C, A
tISUE Enable Setup Time for the Input Data Register B, A
tIHE Enable Hold Time for the Input Data Register B, A
tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register D, E
tIREMPRE Asynchronous Preset Removal Time for the Input Data Register D, A
tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register D, A
Note: *See Figure 2-15 on page 2-53 for more information.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-55
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Clear
Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
Enable
CLK
Pad Out
CLK
Enable
CLR
Data_out
Data
Y
AA
EOUT
DOUT
Core
Array
DQ
DFN1E1C1
E
CLR
DQ
DFN1E1C1
E
CLR
DQ
DFN1E1C1
E
CLR
D_Enable
BB
CC
DD
EE
FF
GG
LL
HH
JJ
KK
CLKBUF
INBUF
INBUF
TRIBUF
INBUF INBUF CLKBUF
INBUF
Data Input I/O Register with
Active High Enable
Active High Clear
Positive-Edge Triggered Data Output Register and
Enable Output Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
Automotive ProASIC3 DC and Switching Characteristics
2-56 Revision 5
Table 2-91 • Parameter Definitions and Measuring Nodes
Parameter Name Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ Clock-to-Q of the Output Data Register HH, DOUT
tOSUD Data Setup Time for the Output Data Register FF, HH
tOHD Data Hold Time for the Output Data Register FF, HH
tOSUE Enable Setup Time for the Output Data Register GG, HH
tOHE Enable Hold Time for the Output Data Register GG, HH
tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register LL, DOUT
tOREMCLR Asynchronous Clear Removal Time for the Output Data Register LL, HH
tORECCLR Asynchronous Clear Recovery Time for the Output Data Register LL, HH
tOECLKQ Clock-to-Q of the Output Enable Register HH, EOUT
tOESUD Data Setup Time for the Output Enable Register JJ, HH
tOEHD Data Hold Time for the Output Enable Register JJ, HH
tOESUE Enable Setup Time for the Output Enable Register KK, HH
tOEHE Enable Hold Time for the Output Enable Register KK, HH
tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register II, EOUT
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register II, HH
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register II, HH
tICLKQ Clock-to-Q of the Input Data Register AA, EE
tISUD Data Setup Time for the Input Data Register CC, AA
tIHD Data Hold Time for the Input Data Register CC, AA
tISUE Enable Setup Time for the Input Data Register BB, AA
tIHE Enable Hold Time for the Input Data Register BB, AA
tICLR2Q Asynchronous Clear-to-Q of the Input Data Register DD, EE
tIREMCLR Asynchronous Clear Removal Time for the Input Data Register DD, AA
tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register DD, AA
Note: *See Figure 2-16 on page 2-55 for more information.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-57
Input Register
Timing Characteristics
Figure 2-17 • Input Register Timing Diagram
50%
Preset
Clear
Out_1
CLK
Data
Enable
tISUE
50%
50%
tISUD
tIHD
50% 50%
tICLKQ
10
tIHE
tIRECPRE tIREMPRE
tIRECCLR tIREMCLR
tIWCLR
tIWPRE
tIPRE2Q
tICLR2Q
tICKMPWH tICKMPWL
50% 50%
50% 50% 50%
50% 50%
50% 50% 50% 50% 50% 50%
50%
Table 2-92 • Input Data Register Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tICLKQ Clock-to-Q of the Input Data Register 0.29 0.34 ns
tISUD Data Setup Time for the Input Data Register 0.32 0.38 ns
tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns
tISUE Enable Setup Time for the Input Data Register 0.45 0.53 ns
tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns
tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.55 0.65 ns
tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.55 0.65 ns
tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns
tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.27 0.32 ns
tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns
tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.27 0.32 ns
tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.25 0.30 ns
tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.25 0.30 ns
tICKMPWH Clock Minimum Pulse Width High for the Input Data Register 0.41 0.48 ns
tICKMPWL Clock Minimum Pulse Width Low for the Input Data Register 0.37 0.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-58 Revision 5
Table 2-93 • Input Data Register Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tICLKQ Clock-to-Q of the Input Data Register 0.29 0.34 ns
tISUD Data Setup Time for the Input Data Register 0.31 0.37 ns
tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns
tISUE Enable Setup Time for the Input Data Register 0.44 0.52 ns
tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns
tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.54 0.64 ns
tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.54 0.64 ns
tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns
tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.27 0.31 ns
tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns
tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.27 0.31 ns
tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.25 0.30 ns
tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.25 0.30 ns
tICKMPWH Clock Minimum Pulse Width High for the Input Data Register 0.41 0.48 ns
tICKMPWL Clock Minimum Pulse Width Low for the Input Data Register 0.37 0.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-59
Output Register
Timing Characteristics
Figure 2-18 • Output Register Timing Diagram
Preset
Clear
DOUT
CLK
Data_out
Enable
t
OSUE
50%
50%
t
OSUD
t
OHD
50% 50%
t
OCLKQ
10
t
OHE
t
ORECPRE
t
OREMPRE
t
ORECCLR
t
OREMCLR
t
OWCLR
t
OWPRE
t
OPRE2Q
t
OCLR2Q
t
OCKMPWH
t
OCKMPWL
50% 50%
50% 50% 50%
50% 50%
50% 50% 50% 50% 50% 50%
50%
50%
Table 2-94 • Output Data Register Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tOCLKQ Clock-to-Q of the Output Data Register 0.72 0.84 ns
tOSUD Data Setup Time for the Output Data Register 0.38 0.45 ns
tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns
tOSUE Enable Setup Time for the Output Data Register 0.53 0.63 ns
tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns
tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.98 1.15 ns
tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.98 1.15 ns
tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns
tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.27 0.32 ns
tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns
tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.27 0.32 ns
tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.25 0.30 ns
tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.25 0.30 ns
tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.41 0.48 ns
tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.37 0.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-60 Revision 5
Table 2-95 • Output Data Register Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tOCLKQ Clock-to-Q of the Output Data Register 0.70 0.82 ns
tOSUD Data Setup Time for the Output Data Register 0.37 0.44 ns
tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns
tOSUE Enable Setup Time for the Output Data Register 0.52 0.61 ns
tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns
tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.96 1.12 ns
tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.96 1.12 ns
tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns
tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.27 0.31 ns
tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns
tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.27 0.31 ns
tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.25 0.30 ns
tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.25 0.30 ns
tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.41 0.48 ns
tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.37 0.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-61
Output Enable Register
Timing Characteristics
Figure 2-19 • Output Enable Register Timing Diagram
50%
Preset
Clear
EOUT
CLK
D_Enable
Enable
t
OESUE
50%
50%
t
OESUD
t
OEHD
50% 50%
t
OECLKQ
10
t
OEHE
t
OERECPRE
t
OEREMPRE
t
OERECCLR
t
OEREMCLR
t
OEWCLR
t
OEWPRE
t
OEPRE2Q
t
OECLR2Q
t
OECKMPWH
t
OECKMPWL
50% 50%
50% 50% 50%
50% 50%
50% 50% 50% 50% 50% 50%
50%
Table 2-96 • Output Enable Register Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tOECLKQ Clock-to-Q of the Output Enable Register 0.54 0.64 ns
tOESUD Data Setup Time for the Output Enable Register 0.38 0.45 ns
tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns
tOESUE Enable Setup Time for the Output Enable Register 0.53 0.62 ns
tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns
tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.81 0.95 ns
tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.81 0.95 ns
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.27 0.32 ns
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.27 0.32 ns
tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns
tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register 0.41 0.48 ns
tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register 0.37 0.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-62 Revision 5
Table 2-97 • Output Enable Register Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tOECLKQ Clock-to-Q of the Output Enable Register 0.53 0.62 ns
tOESUD Data Setup Time for the Output Enable Register 0.37 0.44 ns
tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns
tOESUE Enable Setup Time for the Output Enable Register 0.52 0.61 ns
tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns
tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.79 0.93 ns
tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.79 0.93 ns
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.27 0.31 ns
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.27 0.31 ns
tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns
tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns
tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register 0.41 0.48 ns
tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register 0.37 0.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-63
DDR Module Specifications
Input DDR Module
Figure 2-20 • Input DDR Timing Model
Table 2-98 • Parameter Definitions
Parameter Name Parameter Definition Measuring Nodes (from, to)
tDDRICLKQ1 Clock-to-Out Out_QR B, D
tDDRICLKQ2 Clock-to-Out Out_QF B, E
tDDRISUD Data Setup Time of DDR Input A, B
tDDRIHD Data Hold Time of DDR Input A, B
tDDRICLR2Q1 Clear-to-Out Out_QR C, D
tDDRICLR2Q2 Clear-to-Out Out_QF C, E
tDDRIREMCLR Clear Removal C, B
tDDRIRECCLR Clear Recovery C, B
Input DDR
Data
CLK
CLKBUF
INBUF
Out_QF
(to core)
FF2
FF1
INBUF
CLR
DDR_IN
E
A
B
C
D
Out_QR
(to core)
Automotive ProASIC3 DC and Switching Characteristics
2-64 Revision 5
Timing Characteristics
Figure 2-21 • Input DDR Timing Diagram
tDDRICLR2Q2
tDDRIREMCLR
tDDRIRECCLR
tDDRICLR2Q1
12 3 4 5 6 7 8 9
CLK
Data
CLR
Out_QR
Out_QF
tDDRICLKQ1
246
357
tDDRIHD
tDDRISUD
tDDRICLKQ2
Table 2-99 • Input DDR Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.33 0.39 ns
tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.47 0.56 ns
tDDRISUD Data Setup for Input DDR 0.34 0.40 ns
tDDRIHD Data Hold for Input DDR 0.00 0.00 ns
tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.56 0.66 ns
tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.69 0.82 ns
tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns
tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.27 0.32 ns
tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.25 0.30 ns
tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR 0.41 0.48 ns
tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR 0.37 0.43 ns
FDDRIMAX Maximum Frequency for Input DDR 309 263 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-65
Table 2-100 • Input DDR Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.33 0.38 ns
tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.46 0.54 ns
tDDRISUD Data Setup for Input DDR 0.34 0.40 ns
tDDRIHD Data Hold for Input DDR 0.00 0.00 ns
tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.55 0.65 ns
tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.68 0.80 ns
tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns
tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.27 0.31 ns
tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.25 0.30 ns
tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR 0.41 0.48 ns
tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR 0.37 0.43 ns
FDDRIMAX Maximum Frequency for Input DDR 309 263 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-66 Revision 5
Output DDR Module
Figure 2-22 • Output DDR Timing Model
Table 2-101 • Parameter Definitions
Parameter Name Parameter Definition Measuring Nodes (from, to)
tDDROCLKQ Clock-to-Out B, E
tDDROCLR2Q Asynchronous Clear-to-Out C, E
tDDROREMCLR Clear Removal C, B
tDDRORECCLR Clear Recovery C, B
tDDROSUD1 Data Setup Data_F A, B
tDDROSUD2 Data Setup Data_R D, B
tDDROHD1 Data Hold Data_F A, B
tDDROHD2 Data Hold Data_R D, B
Data_F
(from core)
CLK
CLKBUF
Out
FF2
INBUF
CLR
DDR_OUT
Output DDR
FF1
0
1
X
X
X
X
X
X
X
A
B
D
E
C
C
B
OUTBUF
Data_R
(from core)
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-67
Timing Characteristics
Figure 2-23 • Output DDR Timing Diagram
116
1
7
2
8
3
910
45
28 3 9
tDDROREMCLR
tDDROHD1
tDDROREMCLR
tDDROHD2
tDDROSUD2
tDDROCLKQ
tDDRORECCLR
CLK
Data_R
Data_F
CLR
Out
tDDROCLR2Q
7104
Table 2-102 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.85 1.00 ns
tDDROSUD1 Data_F Data Setup for Output DDR 0.46 0.54 ns
tDDROSUD2 Data_R Data Setup for Output DDR 0.46 0.54 ns
tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns
tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns
tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.97 1.15 ns
tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns
tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.27 0.32 ns
tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.25 0.30 ns
tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.41 0.48 ns
tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.37 0.43 ns
FDDOMAX Maximum Frequency for the Output DDR 309 263 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-68 Revision 5
Table 2-103 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.84 0.98 ns
tDDROSUD1 Data_F Data Setup for Output DDR 0.45 0.53 ns
tDDROSUD2 Data_R Data Setup for Output DDR 0.45 0.53 ns
tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns
tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns
tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.96 1.12 ns
tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns
tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.27 0.31 ns
tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.25 0.30 ns
tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.41 0.48 ns
tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.37 0.43 ns
FDDOMAX Maximum Frequency for the Output DDR 309 263 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-69
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing
characteristics are presented for a sample of the library. For more details, refer to the Fusion, IGLOO/e,
and ProASIC3/E Macro Library Guide.
Figure 2-24 • Sample of Combinatorial Cells
MAJ3
A
C
BY
MUX2
B
0
1
A
S
Y
AY
B
B
A
XOR2 Y
NOR2
B
A
Y
B
A
YOR2
INV
A
Y
AND2
B
A
Y
NAND3
B
A
C
XOR3 Y
B
A
C
NAND2
Automotive ProASIC3 DC and Switching Characteristics
2-70 Revision 5
Figure 2-25 • Timing Model and Waveforms
tPD
A
B
tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR))
where edges are applicable for the particular
combinatorial cell
Y
NAND2 or
Any Combinatorial
Logic
tPD
tPD
50%
VCC
VCC
VCC
50%
GND
A, B, C
50% 50%
50%
(RR)
(RF) GND
OUT
OUT
GND
50%
(FF)
(FR)
tPD
tPD
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-71
Timing Characteristics
Table 2-104 • Combinatorial Cell Propagation Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Combinatorial Cell Equation Parameter –1 Std. Units
INV Y = !A tPD 0.49 0.57 ns
AND2 Y = A · B tPD 0.57 0.67 ns
NAND2 Y = !(A · B) tPD 0.57 0.67 ns
OR2 Y = A + B tPD 0.59 0.69 ns
NOR2 Y = !(A + B) tPD 0.59 0.69 ns
XOR2 Y = A Bt
PD 0.90 1.05 ns
MAJ3 Y = MAJ(A , B, C) tPD 0.85 1.00 ns
XOR3 Y = A B Ct
PD 1.06 1.25 ns
MUX2 Y = A !S + B S tPD 0.62 0.72 ns
AND3 Y = A · B · C tPD 0.68 0.80 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for
derating values.
Table 2-105 • Combinatorial Cell Propagation Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Combinatorial Cell Equation Parameter –1 Std. Units
INV Y = !A tPD 0.48 0.56 ns
AND2 Y = A · B tPD 0.56 0.66 ns
NAND2 Y = !(A · B) tPD 0.56 0.66 ns
OR2 Y = A + B tPD 0.58 0.68 ns
NOR2 Y = !(A + B) tPD 0.58 0.68 ns
XOR2 Y = A Bt
PD 0.88 1.03 ns
MAJ3 Y = MAJ(A , B, C) tPD 0.83 0.98 ns
XOR3 Y = A B Ct
PD 1.04 1.23 ns
MUX2 Y = A !S + B S tPD 0.60 0.71 ns
AND3 Y = A · B · C tPD 0.67 0.79 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for
derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-72 Revision 5
VersaTile Specifications as a Sequential Module
The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a
data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a
representative sample from the library. For more details, refer to the Fusion, IGLOO/e and ProASIC3/E
Macro Library Guide.
Figure 2-26 • Sample of Sequential Cells
DQ
DFN1
Data
CLK
Out
DQ
DFN1C1
Data
CLK
Out
CLR
DQ
DFI1E1P1
Data
CLK
Out
En
PRE
DQ
DFN1E1
Data
CLK
Out
En
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-73
Timing Characteristics
Figure 2-27 • Timing Model and Waveforms
PRE
CLR
Out
CLK
Data
EN
tSUE
50%
50%
tSUD
tHD
50% 50%
tCLKQ
0
tHE
tRECPRE tREMPRE
tRECCLR tREMCLRtWCLR
tWPRE
tPRE2Q tCLR2Q
tCKMPWH tCKMPWL
50% 50%
50% 50% 50%
50% 50%
50% 50% 50% 50% 50% 50%
50%
50%
Table 2-106 • Register Delays
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tCLKQ Clock-to-Q of the Core Register 0.67 0.79 ns
tSUD Data Setup Time for the Core Register 0.52 0.61 ns
tHD Data Hold Time for the Core Register 0.00 0.00 ns
tSUE Enable Setup Time for the Core Register 0.55 0.65 ns
tHE Enable Hold Time for the Core Register 0.00 0.00 ns
tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.49 0.57 ns
tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.49 0.57 ns
tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns
tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.27 0.32 ns
tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns
tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.27 0.32 ns
tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.25 0.30 ns
tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.25 0.30 ns
tCKMPWH Clock Minimum Pulse Width High for the Core Register 0.41 0.48 ns
tCKMPWL Clock Minimum Pulse Width Low for the Core Register 0.37 0.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-74 Revision 5
Table 2-107 • Register Delays
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tCLKQ Clock-to-Q of the Core Register 0.66 0.77 ns
tSUD Data Setup Time for the Core Register 0.51 0.60 ns
tHD Data Hold Time for the Core Register 0.00 0.00 ns
tSUE Enable Setup Time for the Core Register 0.54 0.64 ns
tHE Enable Hold Time for the Core Register 0.00 0.00 ns
tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.48 0.56 ns
tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.48 0.56 ns
tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns
tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.27 0.31 ns
tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns
tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.27 0.31 ns
tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.25 0.30 ns
tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.25 0.30 ns
tCKMPWH Clock Minimum Pulse Width High for the Core Register 0.41 0.48 ns
tCKMPWL Clock Minimum Pulse Width Low for the Core Register 0.37 0.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-75
Global Resource Characteristics
A3P250 Clock Tree Topology
Clock delays are device-specific. Figure 2-28 is an example of a global tree used for clock routing. The
global tree presented in Figure 2-28 is driven by a CCC located on the west side of the A3P250 device. It
is used to drive all D-flip-flops in the device.
Figure 2-28 • Example of Global Tree Use in an A3P250 Device for Clock Routing
Central
Global Rib
VersaTile
Rows
Global Spine
CCC
Automotive ProASIC3 DC and Switching Characteristics
2-76 Revision 5
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer
to the "Clock Conditioning Circuits" section on page 2-80. Table 2-114 on page 2-79 to Table 2-125 on
page 2-97 present minimum and maximum global clock delays within each device. Minimum and
maximum delays are measured with minimum and maximum loading.
Timing Characteristics
Table 2-108 • A3P060 Global Resource
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 0.87 1.16 1.02 1.37 ns
tRCKH Input High Delay for Global Clock 0.86 1.20 1.01 1.42 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.80 0.94 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.98 1.15 ns
tRCKSW Maximum Skew for Global Clock 0.35 0.41 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-109 • A3P060 Global Resource
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 0.85 1.13 1.00 1.33 ns
tRCKH Input High Delay for Global Clock 0.84 1.18 0.99 1.38 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.80 0.94 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.98 1.15 ns
tRCKSW Maximum Skew for Global Clock 0.34 0.40 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-77
Table 2-110 • A3P125 Global Resource
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 0.93 1.22 1.09 1.43 ns
tRCKH Input High Delay for Global Clock 0.92 1.26 1.08 1.49 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.80 0.94 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.98 1.15 ns
tRCKSW Maximum Skew for Global Clock 0.35 0.41 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-111 • A3P125 Global Resource
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 0.90 1.19 1.06 1.40 ns
tRCKH Input High Delay for Global Clock 0.90 1.23 1.05 1.45 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.80 0.94 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.98 1.15 ns
tRCKSW Maximum Skew for Global Clock 0.34 0.40 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-78 Revision 5
Table 2-112 • A3P250 Global Resource
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 0.96 1.25 1.13 1.47 ns
tRCKH Input High Delay for Global Clock 0.94 1.28 1.10 1.51 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.80 0.94 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.98 1.15 ns
tRCKSW Maximum Skew for Global Clock 0.35 0.41 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-113 • A3P250 Global Resource
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 0.94 1.22 1.10 1.44 ns
tRCKH Input High Delay for Global Clock 0.92 1.25 1.08 1.47 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.80 0.94 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.98 1.15 ns
tRCKSW Maximum Skew for Global Clock 0.34 0.40 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-79
Table 2-114 • A3P1000 Global Resource
Automotive-Case Conditions: TJ = 135°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 1.17 1.46 1.37 1.72 ns
tRCKH Input High Delay for Global Clock 1.15 1.50 1.36 1.76 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.80 0.94 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.98 1.15 ns
tRCKSW Maximum Skew for Global Clock 0.35 0.41 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Table 2-115 • A3P1000 Global Resource
Automotive-Case Conditions: TJ = 115°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input Low Delay for Global Clock 1.14 1.43 1.34 1.68 ns
tRCKH Input High Delay for Global Clock 1.13 1.46 1.32 1.72 ns
tRCKMPWH Minimum Pulse Width High for Global Clock 0.80 0.94 ns
tRCKMPWL Minimum Pulse Width Low for Global Clock 0.98 1.15 ns
tRCKSW Maximum Skew for Global Clock 0.34 0.40 ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-80 Revision 5
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-116 • Automotive ProASIC3 CCC/PLL Specification
Parameter Minimum
Typical Maximum Units
Clock Conditioning Circuitry Input Frequency fIN_CCC 1.5 350 MHz
Clock Conditioning Circuitry Output Frequency fOUT_CCC 0.75 350 MHz
Delay Increments in Programmable Delay Blocks1, 2 1603 ps
Number of Programmable Values in Each Programmable Delay Block 32
Input Period Jitter 1.5 ns
CCC Output Peak-to-Peak Period Jitter FCCC_OUT Max Peak-to-Peak Period Jitter
1 Global
Network
Used
3 Global
Networks
Used
0.75 MHz to 24 MHz 0.50% 0.70%
24 MHz to 100 MHz 1.00% 1.20%
100 MHz to 250 MHz 1.75% 2.00%
250 MHz to 350 MHz 2.50% 5.60%
Acquisition Time
(A3P250 and A3P1000 only) LockControl = 0 300 µs
LockControl = 1 300 µs
(all other dies) LockControl = 0 300 µs
LockControl = 1 6.0 ms
Tracking Jitter 4
(A3P250 and A3P1000 only) LockControl = 0 1.6 ns
LockControl = 1 1.6 ns
(all other dies) LockControl = 0 1.6 ns
LockControl = 1 0.8 ns
Output Duty Cycle 48.5 51.5 %
Delay Range in Block: Programmable Delay 1 1, 2 0.6 5.56 ns
Delay Range in Block: Programmable Delay 2 1, 2 0.025 5.56 ns
Delay Range in Block: Fixed Delay 1, 2 2.2 ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-5 for deratings.
2. TJ = 25°C, VCC = 1.5 V
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay
increments are available. Refer to the Libero SoC Online Help associated with the core for more information.
4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock
edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter
parameter.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-81
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min.
Figure 2-29 • Peak-to-Peak Jitter Definition
T
period_max
T
period_min
Output Signal
Automotive ProASIC3 DC and Switching Characteristics
2-82 Revision 5
Embedded SRAM and FIFO Characteristics
SRAM
Figure 2-30 • RAM Models
FIFO4K18
RW2
RD17
RW1
RD16
RW0
WW2
WW1
WW0 RD0
ESTOP
FSTOP
FULL
AFULL
EMPTY
AFVAL11
AEMPTY
AFVAL10
AFVAL0
AEVAL11
AEVAL10
AEVAL0
REN
RBLK
RCLK
WEN
WBLK
WCLK
RPIPE
WD17
WD16
WD0
RESET
ADDRA11 DOUTA8
DOUTA7
DOUTA0
DOUTB8
DOUTB7
DOUTB0
ADDRA10
ADDRA0
DINA8
DINA7
DINA0
WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA
ADDRB11
ADDRB10
ADDRB0
DINB8
DINB7
DINB0
WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB
RAM4K9
RADDR8 RD17
RADDR7 RD16
RADDR0 RD0
WD17
WD16
WD0
WW1
WW0
RW1
RW0
PIPE
REN
RCLK
RAM512x18
WADDR8
WADDR7
WADDR0
WEN
WCLK
RESET
RESET
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-83
Timing Waveforms
Figure 2-31 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.
Figure 2-32 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.
CLK
[R|W]ADDR
BLK
WEN
DOUT|RD
A0A1A2
D0D1D2
tCYC
tCKH tCKL
tAS tAH
tBKS
tENS tENH
tDOH1
tBKH
Dn
tCKQ1
CLK
[R|W]ADDR
BLK
WEN
DOUT|RD
A0A1A2
D0D1
tCYC
tCKH tCKL
tAS tAH
tBKS
tENS tENH
tDOH2
tCKQ2
tBKH
Dn
Automotive ProASIC3 DC and Switching Characteristics
2-84 Revision 5
Figure 2-33 • RAM Write, Output Retained. Applicable to Both RAM4K9 and RAM512x18.
Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.
tCYC
tCKH tCKL
A0A1A2
DI0DI1
tAS tAH
tBKS
tENS tENH
tDS tDH
CLK
BLK
WEN
[R|W]ADDR
DIN|WD
Dn
DOUT|RD
tBKH
D2
t
CYC
t
CKH
t
CKL
A
0
A
1
A
2
DI
0
DI
1
t
AS
t
AH
t
BKS
t
ENS
t
DS
t
DH
CLK
BLK
WEN
ADDR
DIN
t
BKH
DOUT
(pass-through) DI
1
D
n
DI
0
DOUT
(pipelined) DI
0
DI
1
D
n
DI
2
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-85
Figure 2-35 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18
CLK
RESET
DOUT|RD D
n
t
CYC
t
CKH
t
CKL
t
RSTBQ
D
m
Automotive ProASIC3 DC and Switching Characteristics
2-86 Revision 5
Timing Characteristics
Table 2-117 • RAM4K9
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tAS Address Setup Time 0.30 0.36 ns
tAH Address Hold Time 0.00 0.00 ns
tENS REN, WEN Setup Time 0.17 0.20 ns
tENH REN, WEN Hold Time 0.12 0.14 ns
tBKS BLK Setup Time 0.28 0.33 ns
tBKH BLK Hold Time 0.02 0.03 ns
tDS Input Data (DIN) Setup Time 0.22 0.26 ns
tDH Input Data (DIN) Hold Time 0.00 0.00 ns
tCKQ1 Clock High to New Data Valid on DOUT (output retained, WMODE = 0) 2.17 2.55 ns
Clock High to New Data Valid on DOUT (flow-through, WMODE = 1) 2.86 3.37 ns
tCKQ2 Clock High to New Data Valid on DOUT (pipelined) 1.09 1.28 ns
tC2CWWL1Address collision clk-to-clk delay for reliable write after write on same address—
Applicable to Closing Edge
0.28 0.33 ns
tC2CWWH1Address collision clk-to-clk delay for reliable write after write on same address—
Applicable to Rising Edge
0.26 0.30 ns
tC2CRWH1Address collision clk-to-clk delay for reliable read access after write on same
address—Applicable to Opening Edge
0.38 0.45 ns
tC2CWRH1Address collision clk-to-clk delay for reliable write access after read on same
address— Applicable to Opening Edge
0.42 0.49 ns
tRSTBQ RESET Low to Data Out Low on DO (flow-through) 1.12 1.32 ns
RESET Low to Data Out Low on DO (pipelined) 1.12 1.32 ns
tREMRSTB RESET Removal 0.35 0.41 ns
tRECRSTB RESET Recovery 1.82 2.14 ns
tMPWRSTB RESET Minimum Pulse Width 0.26 0.30 ns
tCYC Clock Cycle Time 3.93 4.62 ns
FMAX Maximum Frequency 255 217 MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-87
Table 2-118 • RAM512X18
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tAS Address Setup Time 0.30 0.35 ns
tAH Address Hold Time 0.00 0.00 ns
tENS REN, WEN Setup Time 0.11 0.13 ns
tENH REN, WEN Hold Time 0.07 0.08 ns
tDS Input data (WD) Setup Time 0.22 0.26 ns
tDH Input data (WD) Hold Time 0.00 0.00 ns
tCKQ1 Clock High to New Data Valid on RD (output retained) 2.58 3.03 ns
tCKQ2 Clock High to New Data Valid on RD (pipelined) 1.07 1.26 ns
tC2CRWH1Address collision clk-to-clk delay for reliable read access after write on same
address—Applicable to Opening Edge
0.43 0.50 ns
tC2CWRH1Address collision clk-to-clk delay for reliable write access after read on same
address—Applicable to Opening Edge
0.50 0.59 ns
tRSTBQ RESET Low to Data Out Low on RD (flow-through) 1.10 1.29 ns
RESET Low to Data Out Low on RD (pipelined) 1.10 1.29 ns
tREMRSTB RESET Removal 0.34 0.40 ns
tRECRSTB RESET Recovery 1.79 2.10 ns
tMPWRSTB RESET Minimum Pulse Width 0.25 0.30 ns
tCYC Clock Cycle Time 3.85 4.53 ns
FMAX Maximum Frequency 255 217 MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-88 Revision 5
Table 2-119 • RAM4K9
Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V
Parameter Description –1 Std. Units
tAS Address Setup Time 0.30 0.35 ns
tAH Address Hold Time 0.00 0.00 ns
tENS REN, WEN Setup Time 0.17 0.20 ns
tENH REN, WEN Hold Time 0.12 0.14 ns
tBKS BLK Setup Time 0.28 0.33 ns
tBKH BLK Hold Time 0.02 0.03 ns
tDS Input data (DIN) Setup Time 0.22 0.26 ns
tDH Input data (DIN) Hold Time 0.00 0.00 ns
tCKQ1 Clock High to New Data Valid on DOUT (output retained, WMODE = 0) 2.13 2.50 ns
Clock High to New Data Valid on DOUT (flow-through, WMODE = 1) 2.81 3.30 ns
tCKQ2 Clock High to New Data Valid on DOUT (pipelined) 1.07 1.25 ns
tC2CWWL1Address collision clk-to-clk delay for reliable write after write on same address—
Applicable to Closing Edge
0.28 0.33 ns
tC2CWWH1Address collision clk-to-clk delay for reliable write after write on same address—
Applicable to Rising Edge
0.26 0.30 ns
tC2CRWH1Address collision clk-to-clk delay for reliable read access after write on same
address—Applicable to Opening Edge
0.38 0.45 ns
tC2CWRH1Address collision clk-to-clk delay for reliable write access after read on same
address— Applicable to Opening Edge
0.42 0.49 ns
tRSTBQ RESET Low to Data Out Low on DOUT (flow-through) 1.10 1.29 ns
RESET Low to Data Out Low on DOUT (pipelined) 1.10 1.29 ns
tREMRSTB RESET Removal 0.34 0.40 ns
tRECRSTB RESET Recovery 1.79 2.10 ns
tMPWRSTB RESET Minimum Pulse Width 0.25 0.30 ns
tCYC Clock Cycle Time 3.85 4.53 ns
FMAX Maximum Frequency 260 221 MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-89
Table 2-120 • RAM512X18
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tAS Address Setup Time 0.30 0.35 ns
tAH Address Hold Time 0.00 0.00 ns
tENS REN, WEN Setup Time 0.11 0.13 ns
tENH REN, WEN Hold Time 0.07 0.08 ns
tDS Input data (WD) Setup Time 0.22 0.26 ns
tDH Input data (WD) Hold Time 0.00 0.00 ns
tCKQ1 Clock High to New Data Valid on RD (output retained, WMODE = 0) 2.58 3.03 ns
tCKQ2 Clock High to New Data Valid on RD (pipelined) 1.07 1.26 ns
tC2CRWH1Address collision clk-to-clk delay for reliable read access after write on same
address—Applicable to Opening Edge
0.43 0.50 ns
tC2CWRH1Address collision clk-to-clk delay for reliable write access after read on same
address—Applicable to Opening Edge
0.50 0.59 ns
tRSTBQ RESET Low to Data Out Low on RD (flow-through) 1.10 1.29 ns
RESET Low to Data Out Low on RD (pipelined) 1.10 1.29 ns
tREMRSTB RESET Removal 0.34 0.40 ns
tRECRSTB RESET Recovery 1.79 2.10 ns
tMPWRSTB RESET Minimum Pulse Width 0.25 0.30 ns
tCYC Clock Cycle Time 3.85 4.53 ns
FMAX Maximum Frequency 260 221 MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-90 Revision 5
FIFO
Figure 2-36 • FIFO Model
FIFO4K18
RW2
RD17
RW1
RD16
RW0
WW2
WW1
WW0 RD0
ESTOP
FSTOP
FULL
AFULL
EMPTY
AFVAL11
AEMPTY
AFVAL10
AFVAL0
AEVAL11
AEVAL10
AEVAL0
REN
RBLK
RCLK
WEN
WBLK
WCLK
RPIPE
WD17
WD16
WD0
RESET
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-91
Timing Waveforms
Figure 2-37 • FIFO Read
Figure 2-38 • FIFO Write
t
ENS
t
ENH
t
CKQ1
t
CKQ2
t
CYC
D
0
D
1
D
n
D
n
D
0
D
2
D
1
t
BKS
t
BKH
RCLK
RBLK
REN
RD
(flow-through)
RD
(pipelined)
WCLK
WEN
WD
t
ENS
t
ENH
t
DS
t
DH
t
CYC
DI
0
DI
1
t
BKH
t
BKS
WBLK
Automotive ProASIC3 DC and Switching Characteristics
2-92 Revision 5
Figure 2-39 • FIFO Reset
Figure 2-40 • FIFO EMPTY Flag and AEMPTY Flag Assertion
MATCH (A
0
)
t
MPWRSTB
t
RSTFG
t
RSTCK
t
RSTAF
RCLK/
WCLK
RESET
EMPTY
AEMPTY
WA/RA
(Address Counter)
t
RSTFG
t
RSTAF
FULL
AFULL
RCLK
NO MATCH NO MATCH Dist = AEF_TH MATCH (EMPTY)
tCKAF
tRCKEF
EMPTY
AEMPTY
tCYC
WA/RA
(Address Counter)
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-93
Figure 2-41 • FIFO FULL Flag and AFULL Flag Assertion
Figure 2-42 • FIFO EMPTY Flag and AEMPTY Flag Deassertion
Figure 2-43 • FIFO FULL Flag and AFULL Flag Deassertion
NO MATCH NO MATCH Dist = AFF_TH MATCH (FULL)
t
CKAF
t
WCKFF
t
CYC
WCLK
FULL
AFULL
WA/RA
(Address Counter)
WCLK
WA/RA
(Address Counter) MATCH
(EMPTY) NO MATCH NO MATCH NO MATCH Dist = AEF_TH + 1
NO MATCH
RCLK
EMPTY
1st Rising
Edge
After 1st
Write
2nd Rising
Edge
After 1st
Write
tRCKEF
tCKAF
AEMPTY
Dist = AFF_TH – 1
MATCH (FULL) NO MATCH NO MATCH NO MATCH NO MATCH
t
WCKF
t
CKAF
1st Rising
Edge
After 1st
Read
1st Rising
Edge
After 2nd
Read
RCLK
WA/RA
(Address Counter)
WCLK
FULL
AFULL
Automotive ProASIC3 DC and Switching Characteristics
2-94 Revision 5
Timing Characteristics
Table 2-121 • FIFO
Worst-Case Automotive Conditions: TJ = 135°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tENS REN, WEN Setup Time 1.97 1.67 ns
tENH REN, WEN Hold Time 0.03 0.02 ns
tBKS BLK Setup Time 0.28 0.32 ns
tBKH BLK Hold Time 0.00 0.00 ns
tDS Input Data (WD) Setup Time 0.26 0.22 ns
tDH Input Data (WD) Hold Time 0.00 0.00 ns
tCKQ1 Clock High to New Data Valid on RD (flow-through) 3.37 2.86 ns
tCKQ2 Clock High to New Data Valid on RD (pipelined) 1.28 1.09 ns
tRCKEF RCLK High to Empty Flag Valid 2.45 2.09 ns
tWCKFF WCLK High to Full Flag Valid 2.33 1.98 ns
tCKAF Clock High to Almost Empty/Full Flag Valid 8.85 7.53 ns
tRSTFG RESET Low to Empty/Full Flag Valid 2.42 2.06 ns
tRSTAF RESET Low to Almost Empty/Full Flag Valid 8.76 7.45 ns
tRSTBQ RESET Low to Data Out Low on RD (flow-through) 1.32 1.12 ns
RESET Low to Data Out Low on RD (pipelined) 1.32 1.12 ns
tREMRSTB RESET Removal 0.41 0.35 ns
tRECRSTB RESET Recovery 2.14 1.82 ns
tMPWRSTB RESET Minimum Pulse Width 0.30 0.26 ns
tCYC Clock Cycle Time 4.62 3.93 ns
FMAX Maximum Frequency for FIFO 217 255 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for
derating values.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-95
Table 2-122 • FIFO
Worst-Case Automotive Conditions: TJ = 115°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tENS REN, WEN Setup Time 1.93 1.64 ns
tENH REN, WEN Hold Time 0.03 0.02 ns
tBKS BLK Setup Time 0.27 0.32 ns
tBKH BLK Hold Time 0.00 0.00 ns
tDS Input Data (WD) Setup Time 0.26 0.22 ns
tDH Input Data (WD) Hold Time 0.00 0.00 ns
tCKQ1 Clock High to New Data Valid on RD (flow-through) 3.30 2.81 ns
tCKQ2 Clock High to New Data Valid on RD (pipelined) 1.25 1.07 ns
tRCKEF RCLK High to Empty Flag Valid 2.41 2.05 ns
tWCKFF WCLK High to Full Flag Valid 2.29 1.95 ns
tCKAF Clock High to Almost Empty/Full Flag Valid 8.68 7.38 ns
tRSTFG RESET Low to Empty/Full Flag Valid 2.37 2.02 ns
tRSTAF RESET Low to Almost Empty/Full Flag Valid 8.59 7.30 ns
tRSTBQ RESET Low to Data Out Low on RD (flow-through) 1.29 1.10 ns
RESET Low to Data Out Low on RD (pipelined) 1.29 1.10 ns
tREMRSTB RESET Removal 0.40 0.34 ns
tRECRSTB RESET Recovery 2.10 1.79 ns
tMPWRSTB RESET Minimum Pulse Width 0.30 0.25 ns
tCYC Clock Cycle Time 4.53 3.85 ns
FMAX Maximum Frequency for FIFO 221 260 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for
derating values.
Automotive ProASIC3 DC and Switching Characteristics
2-96 Revision 5
Embedded FlashROM Characteristics
Timing Characteristics
Figure 2-44 • Timing Diagram
A
0
A
1
t
SU
t
HOLD
t
SU
t
HOLD
t
SU
t
HOLD
t
CKQ2
t
CKQ2
t
CKQ2
CLK
A
ddress
Data D
0
D
0
D
1
Table 2-123 • Embedded FlashROM Access Time
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tSU Address Setup Time 0.65 0.76 ns
tHOLD Address Hold Time 0.00 0.00 ns
tCK2Q Clock to Out 19.73 23.20 ns
FMAX Maximum Clock Frequency 15 15 MHz
Table 2-124 • Embedded FlashROM Access Time
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tSU Address Setup Time 0.64 0.75 ns
tHOLD Address Hold Time 0.00 0.00 ns
tCK2Q Clock to Out 19.35 22.74 ns
FMAX Maximum Clock Frequency 15 15 MHz
Automotive ProASIC3 Flash Family FPGAs
Revision 5 2-97
JTAG 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O
Characteristics" section on page 2-12 for more details.
Timing Characteristics
Table 2-125 • JTAG 1532
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter Description –2 –1 Std. Units
tDISU Test Data Input Setup Time ns
tDIHD Test Data Input Hold Time ns
tTMSSU Test Mode Select Setup Time ns
tTMDHD Test Mode Select Hold Time ns
tTCK2Q Clock to Q (data out) ns
tRSTB2Q Reset to Q (data out) ns
FTCKMAX TCK Maximum Frequency 20 20 20 MHz
tTRSTREM ResetB Removal Time ns
tTRSTREC ResetB Recovery Time ns
tTRSTMPW ResetB Minimum Pulse ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for
derating values.
Revision 5 3-1
3 – Pin Descriptions and Packaging
Supply Pins
GND Ground
Ground supply voltage to the core, I/O outputs, and I/O logic.
GNDQ Ground (quiet)
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always
be connected to GND on the board.
VCC Core Supply Voltage
Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine
in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices,
both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.
VCCIBx I/O Supply Voltage
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to
four I/O banks on Automotive ProASIC3 devices, plus a dedicated VJTAG bank. Each bank can have a
separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V,
1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied
to GND.
VMVx I/O Supply Voltage (quiet)
Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the
VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within
the package and improves input signal integrity. Each bank must have at least one VMV connection, and
no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to
provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or
3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV
and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to
the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).
VCCPLA/B/C/D/E/F PLL Supply Voltage
Supply voltage to analog PLL, nominally 1.5 V.
When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs
to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.
Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise
from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in
IGLOO and ProASIC3 Devices" chapter of the Automotive ProASIC3 FPGA Fabric User’s Guide for a
complete board solution for the PLL analog power supply and ground.
There is one VCCPLF pin on Automotive ProASIC3 devices.
VCOMPLA/B/C/D/E/F PLL Ground
Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool
automatically disables the unused PLLs to lower power consumption. The user should tie unused
VCCPLx and VCOMPLx pins to ground.
There is one VCOMPLF pin on Automotive ProASIC3 devices.
VJTAG JTAG Supply Voltage
Automotive ProASIC3 devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be
run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank
gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG
interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to
GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is
Pin Descriptions and Packaging
3-2 Revision 5
insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can
be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals
will not be able to transition the device, even in bypass mode.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
VPUMP Programming Supply Voltage
Automotive ProASIC3 devices support single-voltage ISP of the configuration flash and FlashROM. For
programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left
floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming
power supply voltage (VPUMP) range is listed in the datasheet.
When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of
oscillation from the charge pump circuitry.
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
User Pins
I/O User Input/Output
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are
compatible with the I/O standard selected.
During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC
supplies continuously powered up, when the device transitions from programming to operating mode, the
I/Os are instantly configured to the desired user configuration.
Unused I/Os are configured as follows:
Output buffer is disabled (with tristate value of high impedance)
Input buffer is disabled (with tristate value of high impedance)
Weak pull-up is programmed
GL Globals
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the
global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have
identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO
and ProASIC3 Devices" chapter of the Automotive ProASIC3 FPGA Fabric User’s Guide. All inputs
labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input,
GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are
direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to
the global network are multiplexed, and only one input can be used as a global input.
Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the Automotive ProASIC3
FPGA Fabric User’s Guide for an explanation of the naming of global pins.
Automotive ProASIC3 Flash Family FPGAs
Revision 5 3-3
JTAG Pins
Automotive ProASIC3 devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be
run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine
to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to
the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply
in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB
design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST
pin could be tied to GND.
TCK Test Clock
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-
up/-down resistor. If JTAG is not used, Actel recommends tying off TCK to GND through a resistor placed
close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.
Note that to operate at all VJTAG voltages, 500 to 1 k will satisfy the requirements. Refer to Table 3-1
for more information.
TDI Test Data Input
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor
on the TDI pin.
TDO Test Data Output
Serial output for JTAG boundary scan, ISP, and UJTAG usage.
TMS Test Mode Select
The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin.
TRST Boundary Scan Reset Pin
The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-
down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor
values must be chosen from Ta bl e 3 -1 and must satisfy the parallel resistance value requirement. The
values in Ta bl e 3- 1 correspond to the resistor recommended when a single device is used, and the
equivalent parallel resistor when multiple devices are connected via a JTAG chain.
In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In
such cases, Actel recommends tying off TRST to GND through a resistor placed close to the FPGA pin.
Note that to operate at all VJTAG voltages, 500 to 1 k will satisfy the requirements.
Table 3-1 • Recommended Tie-Off Values for the TCK and TRST Pins
VJTAG Tie-Off Resistance
VJTAG at 3.3 V 200 to 1 k
VJTAG at 2.5 V 200 to 1 k
VJTAG at 1.8 V 500 to 1 k
VJTAG at 1.5 V 500 to 1 k
Notes:
1. Equivalent parallel resistance if more than one device is on the JTAG chain
2. The TCK pin can be pulled up/down.
3. The TRST pin is pulled down.
Pin Descriptions and Packaging
3-4 Revision 5
Special Function Pins
NC No Connect
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.
DC Do Not Connect
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.
Packaging
Semiconductor technology is constantly shrinking in size while growing in capability and functional
integration. To enable next-generation silicon technologies, semiconductor packages have also evolved
to provide improved performance and flexibility.
Microsemi consistently delivers packages that provide the necessary mechanical and environmental
protection to ensure consistent reliability and performance. Microsemi IC packaging technology
efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible
enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition,
Actel offers a variety of packages designed to meet your most demanding application and economic
requirements for today's embedded and mobile systems.
Related Documents
Users Guides
Automotive ProASIC FPGA Fabric User’s Guide
http://www.microsemi.com/soc/documents/PA3_Auto_UG.pdf
Packaging
The following documents provide packaging information and device selection for low power flash
devices.
Product Catalog
http://www.microsmei.com/soc/documents/ProdCat_PIB.pdf
Lists devices currently recommended for new designs and the packages available for each member of
the family. Use this document or the datasheet tables to determine the best package for your design, and
which package drawing to use.
Package Mechanical Drawings
http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf
This document contains the package mechanical drawings for all packages currently or previously
supplied by Actel. Use the bookmarks to navigate to the package mechanical drawings.
Additional packaging materials: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
Revision 5 4-1
4 – Package Pin Assignments
VQ100
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Note: This is the top view of the package.
1
100
Package Pin Assignments
4-2 Revision 5
VQ100
Pin Number A3P060 Function
1GND
2 GAA2/IO51RSB1
3 IO52RSB1
4 GAB2/IO53RSB1
5 IO95RSB1
6 GAC2/IO94RSB1
7 IO93RSB1
8 IO92RSB1
9GND
10 GFB1/IO87RSB1
11 GFB0/IO86RSB1
12 VCOMPLF
13 GFA0/IO85RSB1
14 VCCPLF
15 GFA1/IO84RSB1
16 GFA2/IO83RSB1
17 VCC
18 VCCIB1
19 GEC1/IO77RSB1
20 GEB1/IO75RSB1
21 GEB0/IO74RSB1
22 GEA1/IO73RSB1
23 GEA0/IO72RSB1
24 VMV1
25 GNDQ
26 GEA2/IO71RSB1
27 GEB2/IO70RSB1
28 GEC2/IO69RSB1
29 IO68RSB1
30 IO67RSB1
31 IO66RSB1
32 IO65RSB1
33 IO64RSB1
34 IO63RSB1
35 IO62RSB1
36 IO61RSB1
37 VCC
38 GND
39 VCCIB1
40 IO60RSB1
41 IO59RSB1
42 IO58RSB1
43 IO57RSB1
44 GDC2/IO56RSB1
45 GDB2/IO55RSB1
46 GDA2/IO54RSB1
47 TCK
48 TDI
49 TMS
50 VMV1
51 GND
52 VPUMP
53 NC
54 TDO
55 TRST
56 VJTAG
57 GDA1/IO49RSB0
58 GDC0/IO46RSB0
59 GDC1/IO45RSB0
60 GCC2/IO43RSB0
61 GCB2/IO42RSB0
62 GCA0/IO40RSB0
63 GCA1/IO39RSB0
64 GCC0/IO36RSB0
65 GCC1/IO35RSB0
66 VCCIB0
67 GND
68 VCC
VQ100
Pin Number A3P060 Function
69 IO31RSB0
70 GBC2/IO29RSB0
71 GBB2/IO27RSB0
72 IO26RSB0
73 GBA2/IO25RSB0
74 VMV0
75 GNDQ
76 GBA1/IO24RSB0
77 GBA0/IO23RSB0
78 GBB1/IO22RSB0
79 GBB0/IO21RSB0
80 GBC1/IO20RSB0
81 GBC0/IO19RSB0
82 IO18RSB0
83 IO17RSB0
84 IO15RSB0
85 IO13RSB0
86 IO11RSB0
87 VCCIB0
88 GND
89 VCC
90 IO10RSB0
91 IO09RSB0
92 IO08RSB0
93 GAC1/IO07RSB0
94 GAC0/IO06RSB0
95 GAB1/IO05RSB0
96 GAB0/IO04RSB0
97 GAA1/IO03RSB0
98 GAA0/IO02RSB0
99 IO01RSB0
100 IO00RSB0
VQ100
Pin Number A3P060 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-3
VQ100
Pin Number A3P125 Function
1GND
2 GAA2/IO67RSB1
3 IO68RSB1
4 GAB2/IO69RSB1
5 IO132RSB1
6 GAC2/IO131RSB1
7 IO130RSB1
8 IO129RSB1
9GND
10 GFB1/IO124RSB1
11 GFB0/IO123RSB1
12 VCOMPLF
13 GFA0/IO122RSB1
14 VCCPLF
15 GFA1/IO121RSB1
16 GFA2/IO120RSB1
17 VCC
18 VCCIB1
19 GEC0/IO111RSB1
20 GEB1/IO110RSB1
21 GEB0/IO109RSB1
22 GEA1/IO108RSB1
23 GEA0/IO107RSB1
24 VMV1
25 GNDQ
26 GEA2/IO106RSB1
27 GEB2/IO105RSB1
28 GEC2/IO104RSB1
29 IO102RSB1
30 IO100RSB1
31 IO99RSB1
32 IO97RSB1
33 IO96RSB1
34 IO95RSB1
35 IO94RSB1
36 IO93RSB1
37 VCC
38 GND
39 VCCIB1
40 IO87RSB1
41 IO84RSB1
42 IO81RSB1
43 IO75RSB1
44 GDC2/IO72RSB1
45 GDB2/IO71RSB1
46 GDA2/IO70RSB1
47 TCK
48 TDI
49 TMS
50 VMV1
51 GND
52 VPUMP
53 NC
54 TDO
55 TRST
56 VJTAG
57 GDA1/IO65RSB0
58 GDC0/IO62RSB0
59 GDC1/IO61RSB0
60 GCC2/IO59RSB0
61 GCB2/IO58RSB0
62 GCA0/IO56RSB0
63 GCA1/IO55RSB0
64 GCC0/IO52RSB0
65 GCC1/IO51RSB0
66 VCCIB0
67 GND
68 VCC
69 IO47RSB0
70 GBC2/IO45RSB0
71 GBB2/IO43RSB0
72 IO42RSB0
VQ100
Pin Number A3P125 Function
73 GBA2/IO41RSB0
74 VMV0
75 GNDQ
76 GBA1/IO40RSB0
77 GBA0/IO39RSB0
78 GBB1/IO38RSB0
79 GBB0/IO37RSB0
80 GBC1/IO36RSB0
81 GBC0/IO35RSB0
82 IO32RSB0
83 IO28RSB0
84 IO25RSB0
85 IO22RSB0
86 IO19RSB0
87 VCCIB0
88 GND
89 VCC
90 IO15RSB0
91 IO13RSB0
92 IO11RSB0
93 IO09RSB0
94 IO07RSB0
95 GAC1/IO05RSB0
96 GAC0/IO04RSB0
97 GAB1/IO03RSB0
98 GAB0/IO02RSB0
99 GAA1/IO01RSB0
100 GAA0/IO00RSB0
VQ100
Pin Number A3P125 Function
Package Pin Assignments
4-4 Revision 5
VQ100
Pin Number A3P250 Function
1GND
2 GAA2/IO118UDB3
3 IO118VDB3
4 GAB2/IO117UDB3
5 IO117VDB3
6 GAC2/IO116UDB3
7 IO116VDB3
8 IO112PSB3
9GND
10 GFB1/IO109PDB3
11 GFB0/IO109NDB3
12 VCOMPLF
13 GFA0/IO108NPB3
14 VCCPLF
15 GFA1/IO108PPB3
16 GFA2/IO107PSB3
17 VCC
18 VCCIB3
19 GFC2/IO105PSB3
20 GEC1/IO100PDB3
21 GEC0/IO100NDB3
22 GEA1/IO98PDB3
23 GEA0/IO98NDB3
24 VMV3
25 GNDQ
26 GEA2/IO97RSB2
27 GEB2/IO96RSB2
28 GEC2/IO95RSB2
29 IO93RSB2
30 IO92RSB2
31 IO91RSB2
32 IO90RSB2
33 IO88RSB2
34 IO86RSB2
35 IO85RSB2
36 IO84RSB2
37 VCC
38 GND
39 VCCIB2
40 IO77RSB2
41 IO74RSB2
42 IO71RSB2
43 GDC2/IO63RSB2
44 GDB2/IO62RSB2
45 GDA2/IO61RSB2
46 GNDQ
47 TCK
48 TDI
49 TMS
50 VMV2
51 GND
52 VPUMP
53 NC
54 TDO
55 TRST
56 VJTAG
57 GDA1/IO60USB1
58 GDC0/IO58VDB1
59 GDC1/IO58UDB1
60 IO52NDB1
61 GCB2/IO52PDB1
62 GCA1/IO50PDB1
63 GCA0/IO50NDB1
64 GCC0/IO48NDB1
65 GCC1/IO48PDB1
66 VCCIB1
67 GND
68 VCC
VQ100
Pin Number A3P250 Function
69 IO43NDB1
70 GBC2/IO43PDB1
71 GBB2/IO42PSB1
72 IO41NDB1
73 GBA2/IO41PDB1
74 VMV1
75 GNDQ
76 GBA1/IO40RSB0
77 GBA0/IO39RSB0
78 GBB1/IO38RSB0
79 GBB0/IO37RSB0
80 GBC1/IO36RSB0
81 GBC0/IO35RSB0
82 IO29RSB0
83 IO27RSB0
84 IO25RSB0
85 IO23RSB0
86 IO21RSB0
87 VCCIB0
88 GND
89 VCC
90 IO15RSB0
91 IO13RSB0
92 IO11RSB0
93 GAC1/IO05RSB0
94 GAC0/IO04RSB0
95 GAB1/IO03RSB0
96 GAB0/IO02RSB0
97 GAA1/IO01RSB0
98 GAA0/IO00RSB0
99 GNDQ
100 VMV0
VQ100
Pin Number A3P250 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-5
QN132
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Notes:
1. This is the bottom view of the package.
2. The die attach paddle center of the package is tied to ground (GND).
A37
A1
A12
A36
D4
D3
D1
D2
A25
A48
A24 A13
B34
B1
B11
B44
B22 B12
C31
C1
C10
B33
B23
C30
C21
C40
C20 C11
Optional
Corner Pad (4x)
Pin A1Mark
Package Pin Assignments
4-6 Revision 5
QN132
Pin Number A3P125 Function
A1 GAB2/IO69RSB1
A2 IO130RSB1
A3 VCCIB1
A4 GFC1/IO126RSB1
A5 GFB0/IO123RSB1
A6 VCCPLF
A7 GFA1/IO121RSB1
A8 GFC2/IO118RSB1
A9 IO115RSB1
A10 VCC
A11 GEB1/IO110RSB1
A12 GEA0/IO107RSB1
A13 GEC2/IO104RSB1
A14 IO100RSB1
A15 VCC
A16 IO99RSB1
A17 IO96RSB1
A18 IO94RSB1
A19 IO91RSB1
A20 IO85RSB1
A21 IO79RSB1
A22 VCC
A23 GDB2/IO71RSB1
A24 TDI
A25 TRST
A26 GDC1/IO61RSB0
A27 VCC
A28 IO60RSB0
A29 GCC2/IO59RSB0
A30 GCA2/IO57RSB0
A31 GCA0/IO56RSB0
A32 GCB1/IO53RSB0
A33 IO49RSB0
A34 VCC
A35 IO44RSB0
A36 GBA2/IO41RSB0
A37 GBB1/IO38RSB0
A38 GBC0/IO35RSB0
A39 VCCIB0
A40 IO28RSB0
A41 IO22RSB0
A42 IO18RSB0
A43 IO14RSB0
A44 IO11RSB0
A45 IO07RSB0
A46 VCC
A47 GAC1/IO05RSB0
A48 GAB0/IO02RSB0
B1 IO68RSB1
B2 GAC2/IO131RSB1
B3 GND
B4 GFC0/IO125RSB1
B5 VCOMPLF
B6 GND
B7 GFB2/IO119RSB1
B8 IO116RSB1
B9 GND
B10 GEB0/IO109RSB1
B11 VMV1
B12 GEB2/IO105RSB1
B13 IO101RSB1
B14 GND
B15 IO98RSB1
B16 IO95RSB1
B17 GND
B18 IO87RSB1
B19 IO81RSB1
B20 GND
B21 GNDQ
B22 TMS
B23 TDO
B24 GDC0/IO62RSB0
QN132
Pin Number A3P125 Function
B25 GND
B26 NC
B27 GCB2/IO58RSB0
B28 GND
B29 GCB0/IO54RSB0
B30 GCC1/IO51RSB0
B31 GND
B32 GBB2/IO43RSB0
B33 VMV0
B34 GBA0/IO39RSB0
B35 GBC1/IO36RSB0
B36 GND
B37 IO26RSB0
B38 IO21RSB0
B39 GND
B40 IO13RSB0
B41 IO08RSB0
B42 GND
B43 GAC0/IO04RSB0
B44 GNDQ
C1 GAA2/IO67RSB1
C2 IO132RSB1
C3 VCC
C4 GFB1/IO124RSB1
C5 GFA0/IO122RSB1
C6 GFA2/IO120RSB1
C7 IO117RSB1
C8 VCCIB1
C9 GEA1/IO108RSB1
C10 GNDQ
C11 GEA2/IO106RSB1
C12 IO103RSB1
C13 VCCIB1
C14 IO97RSB1
C15 IO93RSB1
C16 IO89RSB1
QN132
Pin Number A3P125 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-7
C17 IO83RSB1
C18 VCCIB1
C19 TCK
C20 VMV1
C21 VPUMP
C22 VJTAG
C23 VCCIB0
C24 NC
C25 NC
C26 GCA1/IO55RSB0
C27 GCC0/IO52RSB0
C28 VCCIB0
C29 IO42RSB0
C30 GNDQ
C31 GBA1/IO40RSB0
C32 GBB0/IO37RSB0
C33 VCC
C34 IO24RSB0
C35 IO19RSB0
C36 IO16RSB0
C37 IO10RSB0
C38 VCCIB0
C39 GAB1/IO03RSB0
C40 VMV0
D1 GND
D2 GND
D3 GND
D4 GND
QN132
Pin Number A3P125 Function
Package Pin Assignments
4-8 Revision 5
QN132
Pin Number A3P250 Function
A1 GAB2/IO117UPB3
A2 IO117VPB3
A3 VCCIB3
A4 GFC1/IO110PDB3
A5 GFB0/IO109NPB3
A6 VCCPLF
A7 GFA1/IO108PPB3
A8 GFC2/IO105PPB3
A9 IO103NDB3
A10 VCC
A11 GEA1/IO98PPB3
A12 GEA0/IO98NPB3
A13 GEC2/IO95RSB2
A14 IO91RSB2
A15 VCC
A16 IO90RSB2
A17 IO87RSB2
A18 IO85RSB2
A19 IO82RSB2
A20 IO76RSB2
A21 IO70RSB2
A22 VCC
A23 GDB2/IO62RSB2
A24 TDI
A25 TRST
A26 GDC1/IO58UDB1
A27 VCC
A28 IO54NDB1
A29 IO52NDB1
A30 GCA2/IO51PPB1
A31 GCA0/IO50NPB1
A32 GCB1/IO49PDB1
A33 IO47NSB1
A34 VCC
A35 IO41NPB1
A36 GBA2/IO41PPB1
A37 GBB1/IO38RSB0
A38 GBC0/IO35RSB0
A39 VCCIB0
A40 IO28RSB0
A41 IO22RSB0
A42 IO18RSB0
A43 IO14RSB0
A44 IO11RSB0
A45 IO07RSB0
A46 VCC
A47 GAC1/IO05RSB0
A48 GAB0/IO02RSB0
B1 IO118VDB3
B2 GAC2/IO116UDB3
B3 GND
B4 GFC0/IO110NDB3
B5 VCOMPLF
B6 GND
B7 GFB2/IO106PSB3
B8 IO103PDB3
B9 GND
B10 GEB0/IO99NDB3
B11 VMV3
B12 GEB2/IO96RSB2
B13 IO92RSB2
B14 GND
B15 IO89RSB2
B16 IO86RSB2
B17 GND
B18 IO78RSB2
B19 IO72RSB2
B20 GND
B21 GNDQ
B22 TMS
B23 TDO
B24 GDC0/IO58VDB1
QN132
Pin Number A3P250 Function
B25 GND
B26 IO54PDB1
B27 GCB2/IO52PDB1
B28 GND
B29 GCB0/IO49NDB1
B30 GCC1/IO48PDB1
B31 GND
B32 GBB2/IO42PDB1
B33 VMV1
B34 GBA0/IO39RSB0
B35 GBC1/IO36RSB0
B36 GND
B37 IO26RSB0
B38 IO21RSB0
B39 GND
B40 IO13RSB0
B41 IO08RSB0
B42 GND
B43 GAC0/IO04RSB0
B44 GNDQ
C1 GAA2/IO118UDB3
C2 IO116VDB3
C3 VCC
C4 GFB1/IO109PPB3
C5 GFA0/IO108NPB3
C6 GFA2/IO107PSB3
C7 IO105NPB3
C8 VCCIB3
C9 GEB1/IO99PDB3
C10 GNDQ
C11 GEA2/IO97RSB2
C12 IO94RSB2
C13 VCCIB2
C14 IO88RSB2
C15 IO84RSB2
C16 IO80RSB2
QN132
Pin Number A3P250 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-9
C17 IO74RSB2
C18 VCCIB2
C19 TCK
C20 VMV2
C21 VPUMP
C22 VJTAG
C23 VCCIB1
C24 IO53NSB1
C25 IO51NPB1
C26 GCA1/IO50PPB1
C27 GCC0/IO48NDB1
C28 VCCIB1
C29 IO42NDB1
C30 GNDQ
C31 GBA1/IO40RSB0
C32 GBB0/IO37RSB0
C33 VCC
C34 IO24RSB0
C35 IO19RSB0
C36 IO16RSB0
C37 IO10RSB0
C38 VCCIB0
C39 GAB1/IO03RSB0
C40 VMV0
D1 GND
D2 GND
D3 GND
D4 GND
QN132
Pin Number A3P250 Function
Package Pin Assignments
4-10 Revision 5
FG144
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Note: This is the bottom view of the package.
1
2
34567
89
101112
A
B
C
D
E
F
G
H
J
K
L
M
A1 Ball Pad Corner
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-11
FG144
Pin Number A3P060 Function
A1 GNDQ
A2 VMV0
A3 GAB0/IO04RSB0
A4 GAB1/IO05RSB0
A5 IO08RSB0
A6 GND
A7 IO11RSB0
A8 VCC
A9 IO16RSB0
A10 GBA0/IO23RSB0
A11 GBA1/IO24RSB0
A12 GNDQ
B1 GAB2/IO53RSB1
B2 GND
B3 GAA0/IO02RSB0
B4 GAA1/IO03RSB0
B5 IO00RSB0
B6 IO10RSB0
B7 IO12RSB0
B8 IO14RSB0
B9 GBB0/IO21RSB0
B10 GBB1/IO22RSB0
B11 GND
B12 VMV0
C1 IO95RSB1
C2 GFA2/IO83RSB1
C3 GAC2/IO94RSB1
C4 VCC
C5 IO01RSB0
C6 IO09RSB0
C7 IO13RSB0
C8 IO15RSB0
C9 IO17RSB0
C10 GBA2/IO25RSB0
C11 IO26RSB0
C12 GBC2/IO29RSB0
D1 IO91RSB1
D2 IO92RSB1
D3 IO93RSB1
D4 GAA2/IO51RSB1
D5 GAC0/IO06RSB0
D6 GAC1/IO07RSB0
D7 GBC0/IO19RSB0
D8 GBC1/IO20RSB0
D9 GBB2/IO27RSB0
D10 IO18RSB0
D11 IO28RSB0
D12 GCB1/IO37RSB0
E1 VCC
E2 GFC0/IO88RSB1
E3 GFC1/IO89RSB1
E4 VCCIB1
E5 IO52RSB1
E6 VCCIB0
E7 VCCIB0
E8 GCC1/IO35RSB0
E9 VCCIB0
E10 VCC
E11 GCA0/IO40RSB0
E12 IO30RSB0
F1 GFB0/IO86RSB1
F2 VCOMPLF
F3 GFB1/IO87RSB1
F4 IO90RSB1
F5 GND
F6 GND
F7 GND
F8 GCC0/IO36RSB0
F9 GCB0/IO38RSB0
F10 GND
F11 GCA1/IO39RSB0
F12 GCA2/IO41RSB0
FG144
Pin Number A3P060 Function
G1 GFA1/IO84RSB1
G2 GND
G3 VCCPLF
G4 GFA0/IO85RSB1
G5 GND
G6 GND
G7 GND
G8 GDC1/IO45RSB0
G9 IO32RSB0
G10 GCC2/IO43RSB0
G11 IO31RSB0
G12 GCB2/IO42RSB0
H1 VCC
H2 GFB2/IO82RSB1
H3 GFC2/IO81RSB1
H4 GEC1/IO77RSB1
H5 VCC
H6 IO34RSB0
H7 IO44RSB0
H8 GDB2/IO55RSB1
H9 GDC0/IO46RSB0
H10 VCCIB0
H11 IO33RSB0
H12 VCC
J1 GEB1/IO75RSB1
J2 IO78RSB1
J3 VCCIB1
J4 GEC0/IO76RSB1
J5 IO79RSB1
J6 IO80RSB1
J7 VCC
J8 TCK
J9 GDA2/IO54RSB1
J10 TDO
J11 GDA1/IO49RSB0
J12 GDB1/IO47RSB0
FG144
Pin Number A3P060 Function
Package Pin Assignments
4-12 Revision 5
K1 GEB0/IO74RSB1
K2 GEA1/IO73RSB1
K3 GEA0/IO72RSB1
K4 GEA2/IO71RSB1
K5 IO65RSB1
K6 IO64RSB1
K7 GND
K8 IO57RSB1
K9 GDC2/IO56RSB1
K10 GND
K11 GDA0/IO50RSB0
K12 GDB0/IO48RSB0
L1 GND
L2 VMV1
L3 GEB2/IO70RSB1
L4 IO67RSB1
L5 VCCIB1
L6 IO62RSB1
L7 IO59RSB1
L8 IO58RSB1
L9 TMS
L10 VJTAG
L11 VMV1
L12 TRST
M1 GNDQ
M2 GEC2/IO69RSB1
M3 IO68RSB1
M4 IO66RSB1
M5 IO63RSB1
M6 IO61RSB1
M7 IO60RSB1
M8 NC
M9 TDI
M10 VCCIB1
M11 VPUMP
M12 GNDQ
FG144
Pin Number A3P060 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-13
FG144
Pin Number A3P125 Function
A1 GNDQ
A2 VMV0
A3 GAB0/IO02RSB0
A4 GAB1/IO03RSB0
A5 IO11RSB0
A6 GND
A7 IO18RSB0
A8 VCC
A9 IO25RSB0
A10 GBA0/IO39RSB0
A11 GBA1/IO40RSB0
A12 GNDQ
B1 GAB2/IO69RSB1
B2 GND
B3 GAA0/IO00RSB0
B4 GAA1/IO01RSB0
B5 IO08RSB0
B6 IO14RSB0
B7 IO19RSB0
B8 IO22RSB0
B9 GBB0/IO37RSB0
B10 GBB1/IO38RSB0
B11 GND
B12 VMV0
C1 IO132RSB1
C2 GFA2/IO120RSB1
C3 GAC2/IO131RSB1
C4 VCC
C5 IO10RSB0
C6 IO12RSB0
C7 IO21RSB0
C8 IO24RSB0
C9 IO27RSB0
C10 GBA2/IO41RSB0
C11 IO42RSB0
C12 GBC2/IO45RSB0
D1 IO128RSB1
D2 IO129RSB1
D3 IO130RSB1
D4 GAA2/IO67RSB1
D5 GAC0/IO04RSB0
D6 GAC1/IO05RSB0
D7 GBC0/IO35RSB0
D8 GBC1/IO36RSB0
D9 GBB2/IO43RSB0
D10 IO28RSB0
D11 IO44RSB0
D12 GCB1/IO53RSB0
E1 VCC
E2 GFC0/IO125RSB1
E3 GFC1/IO126RSB1
E4 VCCIB1
E5 IO68RSB1
E6 VCCIB0
E7 VCCIB0
E8 GCC1/IO51RSB0
E9 VCCIB0
E10 VCC
E11 GCA0/IO56RSB0
E12 IO46RSB0
F1 GFB0/IO123RSB1
F2 VCOMPLF
F3 GFB1/IO124RSB1
F4 IO127RSB1
F5 GND
F6 GND
F7 GND
F8 GCC0/IO52RSB0
F9 GCB0/IO54RSB0
F10 GND
F11 GCA1/IO55RSB0
F12 GCA2/IO57RSB0
FG144
Pin Number A3P125 Function
G1 GFA1/IO121RSB1
G2 GND
G3 VCCPLF
G4 GFA0/IO122RSB1
G5 GND
G6 GND
G7 GND
G8 GDC1/IO61RSB0
G9 IO48RSB0
G10 GCC2/IO59RSB0
G11 IO47RSB0
G12 GCB2/IO58RSB0
H1 VCC
H2 GFB2/IO119RSB1
H3 GFC2/IO118RSB1
H4 GEC1/IO112RSB1
H5 VCC
H6 IO50RSB0
H7 IO60RSB0
H8 GDB2/IO71RSB1
H9 GDC0/IO62RSB0
H10 VCCIB0
H11 IO49RSB0
H12 VCC
J1 GEB1/IO110RSB1
J2 IO115RSB1
J3 VCCIB1
J4 GEC0/IO111RSB1
J5 IO116RSB1
J6 IO117RSB1
J7 VCC
J8 TCK
J9 GDA2/IO70RSB1
J10 TDO
J11 GDA1/IO65RSB0
J12 GDB1/IO63RSB0
FG144
Pin Number A3P125 Function
Package Pin Assignments
4-14 Revision 5
K1 GEB0/IO109RSB1
K2 GEA1/IO108RSB1
K3 GEA0/IO107RSB1
K4 GEA2/IO106RSB1
K5 IO100RSB1
K6 IO98RSB1
K7 GND
K8 IO73RSB1
K9 GDC2/IO72RSB1
K10 GND
K11 GDA0/IO66RSB0
K12 GDB0/IO64RSB0
L1 GND
L2 VMV1
L3 GEB2/IO105RSB1
L4 IO102RSB1
L5 VCCIB1
L6 IO95RSB1
L7 IO85RSB1
L8 IO74RSB1
L9 TMS
L10 VJTAG
L11 VMV1
L12 TRST
M1 GNDQ
M2 GEC2/IO104RSB1
M3 IO103RSB1
M4 IO101RSB1
M5 IO97RSB1
M6 IO94RSB1
M7 IO86RSB1
M8 IO75RSB1
M9 TDI
M10 VCCIB1
M11 VPUMP
M12 GNDQ
FG144
Pin Number A3P125 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-15
FG144
Pin Number A3P250 Function
A1 GNDQ
A2 VMV0
A3 GAB0/IO02RSB0
A4 GAB1/IO03RSB0
A5 IO16RSB0
A6 GND
A7 IO29RSB0
A8 VCC
A9 IO33RSB0
A10 GBA0/IO39RSB0
A11 GBA1/IO40RSB0
A12 GNDQ
B1 GAB2/IO117UDB3
B2 GND
B3 GAA0/IO00RSB0
B4 GAA1/IO01RSB0
B5 IO14RSB0
B6 IO19RSB0
B7 IO22RSB0
B8 IO30RSB0
B9 GBB0/IO37RSB0
B10 GBB1/IO38RSB0
B11 GND
B12 VMV1
C1 IO117VDB3
C2 GFA2/IO107PPB3
C3 GAC2/IO116UDB3
C4 VCC
C5 IO12RSB0
C6 IO17RSB0
C7 IO24RSB0
C8 IO31RSB0
C9 IO34RSB0
C10 GBA2/IO41PDB1
C11 IO41NDB1
C12 GBC2/IO43PPB1
D1 IO112NDB3
D2 IO112PDB3
D3 IO116VDB3
D4 GAA2/IO118UPB3
D5 GAC0/IO04RSB0
D6 GAC1/IO05RSB0
D7 GBC0/IO35RSB0
D8 GBC1/IO36RSB0
D9 GBB2/IO42PDB1
D10 IO42NDB1
D11 IO43NPB1
D12 GCB1/IO49PPB1
E1 VCC
E2 GFC0/IO110NDB3
E3 GFC1/IO110PDB3
E4 VCCIB3
E5 IO118VPB3
E6 VCCIB0
E7 VCCIB0
E8 GCC1/IO48PDB1
E9 VCCIB1
E10 VCC
E11 GCA0/IO50NDB1
E12 IO51NDB1
F1 GFB0/IO109NPB3
F2 VCOMPLF
F3 GFB1/IO109PPB3
F4 IO107NPB3
F5 GND
F6 GND
F7 GND
F8 GCC0/IO48NDB1
F9 GCB0/IO49NPB1
F10 GND
F11 GCA1/IO50PDB1
F12 GCA2/IO51PDB1
FG144
Pin Number A3P250 Function
G1 GFA1/IO108PPB3
G2 GND
G3 VCCPLF
G4 GFA0/IO108NPB3
G5 GND
G6 GND
G7 GND
G8 GDC1/IO58UPB1
G9 IO53NDB1
G10 GCC2/IO53PDB1
G11 IO52NDB1
G12 GCB2/IO52PDB1
H1 VCC
H2 GFB2/IO106PDB3
H3 GFC2/IO105PSB3
H4 GEC1/IO100PDB3
H5 VCC
H6 IO79RSB2
H7 IO65RSB2
H8 GDB2/IO62RSB2
H9 GDC0/IO58VPB1
H10 VCCIB1
H11 IO54PSB1
H12 VCC
J1 GEB1/IO99PDB3
J2 IO106NDB3
J3 VCCIB3
J4 GEC0/IO100NDB3
J5 IO88RSB2
J6 IO81RSB2
J7 VCC
J8 TCK
J9 GDA2/IO61RSB2
J10 TDO
J11 GDA1/IO60UDB1
J12 GDB1/IO59UDB1
FG144
Pin Number A3P250 Function
Package Pin Assignments
4-16 Revision 5
K1 GEB0/IO99NDB3
K2 GEA1/IO98PDB3
K3 GEA0/IO98NDB3
K4 GEA2/IO97RSB2
K5 IO90RSB2
K6 IO84RSB2
K7 GND
K8 IO66RSB2
K9 GDC2/IO63RSB2
K10 GND
K11 GDA0/IO60VDB1
K12 GDB0/IO59VDB1
L1 GND
L2 VMV3
L3 GEB2/IO96RSB2
L4 IO91RSB2
L5 VCCIB2
L6 IO82RSB2
L7 IO80RSB2
L8 IO72RSB2
L9 TMS
L10 VJTAG
L11 VMV2
L12 TRST
M1 GNDQ
M2 GEC2/IO95RSB2
M3 IO92RSB2
M4 IO89RSB2
M5 IO87RSB2
M6 IO85RSB2
M7 IO78RSB2
M8 IO76RSB2
M9 TDI
M10 VCCIB2
M11 VPUMP
M12 GNDQ
FG144
Pin Number A3P250 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-17
FG144
Pin Number A3P1000 Function
A1 GNDQ
A2 VMV0
A3 GAB0/IO02RSB0
A4 GAB1/IO03RSB0
A5 IO10RSB0
A6 GND
A7 IO44RSB0
A8 VCC
A9 IO69RSB0
A10 GBA0/IO76RSB0
A11 GBA1/IO77RSB0
A12 GNDQ
B1 GAB2/IO224PDB3
B2 GND
B3 GAA0/IO00RSB0
B4 GAA1/IO01RSB0
B5 IO13RSB0
B6 IO26RSB0
B7 IO35RSB0
B8 IO60RSB0
B9 GBB0/IO74RSB0
B10 GBB1/IO75RSB0
B11 GND
B12 VMV1
C1 IO224NDB3
C2 GFA2/IO206PPB3
C3 GAC2/IO223PDB3
C4 VCC
C5 IO16RSB0
C6 IO29RSB0
C7 IO32RSB0
C8 IO63RSB0
C9 IO66RSB0
C10 GBA2/IO78PDB1
C11 IO78NDB1
C12 GBC2/IO80PPB1
D1 IO213PDB3
D2 IO213NDB3
D3 IO223NDB3
D4 GAA2/IO225PPB3
D5 GAC0/IO04RSB0
D6 GAC1/IO05RSB0
D7 GBC0/IO72RSB0
D8 GBC1/IO73RSB0
D9 GBB2/IO79PDB1
D10 IO79NDB1
D11 IO80NPB1
D12 GCB1/IO92PPB1
E1 VCC
E2 GFC0/IO209NDB3
E3 GFC1/IO209PDB3
E4 VCCIB3
E5 IO225NPB3
E6 VCCIB0
E7 VCCIB0
E8 GCC1/IO91PDB1
E9 VCCIB1
E10 VCC
E11 GCA0/IO93NDB1
E12 IO94NDB1
F1 GFB0/IO208NPB3
F2 VCOMPLF
F3 GFB1/IO208PPB3
F4 IO206NPB3
F5 GND
F6 GND
F7 GND
F8 GCC0/IO91NDB1
F9 GCB0/IO92NPB1
F10 GND
F11 GCA1/IO93PDB1
F12 GCA2/IO94PDB1
FG144
Pin Number A3P1000 Function
G1 GFA1/IO207PPB3
G2 GND
G3 VCCPLF
G4 GFA0/IO207NPB3
G5 GND
G6 GND
G7 GND
G8 GDC1/IO111PPB1
G9 IO96NDB1
G10 GCC2/IO96PDB1
G11 IO95NDB1
G12 GCB2/IO95PDB1
H1 VCC
H2 GFB2/IO205PDB3
H3 GFC2/IO204PSB3
H4 GEC1/IO190PDB3
H5 VCC
H6 IO105PDB1
H7 IO105NDB1
H8 GDB2/IO115RSB2
H9 GDC0/IO111NPB1
H10 VCCIB1
H11 IO101PSB1
H12 VCC
J1 GEB1/IO189PDB3
J2 IO205NDB3
J3 VCCIB3
J4 GEC0/IO190NDB3
J5 IO160RSB2
J6 IO157RSB2
J7 VCC
J8 TCK
J9 GDA2/IO114RSB2
J10 TDO
J11 GDA1/IO113PDB1
J12 GDB1/IO112PDB1
FG144
Pin Number A3P1000 Function
Package Pin Assignments
4-18 Revision 5
K1 GEB0/IO189NDB3
K2 GEA1/IO188PDB3
K3 GEA0/IO188NDB3
K4 GEA2/IO187RSB2
K5 IO169RSB2
K6 IO152RSB2
K7 GND
K8 IO117RSB2
K9 GDC2/IO116RSB2
K10 GND
K11 GDA0/IO113NDB1
K12 GDB0/IO112NDB1
L1 GND
L2 VMV3
L3 GEB2/IO186RSB2
L4 IO172RSB2
L5 VCCIB2
L6 IO153RSB2
L7 IO144RSB2
L8 IO140RSB2
L9 TMS
L10 VJTAG
L11 VMV2
L12 TRST
M1 GNDQ
M2 GEC2/IO185RSB2
M3 IO173RSB2
M4 IO168RSB2
M5 IO161RSB2
M6 IO156RSB2
M7 IO145RSB2
M8 IO141RSB2
M9 TDI
M10 VCCIB2
M11 VPUMP
M12 GNDQ
FG144
Pin Number A3P1000 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-19
FG256
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Note: This is the bottom view of the package.
1
3
5
791113
15 246
8
101214
16
C
E
G
J
L
N
R
D
F
H
K
M
P
T
B
A
A1 Ball Pad Corner
Package Pin Assignments
4-20 Revision 5
FG256
Pin Number A3P250 Function
A1 GND
A2 GAA0/IO00RSB0
A3 GAA1/IO01RSB0
A4 GAB0/IO02RSB0
A5 IO07RSB0
A6 IO10RSB0
A7 IO11RSB0
A8 IO15RSB0
A9 IO20RSB0
A10 IO25RSB0
A11 IO29RSB0
A12 IO33RSB0
A13 GBB1/IO38RSB0
A14 GBA0/IO39RSB0
A15 GBA1/IO40RSB0
A16 GND
B1 GAB2/IO117UDB3
B2 GAA2/IO118UDB3
B3 NC
B4 GAB1/IO03RSB0
B5 IO06RSB0
B6 IO09RSB0
B7 IO12RSB0
B8 IO16RSB0
B9 IO21RSB0
B10 IO26RSB0
B11 IO30RSB0
B12 GBC1/IO36RSB0
B13 GBB0/IO37RSB0
B14 NC
B15 GBA2/IO41PDB1
B16 IO41NDB1
C1 IO117VDB3
C2 IO118VDB3
C3 NC
C4 NC
C5 GAC0/IO04RSB0
C6 GAC1/IO05RSB0
C7 IO13RSB0
C8 IO17RSB0
C9 IO22RSB0
C10 IO27RSB0
C11 IO31RSB0
C12 GBC0/IO35RSB0
C13 IO34RSB0
C14 NC
C15 IO42NPB1
C16 IO44PDB1
D1 IO114VDB3
D2 IO114UDB3
D3 GAC2/IO116UDB3
D4 NC
D5 GNDQ
D6 IO08RSB0
D7 IO14RSB0
D8 IO18RSB0
D9 IO23RSB0
D10 IO28RSB0
D11 IO32RSB0
D12 GNDQ
D13 NC
D14 GBB2/IO42PPB1
D15 NC
D16 IO44NDB1
E1 IO113PDB3
E2 NC
E3 IO116VDB3
E4 IO115UDB3
E5 VMV0
E6 VCCIB0
E7 VCCIB0
E8 IO19RSB0
FG256
Pin Number A3P250 Function
E9 IO24RSB0
E10 VCCIB0
E11 VCCIB0
E12 VMV1
E13 GBC2/IO43PDB1
E14 IO46RSB1
E15 NC
E16 IO45PDB1
F1 IO113NDB3
F2 IO112PPB3
F3 NC
F4 IO115VDB3
F5 VCCIB3
F6 GND
F7 VCC
F8 VCC
F9 VCC
F10 VCC
F11 GND
F12 VCCIB1
F13 IO43NDB1
F14 NC
F15 IO47PPB1
F16 IO45NDB1
G1 IO111NDB3
G2 IO111PDB3
G3 IO112NPB3
G4 GFC1/IO110PPB3
G5 VCCIB3
G6 VCC
G7 GND
G8 GND
G9 GND
G10 GND
G11 VCC
G12 VCCIB1
FG256
Pin Number A3P250 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-21
G13 GCC1/IO48PPB1
G14 IO47NPB1
G15 IO54PDB1
G16 IO54NDB1
H1 GFB0/IO109NPB3
H2 GFA0/IO108NDB3
H3 GFB1/IO109PPB3
H4 VCOMPLF
H5 GFC0/IO110NPB3
H6 VCC
H7 GND
H8 GND
H9 GND
H10 GND
H11 VCC
H12 GCC0/IO48NPB1
H13 GCB1/IO49PPB1
H14 GCA0/IO50NPB1
H15 NC
H16 GCB0/IO49NPB1
J1 GFA2/IO107PPB3
J2 GFA1/IO108PDB3
J3 VCCPLF
J4 IO106NDB3
J5 GFB2/IO106PDB3
J6 VCC
J7 GND
J8 GND
J9 GND
J10 GND
J11 VCC
J12 GCB2/IO52PPB1
J13 GCA1/IO50PPB1
J14 GCC2/IO53PPB1
J15 NC
J16 GCA2/IO51PDB1
FG256
Pin Number A3P250 Function
K1 GFC2/IO105PDB3
K2 IO107NPB3
K3 IO104PPB3
K4 NC
K5 VCCIB3
K6 VCC
K7 GND
K8 GND
K9 GND
K10 GND
K11 VCC
K12 VCCIB1
K13 IO52NPB1
K14 IO55RSB1
K15 IO53NPB1
K16 IO51NDB1
L1 IO105NDB3
L2 IO104NPB3
L3 NC
L4 IO102RSB3
L5 VCCIB3
L6 GND
L7 VCC
L8 VCC
L9 VCC
L10 VCC
L11 GND
L12 VCCIB1
L13 GDB0/IO59VPB1
L14 IO57VDB1
L15 IO57UDB1
L16 IO56PDB1
M1 IO103PDB3
M2 NC
M3 IO101NPB3
M4 GEC0/IO100NPB3
FG256
Pin Number A3P250 Function
M5 VMV3
M6 VCCIB2
M7 VCCIB2
M8 NC
M9 IO74RSB2
M10 VCCIB2
M11 VCCIB2
M12 VMV2
M13 NC
M14 GDB1/IO59UPB1
M15 GDC1/IO58UDB1
M16 IO56NDB1
N1 IO103NDB3
N2 IO101PPB3
N3 GEC1/IO100PPB3
N4 NC
N5 GNDQ
N6 GEA2/IO97RSB2
N7 IO86RSB2
N8 IO82RSB2
N9 IO75RSB2
N10 IO69RSB2
N11 IO64RSB2
N12 GNDQ
N13 NC
N14 VJTAG
N15 GDC0/IO58VDB1
N16 GDA1/IO60UDB1
P1 GEB1/IO99PDB3
P2 GEB0/IO99NDB3
P3 NC
P4 NC
P5 IO92RSB2
P6 IO89RSB2
P7 IO85RSB2
P8 IO81RSB2
FG256
Pin Number A3P250 Function
Package Pin Assignments
4-22 Revision 5
P9 IO76RSB2
P10 IO71RSB2
P11 IO66RSB2
P12 NC
P13 TCK
P14 VPUMP
P15 TRST
P16 GDA0/IO60VDB1
R1 GEA1/IO98PDB3
R2 GEA0/IO98NDB3
R3 NC
R4 GEC2/IO95RSB2
R5 IO91RSB2
R6 IO88RSB2
R7 IO84RSB2
R8 IO80RSB2
R9 IO77RSB2
R10 IO72RSB2
R11 IO68RSB2
R12 IO65RSB2
R13 GDB2/IO62RSB2
R14 TDI
R15 NC
R16 TDO
T1 GND
T2 IO94RSB2
T3 GEB2/IO96RSB2
T4 IO93RSB2
T5 IO90RSB2
T6 IO87RSB2
T7 IO83RSB2
T8 IO79RSB2
T9 IO78RSB2
T10 IO73RSB2
T11 IO70RSB2
T12 GDC2/IO63RSB2
FG256
Pin Number A3P250 Function
T13 IO67RSB2
T14 GDA2/IO61RSB2
T15 TMS
T16 GND
FG256
Pin Number A3P250 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-23
FG256
Pin Number A3P1000 Function
A1 GND
A2 GAA0/IO00RSB0
A3 GAA1/IO01RSB0
A4 GAB0/IO02RSB0
A5 IO16RSB0
A6 IO22RSB0
A7 IO28RSB0
A8 IO35RSB0
A9 IO45RSB0
A10 IO50RSB0
A11 IO55RSB0
A12 IO61RSB0
A13 GBB1/IO75RSB0
A14 GBA0/IO76RSB0
A15 GBA1/IO77RSB0
A16 GND
B1 GAB2/IO224PDB3
B2 GAA2/IO225PDB3
B3 GNDQ
B4 GAB1/IO03RSB0
B5 IO17RSB0
B6 IO21RSB0
B7 IO27RSB0
B8 IO34RSB0
B9 IO44RSB0
B10 IO51RSB0
B11 IO57RSB0
B12 GBC1/IO73RSB0
B13 GBB0/IO74RSB0
B14 IO71RSB0
B15 GBA2/IO78PDB1
B16 IO81PDB1
C1 IO224NDB3
C2 IO225NDB3
C3 VMV3
C4 IO11RSB0
C5 GAC0/IO04RSB0
C6 GAC1/IO05RSB0
C7 IO25RSB0
C8 IO36RSB0
C9 IO42RSB0
C10 IO49RSB0
C11 IO56RSB0
C12 GBC0/IO72RSB0
C13 IO62RSB0
C14 VMV0
C15 IO78NDB1
C16 IO81NDB1
D1 IO222NDB3
D2 IO222PDB3
D3 GAC2/IO223PDB3
D4 IO223NDB3
D5 GNDQ
D6 IO23RSB0
D7 IO29RSB0
D8 IO33RSB0
D9 IO46RSB0
D10 IO52RSB0
D11 IO60RSB0
D12 GNDQ
D13 IO80NDB1
D14 GBB2/IO79PDB1
D15 IO79NDB1
D16 IO82NSB1
E1 IO217PDB3
E2 IO218PDB3
E3 IO221NDB3
E4 IO221PDB3
E5 VMV0
E6 VCCIB0
E7 VCCIB0
E8 IO38RSB0
FG256
Pin Number A3P1000 Function
E9 IO47RSB0
E10 VCCIB0
E11 VCCIB0
E12 VMV1
E13 GBC2/IO80PDB1
E14 IO83PPB1
E15 IO86PPB1
E16 IO87PDB1
F1 IO217NDB3
F2 IO218NDB3
F3 IO216PDB3
F4 IO216NDB3
F5 VCCIB3
F6 GND
F7 VCC
F8 VCC
F9 VCC
F10 VCC
F11 GND
F12 VCCIB1
F13 IO83NPB1
F14 IO86NPB1
F15 IO90PPB1
F16 IO87NDB1
G1 IO210PSB3
G2 IO213NDB3
G3 IO213PDB3
G4 GFC1/IO209PPB3
G5 VCCIB3
G6 VCC
G7 GND
G8 GND
G9 GND
G10 GND
G11 VCC
G12 VCCIB1
FG256
Pin Number A3P1000 Function
Package Pin Assignments
4-24 Revision 5
G13 GCC1/IO91PPB1
G14 IO90NPB1
G15 IO88PDB1
G16 IO88NDB1
H1 GFB0/IO208NPB3
H2 GFA0/IO207NDB3
H3 GFB1/IO208PPB3
H4 VCOMPLF
H5 GFC0/IO209NPB3
H6 VCC
H7 GND
H8 GND
H9 GND
H10 GND
H11 VCC
H12 GCC0/IO91NPB1
H13 GCB1/IO92PPB1
H14 GCA0/IO93NPB1
H15 IO96NPB1
H16 GCB0/IO92NPB1
J1 GFA2/IO206PSB3
J2 GFA1/IO207PDB3
J3 VCCPLF
J4 IO205NDB3
J5 GFB2/IO205PDB3
J6 VCC
J7 GND
J8 GND
J9 GND
J10 GND
J11 VCC
J12 GCB2/IO95PPB1
J13 GCA1/IO93PPB1
J14 GCC2/IO96PPB1
J15 IO100PPB1
J16 GCA2/IO94PSB1
FG256
Pin Number A3P1000 Function
K1 GFC2/IO204PDB3
K2 IO204NDB3
K3 IO203NDB3
K4 IO203PDB3
K5 VCCIB3
K6 VCC
K7 GND
K8 GND
K9 GND
K10 GND
K11 VCC
K12 VCCIB1
K13 IO95NPB1
K14 IO100NPB1
K15 IO102NDB1
K16 IO102PDB1
L1 IO202NDB3
L2 IO202PDB3
L3 IO196PPB3
L4 IO193PPB3
L5 VCCIB3
L6 GND
L7 VCC
L8 VCC
L9 VCC
L10 VCC
L11 GND
L12 VCCIB1
L13 GDB0/IO112NPB1
L14 IO106NDB1
L15 IO106PDB1
L16 IO107PDB1
M1 IO197NSB3
M2 IO196NPB3
M3 IO193NPB3
M4 GEC0/IO190NPB3
FG256
Pin Number A3P1000 Function
M5 VMV3
M6 VCCIB2
M7 VCCIB2
M8 IO147RSB2
M9 IO136RSB2
M10 VCCIB2
M11 VCCIB2
M12 VMV2
M13 IO110NDB1
M14 GDB1/IO112PPB1
M15 GDC1/IO111PDB1
M16 IO107NDB1
N1 IO194PSB3
N2 IO192PPB3
N3 GEC1/IO190PPB3
N4 IO192NPB3
N5 GNDQ
N6 GEA2/IO187RSB2
N7 IO161RSB2
N8 IO155RSB2
N9 IO141RSB2
N10 IO129RSB2
N11 IO124RSB2
N12 GNDQ
N13 IO110PDB1
N14 VJTAG
N15 GDC0/IO111NDB1
N16 GDA1/IO113PDB1
P1 GEB1/IO189PDB3
P2 GEB0/IO189NDB3
P3 VMV2
P4 IO179RSB2
P5 IO171RSB2
P6 IO165RSB2
P7 IO159RSB2
P8 IO151RSB2
FG256
Pin Number A3P1000 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-25
P9 IO137RSB2
P10 IO134RSB2
P11 IO128RSB2
P12 VMV1
P13 TCK
P14 VPUMP
P15 TRST
P16 GDA0/IO113NDB1
R1 GEA1/IO188PDB3
R2 GEA0/IO188NDB3
R3 IO184RSB2
R4 GEC2/IO185RSB2
R5 IO168RSB2
R6 IO163RSB2
R7 IO157RSB2
R8 IO149RSB2
R9 IO143RSB2
R10 IO138RSB2
R11 IO131RSB2
R12 IO125RSB2
R13 GDB2/IO115RSB2
R14 TDI
R15 GNDQ
R16 TDO
T1 GND
T2 IO183RSB2
T3 GEB2/IO186RSB2
T4 IO172RSB2
T5 IO170RSB2
T6 IO164RSB2
T7 IO158RSB2
T8 IO153RSB2
T9 IO142RSB2
T10 IO135RSB2
T11 IO130RSB2
T12 GDC2/IO116RSB2
FG256
Pin Number A3P1000 Function
T13 IO120RSB2
T14 GDA2/IO114RSB2
T15 TMS
T16 GND
FG256
Pin Number A3P1000 Function
Package Pin Assignments
4-26 Revision 5
FG484
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Note: This is the bottom view of the package.
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
12345678910111213141516171819202122 A1 Ball Pad Corner
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-27
FG484
Pin Number A3P1000 Function
A1 GND
A2 GND
A3 VCCIB0
A4 IO07RSB0
A5 IO09RSB0
A6 IO13RSB0
A7 IO18RSB0
A8 IO20RSB0
A9 IO26RSB0
A10 IO32RSB0
A11 IO40RSB0
A12 IO41RSB0
A13 IO53RSB0
A14 IO59RSB0
A15 IO64RSB0
A16 IO65RSB0
A17 IO67RSB0
A18 IO69RSB0
A19 NC
A20 VCCIB0
A21 GND
A22 GND
B1 GND
B2 VCCIB3
B3 NC
B4 IO06RSB0
B5 IO08RSB0
B6 IO12RSB0
B7 IO15RSB0
B8 IO19RSB0
B9 IO24RSB0
B10 IO31RSB0
B11 IO39RSB0
B12 IO48RSB0
B13 IO54RSB0
B14 IO58RSB0
B15 IO63RSB0
B16 IO66RSB0
B17 IO68RSB0
B18 IO70RSB0
B19 NC
B20 NC
B21 VCCIB1
B22 GND
C1 VCCIB3
C2 IO220PDB3
C3 NC
C4 NC
C5 GND
C6 IO10RSB0
C7 IO14RSB0
C8 VCC
C9 VCC
C10 IO30RSB0
C11 IO37RSB0
C12 IO43RSB0
C13 NC
C14 VCC
C15 VCC
C16 NC
C17 NC
C18 GND
C19 NC
C20 NC
C21 NC
C22 VCCIB1
D1 IO219PDB3
D2 IO220NDB3
D3 NC
D4 GND
D5 GAA0/IO00RSB0
D6 GAA1/IO01RSB0
FG484
Pin Number A3P1000 Function
D7 GAB0/IO02RSB0
D8 IO16RSB0
D9 IO22RSB0
D10 IO28RSB0
D11 IO35RSB0
D12 IO45RSB0
D13 IO50RSB0
D14 IO55RSB0
D15 IO61RSB0
D16 GBB1/IO75RSB0
D17 GBA0/IO76RSB0
D18 GBA1/IO77RSB0
D19 GND
D20 NC
D21 NC
D22 NC
E1 IO219NDB3
E2 NC
E3 GND
E4 GAB2/IO224PDB3
E5 GAA2/IO225PDB3
E6 GNDQ
E7 GAB1/IO03RSB0
E8 IO17RSB0
E9 IO21RSB0
E10 IO27RSB0
E11 IO34RSB0
E12 IO44RSB0
E13 IO51RSB0
E14 IO57RSB0
E15 GBC1/IO73RSB0
E16 GBB0/IO74RSB0
E17 IO71RSB0
E18 GBA2/IO78PDB1
E19 IO81PDB1
E20 GND
FG484
Pin Number A3P1000 Function
Package Pin Assignments
4-28 Revision 5
E21 NC
E22 IO84PDB1
F1 NC
F2 IO215PDB3
F3 IO215NDB3
F4 IO224NDB3
F5 IO225NDB3
F6 VMV3
F7 IO11RSB0
F8 GAC0/IO04RSB0
F9 GAC1/IO05RSB0
F10 IO25RSB0
F11 IO36RSB0
F12 IO42RSB0
F13 IO49RSB0
F14 IO56RSB0
F15 GBC0/IO72RSB0
F16 IO62RSB0
F17 VMV0
F18 IO78NDB1
F19 IO81NDB1
F20 IO82PPB1
F21 NC
F22 IO84NDB1
G1 IO214NDB3
G2 IO214PDB3
G3 NC
G4 IO222NDB3
G5 IO222PDB3
G6 GAC2/IO223PDB3
G7 IO223NDB3
G8 GNDQ
G9 IO23RSB0
G10 IO29RSB0
G11 IO33RSB0
G12 IO46RSB0
FG484
Pin Number A3P1000 Function
G13 IO52RSB0
G14 IO60RSB0
G15 GNDQ
G16 IO80NDB1
G17 GBB2/IO79PDB1
G18 IO79NDB1
G19 IO82NPB1
G20 IO85PDB1
G21 IO85NDB1
G22 NC
H1 NC
H2 NC
H3 VCC
H4 IO217PDB3
H5 IO218PDB3
H6 IO221NDB3
H7 IO221PDB3
H8 VMV0
H9 VCCIB0
H10 VCCIB0
H11 IO38RSB0
H12 IO47RSB0
H13 VCCIB0
H14 VCCIB0
H15 VMV1
H16 GBC2/IO80PDB1
H17 IO83PPB1
H18 IO86PPB1
H19 IO87PDB1
H20 VCC
H21 NC
H22 NC
J1 IO212NDB3
J2 IO212PDB3
J3 NC
J4 IO217NDB3
FG484
Pin Number A3P1000 Function
J5 IO218NDB3
J6 IO216PDB3
J7 IO216NDB3
J8 VCCIB3
J9 GND
J10 VCC
J11 VCC
J12 VCC
J13 VCC
J14 GND
J15 VCCIB1
J16 IO83NPB1
J17 IO86NPB1
J18 IO90PPB1
J19 IO87NDB1
J20 NC
J21 IO89PDB1
J22 IO89NDB1
K1 IO211PDB3
K2 IO211NDB3
K3 NC
K4 IO210PPB3
K5 IO213NDB3
K6 IO213PDB3
K7 GFC1/IO209PPB3
K8 VCCIB3
K9 VCC
K10 GND
K11 GND
K12 GND
K13 GND
K14 VCC
K15 VCCIB1
K16 GCC1/IO91PPB1
K17 IO90NPB1
K18 IO88PDB1
FG484
Pin Number A3P1000 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-29
K19 IO88NDB1
K20 IO94NPB1
K21 IO98NDB1
K22 IO98PDB1
L1 NC
L2 IO200PDB3
L3 IO210NPB3
L4 GFB0/IO208NPB3
L5 GFA0/IO207NDB3
L6 GFB1/IO208PPB3
L7 VCOMPLF
L8 GFC0/IO209NPB3
L9 VCC
L10 GND
L11 GND
L12 GND
L13 GND
L14 VCC
L15 GCC0/IO91NPB1
L16 GCB1/IO92PPB1
L17 GCA0/IO93NPB1
L18 IO96NPB1
L19 GCB0/IO92NPB1
L20 IO97PDB1
L21 IO97NDB1
L22 IO99NPB1
M1 NC
M2 IO200NDB3
M3 IO206NDB3
M4 GFA2/IO206PDB3
M5 GFA1/IO207PDB3
M6 VCCPLF
M7 IO205NDB3
M8 GFB2/IO205PDB3
M9 VCC
M10 GND
FG484
Pin Number A3P1000 Function
M11 GND
M12 GND
M13 GND
M14 VCC
M15 GCB2/IO95PPB1
M16 GCA1/IO93PPB1
M17 GCC2/IO96PPB1
M18 IO100PPB1
M19 GCA2/IO94PPB1
M20 IO101PPB1
M21 IO99PPB1
M22 NC
N1 IO201NDB3
N2 IO201PDB3
N3 NC
N4 GFC2/IO204PDB3
N5 IO204NDB3
N6 IO203NDB3
N7 IO203PDB3
N8 VCCIB3
N9 VCC
N10 GND
N11 GND
N12 GND
N13 GND
N14 VCC
N15 VCCIB1
N16 IO95NPB1
N17 IO100NPB1
N18 IO102NDB1
N19 IO102PDB1
N20 NC
N21 IO101NPB1
N22 IO103PDB1
P1 NC
P2 IO199PDB3
FG484
Pin Number A3P1000 Function
P3 IO199NDB3
P4 IO202NDB3
P5 IO202PDB3
P6 IO196PPB3
P7 IO193PPB3
P8 VCCIB3
P9 GND
P10 VCC
P11 VCC
P12 VCC
P13 VCC
P14 GND
P15 VCCIB1
P16 GDB0/IO112NPB1
P17 IO106NDB1
P18 IO106PDB1
P19 IO107PDB1
P20 NC
P21 IO104PDB1
P22 IO103NDB1
R1 NC
R2 IO197PPB3
R3 VCC
R4 IO197NPB3
R5 IO196NPB3
R6 IO193NPB3
R7 GEC0/IO190NPB3
R8 VMV3
R9 VCCIB2
R10 VCCIB2
R11 IO147RSB2
R12 IO136RSB2
R13 VCCIB2
R14 VCCIB2
R15 VMV2
R16 IO110NDB1
FG484
Pin Number A3P1000 Function
Package Pin Assignments
4-30 Revision 5
R17 GDB1/IO112PPB1
R18 GDC1/IO111PDB1
R19 IO107NDB1
R20 VCC
R21 IO104NDB1
R22 IO105PDB1
T1 IO198PDB3
T2 IO198NDB3
T3 NC
T4 IO194PPB3
T5 IO192PPB3
T6 GEC1/IO190PPB3
T7 IO192NPB3
T8 GNDQ
T9 GEA2/IO187RSB2
T10 IO161RSB2
T11 IO155RSB2
T12 IO141RSB2
T13 IO129RSB2
T14 IO124RSB2
T15 GNDQ
T16 IO110PDB1
T17 VJTAG
T18 GDC0/IO111NDB1
T19 GDA1/IO113PDB1
T20 NC
T21 IO108PDB1
T22 IO105NDB1
U1 IO195PDB3
U2 IO195NDB3
U3 IO194NPB3
U4 GEB1/IO189PDB3
U5 GEB0/IO189NDB3
U6 VMV2
U7 IO179RSB2
U8 IO171RSB2
FG484
Pin Number A3P1000 Function
U9 IO165RSB2
U10 IO159RSB2
U11 IO151RSB2
U12 IO137RSB2
U13 IO134RSB2
U14 IO128RSB2
U15 VMV1
U16 TCK
U17 VPUMP
U18 TRST
U19 GDA0/IO113NDB1
U20 NC
U21 IO108NDB1
U22 IO109PDB1
V1 NC
V2 NC
V3 GND
V4 GEA1/IO188PDB3
V5 GEA0/IO188NDB3
V6 IO184RSB2
V7 GEC2/IO185RSB2
V8 IO168RSB2
V9 IO163RSB2
V10 IO157RSB2
V11 IO149RSB2
V12 IO143RSB2
V13 IO138RSB2
V14 IO131RSB2
V15 IO125RSB2
V16 GDB2/IO115RSB2
V17 TDI
V18 GNDQ
V19 TDO
V20 GND
V21 NC
V22 IO109NDB1
FG484
Pin Number A3P1000 Function
W1 NC
W2 IO191PDB3
W3 NC
W4 GND
W5 IO183RSB2
W6 GEB2/IO186RSB2
W7 IO172RSB2
W8 IO170RSB2
W9 IO164RSB2
W10 IO158RSB2
W11 IO153RSB2
W12 IO142RSB2
W13 IO135RSB2
W14 IO130RSB2
W15 GDC2/IO116RSB2
W16 IO120RSB2
W17 GDA2/IO114RSB2
W18 TMS
W19 GND
W20 NC
W21 NC
W22 NC
Y1 VCCIB3
Y2 IO191NDB3
Y3 NC
Y4 IO182RSB2
Y5 GND
Y6 IO177RSB2
Y7 IO174RSB2
Y8 VCC
Y9 VCC
Y10 IO154RSB2
Y11 IO148RSB2
Y12 IO140RSB2
Y13 NC
Y14 VCC
FG484
Pin Number A3P1000 Function
Automotive ProASIC3 Flash Family FPGAs
Revision 5 4-31
Y15 VCC
Y16 NC
Y17 NC
Y18 GND
Y19 NC
Y20 NC
Y21 NC
Y22 VCCIB1
AA1 GND
AA2 VCCIB3
AA3 NC
AA4 IO181RSB2
AA5 IO178RSB2
AA6 IO175RSB2
AA7 IO169RSB2
AA8 IO166RSB2
AA9 IO160RSB2
AA10 IO152RSB2
AA11 IO146RSB2
AA12 IO139RSB2
AA13 IO133RSB2
AA14 NC
AA15 NC
AA16 IO122RSB2
AA17 IO119RSB2
AA18 IO117RSB2
AA19 NC
AA20 NC
AA21 VCCIB1
AA22 GND
AB1 GND
AB2 GND
AB3 VCCIB2
AB4 IO180RSB2
AB5 IO176RSB2
AB6 IO173RSB2
FG484
Pin Number A3P1000 Function
AB7 IO167RSB2
AB8 IO162RSB2
AB9 IO156RSB2
AB10 IO150RSB2
AB11 IO145RSB2
AB12 IO144RSB2
AB13 IO132RSB2
AB14 IO127RSB2
AB15 IO126RSB2
AB16 IO123RSB2
AB17 IO121RSB2
AB18 IO118RSB2
AB19 NC
AB20 VCCIB2
AB21 GND
AB22 GND
FG484
Pin Number A3P1000 Function
Revision 5 5-1
5 – Datasheet Information
List of Changes
The following table lists critical changes that were made in each revision of the Automotive ProASIC3
datasheet.
Revision Changes Page
Revision 5
(January 2013)
The "Automotive ProASIC3 Ordering Information" section has been updated to
mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement
IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43222).
1-III
Added a note to Table 2-2 • Recommended Operating Conditions (SAR 43675): The
programming temperature range supported is Tambient = 0°C to 85°C.
2-2
The note in Table 2-116 • Automotive ProASIC3 CCC/PLL Specification referring the
reader to SmartGen was revised to refer instead to the online help associated with
the core (SAR 42560).
2-80
Live at Power-Up (LAPU) has been replaced with ’Instant On’. NA
Revision 4
(September 2012)
The "Specifying I/O States During Programming" section is new (SAR 34691). 1-6
Table 2-2 • Recommended Operating Conditions was revised to change VPUMP
values for programming mode from "3.0 to 3.6" to "3.15 to 3.45" (SAR 34703).
2-2
Maximum values for VIL and VIH were corrected in LVPECL Table 2-86 • Minimum
and Maximum DC Input and Output Levels (SAR 37693).
2-52
Values were added for FDDRIMAX and FDDOMAX in the following tables (SAR 34804):
Table 2-99 • Input DDR Propagation Delays (TJ = 135°C)
Table 2-100 • Input DDR Propagation Delays (TJ = 115°C)
Table 2-102 • Output DDR Propagation Delays (TJ = 135°C)
Table 2-103 • Output DDR Propagation Delays (TJ = 115°C)
2-64 to
2-68
Added values for minimum pulse width and removed the FRMAX row from
Table 2-108 through Tab l e 2- 11 5 in the "Global Tree Timing Characteristics" section.
Use the software to determine the FRMAX for the device you are using (SAR 36966).
2-76
SRAM collision data was added to Table 2-117 • RAM4K9 through Table 2-120 •
RAM512X18. Maximum frequency, FMAX, was updated in Table 2-118 • RAM512X18
(SAR 40859).
2-86 to
2-89
The "VMVx I/O Supply Voltage (quiet)" section was revised. The sentence, "Within
the package, the VMV plane is decoupled from the simultaneous switching noise
originating from the output buffer VCCI domain" was replaced with, "Within the
package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR
38323). VMV pins must be connected to the corresponding VCCI pins, as noted in
the "VMVx I/O Supply Voltage (quiet)" section, for an ESD enhancement.
3-1
Libero Integrated Design Environment (IDE) was changed to Libero Systeom-on-
Chip (SoC) throughout the document (SAR 40266).
N/A
Revision 3
(September 2012)
The "Security" section was modified to clarify that Microsemi does not support
read-back of programmed data.
1-1
Datasheet Information
5-2 Revision 5
Revision 2
(May 2012)
The "Extended Temperature AEC-Q100–Qualified Devices" section was modified to
include the low end of the temperature range, –40°C, for Grade 1 and Grade 2
AEC-Q100 qualified devices (SAR 34915).
I
The "In-System Programming (ISP) and Security" section and "Security" section
were revised to clarify that although no existing security measures can give an
absolute guarantee, Microsemi FPGAs implement the best security available in the
industry (SAR 34674).
I, 1-1
The Y security option and Licensed DPA Logo were added to the "Automotive
ProASIC3 Ordering Information" section. The trademarked Licensed DPA Logo
identifies that a product is covered by a DPA counter-measures license from
Cryptography Research (SAR 34719).
III
A note defining TA and TJ was added to the "Automotive ProASIC3 Ordering
Information" section (SAR 37547).
III
The following sentence was deleted from the "Advanced Architecture" section: "In
addition, extensive on-chip programming circuitry allows for rapid, single-voltage
(3.3 V) programming of Automotive ProASIC3 devices via an IEEE 1532 JTAG
interface" (SAR 34682).
1-3
In Table 2-2 • Recommended Operating Conditions, VCCPLL analog power supply
(PLL) was changed from "1.4 to 1.6" to "1.425 to 1.575" (SAR 34718).
2-2
The reference to guidelines for global spines and VersaTile rows, given in the "Global
Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture"
section of the Global Resources chapter in the Automotive ProASIC3 FPGA Fabric
User's Guide (SAR 34738).
2-10
tDOUT was corrected to tDIN in Figure 2-4 • Input Buffer Timing Model and Delays
(example) (SAR 37111).
2-13
The equations in the notes for Table 2-27 • I/O Weak Pull-Up/Pull-Down Resistances
were corrected (SAR 34754).
2-23
The AC Loading figures in the "Single-Ended I/O Characteristics" section were
updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O
Software Settings" section (SAR 34882).
2-27
The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34795):
"It uses a 5 V–tolerant input buffer and push-pull output buffer."
2-33
The table notes for Table 2-82 • Minimum and Maximum DC Input and Output Levels
were not necessary and were removed (SAR 34811).
2-50
The following figures were deleted (SAR 29991). Reference was made to a new
application note, Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs, which covers these cases in detail (SAR 34861).
Figure 2-35 • Write Access after Write to Same Address
Figure 2-36 • Read Access after Write to Same Address
Figure 2-35 • Read Access after Write to Same Address
The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics"
tables, Figure 2-39 • FIFO Reset, and the FIFO "Timing Characteristics" tables were
revised to ensure consistency with the software names (SAR 35744).
2-83,
2-86,
2-92, 2-94
Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 34838). 2-91
Table 2-116 • Automotive ProASIC3 CCC/PLL Specification was updated. A note
was added to indicate that when the CCC/PLL core is generated by Microsemi core
generator software, not all delay values of the specified delay increments are
available (SAR 34822).
2-80
Revision Changes Page
Automotive ProASIC3 Flash Family FPGAs
Revision 5 5-3
Revision 2
(continued)
The "Pin Descriptions and Packaging" chapter has been added (SAR 34767), 3-1
The "VQ100" pin table for A3P125 has been added (SAR 37944). 4-3
Package names used in the "Package Pin Assignments" section were revised to
match standards given in Package Mechanical Drawings (SAR 34767).
4-1
July 2010 The versioning system for datasheets has been changed. Datasheets are assigned a
revision number that increments each time the datasheet is revised. The "Automotive
ProASIC3 Device Status" table on page II indicates the status for each device in the
device family.
N/A
Revision Changes Page
Revision 1
(Dec 2009)
Product Brief v1.1
The QNG132 package was added to the "Automotive ProASIC3 Product Family"
table, "I/Os Per Package" table, "Automotive ProASIC3 Ordering Information", and
"Temperature Grade Offerings".
IIV
Packaging v1.1 Pin tables for A3P125 and A3P250 were added for the "QN132" package. 4-6
Revision Changes Page
Datasheet Information
5-4 Revision 5
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheet parameters are published before
data has been fully characterized from silicon devices. The data provided for a given device, as
highlighted in the "Automotive ProASIC3 Device Status" table on page II, is designated as either "Product
Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general
product information. This document gives an overview of specific device and family information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production. This label only applies to the
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not
been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is
believed to be correct, but changes are possible.
Production
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations (EAR).
They could require an approved export license prior to export from the United States. An export includes
release of product or disclosure of technology to a foreign national inside or outside the United States.
Safety Critical, Life Support, and High-Reliability Applications
Policy
The products described in this advance status document may not have completed the Microsemi
qualification process. Products may be amended or enhanced during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the responsibility of
each customer to ensure the fitness of any product (but especially a new product) for a particular
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating
to life-support applications. A reliability report covering all of the SoC Products Group’s products is
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for
additional reliability information.
51700099-5/01.13
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996