(R) XTR105 XTR 105 XTR 105 www.burr-brown.com/databook/XTR105.html 4-20mA CURRENT TRANSMITTER with Sensor Excitation and Linearization FEATURES APPLICATIONS LOW UNADJUSTED ERROR TWO PRECISION CURRENT SOURCES 800A EACH INDUSTRIAL PROCESS CONTROL FACTORY AUTOMATION RTD OR BRIDGE EXCITATION REMOTE TEMPERATURE AND PRESSURE TRANSDUCERS SCADA REMOTE DATA ACQUISITION LINEARIZATION TWO OR THREE-WIRE RTD OPERATION LOW OFFSET DRIFT: 0.4V/C Pt100 NONLINEARITY CORRECTION USING XTR105 LOW OUTPUT CURRENT NOISE: 30nAp-p 5 HIGH PSR: 110dB min 4 Nonlinearity (%) HIGH CMR: 86dB min WIDE SUPPLY RANGE: 7.5V TO 36V 14-PIN DIP AND SO-14 SOIC PACKAGES DESCRIPTION 3 Corrected Nonlinearity 1 0 The XTR105 is a monolithic 4-20mA, two-wire current transmitter with two precision current sources. It provides complete current excitation for Platinum RTD temperature sensors and bridges, instrumentation amplifier, and current output circuitry on a single integrated circuit. -1 -200C +850C Process Temperature (C) Versatile linearization circuitry provides a 2nd-order correction to the RTD, typically achieving a 40:1 improvement in linearity. Instrumentation amplifier gain can be configured for a wide range of temperature or pressure measurements. Total unadjusted error of the complete current transmitter is low enough to permit use without adjustment in many applications. This includes zero output current drift, span drift and nonlinearity. The XTR105 operates on loop power supply voltages down to 7.5V. Uncorrected RTD Nonlinearity 2 IR = 0.8mA IR = 0.8mA VLIN VREG 7.5V to 36V + VPS 4-20 mA VO XTR105 RG RL RTD The XTR105 is available in 14-pin plastic DIP and SO-14 surface-mount packages and is specified for the -40C to +85C industrial temperature range. - International Airport Industrial Park * Mailing Address: PO Box 11400, Tucson, AZ 85734 * Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 * Tel: (520) 746-1111 * Twx: 910-952-1111 Internet: http://www.burr-brown.com/ * FAXLine: (800) 548-6133 (US/Canada Only) * Cable: BBRCORP * Telex: 066-6491 * FAX: (520) 889-1510 * Immediate Product Info: (800) 548-6132 (R) (c) 1997 Burr-Brown Corporation SBOS061 PDS-1362B 1 XTR105 Printed in U.S.A. February, 1997 SPECIFICATIONS At TA = +25C, V+ = 24V, and TIP29C external transistor, unless otherwise noted. XTR105P, U PARAMETER CONDITIONS OUTPUT Output Current Equation Output Current, Specified Range Over-Scale Limit Under-Scale Limit ZERO OUTPUT(1) Initial Error vs Temperature vs Supply Voltage, V+ vs Common-Mode Voltage vs VREG Output Current Noise: 0.1Hz to 10Hz SPAN Span Equation (Transconductance) Initial Error (3) vs Temperature(3) Nonlinearity: Ideal Input (4) INPUT(5) Offset Voltage vs Temperature vs Supply Voltage, V+ vs Common-Mode Voltage, RTI (CMRR) Common-Mode Input Range(2) Input Bias Current vs Temperature Input Offset Current vs Temperature Impedance: Differential Common-Mode Noise: 0.1Hz to 10Hz IREG = 0V MIN 4 5 0.07 0.04 0.02 0.3 0.03 V+ = 7.5V to 36V VCM = 1.25V to 3.5V(2) Full Scale (VIN) = 50mV Full Scale (VIN) = 50mV VCM = 2V V+ = 7.5V to 36V VCM = 1.25V to 3.5V(2) TYP 25 0.5 0.2 MAX UNITS A mA mA mA 50 0.9 0.4 A/V % ppm/C % 50 0.4 0.3 10 100 1.5 3 50 250 3 100 V V/C V/V V/V 50 V nA pA/C nA pA/C G || pF G || pF Vp-p 1.25 5 20 0.2 5 0.1 || 1 5 || 10 0.6 3.5 25 3 10 VO = 2V(6) V+ = 7.5V to 36V V+ = 7.5V to 36V (V+) -3 0 mA A A/C A/V A/V A/mA Ap-p 0.2 25 0.01 800 0.05 15 10 0.02 3 1 (V+) -2.5 -0.2 150 0.003 5.1 0.02 0.2 1 1 75 LINEARIZATION RLIN (internal) Accuracy vs Temperature 1 0.2 25 TEMPERATURE RANGE Specification, TMIN to TMAX Operating Storage Thermal Resistance, JA 14-Pin DIP SO-14 Surface-Mount MIN S = 40/RG 0.05 3 0.003 VREG(2) Accuracy vs Temperature vs Supply Voltage, V+ Output Current Output Impedance POWER SUPPLY Specified Voltage Range XTR105PA, UA MAX IO = VIN * (40/RG) + 4mA, VIN in Volts, RG in 4 20 24 27 30 1.8 2.2 2.6 VIN = 0V, RG = CURRENT SOURCES Current Accuracy vs Temperature vs Power Supply, V+ Matching vs Temperature vs Power Supply, V+ Compliance Voltage, Positive Negative(2) Output Impedance Noise: 0.1Hz to 10Hz TYP 0.2 35 25 0.1 15 10 0.1 0.5 100 0.4 75 0.2 30 V V mV/C mV/V mA 1 k % ppm/C +24 A % ppm/C ppm/V % ppm/C ppm/V V V M Ap-p +7.5 +36 V V -40 -55 -55 +85 +125 +125 C C C 80 100 C/W C/W Specification same as XTR105P, XTR105U. NOTES: (1) Describes accuracy of the 4mA low-scale offset current. Does not include input amplifier effects. Can be trimmed to zero. (2) Voltage measured with respect to IRET pin. (3) Does not include initial error or TCR of gain-setting resistor, RG. (4) Increasing the full-scale input range improves nonlinearity. (5) Does not include Zero Output initial error. (6) Current source output voltage with respect to IRET pin. (R) 2 ABSOLUTE MAXIMUM RATINGS(1) PIN CONFIGURATION Top View Power Supply, V+ (referenced to IO pin) .......................................... 40V + - Input Voltage, VIN, VIN (referenced to IO pin) ............................ 0V to V+ Storage Temperature Range ........................................ -55C to +125C Lead Temperature (soldering, 10s) .............................................. +300C Output Current Limit ............................................................... Continuous Junction Temperature ................................................................... +165C DIP and SOIC IR1 1 14 IR2 VIN - 2 13 VIN RG 3 12 VLIN RG 4 11 VREG NC 5 10 V+ IRET 6 9 B (Base) IO 7 8 E (Emitter) + NOTE: (1) Stresses above these ratings may cause permanent damage. ELECTROSTATIC DISCHARGE SENSITIVITY This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. NC = No Internal Connection. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. PACKAGE/ORDERING INFORMATION PRODUCT PACKAGE PACKAGE DRAWING NUMBER(1) XTR105PA XTR105P XTR105UA XTR105U 14-Pin Plastic DIP 14-Pin Plastic DIP SO-14 Surface Mount SO-14 Surface Mount 010 010 235 235 TEMPERATURE RANGE -40C to +85C -40C to +85C -40C to +85C -40C to +85C NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. FUNCTIONAL BLOCK DIAGRAM VLIN IR1 12 IR2 1 14 VREG V+ 800A 800A 11 10 + VIN 13 5.1V 4 B RLIN 1k Q1 9 100A RG 3 - VIN E I = 100A + 2 VIN 8 RG 975 25 7 IO = 4mA + VIN * ( R40 ) G 6 IRET The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. (R) 3 XTR105 TYPICAL PERFORMANCE CURVES At TA = +25C, V+ = 24V, unless otherwise noted. TRANSCONDUCTANCE vs FREQUENCY STEP RESPONSE RG = 125 RG = 500 RG = 2k 40 20mA 30 4mA/div Transconductance (20 Log mA/V) 50 20 RG = 125 RG = 2k 4mA 10 0 100 1k 10k 100k 25s/div 1M Frequency (Hz) COMMON-MODE REJECTION vs FREQUENCY POWER-SUPPLY REJECTION vs FREQUENCY 110 140 Full-Scale Input = 50mV Power Supply Rejection (dB) Common-Mode Rejection (dB) 100 90 80 RG = 125 70 60 RG = 2k 50 40 30 120 RG = 125 100 80 60 RG = 2k 40 20 0 10 20 10 100 1k 10k 100k 100 1k 10k 100k 1M Frequency (Hz) 1M Frequency (Hz) OVER-SCALE CURRENT vs TEMPERATURE UNDER-SCALE CURRENT vs TEMPERATURE 29 2.40 Under-Scale Current (mA) Over-Scale Current (mA) With External Transistor 28 27 V+ = 36V 26 V+ = 7.5V 25 V+ = 24V 24 2.35 2.30 2.25 2.20 V+ = 7.5V to 36V 23 2.15 -75 -50 -25 0 25 50 75 100 125 -75 Temperature (C) -50 -25 0 25 50 Temperature (C) (R) 4 75 100 125 TYPICAL PERFORMANCE CURVES (CONT) At TA = +25C, V+ = 24V, unless otherwise noted. INPUT VOLTAGE AND CURRENT NOISE DENSITY vs FREQUENCY ZERO OUTPUT AND REFERENCE CURRENT NOISE vs FREQUENCY 10k Current Noise 100 100 Voltage Noise 10 1 10 100 1k Zero Output Current Noise (pA/Hz) 1k 1k 10k Input Current Noise (fA/Hz) Input Voltage Noise (nV/Hz) 10k 100 Reference Current 10 100k 10k 1k 10 1 10 100 Frequency (Hz) 100k 4 Zero Output Current Error (A) 25 Input Bias and Offset Current (nA) 10k ZERO OUTPUT CURRENT ERROR vs TEMPERATURE INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE 20 +IB 15 10 -IB 5 IOS 2 0 -2 -4 -6 -8 -10 -12 0 -75 -50 -25 0 25 50 75 100 -75 125 -50 -25 0 25 50 75 100 125 Temperature (C) Temperature (C) ZERO OUTPUT DRIFT PRODUCTION DISTRIBUTION INPUT OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION 40 50 Typical Production Distribution of Packaged Units. 45 35 Percent of Units (%) 40 35 30 25 20 15 10 0.02% 0.1% 5 Typical Production Distribution of Packaged Units. 30 25 20 15 10 5 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0 0.2 Percent of Units (%) 1k Frequency (Hz) Input Offset Voltage Drift (V/C) Zero Output Drift (A/C) (R) 5 XTR105 TYPICAL PERFORMANCE CURVES (CONT) At TA = +25C, V+ = 24V, unless otherwise noted. CURRENT SOURCE DRIFT PRODUCTION DISTRIBUTION CURRENT SOURCE MATCHING DRIFT PRODUCTION DISTRIBUTION 40 80 Current Source Drift (ppm/C) Current Source Matching Drift (ppm/C) VREG OUTPUT VOLTAGE vs VREG OUTPUT CURRENT REFERENCE CURRENT ERROR vs TEMPERATURE 30 0.02% 28 0.07% 26 12 8 10 6 4 2 75 70 60 55 50 45 40 35 30 25 20 15 0 5 0 10 10 24 20 0.01% 5 +0.05 5.35 Reference Current Error (%) 125C 5.30 VREG Output Voltage (V) 30 22 10 40 20 15 50 18 20 60 14 25 0.04% Typical Production Distribution of Packaged Units. 70 Percent of Units (%) 30 65 Percent of Units (%) 35 16 Typical Production Distribution of Packaged Units. IR1 AND IR2 Included. 25C 5.25 5.20 5.15 -55C NOTE: Above 1mA, Zero Output Degrades 5.10 5.05 5 0 -0.05 -0.10 -0.15 -0.20 -1 0.5 0 0.5 1 1.5 -75 2 -50 -25 0 25 50 Temperature (C) VREG Output Current (mA) (R) 6 75 100 125 APPLICATION INFORMATION The transfer function through the complete instrumentation amplifier and voltage-to-current converter is: Figure 1 shows the basic connection diagram for the XTR105. The loop power supply, VPS, provides power for all circuitry. Output loop current is measured as a voltage across the series load resistor, RL. IO = 4mA + VIN * (40/RG) (VIN in volts, RG in ohms) where VIN is the differential input voltage. As evident from the transfer function, if no RG is used the gain is zero and the output is simply the XTR105's zero current. The value of RG varies slightly for two-wire RTD and three-wire RTD connections with linearization. RG can be calculated from the equations given in Figure 1 (two-wire RTD connection) and Table I (three-wire RTD connection). Two matched 0.8mA current sources drive the RTD and zero-setting resistor, RZ. The instrumentation amplifier input of the XTR105 measures the voltage difference between the RTD and RZ. The value of RZ is chosen to be equal to the resistance of the RTD at the low-scale (minimum) measurement temperature. RZ can be adjusted to achieve 4mA output at the minimum measurement temperature to correct for input offset voltage and reference current mismatch of the XTR105. The IRET pin is the return path for all current from the current sources and VREG. The IRET pin allows any current used in external circuitry to be sensed by the XTR105 and to be included in the output current without causing an error. RCM provides an additional voltage drop to bias the inputs of the XTR105 within their common-mode input range. RCM should be bypassed with a 0.01F capacitor to minimize common-mode noise. Resistor RG sets the gain of the instrumentation amplifier according to the desired temperature range. RLIN1 provides second-order linearization correction to the RTD, typically achieving a 40:1 improvement in linearity. An additional resistor is required for three-wire RTD connections, see Figure 3. The VREG pin provides an on-chip voltage source of approximately 5.1V and is suitable for powering external input circuitry (refer to Figure 6). It is a moderately accurate voltage reference--it is not the same reference used to set the 800A current references. VREG is capable of sourcing approximately 1mA of current. Exceeding 1mA may affect the 4mA zero output. IR = 0.8mA Possible choices for Q1 (see text). IR = 0.8mA 12 13 VLIN + VIN 4 1 IR1 TO-225 TO-220 TO-220 7.5V to 36V 14 11 IR2 10 VREG V+ IO 4-20 mA (2) RLIN1(3) PACKAGE RG RG XTR105 3 TYPE 2N4922 TIP29C TIP31C RG B 9 Q1 0.01F VO E + 8 RL VPS - IO 2 - VIN 7 IRET (1) RTD RZ 6 IO = 4mA + VIN * ( 40 ) RG NOTES: (1) RZ = RTD resistance at minimum measured temperature. RCM = 1k (2) RG = (3) RLIN1 = 0.01F 2R1(R2 +RZ) - 4(R2RZ) R 2 - R1 RLIN(R2 - R1) 2(2R1 - R2 - RZ) where R1 = RTD Resistance at (TMIN + TMAX)/2 R2 = RTD Resistance at TMAX RLIN = 1k (Internal) FIGURE 1. Basic Two-Wire RTD Temperature Measurement Circuit with Linearization. (R) 7 XTR105 LOOP POWER SUPPLY A negative input voltage, VIN, will cause the output current to be less than 4mA. Increasingly negative VIN will cause the output current to limit at approximately 2.2mA. Refer to the typical curve "Under-Scale Current vs Temperature." The voltage applied to the XTR105, V+, is measured with respect to the IO connection, pin 7. V+ can range from 7.5V to 36V. The loop supply voltage, VPS, will differ from the voltage applied to the XTR105 according to the voltage drop on the current sensing resistor, RL (plus any other voltage drop in the line). Increasingly positive input voltage (greater than the fullscale input) will produce increasing output current according to the transfer function, up to the output current limit of approximately 27mA. Refer to the typical curve "OverScale Current vs Temperature." If a low loop supply voltage is used, RL (including the loop wiring resistance) must be made a relatively low value to assure that V+ remains 7.5V or greater for the maximum loop current of 20mA: EXTERNAL TRANSISTOR Transistor Q1 conducts the majority of the signal-dependent 4-20mA loop current. Using an external transistor isolates the majority of the power dissipation from the precision input and reference circuitry of the XTR105, maintaining excellent accuracy. R L max = (V+) - 7.5V - R WIRING 20mA It is recommended to design for V+ equal or greater than 7.5V with loop currents up to 30mA to allow for out-ofrange input conditions. Since the external transistor is inside a feedback loop its characteristics are not critical. Requirements are: VCEO = 45V min, = 40 min and PD = 800mW. Power dissipation requirements may be lower if the loop power supply voltage is less than 36V. Some possible choices for Q1 are listed in Figure 1. The low operating voltage (7.5V) of the XTR105 allows operation directly from personal computer power supplies (12V 5%). When used with the RCV420 Current Loop Receiver (Figure 7), load resistor voltage drop is limited to 3V. The XTR105 can be operated without this external transistor, however, accuracy will be somewhat degraded due to the internal power dissipation. Operation without Q1 is not recommended for extended temperature ranges. A resistor (R = 3.3k) connected between the IRET pin and the E (emitter) pin may be needed for operation below 0C without Q1 to guarantee the full 20mA full-scale output, especially with V+ near 7.5V. ADJUSTING INITIAL ERRORS Many applications require adjustment of initial errors. Input offset and reference current mismatch errors can be corrected by adjustment of the zero resistor, RZ. Adjusting the gain-setting resistor, RG, corrects any errors associated with gain. TWO-WIRE AND THREE-WIRE RTD CONNECTIONS In Figure 1, the RTD can be located remotely simply by extending the two connections to the RTD. With this remote two-wire connection to the RTD, line resistance will introduce error. This error can be partially corrected by adjusting the values of RZ, RG, and RLIN1. 10 V+ E XTR105 A better method for remotely located RTDs is the three-wire RTD connection shown in Figure 3. This circuit offers improved accuracy. RZ's current is routed through a third wire to the RTD. Assuming line resistance is equal in RTD lines 1 and 2, this produces a small common-mode voltage which is rejected by the XTR105. A second resistor, RLIN2, is required for linearization. 8 0.01F IO 7 IRET 6 RQ = 3.3k Note that although the two-wire and three-wire RTD connection circuits are very similar, the gain-setting resistor, RG, has slightly different equations: For operation without external transistor, connect a 3.3k resistor between pin 6 and pin 8. See text for discussion of performance. Two-wire: RG = FIGURE 2. Operation Without External Transistor. Three-wire: R G = 2R1 (R 2 + R Z ) - 4(R 2 R Z ) R 2 - R1 2(R 2 - R Z )(R1 - R Z ) R 2 - R1 where RZ = RTD resistance at TMIN R1 = RTD resistance at (TMIN + TMAX)/2 R2 = RTD resistance at TMAX (R) 8 MEASUREMENT TEMPERATURE SPAN T (C) TMIN 100C 200C 300C 400C 500C 600C 700C 800C 900C 1000C -200C 18.7/86.6 15000 16500 18.7/169 9760 11500 18.7/255 8060 10000 18.7/340 6650 8870 18.7/422 5620 7870 18.7/511 4750 7150 18.7/590 4020 6420 18.7/66.5 3480 5900 18.7/750 3090 5360 18.7/845 2740 4990 -100C 60.4/80.6 27400 29400 60.4/162 15400 17800 60.4/243 10500 13000 60.4/324 7870 10200 60.4/402 6040 8660 60.4/487 4990 7500 60.4/562 4220 6490 60.4/649 3570 5900 60.4/732 3090 5360 0C 100/78.7 33200 35700 100/158 16200 18700 100/237 10500 13000 100/316 7680 10000 100/392 6040 8250 100/475 4870 7150 100/549 4020 6340 100/634 3480 5620 100C 137/75 31600 34000 137/150 15400 17800 137/226 10200 12400 137/301 7500 9760 137/383 5760 8060 137/453 4750 6810 137/536 3920 6040 200C 174/73.2 30900 3320 174/147 15000 17400 174/221 9760 12100 174/294 7150 9310 174/365 5620 7680 174/442 4530 6490 300C 210/71.5 30100 32400 210/143 14700 16500 210/215 9530 11500 210/287 6980 8870 210/357 5360 7320 400C 249/68.1 28700 30900 249/137 14000 16200 249/205 9090 11000 249/274 6650 8450 500C 280/66.5 28000 30100 280/133 13700 15400 280/200 8870 10500 316/64.9 26700 28700 313/130 13000 1470 600C 700C 800C RZ /RG RLIN1 RLIN2 NOTE: The values listed in the table are 1% resistors (in ). Exact values may be calculated from the following equations: RZ = RTD resistance at minimum measured temperature. RG = 348/61.9 26100 27400 374/60.4 24900 26700 2(R2 - RZ )(R1 - RZ ) (R2 - R1) RLIN1 = RLIN (R2 - R1) 2(2R1 - R2 - RZ ) RLIN2 = (RLIN + RG )(R2 - R1) 2(2R1 - R2 - RZ ) where R1 = RTD resistance at (TMIN + TMAX)/2 R2 = RTD resistance at TMAX RLIN = 1k (Internal) EXAMPLE: The measurement range is -100C to +200C for a 3-wire Pt100 RTD connection. Determine the values for RS, RG, RLIN1, and RLIN2. Look up the values from the chart or calculate the values according to the equations provided. METHOD 1: TABLE LOOK UP For TMIN = -100C and T = -300C, the 1% values are: RZ = 60.4 RLIN1 = 10.5k RG = 243 RLIN2 = 13k METHOD 2: CALCULATION Calculation of Pt100 Resistance Values Step 1: Determine RZ, R1, and R2. (according to DIN IEC 751) RZ is the RTD resistance at the minimum measured temperature,TMIN = -100C. Using equation (1) at right gives RZ = 60.25 (1% value is 60.4). R2 is the RTD resistance at the maximum measured temperature, TMAX = 200C. Using equation (2) at right gives R2 = 175.84. R1 is the RTD resistance at the midpoint measured temperature, TMID = (TMIN + TMAX) /2 = 50C. R1 is NOT the average of RZ and R2. Using equation (2) at right gives R1 = 119.40. Equation (1) Temperature range from -200C to 0C: R(T) = 100 [1 + 3.90802 * 10-3 * T - 0.5802 * 10-6 * T2 - 4.27350 * 10-12 (T - 100) T3] Equation (2) Temperature range from 0C to +850C: R(T) = 100 (1 + 3.90802 * 10-3 * T - 0.5802 * 10-6 * T2) where: R(T) is the resistance in at temperature T. T is the temperature in C. Step 2: Calculate RG, RLIN1, and RLIN2 using equations above. NOTE: Most RTD manufacturers provide reference tables for resistance values at various temperatures. RG = 242.3 (1% value is 243) RLIN1 = 10.413k (1% value is 10.5k) RLIN2 = 12.936k (1% value is 13k) TABLE I. RZ, RG, RLIN1, and RLIN2 Standard 1% Resistor Values for Three-Wire Pt100 RTD Connection with Linearization. LINEARIZATION RTD temperature sensors are inherently (but predictably) nonlinear. With the addition of one or two external resistors, RLIN1 and RLIN2, it is possible to compensate for most of this nonlinearity resulting in 40:1 improvement in linearity over the uncompensated output. To maintain good accuracy, at least 1% (or better) resistors should be used for RG. Table I provides standard 1% RG resistor values for a three-wire Pt100 RTD connection with linearization. (R) 9 XTR105 A typical two-wire RTD application with linearization is shown in Figure 1. Resistor RLIN1 provides positive feedback and controls linearity correction. RLIN1 is chosen according to the desired temperature range. An equation is given in Figure 1. RCM can be adjusted to provide an additional voltage drop to bias the inputs of the XTR105 within their common-mode input range. In three-wire RTD connections, an additional resistor, RLIN2, is required. As with the two-wire RTD application, RLIN1 provides positive feedback for linearization. RLIN2 provides an offset canceling current to compensate for wiring resistance encountered in remotely located RTDs. RLIN1 and RLIN2 are chosen such that their currents are equal. This makes the voltage drop in the wiring resistance to the RTD a commonmode signal which is rejected by the XTR105. The nearest standard 1% resistor values for RLIN1 and RLIN2 should be adequate for most applications. Table I provides the 1% resistor values for a three-wire Pt100 RTD connection. Table II shows how to calculate the effect various error sources have on circuit accuracy. A sample error calculation for a typical RTD measurement circuit (Pt100 RTD, 200C measurement span) is provided. The results reveal the XTR105's excellent accuracy, in this case 1.1% unadjusted. Adjusting resistors RG and RZ for gain and offset errors improves circuit accuracy to 0.32%. Note that these are worst case errors; guaranteed maximum values were used in the calculations and all errors were assumed to be positive (additive). The XTR105 achieves performance which is difficult to obtain with discrete circuitry and requires less space. ERROR ANALYSIS If no linearity correction is desired, the VLIN pin should be left open. With no linearization, RG = 2500 * VFS, where VFS = full-scale input range. OPEN-CIRCUIT PROTECTION The optional transistor Q2 in Figure 3 provides predictable behavior with open-circuit RTD connections. It assures that if any one of the three RTD connections is broken, the XTR105's output current will go to either its high current limit (27mA) or low current limit (2.2mA). This is easily detected as an out-of-range condition. RTDs The text and figures thus far have assumed a Pt100 RTD. With higher resistance RTDs, the temperature range and input voltage variation should be evaluated to ensure proper common-mode biasing of the inputs. As mentioned earlier, RLIN1(1) 13 RLIN2(1) 4 12 1 VLIN IR1 + VIN IO 14 IR2 11 VREG 10 V+ RG (1) RG B 9 XTR105 3 2 E RG Q1 0.01F 8 IO - VIN 7 IRET EQUAL line resistances here creates a small common-mode voltage which is rejected by XTR105. RZ(1) 1 2 RCM = 1000 (RLINE2) RTD 0.01F (RLINE1) NOTES: (1) See Table I for resistor equations and 1% values. (2) Q2 optional. Provides predictable output current if any one RTD connection is broken: Q2(2) 2N2222 (RLINE3) Resistance in this line causes a small common-mode voltage which is rejected by XTR105 . IO 6 3 FIGURE 3. Three-Wire Connection for Remotely Located RTDs. (R) 10 OPEN RTD TERMINAL IO 1 2 3 2.2mA 27mA 2.2mA SAMPLE ERROR CALCULATION RTD value at 4mA Output (RRTD MIN) RTD Measurement Range Ambient Temperature Range (TA) Supply Voltage Change (V+) Common-Mode Voltage Change (CM) ERROR SOURCE VOS/(VIN MAX) * 106 CMRR * CM/(VIN MAX) * 106 IB/IREF * 106 IOS * RRTD MIN/(VIN MAX) * 106 EXCITATION Current Reference Accuracy vs Supply Current Reference Matching IREF Accuracy (%)/100% * 106 (IREF vs V+) * V+ IREF Matching (%)/100% * 800A * RRTD MIN/(VIN MAX) * 106 (IREF matching vs V+) * V+ * RRTD MIN/(VIN MAX) vs Supply GAIN Span Nonlinearity UNADJ. ADJUST. 1645 82 31 5 1763 0 82 0 0 82 0.2%/100% * 106 25ppm/V * 5V 0.1%/100% * 800A * 100/(800A * 0.38/C * 200C) * 106 2000 125 1316 0 125 0 10ppm/V * 5V * 800A * 100/(800A * 0.38/C * 200C) 66 66 Total Excitation Error: 3507 191 Total Gain Error: 2000 100 2100 0 100 100 Total Output Error: 1563 63 1626 0 63 63 1.5V/C * 20C/(800A * 0.38/C * 200C) * 106 20pA/C * 20C/800A * 106 5pA/C * 20C * 100W/(800A * 0.38/C * 200C) * 106 35ppm/C * 20C 15ppm/C * 20C * 800A * 100/(800A * 0.38/C * 200C) 25ppm/C * 20C 0.5A/C * 20C/16000A * 106 Total Drift Error: 493 0.5 0.2 700 395 500 626 2715 493 0.5 0.2 700 395 500 626 2715 10 5 2 17 10 5 2 17 11728 (1.17%) 3168 (0.32%) 100V/(800A * 0.38/C * 200C) * 106 50V/V * 0.1V/(800A * 0.38/C * 200C) * 106 0.025A/800A * 106 3nA * 100/(800A * 0.38/C * 200C) * 106 Total Input Error: Span Error (%)/100% * 106 Nonlinearity (%)/100% * 106 OUTPUT Zero Output vs Supply 0.2%/100% * 106 0.01%/100% * 106 (IZERO - 4mA)/16000A * 106 (IZERO vs V+) * V+/16000A * 106 Drift * TA/(VIN MAX) * 106 Drift * TA/800A * 106 Drift * TA * RRTD MIN/(VIN MAX) * 106 Drift * TA Drift * TA * 800A * RRTD MIN/(VIN MAX) Drift * TA Drift * TA/16000A * 106 NOISE (0.1 to 10Hz, typ) Input Offset Voltage Current Reference Zero Output ERROR (ppmofFullScale) SAMPLE ERROR CALCULATION(1) ERROR EQUATION INPUT Input Offset Voltage vs Common-Mode Input Bias Current Input Offset Current DRIFT (TA = 20C) Input Offset Voltage Input Bias Current (typical) Input Offset Current (typical) Current Reference Accuracy Current Reference Matching Span Zero Output 100 200C 20C 5V 0.1V 25A/16000A * 106 0.2A/V * 5V/16000A * 106 vn/(VIN MAX) * 106 IREF Noise * RRTD MIN/(VIN MAX) * 106 IZERO Noise/16000A * 106 0.6V/(800A * 0.38/C * 200C) * 106 3nA * 100/(800A * 0.38/C * 200C) * 106 0.03A/16000A * 106 Total Noise Error: TOTAL ERROR: NOTE (1): All errors are min/max and referred to input unless otherwise stated. TABLE II. Error Calculation. (R) 11 XTR105 REVERSE-VOLTAGE PROTECTION Most surge protection zener diodes have a diode characteristic in the forward direction that will conduct excessive current, possibly damaging receiving-side circuitry if the loop connections are reversed. If a surge protection diode is used, a series diode or diode bridge should be used for protection against reversed connections. The XTR105's low compliance rating (7.5V) permits the use of various voltage protection methods without compromising operating range. Figure 4 shows a diode bridge circuit which allows normal operation even when the voltage connection lines are reversed. The bridge causes a two diode drop (approximately 1.4V) loss in loop supply voltage. This results in a compliance voltage of approximately 9V--satisfactory for most applications. If 1.4V drop in loop supply is too much, a diode can be inserted in series with the loop supply voltage and the V+ pin. This protects against reverse output connection lines with only a 0.7V loss in loop supply voltage. RADIO FREQUENCY INTERFERENCE The long wire lengths of current loops invite radio frequency interference. RF can be rectified by the sensitive input circuitry of the XTR105 causing errors. This generally appears as an unstable output current that varies with the position of loop supply or input wiring. If the RTD sensor is remotely located, the interference may enter at the input terminals. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current loop connections. SURGE PROTECTION Remote connections to current transmitters can sometimes be subjected to voltage surges. It is prudent to limit the maximum surge voltage applied to the XTR105 to as low as practical. Various zener diode and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36V protection diode will assure proper transmitter operation at normal loop voltages, yet will provide an appropriate level of protection against voltage surges. Characterization tests on three production lots showed no damage to the XTR105 within loop supply voltages up to 65V. Bypass capacitors on the input reduce or eliminate this input interference. Connect these bypass capacitors to the IRET terminal as shown in Figure 5. Although the dc voltage at the IRET terminal is not equal to 0V (at the loop supply, VPS) this circuit point can be considered the transmitter's "ground." The 0.01F capacitor connected between V+ and IO may help minimize output interference. NOTE: (1) Zener Diode 36V: 1N4753A or General Semiconductor TransorbTM 1N6286A. Use lower voltage zener diodes with loop power supply voltages less than 30V for increased protection. See "Over-Voltage Surge Protection." 10 V+ 0.01F XTR105 B E 9 D1(1) 1N4148 Diodes RL 8 IO 7 IRET 6 The diode bridge causes a 1.4V loss in loop supply voltage. FIGURE 4. Reverse Voltage Operation and Over-Voltage Surge Protection. (R) 12 VPS Maximum VPS must be less than minimum voltage rating of zener diode. 12 1k VLIN 13 + VIN 4 RLIN1 1 IR1 14 11 IR2 VREG 10 V+ RG RLIN2 RG 3 9 B XTR105 E RG 0.01F 8 IO 1k 2 - VIN 7 IRET RZ 0.01F 6 0.01F RTD (1) RCM NOTE: (1) Bypass capacitors can be connected to either the IRET pin or the IO pin. 0.01F FIGURE 5. Input Bypassing Technique with Linearization. IREG < 1mA 5V 12 V+ Type J VLIN 1/2 LTC1047 13 RF 10k 4 R 412 + VIN 1 IR1 3 11 VREG 10 V+ RG RG 1250 RF 10k 14 IR2 XTR105 B E RG 9 8 IO 1/2 LTC1047 1k 2 25 7 IRET V- 50 - VIN 6 + - IO = 4mA + (VIN -VIN) 40 RG RCM = 1250 (G = 1 + 2RF = 50) R FIGURE 6. Thermocouple Low Offset, Low Drift Loop Measurement with Diode Cold Junction Compensation. (R) 13 XTR105 12 VLIN 13 + VIN 4 3 1N4148 14 IR2 +12V 11 VREG 10 V+ 1F RG B 9 RG 402 RLIN1 5760 1 IR1 Q1 XTR105 0.01F 16 RG 2 RZ 137 RTD 2 7 VO = 0 to 5V 14 13 5 4 IO = 4mA - 20mA 6 12 RCV420 IRET Pt100 100C to 600C 11 15 IO - VIN 10 3 E 8 1F -12V RCM = 1k NOTE: A two-wire RTD connection is shown. For remotely located RTDs, a three-wire RTD conection is recommended. RG becomes 383, RLIN2 is 8060. See Figure 3 and Table I. 0.01F FIGURE 7. 12V Powered Transmitter/Receiver Loop. 12 RLIN2 RLIN1 13 VLIN + VIN 4 1 IR1 1N4148 14 11 IR2 10 VREG V+ 0 RG RG 1F XTR105 3 +15V 1F B E RG 9 Q1 -15V 0.01F 16 2 11 12 - VIN 2 7 IRET IO = 4mA - 20mA 6 14 13 4 V+ 1 15 RCV420 IO RZ 10 3 8 Isolated Power from PWS740 9 15 ISO122 5 10 7 8 VO 0 - 5V 2 16 RTD NOTE: A three-wire RTD connection is shown. For a two-wire RTD connection eliminate RLIN2. RCM = 1k 0.01F FIGURE 8. Isolated Transmitter/Receiver Loop. (R) 14 V- 1.6mA 12 VLIN 13 4 + VIN 1 IR1 14 IR2 11 VREG 10 V+ RG RG XTR105 3 2 B E RG - VIN 9 8 7 IRET 6 RCM = 1k(1) NOTE: (1) Use RCM to adjust the common-mode voltage to within 1.25V to 3.5V. FIGURE 9. Bridge Input, Current Excitation. (R) 15 XTR105 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright 2000, Texas Instruments Incorporated