S32K1XX
S32K1xx Data Sheet
Caution
S32K148, S32K142, S32K146, and S32K116 specific
information is preliminary until these devices are
qualified.
Key Features
Operating characteristics
Voltage range: 2.7 V to 5.5 V
Ambient temperature range: -40 °C to 105 °C for
HSRUN, -40 °C to 125 °C for RUN
ARM™ Cortex-M4F/M0+ core, 32-bit CPU
Supports up to 112 MHz frequency (HSRUN) with
1.25 Dhrystone MIPS per MHz
ARM Core based on the ARMv7 Architecture and
Thumb®-2 ISA
Integrated Digital Signal Processor (DSP)
Configurable Nested Vectored Interrupt Controller
(NVIC)
Single Precision Floating Point Unit (FPU)
Clock interfaces
4 - 40 MHz fast external oscillator (SOSC)
48 MHz Fast Internal RC oscillator (FIRC)
8 MHz Slow Internal RC oscillator (SIRC)
128 kHz Low Power Oscillator (LPO)
Up to 112 MHz (HSRUN) System Phased Lock
Loop (SPLL)
Up to 50 MHz DC external square wave input clock
Real Time Counter (RTC)
Power management
Low-power ARM Cortex-M4F/M0+ core with
excellent energy efficiency
Power Management Controller (PMC) with multiple
power modes: HSRUN, Run, Stop, VLPR, and
VLPS
Supports peripheral specific clock gating. Only
specific peripherals remain working in low power
modes.
Memory and memory interfaces
Up to 2 MB program flash memory with ECC
64 KB FlexNVM for data flash memory with ECC
and EEPROM emulation
Up to 256 KB SRAM with ECC
Up to 4 KB of FlexRAM for use as SRAM or
EEPROM emulation
Up to 4 KB Code cache to minimize performance
impact of memory access latencies
QuadSPI with HyperBus™ support
Mixed-signal analog
Up to two 12-bit Analog-to-Digital Converter
(ADC) with up to 32 channel analog inputs per
module
One Analog Comparator (CMP) with internal 8-bit
Digital to Analog Converter (DAC)
Debug functionality
Serial Wire JTAG Debug Port (SWJ-DP) combines
Debug Watchpoint and Trace (DWT)
Instrumentation Trace Macrocell (ITM)
Test Port Interface Unit (TPIU)
Flash Patch and Breakpoint (FPB) Unit
Human-machine interface (HMI)
Up to 156 GPIO pins with interrupt functionality
Non-Maskable Interrupt (NMI)
Communications interfaces
Up to three Low Power Universal Asynchronous
Receiver/Transmitter (LPUART) modules with
DMA support and low power availability
Up to three Low Power Serial Peripheral Interface
(LPSPI) modules with DMA support and low power
availability
Up to two Low Power Inter-Integrated Circuit
(LPI2C) modules with DMA support and low power
availability
Up to three FlexCAN modules (with optional CAN-
FD support)
FlexIO module for flexible and high performance
serial interfaces
NXP Semiconductors Document Number S32K1XX
Data Sheet: Product Preview Rev. 4, 06/2017
This document contains information on a product under development. NXP
reserves the right to change or discontinue this product without notice.
Preliminary
Reliability, safety and security
HW Security Engine (CSEc)
Internal watchdog (WDOG)
External Watchdog monitor (EWM) module
Error-Correcting Code (ECC) on flash and SRAM memories
Cyclic Redundancy Check (CRC) module
128-bit Unique Identification (ID) number
System Memory Protection Unit (System MPU)
Timing and control
Up eight independent 16-bit FlexTimers (FTM) module, offering up to 64 standard channels (IC/OC/PWM)
One 16-bit Low Power Timer (LPTMR) with flexible wake up control
Two Programmable Delay Blocks (PDB) with flexible trigger system
One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
32-bit Real Time Counter (RTC)
I/O and package
32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, MAPBGA-100, 144-pin LQFP, 176-pin LQFP package
options
16 channel DMA with up to 63 request sources using DMAMUX
S32K1xx Data Sheet, Rev. 4, 06/2017
2Preliminary NXP Semiconductors
Table of Contents
1 Block diagram.................................................................................... 4
2 Feature comparison............................................................................ 5
3 Ordering parts.....................................................................................7
3.1 Determining valid orderable parts ............................................ 7
3.2 Ordering information ................................................................8
4 General............................................................................................... 9
4.1 Absolute maximum ratings........................................................9
4.2 Voltage and current operating requirements..............................10
4.3 Thermal operating characteristics..............................................11
4.4 Power and ground pins.............................................................. 12
4.5 LVR, LVD and POR operating requirements............................13
4.6 Power mode transition operating behaviors.............................. 14
4.7 Power consumption................................................................... 15
4.7.1 Modes configuration.................................................... 18
4.8 ESD handling ratings.................................................................18
4.9 EMC radiated emissions operating behaviors........................... 18
5 I/O parameters....................................................................................18
5.1 AC electrical characteristics...................................................... 18
5.2 General AC specifications......................................................... 19
5.3 DC electrical specifications at 3.3 V Range.............................. 19
5.4 DC electrical specifications at 5.0 V Range.............................. 20
5.5 AC electrical specifications at 3.3 V range .............................. 21
5.6 AC electrical specifications at 5 V range ................................. 22
5.7 Standard input pin capacitance.................................................. 22
5.8 Device clock specifications....................................................... 22
6 Peripheral operating requirements and behaviors..............................23
6.1 System modules.........................................................................23
6.2 Clock interface modules............................................................ 23
6.2.1 External System Oscillator electrical specifications....23
6.2.2 External System Oscillator frequency specifications . 25
6.2.3 System Clock Generation (SCG) specifications..........26
6.2.3.1 Fast internal RC Oscillator (FIRC)
electrical specifications............................ 26
6.2.3.2 Slow internal RC oscillator (SIRC)
electrical specifications ........................... 26
6.2.4 Low Power Oscillator (LPO) electrical specifications
......................................................................................27
6.2.5 SPLL electrical specifications .....................................27
6.3 Memory and memory interfaces................................................27
6.3.1 Flash memory module (FTFC) electrical
specifications................................................................27
6.3.1.1 Flash timing specifications —
commands................................................ 27
6.3.1.2 Reliability specifications..........................29
6.3.2 QuadSPI AC specifications..........................................30
6.4 Analog modules.........................................................................34
6.4.1 ADC electrical specifications...................................... 34
6.4.1.1 12-bit ADC operating conditions.............34
6.4.1.2 12-bit ADC electrical characteristics....... 36
6.4.2 CMP with 8-bit DAC electrical specifications............ 37
6.5 Communication modules...........................................................41
6.5.1 LPUART electrical specifications............................... 41
6.5.2 LPSPI electrical specifications.................................... 41
6.5.3 LPI2C electrical specifications.................................... 48
6.5.4 FlexCAN electical specifications.................................49
6.5.5 SAI electrical specifications........................................ 49
6.5.6 Ethernet AC specifications.......................................... 51
6.5.7 Clockout frequency......................................................54
6.6 Debug modules.......................................................................... 54
6.6.1 SWD electrical specofications .................................... 54
6.6.2 Trace electrical specifications......................................56
6.6.3 JTAG electrical specifications..................................... 57
7 Thermal attributes.............................................................................. 60
7.1 Description.................................................................................60
7.2 Thermal characteristics..............................................................60
7.3 General notes for specifications at maximum junction
temperature................................................................................ 64
8 Dimensions.........................................................................................65
8.1 Obtaining package dimensions .................................................65
9 Pinouts................................................................................................66
9.1 Package pinouts and signal descriptions....................................66
10 Revision History.................................................................................66
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 3
1 Block diagram
Following figures show superset high level architecture block diagrams of S32K14x
series and S32K11x series respectively. Other devices within the family have a subset of
the features. See Feature comparison for chip specific values.
Mux
Trace
port
Crossbar switch (AXBS-Lite)
eDMA
DMA
MUX
Core
Peripheral bus controller
CRC
WDOG
S1
M0 M1
DSP
NVIC
ITM
FPB
DWT
AWIC
SWJ-DP
TPIU
JTAG &
Serial Wire
ARM Cortex M4F
ICODE
DCODE
AHB-AP
PPB
System
M2
S2
GPIO
Mux
FPU Clock
SPLL
LPO
128 kHz
Async
512B
TCD
LPIT
LPI2C FlexIO
Flash memory
controller
Code flash
S0
Data flash
Low Power
Timer
12-bit ADC
TRGMUX
LPUART
LPSPI
FlexCAN FlexTimer
PDB
generation
LPIT
Peripherals present
on all S32K devices
Peripherals present
on selected S32K devices
Key:
Device architectural IP
on all S32K devices
S3
FIRC
48 MHz
M3
ENET
SAI
SOSC
8-40 MHz
(see the "Feature Comparison"
memory memory
4-40 MHz
QuadSPI
RTC
CMP
8-bit DAC
SIRC
8 MHz
FlexRAM/
SRAM
1: On this device, NXP’s system MPU implements the safety mechanisms to prevent masters from
accessing restricted memory regions. This system MPU provides memory protection at the
level of the Crossbar Switch. Each Crossbar master (Core, DMA, Ethernet) can be assigned
different access rights to each protected memory region. The ARM M4 core version in this family
does not integrate the ARM Core MPU, which would concurrently monitor only core-initiated memory
accesses. In this document, the term MPU refers to NXP’s system MPU.
2: For the device-specific sizes, see the "On-chip SRAM sizes" table in the "Memories and Memory Interfaces"
chapter of the S32K14x Series Reference Manual.
section in the RM)
ERM
EWM
MCM
Lower region
Upper region
Main SRAM2
Code Cache
System MPU1
EIM
LMEM
controller
LMEM
QSPI
CSEc
System MPU1System MPU1System MPU1
Figure 1. High-level architecture diagram for the S32K14x family
Block diagram
S32K1xx Data Sheet, Rev. 4, 06/2017
4Preliminary NXP Semiconductors
Crossbar switch (AXBS-Lite)
eDMA
DMA
MUX
SW-DP
Unified Bus
Serial Wire
AHBLite
AHBLite
AWIC
S0 S1
Clock
LPO
128 kHz
generation
FIRC
48 MHz
SOSC
4-40 MHz
SIRC
8 MHz
Peripheral bus controller
CRC
WDOG
LPIT
LPI2C FlexIO Low Power
Timer
12-bit ADC
TRGMUX
LPUART
LPSPI
FlexCAN FlexTimer
PDB
LPIT
RTC
CMP
8-bit DAC
ERM
CMU GPIO
M0 M2
Flash memory
controller
Data flash
memory
FlexRAM/
SRAM2
Code flash
memory
EIM
SRAM2
IO PORT
NVIC
PPB
MTB+DWT
BPU
AHB-AP
ARM Cortex M0+
Peripherals present
on all S32K devices
Peripherals present
on selected S32K devices
Key:
Device architectural IP
on all S32K devices
(see the "Feature Comparison"
1: On this device, NXP’s system MPU implements the safety mechanisms to prevent masters from
accessing restricted memory regions. This system MPU provides memory protection at the
level of the Crossbar Switch. Crossbar master (Core, DMA) can be assigned
different access rights to each protected memory region. The ARM M0+ core version in this family
does not integrate the ARM Core MPU, which would concurrently monitor only core-initiated memory
accesses. In this document, the term MPU refers to NXP’s system MPU.
2: For the device-specific sizes, see the "On-chip SRAM sizes" table in the "Memories and Memory Interfaces"
chapter of the S32K1xx Series Reference Manual.
section in the RM)
S2
IO PORT
CSEc
System MPU1System MPU1
Figure 2. High-level architecture diagram for the S32K11x family
2Feature comparison
The following figure summarizes the memory and package options for the S32K product
series and demonstrates where this device fits within the overall series. All devices which
share a common package are pin-to-pin compatible.
Feature comparison
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 5
2 KB (up to 32 KB D-Flash)
EEPROM emulated by FlexRAM1
2 KB
FlexRAM (also available as system RAM)
Cache
25 KB
System RAM (including FlexRAM and MTB) 17 KB
Flash 128 KB 256 KB
2.7 - 5.5 V
Single supply voltage
HSRUN mode
Watchdog 1x
Number of I/Os up to 43 up to 58
Memory protection unit
K116 K118
Parameter
Peripheral speed
CRC module
IEEE-754 FPU
ARM® Cortex-M0+
Core
1x
EWM
DMA
Crossbar
capable up to ASIL-B
ISO 26262
HW security module (CSEc)1
48 MHz
Frequency
up to 48 MHz
Error correction code (ECC)
1x
Low power timer (LPTMR)
1x
Low power interrupt timer
LEGEND:
Not implemented
Available on the device
1 No FTFC commands, including CSE commands (CSEc parts) are available when chip is in VLPR or HSRUN mode.
2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.
3 Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash.
See chapter FTFC for details.
4 Only for BSR
Trigger mux (TRGMUX)
1x
Real time counter (RTC)
FlexTimer (16-bit counter) 8 channels 2x (16)
External memory interface
1x (16)
2x
1x
100 Mbit IEEE-1588 ethernet MAC
12-bit SAR ADC (1 MSPS each)
1x
FlexIO (8 pins configurable as UART, SPI, I2C, I2S)
Low power I2C
Low power UART/LIN
(Supports LIN protocol versions 1.3, 2.0, 2.1, and SAE J2602)
SWD, MTB (1 KB), JTAG4
Debug & trace
NXP S32 Design Studio (GCC) + SDK,
IAR, GHS, COSMIC, Lauterbach, iSystems
LQFP-48
LQFP-64
Packages
Ecosystem
(IDE, compiler, debugger)
QFN-32
LQFP-48
FlexCAN
(CAN-FD ISO/CD 11898-1) 1x
(1x with FD)
1x 2x
Low power SPI
Serial audio interface (AC97, TDM, I2S)
Comparator with 8-bit DAC 1x
Programmable delay block (PDB) 1x
S32K11x S32K14x
K142 K144 K146 K148
1x
SWD, JTAG (ITM, SWV, SWO)
NXP S32 Design Studio (GCC) + SDK,
IAR, GHS, COSMIC, Lauterbach, iSystems
LQFP-64
LQFP-100
LQFP-64
LQFP-100
MAPBGA-100
LQFP-64
MAPBGA-100
LQFP-100
LQFP-144
MAPBGA-100
LQFP-144
LQFP-176
SWD, JTAG
(ITM, SWV,
SWO), ETM
1x (64)
2x (16) 2x (24) 2x (32)
1x
2x 3x
1x 2x
2x
(1x with FD) 3x
(2x with FD) 3x
(3x with FD)
3x
(1x with FD)
2x 3x
2x
1x
1x (73) 1x (81)
up to 112 MHz (HSRUN)
1x
ARM® Cortex-M4F
1x
capable up to ASIL-B
up to 112 MHz (HSRUN)
4 KB (up to 64 KB D-Flash)
4 KB
4 KB
32 KB 64 KB 128 KB 256 KB
-40 to +85ºC / +105ºC / +125ºC
256 KB 512 KB 1 MB 2 MB2
2.7 - 5.5 V
up to 89 up to 128 up to 156
1x
1x
1x
4x (32) 6x (48) 8x (64)
QuadSPI incl.
HyperBus™
2x
4 KB (up to 512 KB D-Flash
as a part of 2 MB Flash)3
MemoryAnalog Timer
Communication
IDEs
Other System
-40 to +85ºC / +105ºC / +125ºC
Operating temperature (Ta) Temperature ambient
1x (43) 1x (45)
1x (14)
FIRC CMU
Low power modes
Figure 3. S32K1xx product series comparison
Feature comparison
S32K1xx Data Sheet, Rev. 4, 06/2017
6Preliminary NXP Semiconductors
Ordering parts
3.1 Determining valid orderable parts
To determine the orderable part numbers for this device, go to www.nxp.com and
perform a part number search. Additionally see the attachment
S32K_Part_Numbers.xlsx .
NOTE
Not all part number combinations exist
3
Ordering parts
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 7
3.2 Ordering information
F/P S32 K 1 0 0 X Y F0 M LC R
Product status
Product type/brand
Product line
Series/Family
(including generation)
Core platform/
Performance
Memory size
Ordering option 1: Letter
Ordering option 2: Letter
Fab and Mask
rev. letter
Temperature
Package
Tape and Reel
Product status
P: Prototype
F: Qualified ordering P/N
Product type/brand
S32: Automotive 32-bit MCU
Product line
K: ARM Cortex MCUs
M: MagniV/Mixed Signal
Series/Family
1: 1st product series
2: 2nd product series
Core platform/Performance
1: ARM Cortex M0+
4: ARM Cortex M4F
Memory size
M0+
2468
M4F 256 K 512 K
128 K
1 M
256 K
2 M
Ordering option
X: Speed
B: 48 MHz without DMA (only for S32K11x)
L: 48 MHz with DMA (only for S32K11x)
M: 64 MHz
H: 80 MHz
U: 112 MHz
Y: Optional feature
N: No/None
R: Max. RAM
F: CAN-FD and FlexIO including max. RAM
S: Security including max. RAM
A: CAN-FD, FlexIO, and Security including max. RAM
E: Ethernet and audio including max. RAM
J: CAN FD, FlexIO, Security, Ethernet
and audio including max. RAM
Fab and Mask rev. letter
Fx: ATMC
Tx: GF
XX: Flex #
x0: 1st fab revision
x1: 2nd fab revision
Temperature
C: -40C to 85C
V: -40C to 105C
M: -40C to 125C
Tape and Reel
T: Trays and Tubes
R: Tape and Reel
Package
LQFP LQFP
-EP
32 LC FM
Pins QFN BGA
48
64
100
144
176
LL
LF
LH
LQ
LU
KF
KH
FT
MH
-
-
-
-
-
-
-
- -
-
-
-
-
32 K 64 K
Figure 4. Ordering information
Ordering parts
S32K1xx Data Sheet, Rev. 4, 06/2017
8Preliminary NXP Semiconductors
General
4.1 Absolute maximum ratings
NOTE
Functional operating conditions appear in the DC electrical
characteristics. Absolute maximum ratings are stress ratings
only, and functional operation at the maximum values is not
guaranteed. See footnotes in the following table for specific
conditions.
Stress beyond the listed maximum values may affect device
reliability or cause permanent damage to the device.
All the limits defined in the datasheet specification must be
honored together and any volilation to any one or more will not
gaurantee desired operation.
Table 1. Absolute maximum ratings
Symbol Parameter Conditions1Min Max Unit
VDD22.7 V - 5. 5V input supply voltage -0.3 5.8 3V
VREFH 3.3 V / 5.0 V ADC high reference voltage -0.3 5.8 3V
IINJPAD_DC_ABS4Continuous DC input current (positive /
negative) that can be injected into an I/O
pin
-3 +3 mA
VIN_DC Continuous DC Voltage on any I/O pin
with respect to VSS
-0.8 5.85V
IINJSUM_DC_ABS Sum of absolute value of injected currents
on all the pins (Continuous DC limit)
30 mA
Tramp6Supply ramp rate 0.5 V/min 500 V/ms
TA7Ambient temperature -40 125 °C
TSTG Storage temperature -55 165 °C
VIN_TRANSIENT Transient overshoot voltage allowed on
I/O pin beyond VIN_DC limit
6.8 8V
1. All voltages are referred to VSS unless otherwise specified.
2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the
ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
3. 60 s lifetime – No restrictions i.e. The part can switch.
10 hours lifetime – Device in reset i.e. The part cannot switch.
4. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.
5. While respecting the maximum current injection limit
6. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
7. TJ (Junction temperature)=135 °C. Assumes TA=125 °C for RUN mode
4
General
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 9
TJ (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode
Assumes maximum θJA for 2s2p board. See Thermal characteristics
8. 60 seconds lifetime; device in reset (no outputs enabled/toggling)
4.2 Voltage and current operating requirements
NOTE
Full functionality/specifications cannot be guaranteed when
voltage drops below 2.7 V.
Table 2. Voltage and current operating requirements 1
Symbol Description Min. Max. Unit Notes
VDD2Supply voltage 2.735.5 V 4
VDD_OFF Voltage allowed to be developed on VDD
pin when it is not powered from any
external power supply source.
0 0.1 V
VDDA Analog supply voltage 2.7 5.5 V 4
VDD – VDDA VDD-to-VDDA differential voltage – 0.1 0.1 V
VREFH ADC reference voltage high 2.7 VDDA + 0.1 V 5
VREFL ADC reference voltage low -0.1 0.1 V
VODPU Open drain pullup voltage level VDD VDD V6
IINJPAD_DC_OP7Continuous DC input current (positive /
negative) that can be injected into an I/O
pin
-3 +3 mA
IINJSUM_DC_OP Continuous total DC input current that can
be injected across all I/O pins such that
there's no degradation in accuracy of
analog modules: ADC and ACMP (See
section Analog Modules)
30 mA
1. Typical conditions assumes VDD = VDDA = VREFH = 5 V, temperature = 25 °C and typical silicon process unless otherwise
stated.
2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the
ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
3. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to
operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
4. VDD and VDDA must be shorted to a common source on PCB. Appropriate decoupling capacitors to be used to filter noise
on the supplies. See application note AN5032 for reference supply design for SAR ADC.
5. VREFH should always be equal to or less than VDDA + 0.1 V and VDD + 0.1 V
6. Open drain outputs must be pulled to VDD.
7. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.
General
S32K1xx Data Sheet, Rev. 4, 06/2017
10 Preliminary NXP Semiconductors
4.3 Thermal operating characteristics
Table 3. Thermal operating characteristics for 64 LQFP, 100 LQFP, and 100 MAP-BGA
packages.
Symbol Parameter Value Unit
Min. Typ. Max.
TA C-Grade Part Ambient temperature under bias −40 851
TJ C-Grade Part Junction temperature under bias −40 1051
TA V-Grade Part Ambient temperature under bias −40 1051
TJ V-Grade Part Junction temperature under bias −40 1251
TA M-Grade Part Ambient temperature under bias −40 1252
TJ M-Grade Part Junction temperature under bias −40 1352
1. Values mentioned are measured at ≤ 112 MHz in HSRUN mode.
2. Values mentioned are measured at ≤ 80 MHz in RUN mode.
General
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 11
4.4 Power and ground pins
VDD
VDDA
VREFH
VREFL
VSSA/VSS
VDD
VSS
VDD
VSS
VSS
VDD
100 LQFP
Package
VDD
VSS
VDDA
VREFH
VREFL / VSSA/VSS
64 LQFP
Package
CDEC
CREF
CREF
CDEC
CDEC
CDEC
CDEC
CDEC
CDEC
VDD
VSS
VSS
VDD
144 LQFP
Package
CDEC
CDEC
VDD
VSS
VDD
VSS
VSS
VDD
176 LQFP
Package
CDEC
CDEC
CDEC
VDD
VSS
CDEC
VSS
VDD
CDEC
VDD
VSS
CDEC
VDD
VSS
CDEC
VSS
VDD
CDEC
VDD
VDDA
VREFH
VREFL
VSS
CDEC
CREF
CDEC
VDD
VSS
CDEC
VSSA/VSS
VDD
CDEC
VDD
VDDA
VREFH
VREFL
VSS
CDEC
CREF
CDEC
VDD
VSS
CDEC
VSSA/VSS
Figure 5. Pinout decoupling
Table 4. Supplies decoupling capacitors 1, 2
Symbol Description Min. 3Typ. Max. Unit
CREF, 4, 5ADC reference high decoupling capacitance 70 100 nF
CDEC5, 6, 7Recommended decoupling capacitance 70 100 nF
1. VDD and VDDA must be shorted to a common source on PCB. Appropriate decoupling capacitors to be used to filter noise
on the supplies. See application note AN5032 for reference supply design for SAR ADC. All VSS pins should be connected
to common ground at the PCB level.
2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).
3. Minimum recommendation is after considering component aging and tolerance.
4. For improved performance, it is recommended to use 10 μF, 0.1 μF and 1 nF capacitors in parallel.
5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.
6. Contact your local Field Applications Engineer for details on best analog routing practices.
7. The filtering used for decoupling the device supplies must comply with the following best practices rules:
The protection/decoupling capacitors must be on the path of the trace connected to that component.
General
S32K1xx Data Sheet, Rev. 4, 06/2017
12 Preliminary NXP Semiconductors
No trace exceeding 1 mm from the protection to the trace or to the ground.
The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).
The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.
PMC
VDD
VFlash = 3.6 V nominal
VCORE = 1.2 V/1.4 V nominal
System RAM
TCD RAM
I/D Cache
EEE RAM
LV SOG
FIRC
SIRC
SPLL
VSS
SOSC
GPIO
Flash
Pads
ADC CMP
VDDA
VSSA
VREFH
VREFL
*Note: VSSA and VSS are shorted at package level
VOSC = 3.3 V nominal
Figure 6. Power diagram
4.5 LVR, LVD and POR operating requirements
Table 5. VDD supply LVR, LVD and POR operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR Rising and falling VDD POR detect voltage 1.1 1.6 2.0 V
VLVR LVR falling threshold (RUN, HSRUN, and
STOP modes)
2.50 2.58 2.7 V
VLVR_HYST LVR hysteresis 45 mV 1
VLVR_LP LVR falling threshold (VLPS/VLPR modes) 1.97 2.22 2.44 V
Table continues on the next page...
General
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 13
Table 5. VDD supply LVR, LVD and POR operating requirements (continued)
Symbol Description Min. Typ. Max. Unit Notes
VLVD Falling low-voltage detect threshold 2.8 2.875 3 V
VLVD_HYST LVD hysteresis 50 mV 1
VLVW Falling low-voltage warning threshold 4.19 4.305 4.5 V
VLVW_HYST LVW hysteresis 75 mV 1
VBG Bandgap voltage reference 0.97 1.00 1.03 V
1. Rising threshold is the sum of falling threshold and hysteresis voltage.
4.6 Power mode transition operating behaviors
All specifications in the following table assume this clock configuration:
RUN Mode:
Clock source: FIRC
SYS_CLK/CORE_CLK = 48 MHz
BUS_CLK = 48 MHz
FLASH_CLK = 24 MHz
HSRUN Mode:
Clock source: SPLL
SYS_CLK/CORE_CLK = 112 MHz
BUS_CLK = 56 MHz
FLASH_CLK = 28 MHz
VLPR Mode:
Clock source: SIRC
SYS_CLK/CORE_CLK = 4 MHz
BUS_CLK = 4 MHz
FLASH_CLK = 1 MHz
STOP1/STOP2 Mode:
Clock source: FIRC
SYS_CLK/CORE_CLK = 48 MHz
BUS_CLK = 48 MHz
FLASH_CLK = 24 MHz
VLPS Mode: All clock sources disabled.
Table 6. Power mode transition operating behaviors
Symbol Description Min. Typ. Max. Unit
tPOR After a POR event, amount of time from the point VDD
reaches 2.7 V to execution of the first instruction
across the operating temperature range of the chip.
325 μs
Table continues on the next page...
General
S32K1xx Data Sheet, Rev. 4, 06/2017
14 Preliminary NXP Semiconductors
Table 6. Power mode transition operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit
VLPS RUN 8 17 μs
STOP1 RUN 0.07 0.075 0.08 μs
STOP2 RUN 0.07 0.075 0.08 μs
VLPR RUN 19 26 μs
VLPR VLPS 5.75 6.25 6.5 μs
VLPS VLPR 26.5 27.25 27.75 μs
RUN Compute operation 0.35 0.38 0.4 μs
HSRUN Compute operation 0.3 0.31 0.35 μs
RUN STOP1 0.35 0.38 0.4 μs
RUN STOP2 0.2 0.23 0.25 μs
RUN VLPS 0.35 0.38 0.4 μs
RUN VLPR 4.4 4.7 5 μs
VLPS Asynchronous DMA Wakeup 105 110 125 μs
STOP1 Asynchronous DMA Wakeup 1 1.1 1.3 μs
STOP2 Asynchronous DMA Wakeup 1 1.1 1.3 μs
Pin reset Code execution 214 μs
NOTE
HSRUN should only be used when frequencies in excess of 80
MHz are required. When using 80 MHz and below, RUN mode
is the recommended operating mode.
4.7 Power consumption
The following table shows the power consumption targets for the device in various mode
of operations.
General
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 15
Table 7. Power consumption (Typicals unless stated otherwise) 1
Ambient Temperature (°C)
VLPS (μA)2, 3VLPR
(mA)
STOP1
(mA)
STOP2
(mA)
RUN@48
MHz (mA)
RUN@64 MHz
(mA)
RUN@80 MHz
(mA)
HSRUN@112
MHz (mA) 4
Idd/MH
z (μA/
MHz)5
Peripherals disabled 6
Peripherals enabled
Peripherals disabled
Peripherals enabled
Peripherals disabled
Peripherals enabled
Peripherals disabled
Peripherals enabled
Peripherals disabled
Peripherals enabled
Peripherals disabled
Peripherals enabled
S32K116 25 Typ 26 38 1.9 2.5 7 12 TBD TBD NA TBD
105 Typ TBD TBD TBD TBD TBD TBD TBD TBD TBD
Max TBD TBD TBD TBD TBD TBD TBD TBD TBD
125 Max TBD TBD TBD TBD TBD TBD TBD 40 TBD
S32K118 25 Typ 26 38 1.9 2.5 7 12 TBD TBD NA TBD
105 Typ TBD TBD TBD TBD TBD TBD TBD TBD TBD
Max TBD TBD TBD TBD TBD TBD TBD TBD TBD
125 Max TBD TBD TBD TBD TBD TBD TBD 42 TBD
S32K142 25 Typ 29 42 1.9 2.5 10 15 TBD TBD NA TBD TBD TBD TBD TBD
105 Typ TBD TBD TBD TBD TBD TBD TBD TBD 48 57 65 75 TBD
Max TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 85 90 TBD
125 Max TBD TBD TBD TBD TBD TBD TBD TBD 60 65 NA TBD
S32K144 25 Typ 29.8 39.1 1.48 1.50 7 7.7 19.7 26.9 25.1 33.3 30.2 39.6 43.3 55.6 378
Table continues on the next page...
General
S32K1xx Data Sheet, Rev. 4, 06/2017
16 Preliminary NXP Semiconductors
Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)
Ambient Temperature (°C)
VLPS (μA)2, 3VLPR
(mA)
STOP1
(mA)
STOP2
(mA)
RUN@48
MHz (mA)
RUN@64 MHz
(mA)
RUN@80 MHz
(mA)
HSRUN@112
MHz (mA) 4
Idd/MH
z (μA/
MHz)5
85 Typ 150 159 1.72 1.85 7.2 8.1 20.4 27.1 26.1 33.5 30.5 40 43.9 56.1 381
Max 359 384 2.60 2.65 8.3 9.2 21.9 28.5 27.8 34.4 32.9 41.5 45.5 57.5 411
105 Typ 256 273 1.80 2.10 7.8 8.5 20.6 27.4 26.6 33.8 31.2 40.5 44.8 57.1 390
Max 850 900 2.65 2.70 10.3 10.6 22.7 30 28.3 36.5 33.4 43.3 47.9 61.3 418
125 Max 1960 1998 3.18 3.25 12.2 13 25.3 32.7 35 39.8 37.1 46.5 NA NA 464
S32K146 25 Typ 40 55 5 6 15 20 TBD TBD TBD TBD TBD TBD TBD TBD TBD
105 Typ TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
Max TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 95 110 TBD
125 Max TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 70 80 NA NA TBD
S32K1487, 825 Typ 40 60 5 6 15 20 TBD TBD TBD TBD TBD TBD TBD TBD TBD
105 Typ TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
Max TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 120 125 TBD
125 Max TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 100 110 NA NA TBD
1. Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration.
2. This is an average based on the use case described in the Comparator section, whereby the analog sampling is taking place periodically, with a mechanism to only
enable the DAC as required. The numbers quoted assumes that only a single ANLCMP is active and the others are disabled
3. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
4. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.
5. Values mentioned are measured at 25 at RUN@80 MHz with peripherals disabled.
6. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.
7. Above S32K148 data is preliminary targets only
8. The S32K148 data points assume that ENET/QuadSPI/SAI etc. are active. If the same configuration is selected as per the S32K144, then the two devices will have
very similar IDD.
General
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 17
4.7.1 Modes configuration
Attached S32K1xx_Power_Modes _Configuration.xlsx details the modes used in
gathering the power consumption data stated in the above table Table 7. For full
functionality refer to table: Module operation in available low power modes of the
Reference Manual.
4.8 ESD handling ratings
Symbol Description Min. Max. Unit Notes
VHBM Electrostatic discharge voltage, human body model − 4000 4000 V 1
VCDM Electrostatic discharge voltage, charged-device model 2
All pins except the corner pins − 500 500 V
Corner pins only − 750 750 V
ILAT Latch-up current at ambient temperature of 125 °C − 100 100 mA 3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
4.9 EMC radiated emissions operating behaviors
EMC measurements to IC-level IEC standards are available from NXP on request.
I/O parameters
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
5
I/O parameters
S32K1xx Data Sheet, Rev. 4, 06/2017
18 Preliminary NXP Semiconductors
Figure 7. Input signal measurement reference
5.2 General AC specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
and timers.
Table 8. General switching specifications
Symbol Description Min. Max. Unit Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5 Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, passive filter disabled) — Asynchronous path
50 ns 3
WFRST RESET input filtered pulse 100 ns 4
WFRST RESET input not filtered pulse 100 ns
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in
that case.
2. The greater of synchronous and asynchronous timing must be met.
3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
4. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter.
5.3 DC electrical specifications at 3.3 V Range
Table 9. DC electrical specifications at 3.3 V Range
Symbol Parameter Value Unit Notes
Min. Typ. Max.
VDD I/O Supply Voltage 2.7 3.3 4 V 1
Vih Input Buffer High Voltage 0.7 × VDD VDD + 0.3 V 2
Vil Input Buffer Low Voltage VSS − 0.3 0.3 × VDD V3
Vhys Input Buffer Hysteresis 0.06 × VDD V
Ioh_Standard I/O current source capability measured
when pad = (VDDE − 0.8 V)
3.5 mA
Table continues on the next page...
I/O parameters
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 19
Table 9. DC electrical specifications at 3.3 V Range (continued)
Symbol Parameter Value Unit Notes
Min. Typ. Max.
Iol_Standard I/O current sink capability measured when
pad = 0.8 V
3 mA
Ioh_Strong I/O current source capability measured
when pad = (VDDE − 0.8 V)
14 mA 4
Iol_Strong I/O current sink capability measured when
pad = 0.8 V
12 mA 5
IOHT Output high current total for all ports 100 mA
IIN Input leakage current (per pin) for full temperature range at VDD = 3.3 V 6
All pins other than high drive port pins 0.005 0.5 μA
High drive port pins 70.010 0.5 μA
RPU Internal pullup resistors 20 60 8
RPD Internal pulldown resistors 20 60 9
1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to
operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
2. For reset pads, same Vih levels are applicable
3. For reset pads, same Vil levels are applicable
4. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard
value given above.
5. The value given is measured at high drive strength mode. For value at low drive strength mode see the Iol_Standard value
given above.
6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All
other GPIOs are normal drive only. For details refer to S32K144_IO_Signal_Description_Input_Multiplexing.xlsx attached
with the Reference Manual.
7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be
respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
8. Measured at input V = VSS
9. Measured at input V = VDD
5.4 DC electrical specifications at 5.0 V Range
Table 10. DC electrical specifications at 5.0 V Range
Symbol Parameter Value Unit Notes
Min. Typ. Max.
VDD I/O Supply Voltage 4 5.5 V
Vih Input Buffer High Voltage 0.65 x VDD VDD + 0.3 V 1
Vil Input Buffer Low Voltage VSS − 0.3 0.35 x VDD V2
Vhys Input Buffer Hysteresis 0.06 x VDD V
Ioh_Standard I/O current source capability
measured when pad = (VDDE - 0.8
V)
5 mA
Iol_Standard I/O current sink capability measured
when pad = 0.8 V
5 mA
Table continues on the next page...
I/O parameters
S32K1xx Data Sheet, Rev. 4, 06/2017
20 Preliminary NXP Semiconductors
Table 10. DC electrical specifications at 5.0 V Range (continued)
Symbol Parameter Value Unit Notes
Min. Typ. Max.
Ioh_Strong I/O current source capability
measured when pad = VDDE - 0.8 V
20 mA 3, 4
Iol_Strong I/O current sink capability measured
when pad = 0.8 V
20 mA 4, 5
IOHT Output high current total for all ports 100 mA
IIN Input leakage current (per pin) for full temperature range at VDD = 5.5 V 6
All pins other than high drive port
pins
0.005 0.5 μA
High drive port pins 0.010 0.5 μA
RPU Internal pullup resistors 20 50 7
RPD Internal pulldown resistors 20 50 8
1. For reset pads, same Vih levels are applicable
2. For reset pads, same Vil levels are applicable
3. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard
value given above.
4. The strong pad I/O pin is capable of switching a 50 pF load at up to 40 MHz.
5. The value given is measured at high drive strength mode. For value at low drive strength mode see the Iol_Standard value
given above.
6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All
other GPIOs are normal drive only. For details refer to SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx attached
with the Reference Manual.
7. Measured at input V = VSS
8. Measured at input V = VDD
5.5 AC electrical specifications at 3.3 V range
Table 11. AC electrical specifications at 3.3 V Range
Symbol DSE Rise time (nS) 1Fall time (nS) 1Capacitance (pF) 2
Min. Max. Min. Max.
Standard NA 4.6 14.5 3.9 15.7 25
7.2 23.7 6.2 26.2 50
24.0 75.4 20.8 88.4 200
Strong 0 4.6 14.5 3.9 15.7 25
7.2 23.7 6.2 26.2 50
24.0 75.4 20.8 88.4 200
1 2.0 5.8 1.8 6.1 25
2.8 8.0 2.6 8.3 50
7.0 20.7 6.0 22.4 200
1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.
2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be
different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.
I/O parameters
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 21
5.6 AC electrical specifications at 5 V range
Table 12. AC electrical specifications at 5 V Range
Symbol DSE Rise time (nS)1Fall time (nS) 1Capacitance (pF) 2
Min. Max . Min. Max.
Standard NA 3.2 9.4 3.6 10.7 25
5.4 15.7 5.1 17.4 50
18.5 52.6 17.6 59.7 200
Strong 0 4.0 9.4 3.6 10.7 25
5.8 15.7 5.1 17.4 50
18.1 52.6 17.6 59.7 200
1 1.6 4.6 1.5 5.0 25
2.2 5.7 2.2 5.8 50
5.6 14.6 5.0 15.4 200
1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.
2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be
different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.
5.7 Standard input pin capacitance
Table 13. Standard input pin capacitance
Symbol Description Min. Max. Unit
CIN_D Input capacitance: digital pins 7 pF
NOTE
Please refer to External System Oscillator electrical
specifications for EXTAL/XTAL pins.
5.8 Device clock specifications
Table 14. Device clock specifications 1
Symbol Description Min. Max. Unit
High Speed run mode2
fSYS System and core clock 112 MHz
fBUS Bus clock 56 MHz
fFLASH Flash clock 28 MHz
Normal run mode (S32K11x series)
Table continues on the next page...
I/O parameters
S32K1xx Data Sheet, Rev. 4, 06/2017
22 Preliminary NXP Semiconductors
Table 14. Device clock specifications 1 (continued)
Symbol Description Min. Max. Unit
fSYS System and core clock 48 MHz
fBUS Bus clock 24 MHz
fFLASH Flash clock 24 MHz
Normal run mode (S32K14x series) 3
fSYS System and core clock 80 MHz
fBUS Bus clock 40 MHz
fFLASH Flash clock 26.67 MHz
VLPR mode4
fSYS System and core clock 4 MHz
fBUS Bus clock 4 MHz
fFLASH Flash clock 1 MHz
fERCLK External reference clock 16 MHz
1. Refer to the section Feature comparison for the availability of modes and other specifications.
2. Only available on some devices. See section Feature comparison.
3. With SPLL as system clock source.
4. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any
other module.
Peripheral operating requirements and behaviors
6.1 System modules
There are no electrical specifications necessary for the device's system modules.
Clock interface modules
6.2.1 External System Oscillator electrical specifications
6
6.2
Peripheral operating requirements and behaviors
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 23
Single input comparator
(EXTAL WAVE) Mux ref_clk
Differential input comparator
(HG/LP mode)
Peak detector
LP mode
Driver
(HG/LP mode)
Pull down resistor (OFF)
ESD PAD
280 ohms
ESD PAD
40 ohms
EXTAL pin XTAL pin
Series resistor for current
limitation
Crystal or resonator
C1 C2
1M ohms Feedback Resistor
Figure 8. Oscillator connections scheme
Table 15. External System Oscillator electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
gmXOSC Crystal oscillator transconductance
4-8 MHz 2.2 13.7 mA/V
8-40 MHz 16 47 mA/V
VIL Input low voltage — EXTAL pin in external clock mode VSS 0.35 * VDD V
VIH Input high voltage — EXTAL pin in external clock
mode
0.7 * VDD VDD V
C1EXTAL load capacitance 1
C2XTAL load capacitance 1
RFFeedback resistor 2
Low-gain mode (HGO=0)
Table continues on the next page...
Clock interface modules
S32K1xx Data Sheet, Rev. 4, 06/2017
24 Preliminary NXP Semiconductors
Table 15. External System Oscillator electrical specifications
(continued)
Symbol Description Min. Typ. Max. Unit Notes
High-gain mode (HGO=1) 1
RSSeries resistor
Low-gain mode (HGO=0) 0
High-gain mode (HGO=1) 0
Vpp Peak-to-peak amplitude of oscillation (oscillator mode) 3
Low-gain mode (HGO=0) 1.0 V
High-gain mode (HGO=1) 3.3 V
1. Crystal oscillator circuit provides stable oscillations when gmXOSC > 5 * gm_crit. The gm_crit is defined as:
gm_crit = 4 * ESR * (2πF)2 * (C0 + CL)2
where:
gmXOSC is the transconductance of the internal oscillator circuit
ESR is the equivalent series resistance of the external crystal
F is the external crystal oscillation frequency
C0 is the shunt capacitance of the external crystal
CL is the external crystal total load capacitance. CL = Cs+ [C1*C2/(C1+C2)]
Cs is stray or parasitic capacitance on the pin due to any PCB traces
C1, C2 external load capacitances on EXTAL and XTAL pins
See manufacture datasheet for external crystal component values
2. When low-gain is selected, internal RF will be selected and external RF should not be attached.
When high-gain is selected, external RF (1 M Ohm) needs to be connected for proper operation of the crystal. For
external resistor, up to 5% tolerance is allowed.
3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other devices.
6.2.2 External System Oscillator frequency specifications
Table 16. External System Oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_hi Oscillator crystal or resonator frequency 4 40 MHz
fec_extal Input clock frequency (external clock mode) 50 MHz
tdc_extal Input clock duty cycle (external clock mode) 40 50 60 %
tcst Crystal Start-up Time
8 MHz low-gain mode (HGO=0) 1.5 ms 1
8 MHz high-gain mode (HGO=1) 2.5
40 MHz low-gain mode (HGO=0) 2
40 MHz high-gain mode (HGO=1) 2
1. Proper PC board layout procedures must be followed to achieve specifications.
Clock interface modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 25
System Clock Generation (SCG) specifications
6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications
Table 17. Fast internal RC Oscillator electrical specifications
Symbol Parameter1Value Unit
Min. Typ. Max.
FFIRC FIRC target frequency 48 MHz
ΔF Frequency deviation across process, voltage, and
temperature < 105°C
±0.5 ±1 %FFIRC
ΔF125 Frequency deviation across process, voltage, and
temperature < 125°C
±0.5 ±1.1 %FFIRC
TStartup Startup time 3.4 5 µs2
TJIT, 3Cycle-to-Cycle jitter 250 500 ps
TJIT3Long term jitter over 1000 cycles 0.04 0.1 %FFIRC
1. With FIRC regulator enable
2. Startup time is defined as the time between clock enablement and clock availability for system use.
3. FIRC as system clock
NOTE
Fast internal RC Oscillator is compliant with CAN and LIN
standards.
6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications
Table 18. Slow internal RC oscillator (SIRC) electrical specifications
Symbol Parameter Value Unit
Min. Typ. Max.
FSIRC SIRC target frequency 8 MHz
ΔF Frequency deviation across process, voltage, and
temperature < 105°C
±3 %FSIRC
ΔF125 Frequency deviation across process, voltage, and
temperature < 125°C
±3.3 %FSIRC
TStartup Startup time 9 12.5 µs1
1. Startup time is defined as the time between clock enablement and clock availability for system use.
6.2.3
System Clock Generation (SCG) specifications
S32K1xx Data Sheet, Rev. 4, 06/2017
26 Preliminary NXP Semiconductors
6.2.4 Low Power Oscillator (LPO) electrical specifications
Table 19. Low Power Oscillator (LPO) electrical specifications
Symbol Parameter Min. Typ. Max. Unit
FLPO Internal low power oscillator frequency 113 128 139 kHz
Tstartup Startup Time 20 µs
6.2.5 SPLL electrical specifications
Table 20. SPLL electrical specifications
Symbol Parameter Min. Typ. Max. Unit
FSPLL_REF1PLL Reference Frequency Range 8 16 MHz
FSPLL_Input2PLL Input Frequency 8 40 MHz
FVCO_CLK VCO output frequency 180 320 MHz
FSPLL_CLK PLL output frequency 90 160 MHz
JCYC_SPLL PLL Period Jitter (RMS)3
at FVCO_CLK 180 MHz 120 ps
at FVCO_CLK 320 MHz 75 ps
JACC_SPLL PLL accumulated jitter over 1µs (RMS)3
at FVCO_CLK 180 MHz 1350 ps
at FVCO_CLK 320 MHz 600 ps
DUNL Lock exit frequency tolerance ± 4.47 ± 5.97 %
TSPLL_LOCK Lock detector detection time4 150 × 10-6 +
1075(1/FSPLL_REF)
s
1. FSPLL_REF is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG
register of Reference Manual.
2. FSPLL_Input is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input
source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass
mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.
3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each
PCB and results will vary
4. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.
Memory and memory interfaces
6.3.1 Flash memory module (FTFC) electrical specifications
This section describes the electrical characteristics of the flash memory module.
6.3
Memory and memory interfaces
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 27
6.3.1.1 Flash timing specifications — commands
Table 21. Flash command timing specifications
Symbol Description1Min. Typ. Max. Unit Notes
trd1blk64k
trd1blk512k
Read 1s Block execution time
64 KB data flash
512 KB program flash
0.5
1.8
ms
ms
trd1sec2k Read 1s Section execution time (2 KB flash) 75 μs
trd1sec4k Read 1s Section execution time (4 KB flash) 100 μs
tpgmchk Program Check execution time 95 μs
tpgm8 Program Phrase execution time 90 150 μs
tersblk64k
tersblk512k
Erase Flash Block execution time
64 KB data flash
512 KB program flash
55
435
475
3700
ms
ms
2
tersscr Erase Flash Sector execution time 15 115 ms 2
tpgmsec1k Program Section execution time (1KB flash) 5 ms
trd1allx Read 1s All Blocks execution time
2.2
4.4
6.6
ms
ms
ms
trdonce Read Once execution time 30 μs
tpgmonce Program Once execution time 90 μs
tersall Erase All Blocks execution time 500 4200 ms 2
tvfykey Verify Backdoor Access Key execution time 35 μs
tersallu Erase All Blocks Unsecure execution time 500 4200 ms 2
tpgmpart32k
tpgmpart64k
Program Partition for EEPROM execution time
32 KB EEPROM backup
64 KB EEPROM backup (Non-Interleaved
DFlash)
64 KB EEPROM backup (Interleaved
DFlash)
70
71
250
ms
ms
ms
3, 4
tsetramff
tsetram32k
tsetram48k
tsetram64k
Set FlexRAM Function execution time:
Control Code 0xFF
32 KB EEPROM backup
48 KB EEPROM backup
64 KB EEPROM backup
70
0.8
1.0
1.3
1.2
1.5
1.9
μs
ms
ms
ms
3, 4
teewr8b32k
teewr8b48k
teewr8b64k
Byte-write to FlexRAM execution time:
32 KB EEPROM backup
48 KB EEPROM backup
64 KB EEPROM backup
385
430
475
1700
1850
2000
μs
μs
μs
3, 4
teewr16b32k
teewr16b48k
16-bit write to FlexRAM execution time:
32 KB EEPROM backup
385
430
1700
1850
μs
μs
3, 4
Table continues on the next page...
Memory and memory interfaces
S32K1xx Data Sheet, Rev. 4, 06/2017
28 Preliminary NXP Semiconductors
Table 21. Flash command timing specifications (continued)
Symbol Description1Min. Typ. Max. Unit Notes
teewr16b64k 48 KB EEPROM backup
64 KB EEPROM backup
475 2000 μs
teewr32bers 32-bit write to erased FlexRAM location
execution time
360 2000 µs
teewr32b32k
teewr32b48k
teewr32b64k
32-bit write to FlexRAM execution time:
32 KB EEPROM backup
48 KB EEPROM backup
64 KB EEPROM backup
630
720
810
2000
2125
2250
μs
μs
μs
3, 4
tquickwr 32-bit Quick Write execution time : Time from CCIF clearing (start the write) until CCIF setting (32-bit write
complete, ready for next 32-bit write)
1st 32-bit write
2nd through Next to Last (Nth-1) 32-bit
write
Last (Nth) 32-bit write (time for write only,
not cleanup)
200
150
200
550
550
550
μs
μs
μs
5, 6
tquickwrClnup Quick Write Cleanup execution time (Number
of Quick
Writes) *
2.0
ms 7
1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external
clocks).
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For all EEPROM Emulation terms, the specified timing shown assumes previous record clean up has occurred. This may
be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM
issues detected.
4. 'First time' EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x
the times shown.
5. For 'Typ.', only after the Nth write completes will any data will be valid. Emulated EEPROM record scheme cleanup
overhead may occur after this point even after a brownout or reset. If power or reset occurs before the Nth write
completes, the last valid record set will still be valid and the new records will be discarded.
6. Quick Write may take up to 550 μs as additional cleanup may occur when crossing sector boundaries.
7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes,
assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.
NOTE
Under certain circumstances FlexMEM maximum times may be
exceeded. In this case the user or application may wait, or assert
reset to the FTFC macro to stop the operation.
6.3.1.2 Reliability specifications
Table 22. NVM reliability specifications
Symbol Description Min. Typ. Max. Unit Notes
When using as Program and Data Flash
Table continues on the next page...
Memory and memory interfaces
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 29
Table 22. NVM reliability specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
tnvmretp1k Data retention after up to 1 K cycles 20 years
nnvmcycp Cycling endurance 1 K cycles 2, 1
When using FlexMemory feature: FlexRAM as Emulated EEPROM
tnvmretee Data retention 5 years
nnvmwree16
nnvmwree256
Write endurance
EEPROM backup to FlexRAM ratio = 16
EEPROM backup to FlexRAM ratio = 256
100 K
1.6 M
writes
writes
3, 4, 5
1. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not
supported in HSRUN mode).
2. Cycling endurance is per DFlash or PFlash Sector.
3. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across standard
temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved
with larger ratios of EEPROM backup to FlexRAM.
4. For usage of any other EEE driver other than the FlexMemory feature, the endurance specification will fall back to the
specified endurance value of the D-Flash specification (1 K).
5. EEE calculator tool is available at NXP web site to help estimate the maximum write endurance achievable at specific
EEPROM/FlexRAM ratio. The “In Spec” portions of the online calculator refer to the NVM reliability specifications section of
data sheet. This calculator is only applies to the FlexMemory feature.
6.3.2 QuadSPI AC specifications
The following table describes the QuadSPI electrical characteristics.
Measurements are with maximum output load of 25 pF, input transition of 1 ns and
pad configured with fastest slew settings (DSE = 1'b1).
I/O operating voltage ranges from 2.97 V to 3.6 V
While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the
interface should be OFF.
Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop
back reflection when using in Internal DQS (PAD Loopback) mode.
For non-Quad mode of operation if external device doesn’t have pull-up feature,
external pull-up needs to be added at board level for non-used pads.
With external pull-up, performance of the interface may degrade based on load
associated with external pull-up.
Memory and memory interfaces
S32K1xx Data Sheet, Rev. 4, 06/2017
30 Preliminary NXP Semiconductors
Table 23. QuadSPI electrical specifications
FLASH PORT Sym Unit FLASH A FLASH B
RUN1HSRUN1RUN/HSRUN2
QuadSPI Mode SDR SDR SDR DDR3
Internal
Sampling
Internal DQS Internal
Sampling
Internal DQS Internal
Sampling
External DQS
N1 PAD
Loopback
Internal
Loopback
N1 PAD
Loopback
Internal
Loopback
N1 Extrenal DQS
Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max
Register Settings
MCR[DDR_EN] - 0 0 0 0 0 0 0 1
MCR[DQS_EN] - 0 1 1 0 1 1 0 1
MCR[SCLKCFG[0]] - - 1 0 - 1 0 - -
MCR[SCLKCFG[1]] - - 1 0 - 1 0 - -
MCR[SCLKCFG[2]] - - - - - - - - 0
MCR[SCLKCFG[3]] - - - - - - - - 0
MCR[SCLKCFG[5]] - - - - - - - - 1
SMPR[FSPHS] - 0 1 0 0 1 0 0 0
SMPR[FSDLY] - 0 0 0 0 0 0 0 0
SOCCR
[SOCCFG[7:0]]
- 0 23 - 0 30 - -
SOCCR[SOCCFG[15:8]] - - - - - - - - 30
FLSHCR[TDH] - 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01
Timing Parameters
SCK Clock Frequency fSCK MHz - 38 - 64 - 48 - 40 - 80 - 50 - 20 - 204
SCK Clock Period tSCK ns
1/fSCK
-
1/fSCK
-
1/fSCK
-
1/fSCK
-
1/fSCK
-
1/fSCK
- 50.0 - 50.04-
Table continues on the next page...
Memory and memory interfaces
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 31
Table 23. QuadSPI electrical specifications (continued)
FLASH PORT Sym Unit FLASH A FLASH B
RUN1HSRUN1RUN/HSRUN2
QuadSPI Mode SDR SDR SDR DDR3
Internal
Sampling
Internal DQS Internal
Sampling
Internal DQS Internal
Sampling
External DQS
N1 PAD
Loopback
Internal
Loopback
N1 PAD
Loopback
Internal
Loopback
N1 Extrenal DQS
Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max
SCK Duty Cycle tSDC ns
tSCK/2 - 1.5
tSCK/2 + 1.5
tSCK/2 - 1.5
tSCK/2 + 1.5
tSCK/2 - 1.5
tSCK/2 + 1.5
tSCK/2 - 1.5
tSCK/2 + 1.5
tSCK/2 - 0.750
tSCK/2 - 0.750
tSCK/2 - 1.5
tSCK/2 + 1.5
tSCK/2 - 2.5
tSCK/2 + 2.5
tSCK/2 - 2.5
tSCK/2 + 2.5
Data Input Setup Time tIS ns 15 - 2.5 - 10 - 14 - 1.5 - 9 - 25 - -2 -
Data Input Hold Time tIH ns 0 - 1 - 1 - 0 - 1 - 1 - 0 - 0 -
Data Output Valid Time tOV ns - 4.5 - 4.5 - 4.5 - 4 - 4 - 4 - 10 - 10
Data Output In-Valid
Time
tIV ns 5 - 5 - 5 - 5 - 35- 5 - 5 - 5 -
CS to SCK Time 6tCSSCK ns 5 - 5 - 5 - 5 - 5 - 5 - 10 - 10 -
SCK to CS Time 7tSCKCS ns 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
Output Load pf 25 25 25 25 25 25 25 25
1. See Reference Manual for details on mode settings
2. See Reference Manual for details on mode settings
3. Valid for HyperRAM only
4. RWDS(External DQS CLK) frequency
5. For operating frequency ≤ 64 Mhz,Output invalid time is 5 ns.
6. Program register value QuadSPI_FLSHCR[TCSS] = 4`h2
7. Program register value QuadSPI_FLSHCR[TCSH] = 4`h1
Memory and memory interfaces
S32K1xx Data Sheet, Rev. 4, 06/2017
32 Preliminary NXP Semiconductors
1 2 3
tSCK
tIS
tIH
Clock
SCK
CS
Data in
tSDC
tSDC
Figure 9. QuadSPI input timing (SDR mode) diagram
Figure 10. QuadSPI output timing (SDR mode) diagram
tIS
RWDS
DI[7:0]
tIH
tSCK
tSDC tSDC
Figure 11. QuadSPI input timing (HyperRAM mode) diagram
Memory and memory interfaces
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 33
CK
tOV
Output Invalid Data
tIV
Figure 12. QuadSPI output timing (HyperRAM mode) diagram
Analog modules
ADC electrical specifications
6.4.1.1 12-bit ADC operating conditions
Table 24. 12-bit ADC operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
ΔVDDA Supply voltage Delta to VDD (VDD
VDDA)
-0.1 0 +0.1 V 2
VREFH ADC reference voltage high See Voltage
and current
operating
requirements
for values
VDDA See Voltage
and current
operating
requirements
for values
V3
VREFL ADC reference voltage low See Voltage
and current
operating
requirements
for values
0 See Voltage
and current
operating
requirements
for values
mV 3
VADIN Input voltage VREFL VREFH V
RSSource impedendance fADCK < 4 MHz 5
RSW1 Channel Selection Switch
Impedance
-0.75 1.2
RAD Sampling Switch Impedance 2 5
CP1 Pin Capacitance 10 pF
Table continues on the next page...
6.4
6.4.1
Analog modules
S32K1xx Data Sheet, Rev. 4, 06/2017
34 Preliminary NXP Semiconductors
Table 24. 12-bit ADC operating conditions (continued)
Symbol Description Conditions Min. Typ.1Max. Unit Notes
CP2 Analog Bus Capacitance 4 pF
CSSampling capacitance 4 5 pF
fADCK ADC conversion clock
frequency
Normal usage 2 40 50 MHz 4, 5
fCONV ADC conversion frequency No ADC hardware
averaging.6 Continuous
conversions enabled,
subsequent conversion
time
46.4 928 1160 Ksps 7, 8
ADC hardware averaging
set to 32. 6 Continuous
conversions enabled,
subsequent conversion
time
1.45 29 36.25 Ksps 7, 8
1. Typical values assume VDDA = 5 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated.
Typical values are for reference only, and are not tested in production.
2. DC potential difference.
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to VSS.
To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for
details.
4. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .
5. ADC conversion will become less reliable above maximum frequency.
6. When using ADC hardware averaging, see the Reference Manual to determine the most appropriate setting for AVGS.
7. Numbers based on the minimum sampling time of 275 ns.
8. For guidelines and examples of conversion rate calculation, see the Reference Manual or download the ADC calculator
tool.
Figure 13. ADC input impedance equivalency diagram
ADC electrical specifications
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 35
6.4.1.2 12-bit ADC electrical characteristics
NOTE
ADC performance specifications are documented using a single
ADC. For parallel/simultaneous operation of both ADCs, either
for sampling the same channel by both ADCs or for sampling
different channels by each ADC, some amount of decrease in
performance can be expected. Care must be taken to stagger the
two ADC conversions, in particular the sample phase, to
minimize the impact of simultaneous conversions.
Table 25. 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS)
Symbol Description Conditions 1Min. Typ.2Max. Unit Notes
VDDA Supply voltage 2.7 3 V
IDDA_ADC Supply current per ADC 0.6 1.5 mA 3
SMPLTS Sample Time 275 Refer to
the
Reference
Manual
ns
TUE4Total unadjusted error ±4 ±8 LSB56, 7, 8, 9
DNL Differential non-linearity ±1.0 LSB56, 7, 8, 9
INL Integral non-linearity ±2.0 LSB56, 7, 8, 9
1. All accuracy numbers assume the ADC is calibrated with VREFH=VDDA=VDD, with the calibration frequency set to half the
ADC clock frequency.
2. Typical values assume VDDA = 3 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF, 100 LQFP package unless
otherwise stated.
3. The ADC supply current depends on the ADC conversion rate.
4. Represents total static error, which includes offset and full scale error.
5. 1 LSB = (VREFH - VREFL)/2N
6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device
use case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settings
for AVGS.
7. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC
performance may be observed.
8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the
internal analog parameters, assume minor degradation.
9. All the parameters in the table are given assuming system clock as the clocking source for ADC.
Table 26. 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL = VSS)
Symbol Description Conditions 1Min. Typ.2Max. Unit Notes
VDDA Supply voltage 3 5.5 V
IDDA_ADC Supply current per ADC 1 2.1 mA 3
SMPLTS Sample Time 275 Refer to
the
Reference
Manual
ns
Table continues on the next page...
ADC electrical specifications
S32K1xx Data Sheet, Rev. 4, 06/2017
36 Preliminary NXP Semiconductors
Table 26. 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL = VSS) (continued)
Symbol Description Conditions 1Min. Typ.2Max. Unit Notes
TUE4Total unadjusted error ±4 ±8 LSB56, 7, 8, 9
DNL Differential non-linearity ±0.7 LSB56, 7, 8, 9
INL Integral non-linearity ±1.0 LSB56, 7, 8, 9
1. All accuracy numbers assume the ADC is calibrated with VREFH=VDDA=VDD, with the calibration frequency set to half the
ADC clock frequency.
2. Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated.
3. The ADC supply current depends on the ADC conversion rate.
4. Represents total static error, which includes offset and full scale error.
5. 1 LSB = (VREFH - VREFL)/2N
6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device
use case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settings
for AVGS.
7. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC
performance may be observed.
8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the
internal analog parameters, assume minor degradation.
9. All the parameters in the table are given assuming system clock as the clocking source for ADC.
NOTE
When using high speed interfaces such as the QuadSPI, SAI0,
SAI1 or ENET there may be some ADC degradation on the
adjacent analog input paths. See following table for details.
Pin name TGATE purpose
PTE8 CMP0_IN3
PTC3 ADC0_SE11/CMP0_IN4
PTC2 ADC0_SE10/CMP0_IN5
PTD7 CMP0_IN6
PTD6 CMP0_IN7
PTD28 ADC1_SE22
PTD27 ADC1_SE21
6.4.2 CMP with 8-bit DAC electrical specifications
Table 28. Comparator with 8-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
IDDHS Supply current, High-speed mode1μA
-40 - 125 230 300
IDDLS Supply current, Low-speed mode1μA
-40 - 105 5 10
-40 - 125 5 13
Table continues on the next page...
ADC electrical specifications
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 37
Table 28. Comparator with 8-bit DAC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit
VAIN Analog input voltage 0 0 - VDDA VDDA V
VAIO Analog input offset voltage, High-speed mode mV
-40 - 125 -25 ±1 25
VAIO Analog input offset voltage, Low-speed mode mV
-40 - 125 -40 ±4 40
tDHSB Propagation delay, High-speed mode2ns
-40 - 105 30 200
-40 - 125 30 300
tDLSB Propagation delay, Low-speed mode2µs
-40 - 105 0.5 2
-40 - 125 0.5 3
tDHSS Propagation delay, High-speed mode3ns
-40 - 105 70 400
-40 - 125 70 500
tDLSS Propagation delay, Low-speed mode3µs
-40 - 105 1 5
-40 - 125 1 5
tIDHS Initialization delay, High-speed mode4μs
-40 - 125 1.5 3
tIDLS Initialization delay, Low-speed mode4μs
-40 - 125 10 30
VHYST0 Analog comparator hysteresis, Hyst0 (VAIO) mV
-40 - 125 —0—
VHYST1 Analog comparator hysteresis, Hyst1, High-speed
mode
mV
-40 - 125 16 66
Analog comparator hysteresis, Hyst1, Low-speed
mode
-40 - 125 11 40
VHYST2 Analog comparator hysteresis, Hyst2, High-speed
mode
mV
-40 - 125 32 133
Analog comparator hysteresis, Hyst2, Low-speed
mode
-40 - 125 22 80
VHYST3 Analog comparator hysteresis, Hyst3, High-speed
mode
mV
-40 - 125 48 200
Analog comparator hysteresis, Hyst3, Low-speed
mode
-40 - 125 33 120
Table continues on the next page...
ADC electrical specifications
S32K1xx Data Sheet, Rev. 4, 06/2017
38 Preliminary NXP Semiconductors
Table 28. Comparator with 8-bit DAC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit
IDAC8b 8-bit DAC current adder (enabled)
3.3V Reference Voltage 6 9 μA
5V Reference Voltage 10 16 μA
INL58-bit DAC integral non-linearity –0.75 0.75 LSB6
DNL 8-bit DAC differential non-linearity –0.5 0.5 LSB6
tDDAC Initialization and switching settling time 30 μs
1. Difference at input > 200mV
2. Applied ± (100 mV + VHYST0/1/2/3+ max. of VAIO) around switch point.
3. Applied ± (30 mV + 2 × VHYST0/1/2/3+ max. of VAIO) around switch point.
4. Applied ± (100 mV + VHYST0/1/2/3).
5. Calculation method used: Linear Regression Least Square Method
6. 1 LSB = Vreference/256
NOTE
For comparator IN signals adjacent to VDD/VSS or XTAL/
EXTAL or switching pins cross coupling may happen and
hence hysteresis settings can be used to obtain the desired
comparator performance. Additionally, an external capacitor
(1nF) should be used to filter noise on input signal. Also, source
drive should not be weak (Signal with < 50 K pull up/down is
recommended).
Figure 14. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)
ADC electrical specifications
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 39
Figure 15. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)
Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)
ADC electrical specifications
S32K1xx Data Sheet, Rev. 4, 06/2017
40 Preliminary NXP Semiconductors
Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)
Communication modules
6.5.1 LPUART electrical specifications
Refer to General AC specifications for LPUART specifications.
6.5.1.1 Supported baud rate
Baud rate = Baud clock / ((OSR+1) * SBR).
For details, see section: 'Baud rate generation' of the Reference Manual.
6.5.2 LPSPI electrical specifications
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus
with master and slave operations. Many of the transfer attributes are programmable. The
following tables provide timing characteristics for classic LPSPI timing modes.
All timing is shown with respect to 20% VDD and 80% VDD thresholds.
All measurements are with maximum output load of 50 pF, input transition of 1 ns
and pad configured with fastest slew setting ( DSE = 1 ).
6.5
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 41
Table 29. LPSPI electrical specifications1
Num Symbol Description Conditions Run Mode2HSRUN Mode2VLPR Mode Unit
5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
fperiph, 3, 4Peripheral
Frequency
Slave - 40 - 40 - 56 - 56 - 8 - 8 MHz
Master - 40 - 40 - 56 - 56 - 8 - 8
Master
Loopback 5- 40 - 48 - 48 - 48 - 8 - 8
Master
Loopback(Slow)
6
- 48 - 48 - 48 - 48 - 8 - 8
1 fop Frequency of
operation
Slave - 10 - 10 - 14 - 14 - 4 - 4 MHz
Master - 10 - 10 - 14 - 14 - 4 - 4
Master
Loopback5
- 20 - 12 - 24 - 12 - 4 - 4
Master
Loopback(slow)
6
- 12 - 12 - 12 - 12 - 4 - 4
2 tSPSCK SPSCK
period
Slave 100 - 100 - 72 - 72 - 250 - 250 - ns
Master 100 - 100 - 72 - 72 - 250 - 250 -
Master
Loopback550 - 83 - 42 - 83 - 250 - 250 -
Master
Loopback(slow)
6
83 - 83 - 83 - 83 - 250 - 250 -
3 tLead7Enable lead
time (PCS to
SPSCK
delay)
Slave - - - - - - - - - - - - ns
Table continues on the next page...
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
42 Preliminary NXP Semiconductors
Table 29. LPSPI electrical specifications1 (continued)
Num Symbol Description Conditions Run Mode2HSRUN Mode2VLPR Mode Unit
5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Master
(PCSSCK + 1)*tSPSCK - 25
-
(PCSSCK + 1)*tSPSCK - 25
-
(PCSSCK + 1)*tSPSCK - 25
-
(PCSSCK + 1)*tSPSCK - 25
-
(PCSSCK + 1)*tSPSCK - 50
-
(PCSSCK + 1)*tSPSCK - 50
-
Master
Loopback5
Master
Loopback(slow)
6
4 tLag8Enable lag
time (After
SPSCK
delay)
Slave - - - - - - - - - - - - ns
Master
(SCKPCS + 1)*tSPSCK - 25
-
(SCKPCS + 1)*tSPSCK - 25
-
(SCKPCS + 1)*tSPSCK - 25
-
(SCKPCS + 1)*tSPSCK - 25
-
(SCKPCS + 1)*tSPSCK - 50
-
(SCKPCS + 1)*tSPSCK - 50
-
Master
Loopback5
Master
Loopback(slow)
6
Table continues on the next page...
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 43
Table 29. LPSPI electrical specifications1 (continued)
Num Symbol Description Conditions Run Mode2HSRUN Mode2VLPR Mode Unit
5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
5 tWSPSCK Clock(SPSC
K) high or
low time
(SPSCK duty
cycle)
Slave
tSPSCK/2 - 3
tSPSCK/2 + 3
tSPSCK/2 - 3
tSPSCK/2 + 3
tSPSCK/2 - 3
tSPSCK/2 + 3
tSPSCK/2 - 3
tSPSCK/2 + 3
tSPSCK/2 - 5
tSPSCK/2 + 5
tSPSCK/2 - 5
tSPSCK/2 + 5
ns
Master
Master
Loopback5
Master
Loopback(slow)
6
6 tSU Data setup
time(inputs)
Slave 3 - 5 - 3 - 5 - 18 - 18 - ns
Master 29 - 38 - 26 - 37 - 72 - 78 -
Master
Loopback5
7 - 8 - 5 - 7 - 20 - 20 -
Master
Loopback(slow)
6
8 - 10 - 7 - 9 - 20 - 20 -
7 tHI Data hold
time(inputs)
Slave 3 - 3 - 3 - 3 - 14 - 14 - ns
Master 0 - 0 - 0 - 0 - 0 - 0 -
Master
Loopback5
3 - 3 - 2 - 3 - 11 - 11 -
Master
Loopback(slow)
6
3 - 3 - 3 - 3 - 12 - 12 -
8 taSlave access
time
Slave - 50 - 50 - 50 - 50 - 100 - 100 ns
9 tdis Slave MISO
(SOUT)
disable time
Slave - 50 - 50 - 50 - 50 - 100 - 100 ns
Table continues on the next page...
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
44 Preliminary NXP Semiconductors
Table 29. LPSPI electrical specifications1 (continued)
Num Symbol Description Conditions Run Mode2HSRUN Mode2VLPR Mode Unit
5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
10 tvData valid
(after
SPSCK
edge)
Slave - 30 - 39 - 26 - 36 - 92 - 96 ns
Master - 12 - 16 - 11 - 15 - 47 - 48
Master
Loopback5- 12 - 16 - 11 - 15 - 47 - 48
Master
Loopback(slow)
6
- 8 - 10 - 7 - 9 - 44 - 44
11 tHO Data hold
time(outputs)
Slave 4 - 4 - 4 - 4 - 4 - 4 - ns
Master -15 - -22 - -15 - -23 - -22 - -29 -
Master
Loopback5-10 - -14 - -10 - -14 - -14 - -19 -
Master
Loopback(slow)
6
-15 - -22 - -15 - -22 - -21 - -27 -
12 tRI/FI Rise/Fall
time input
Slave - 1 - 1 - 1 - 1 - 1 - 1 ns
Master - - - - - -
Master
Loopback5- - - - - -
Master
Loopback(slow)
6
- - - - - -
13 tRO/FO Rise/Fall
time output
Slave - 25 - 25 - 25 - 25 - 25 - 25 ns
Master - - - - - -
Master
Loopback 5- - - - - -
Master
Loopback(slow)
6
- - - - - -
1. Trace length should not exceed 11 inches for SCK pad when used in Master loopback mode.
2. While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz.
3. fperiph = LPSPI peripheral clock
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 45
4. tperiph = 1/fperiph
5. Master Loopback mode - In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1.
Clock pads used are PTD15 and PTE0. Applicable only for LPSPI0.
6. Master Loopback (slow) - In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1.
Clock pad used is PTB2. Applicable only for LPSPI0.
7. Set the PCSSCK configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where PCSSCK ranges from 0 to 255.
8. Set the SCKPCS configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where SCKPCS ranges from 0 to 255.
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
46 Preliminary NXP Semiconductors
(OUTPUT)
2
10
6 7
MSB IN2
LSB IN
MSB OUT2 LSB OUT
11
5
5
3
(CPOL=0)
4
13
13
12
12
SPSCK
SPSCK
(CPOL=1)
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
1. If configured as an output.
SS1
(OUTPUT)
(OUTPUT)
MOSI
(OUTPUT)
MISO
(INPUT) BIT 6 . . . 1
BIT 6 . . . 1
Figure 18. LPSPI master mode timing (CPHA = 0)
<<CLASSIFICATION>>
<<NDA MESSAGE>>
38
2
6 7
MSB IN2
BIT 6 . . . 1
MASTER MSB OUT2 MASTER LSB OUT
5
5
10
12 13
PORT DATA PORT DATA
312 13 4
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
11
(OUTPUT)
(CPOL=0)
SPSCK
SPSCK
(CPOL=1)
SS1
(OUTPUT)
(OUTPUT)
MOSI
(OUTPUT)
MISO
(INPUT) LSB IN
BIT 6 . . . 1
Figure 19. LPSPI master mode timing (CPHA = 1)
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 47
2
10
6 7
MSB IN
BIT 6 . . . 1
SLAVE MSB SLAVE LSB OUT
11
5
5
3
8
4
13
12
12
11
SEE
NOTE
13
9
see
note
(INPUT)
(CPOL=0)
SPSCK
SPSCK
(CPOL=1)
SS
(INPUT)
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
LSB IN
BIT 6 . . . 1
Figure 20. LPSPI slave mode timing (CPHA = 0)
2
6 7
MSB IN
BIT 6 . . . 1
MSB OUT SLAVE LSB OUT
5
5
10
12 13
312 13
4
SLAVE
8
9
see
note
(INPUT)
(CPOL=0)
SPSCK
SPSCK
(CPOL=1)
SS
(INPUT)
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
11
LSB IN
BIT 6 . . . 1
Figure 21. LPSPI slave mode timing (CPHA = 1)
6.5.3 LPI2C electrical specifications
See General AC specifications for LPI2C specifications.
For supported baud rate see section 'Chip-specific LPI2C information' of the Reference
Manual.
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
48 Preliminary NXP Semiconductors
6.5.4 FlexCAN electical specifications
For supported baud rate, see section 'Protocol timing' of the Reference Manual.
6.5.5 SAI electrical specifications
The following table describes the SAI electrical characteristics.
Measurements are with maximum output load of 50 pF, input transition of 1 ns and
pad configured with fastest slew settings (DSE = 1'b1).
I/O operating voltage ranges from 2.97 V to 3.6 V
While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the
interface should be OFF.
Table 30. Master mode timing specifications
Symbol Description Min. Max. Unit
Operating voltage 2.97 3.6 V
S1 SAI_MCLK cycle time 40 ns
S2 SAI_MCLK pulse width high/low 45% 55% MCLK period
S3 SAI_BCLK cycle time 80 ns
S4 SAI_BCLK pulse width high/low 45% 55% BCLK period
S5 SAI_RXD input setup before
SAI_BCLK
28 ns
S6 SAI_RXD input hold after
SAI_BCLK
0 ns
S7 SAI_BCLK to SAI_TXD output
valid
8 ns
S8 SAI_BCLK to SAI_TXD output
invalid
-2 ns
S9 SAI_FS input setup before
SAI_BCLK
28 ns
S10 SAI_FS input hold after
SAI_BCLK
0 ns
S11 SAI_BCLK to SAI_FS output
valid
8 ns
S12 SAI_BCLK to SAI_FS output
invalid
-2 ns
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 49
S1 S2 S2
S3
S4
S4
S11
S9
S7
S5 S6
S7
S8
S12
S10
S8
SAI_MCLK (output)
SAI_BCLK (output)
SAI_FS (output)
SAI_FS (input)
SAI_TXD
SAI_RXD
Figure 22. SAI Timing — Master modes
Table 31. Slave mode timing specifications
Symbol Description Min. Max. Unit
Operating voltage 2.97 3.6 V
S13 SAI_BCLK cycle time (input) 80 ns
S141SAI_BCLK pulse width high/low
(input)
45% 55% BCLK period
S15 SAI_RXD input setup before
SAI_BCLK
8 ns
S16 SAI_RXD input hold after
SAI_BCLK
2 ns
S17 SAI_BCLK to SAI_TXD output
valid
28 ns
S18 SAI_BCLK to SAI_TXD output
invalid
0 ns
S19 SAI_FS input setup before
SAI_BCLK
8 ns
S20 SAI_FS input hold after SAI_BCLK 2 ns
S21 SAI_BCLK to SAI_FS output valid 28 ns
S22 SAI_BCLK to SAI_FS output
invalid
0 ns
1. The slave mode parameters (S15 - S22) assume 50% duty cycle on SAI_BCLK input. Any change in SAI_BCLK duty cycle
input must be taken care during the board design or by the master timing.
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
50 Preliminary NXP Semiconductors
S21
S19
S17
S15 S16
S17
S18
S22
S20
S18
S13
S14
S14
SAI_BCLK (input)
SAI_FS (output)
SAI_FS (input)
SAI_TXD
SAI_RXD
Figure 23. SAI Timing — Slave modes
6.5.6 Ethernet AC specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
The following table describes the MII electrical characteristics.
Measurements are with maximum output load of 25 pF, input transition of 1 ns and
pad configured with fastest slew settings (DSE = 1'b1).
I/O operating voltage ranges from 2.97 V to 3.6 V
While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the
interface should be OFF.
Table 32. MII signal switching specifications
Symbol Description Min. Max. Unit
RXCLK frequency 25 MHz
MII1 RXCLK pulse width high 35% 65% RXCLK period
MII2 RXCLK pulse width low 35% 65% RXCLK period
MII3 RXD[3:0], RXDV, RXER to RXCLK setup 5 ns
MII4 RXCLK to RXD[3:0], RXDV, RXER hold 5 ns
TXCLK frequency 25 MHz
MII5 TXCLK pulse width high 35% 65% TXCLK period
MII6 TXCLK pulse width low 35% 65% TXCLK period
MII7 TXCLK to TXD[3:0], TXEN, TXER invalid 2 ns
MII8 TXCLK to TXD[3:0], TXEN, TXER valid 25 ns
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 51
MII2 MII1
MII4MII3
Valid data
Valid data
Valid data
RXCLK (input)
RXD[n:0]
RXDV
RXER
Figure 24. MII receive diagram
MII7MII8
Valid data
Valid data
Valid data
MII6 MII5
TXCLK (input)
TXD[n:0]
TXEN
TXER
Figure 25. MII transmit signal diagram
The following table describes the RMII electrical characteristics.
Measurements are with maximum output load of 25 pF, input transition of 1 ns and
pad configured with fastest slew settings (DSE = 1'b1).
I/O operating voltage ranges from 2.97 V to 3.6 V
While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the
interface should be OFF.
Table 33. RMII signal switching specifications
Symbol Description Min. Max. Unit
RMII input clock RMII_CLK Frequency 50 MHz
RMII1, RMII5 RMII_CLK pulse width high 35% 65% RMII_CLK
period
RMII2, RMII6 RMII_CLK pulse width low 35% 65% RMII_CLK
period
RMII3 RXD[1:0], CRS_DV, RXER to RMII_CLK setup 4 ns
RMII4 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 ns
Table continues on the next page...
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
52 Preliminary NXP Semiconductors
Table 33. RMII signal switching specifications
(continued)
Symbol Description Min. Max. Unit
RMII7 RMII_CLK to TXD[1:0], TXEN invalid 2 ns
RMII8 RMII_CLK to TXD[1:0], TXEN valid 15 ns
RMII2 RMII1
RMII4
RMII3
Valid data
Valid data
Valid data
RMII_CLK(input)
RXD[n:0]
CRS_DV
RXER
Figure 26. RMII receive diagram
RMII7RMII8
Valid data
Valid data
RMII6 RMII5
RMII_CLK (input)
TXD[n:0]
TXEN
Figure 27. RMII transmit diagram
The following table describes the MDIO electrical characteristics.
Measurements are with maximum output load of 25 pF, input transition of 1 ns and
pad configured with fastest slew settings (DSE = 1'b1).
I/O operating voltage ranges from 2.97 V to 3.6 V
While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the
interface should be OFF.
MDIO pin must have external Pull-up.
Table 34. MDIO timing specifications
Symbol Description Min. Max. Unit
MDC Clock Frequency 2.5 MHz
Table continues on the next page...
Communication modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 53
Table 34. MDIO timing specifications (continued)
Symbol Description Min. Max. Unit
MDC1 MDC pulse width high 40% 60% MDC period
MDC2 MDC pulse width low 40% 60% MDC period
MDC3 MDIO (input) to MDC rising edge setup 25 ns
MDC4 MDIO (input) to MDC rising edge hold 0 ns
MDC5 MDC falling edge to MDIO output valid
(maximum propagation delay)
25 ns
MDC6 MDC falling edge to MDIO output invalid
(minimum propagation delay)
-10 ns
MDC (output)
MDIO (output)
MDIO (input)
MDC6
MDC5
MDC3 MDC4
MDC1 MDC2
Figure 28. MII/RMII serial management channel timing diagram
6.5.7 Clockout frequency
Maximum supported clock out frequency for this device is 20 MHz
Debug modules
6.6.1 SWD electrical specofications
6.6
Debug modules
S32K1xx Data Sheet, Rev. 4, 06/2017
54 Preliminary NXP Semiconductors
Table 35. SWD electrical specifications
Symbol Description Run Mode HSRUN Mode VLPR Mode Unit
5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
S1 SWD_CLK frequency of
operation
- 25 - 25 - 25 - 25 - 10 - 10 MHz
S2 SWD_CLK cycle period 1/S1 - 1/S1 - 1/S1 - 1/S1 - 1/S1 - 1/S1 - ns
S3 SWD_CLK clock pulse width
S2/2 - 5
S2/2 + 5
S2/2 - 5
S2/2 + 5
S2/2 - 5
S2/2 + 5
S2/2 - 5
S2/2 + 5
S2/2 - 5
S2/2 + 5
S2/2 - 5
S2/2 + 5
ns
S4 SWD_CLK rise and fall times - 1 - 1 - 1 - 1 - 1 - 1 ns
S9 SWD_DIO input data setup time
to SWD_CLK rise
4 - 4 - 4 - 4 - 16 - 16 - ns
S10 SWD_DIO input data hold time
after SWD_CLK rise
3 - 3 - 3 - 3 - 10 - 10 - ns
S11 SWD_CLK high to SWD_DIO
data valid
- 28 - 38 - 28 - 38 - 70 - 77 ns
S12 SWD_CLK high to SWD_DIO
high-Z
- 28 - 38 - 28 - 38 - 70 - 77 ns
S13 SWD_CLK high to SWD_DIO
data invalid
0 - 0 - 0 - 0 - 0 - 0 - ns
Debug modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 55
S2
S3 S3
S4 S4
SWD_CLK (input)
Figure 29. Serial wire clock input timing
S11
S12
S9 S10
Input data valid
Output data valid
SWD_CLK
SWD_DIO
SWD_DIO
SWD_DIO
S13
Figure 30. Serial wire data timing
6.6.2 Trace electrical specifications
The following table describes the Trace electrical characteristics.
Measurements are with maximum output load of 50 pF, input transition of 1 ns and
pad configured with fastest slew settings (DSE = 1'b1).
While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the
interface should be OFF.
Table 36. Trace specifications
Symbol Description RUN Mode HSRUN Mode VLPR
Mode
Unit
Fsys System frequency 80 48 40 112 80 4 MHz
Table continues on the next page...
Debug modules
S32K1xx Data Sheet, Rev. 4, 06/2017
56 Preliminary NXP Semiconductors
Table 36. Trace specifications (continued)
Symbol Description RUN Mode HSRUN Mode VLPR
Mode
Unit
Trace on fast pads
fTRACE Max Trace frequency 80 48 40 74.667 80 4 MHz
tDVO Data Output Valid 4 4 4 4 4 20 ns
tDIV Data Output Invalid -2 -2 -2 -2 -2 -10 ns
Trace on slow pads
fTRACE Max Trace frequency 22.86 24 20 22.4 22.86 4 MHz
tDVO Data Output Valid 8 8 8 8 8 20 ns
tDIV Data Output Invalid -4 -4 -4 -4 -4 -10 ns
Figure 31. TRACE CLKOUT specifications
6.6.3 JTAG electrical specifications
Debug modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 57
Table 37. JTAG electrical specifications
Symbol Description Run Mode HSRUN Mode VLPR Mode Unit
5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO 5.0 V IO 3.3 V IO
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
JI TCLK frequency of operation MHz
Boundary Scan - 20 - 20 - 20 - 20 - 10 - 10
JTAG - 20 - 20 - 20 - 20 - 10 - 10
J2 TCLK cycle period 1/JI - 1/JI - 1/JI - 1/JI - 1/JI - 1/JI - ns
J3 TCLK clock pulse width ns
Boundary Scan
J2/2 - 5
J2/2 + 5
J2/2 - 5
J2/2 + 5
J2/2 - 5
J2/2 + 5
J2/2 - 5
J2/2 + 5
J2/2 - 5
J2/2 + 5
J2/2 - 5
J2/2 + 5
JTAG
J4 TCLK rise and fall times - 1 - 1 - 1 - 1 - 1 - 1 ns
J5 Boundary scan input data
setup time to TCLK rise
5 - 5 - 5 - 5 - 15 - 15 - ns
J6 Boundary scan input data
hold time after TCLK rise
5 - 5 - 5 - 5 - 8 - 8 - ns
J7 TCLK low to boundary scan
output data valid
- 28 - 32 - 28 - 32 - 80 - 80 ns
J8 TCLK low to boundary scan
output data invalid
0 - 0 - 0 - 0 - 0 - 0 -
J9 TCLK low to boundary scan
output high-Z
- 28 - 32 - 28 - 32 - 80 - 80 ns
J10 TMS, TDI input data setup
time to TCLK rise
3 - 3 - 3 - 3 - 15 - 15 - ns
J11 TMS, TDI input data hold
time after TCLK rise
2 - 2 - 2 - 2 - 8 - 8 - ns
J12 TCLK low to TDO data valid - 28 - 32 - 28 - 32 - 80 - 80 ns
J13 TCLK low to TDO data
invalid
0 - 0 - 0 - 0 - 0 - 0 - ns
J14 TCLK low to TDO high-Z - 28 - 32 - 28 - 32 - 80 - 80 ns
Debug modules
S32K1xx Data Sheet, Rev. 4, 06/2017
58 Preliminary NXP Semiconductors
J2
J3 J3
J4 J4
TCLK (input)
Figure 32. Test clock input timing
J7
J9
J5 J6
Input data valid
Output data valid
TCLK
Data inputs
Data outputs
Data outputs
J8
Figure 33. Boundary scan (JTAG) timing
Debug modules
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 59
J12
J10 J11
Input data valid
Output data valid
TCLK
TDI/TMS
TDO
J14
TDO
J13
Figure 34. Test Access Port timing
Thermal attributes
7.1 Description
The tables in the following sections describe the thermal characteristics of the device.
NOTE
Junction temperature is a function of die size, on-chip power
dissipation, package thermal resistance, mounting side (board)
temperature, ambient temperature, air flow, power dissipation
or other components on the board, and board thermal resistance.
7.2 Thermal characteristics
7
Thermal attributes
S32K1xx Data Sheet, Rev. 4, 06/2017
60 Preliminary NXP Semiconductors
Table 38. Thermal characteristics for the 64/100/144/176-pin LQFP package
Rating Conditions Symbol Packages Values Unit
S32K11x S32K142 S32K144 S32K146 S32K148
Thermal resistance, Junction to Ambient
(Natural Convection)1, 2Single layer
board (1s)
RθJA 64 TBD 61 61 59 NA °C/W
100 TBD 53 52 21 NA °C/W
144 TBD NA NA 51 44 °C/W
176 TBD NA NA NA 42 °C/W
Thermal resistance, Junction to Ambient
(Natural Convection)1Two layer board
(1s1p)
RθJA 64 TBD 45 45 44 NA °C/W
100 TBD 42 42 40 NA °C/W
144 TBD NA NA 44 37 °C/W
176 TBD NA NA NA 36 °C/W
Thermal resistance, Junction to Ambient
(Natural Convection)1, 2Four layer board
(2s2p)
RθJA 64 TBD 43 43 41 NA °C/W
100 TBD 40 40 39 NA °C/W
144 TBD NA NA 42 36 °C/W
176 TBD NA NA NA 35 °C/W
Thermal resistance, Junction to Ambient
(@200 ft/min)1, 3Single layer
board (1s)
RθJMA 64 TBD 49 49 48 NA °C/W
100 TBD 43 42 41 NA °C/W
144 TBD NA NA 42 36 °C/W
176 TBD NA NA NA 34 °C/W
Thermal resistance, Junction to Ambient
(@200 ft/min)1Two layer board
(1s1p)
RθJMA 64 TBD 38 38 37 NA °C/W
100 TBD 35 35 34 NA °C/W
144 TBD NA NA 37 31 °C/W
176 TBD NA NA NA 30 °C/W
Thermal resistance, Junction to Ambient
(@200 ft/min)1, 3Four layer board
(2s2p)
RθJMA 64 TBD 36 36 35 NA °C/W
100 TBD 34 34 33 NA °C/W
144 TBD NA NA 36 30 °C/W
176 TBD NA NA NA 29 °C/W
Thermal resistance, Junction to Board4 RθJB 64 TBD 25 25 23 NA °C/W
100 TBD 25 25 24 NA °C/W
144 TBD NA NA 30 24 °C/W
176 TBD NA NA NA 24 °C/W
Table continues on the next page...
Thermal attributes
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 61
Table 38. Thermal characteristics for the 64/100/144/176-pin LQFP package (continued)
Rating Conditions Symbol Packages Values Unit
S32K11x S32K142 S32K144 S32K146 S32K148
Thermal resistance, Junction to Case 5 RθJC 64 TBD 13 12 11 NA °C/W
100 TBD 13 12 11 NA °C/W
144 TBD NA NA 12 9 °C/W
176 TBD NA NA NA 9 °C/W
Thermal resistance, Junction to Package
Top6Natural
Convection
ψJT 64 TBD 2 2 2 NA °C/W
100 TBD 2 2 2 NA °C/W
144 TBD NA NA 2 1 °C/W
176 TBD NA NA NA 1 °C/W
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air
flow, power dissipation of other components on the board, and board thermal resistance.
2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the
package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek
letters are not available, the thermal characterization parameter is written as Psi-JT.
Thermal attributes
S32K1xx Data Sheet, Rev. 4, 06/2017
62 Preliminary NXP Semiconductors
Table 39. Thermal characteristics for the 100 MAPBGA package
Rating Conditions Symbol Values Unit
S32K146 S32K144 S32K148
Thermal resistance, Junction to Ambient (Natural
Convection) 1, 2Single layer board (1s) RθJA 57.2 61.0 52.5 °C/W
Thermal resistance, Junction to Ambient (Natural
Convection) 1, 2, 3Four layer board
(2s2p)
RθJA 32.1 35.6 27.5 °C/W
Thermal resistance, Junction to Ambient (@200 ft/min) 1, 2, 3Single layer board (1s) RθJMA 44.1 46.6 39.0 °C/W
Thermal resistance, Junction to Ambient (@200 ft/min)1, 3Two layer board
(2s2p)
RθJMA 27.2 30.9 22.8 °C/W
Thermal resistance, Junction to Board4 RθJB 15.3 18.9 11.2 °C/W
Thermal resistance, Junction to Case 5 RθJC 10.2 14.2 7.5 °C/W
Thermal resistance, Junction to Package Top outside
center6ψJT 0.2 0.4 0.2 °C/W
Thermal resistance, Junction to Package Bottom outside
center7ψJB 12.2 15.9 18.3 °C/W
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air
flow, power dissipation of other components on the board, and board thermal resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the
package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek
letters are not available, the thermal characterization parameter is written as Psi-JT.
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12.
When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.
Thermal attributes
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 63
7.3 General notes for specifications at maximum junction
temperature
An estimation of the chip junction temperature, TJ, can be obtained from this equation:
where:
TA = ambient temperature for the package (°C)
RθJA = junction to ambient thermal resistance (°C/W)
PD = power dissipation in the package (W)
The junction to ambient thermal resistance is an industry standard value that provides a
quick and easy estimation of thermal performance. Unfortunately, there are two values in
common usage: the value determined on a single layer board and the value obtained on a
board with two planes. For packages such as the PBGA, these values can be different by
a factor of two. Which value is closer to the application depends on the power dissipated
by other components on the board. The value obtained on a single layer board is
appropriate for the tightly packed printed circuit board. The value obtained on the board
with the internal planes is usually appropriate if the board has low power dissipation and
the components are well separated.
When a heat sink is used, the thermal resistance is expressed in the following equation as
the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:
where:
RθJA = junction to ambient thermal resistance (°C/W)
RθJC = junction to case thermal resistance (°C/W)
RθCA = case to ambient thermal resistance (°C/W)
RθJC is device related and cannot be influenced by the user. The user controls the thermal
environment to change the case to ambient thermal resistance, RθCA. For instance, the
user can change the size of the heat sink, the air flow around the device, the interface
material, the mounting arrangement on printed circuit board, or change the thermal
dissipation on the printed circuit board surrounding the device.
Thermal attributes
S32K1xx Data Sheet, Rev. 4, 06/2017
64 Preliminary NXP Semiconductors
To determine the junction temperature of the device in the application when heat sinks
are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the
junction temperature with a measurement of the temperature at the top center of the
package case using this equation:
where:
TT = thermocouple temperature on top of the package (°C)
ΨJT = thermal characterization parameter (°C/W)
PD = power dissipation in the package (W)
The thermal characterization parameter is measured per JESD51-2 specification using a
40 gauge type T thermocouple epoxied to the top center of the package case. The
thermocouple should be positioned so that the thermocouple junction rests on the
package. A small amount of epoxy is placed over the thermocouple junction and over
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat
against the package case to avoid measurement errors caused by cooling effects of the
thermocouple wire.
Dimensions
8.1 Obtaining package dimensions
Package dimensions are provided in the package drawings.
To find a package drawing, go to http://www.nxp.com and perform a keyword search for
the drawing’s document number:
Package option Document Number
32-pin QFN SOT617-3 1
48-pin LQFP 98ASH00962A
64-pin LQFP 98ASS23234W
100-pin LQFP 98ASS23308W
100 MAP BGA 98ASA00802D
144-pin LQFP 98ASS23177W
176-pin LQFP 98ASS23479W
1. 5x5 mm package
8
Dimensions
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 65
Pinouts
9.1 Package pinouts and signal descriptions
For package pinouts and signal descriptions, refer to the Reference Manual.
10 Revision History
The following table provides a revision history for this document.
Table 40. Revision History
Rev. No. Date Substantial Changes
1 12 Aug 2016 Initial release
2 03 March 2017 Updated descpition of QSPI and Clock interfaces in Key Features section
Updated figure: High-level architecture diagram for the S32K1xx family
Updated figure: S32K1xx product series comparison
Added note in section Determining valid orderable parts
Updated figure: Ordering information
In table: Absolute maximum ratings :
Added footnote to IINJPAD_DC
Updated min and max value of IINJPAD_DC
Updated description, max and min values for IINJSUM
Updated VIN_TRANSIENT
In table: Voltage and current operating requirements :
Renamed VSUP_OFF
Updated max value of VDD_OFF
Removed VINA and VIN
Added VREFH and VREFL
Updated footnote "Typical conditions assumes VDD = VDDA = VREFH = 5
V ...
Removed INJSUM_AF
Updated footnotes in table Table 4
Updated section Power mode transition operating behaviors
In table: Power consumption
Added footnote "With PMC_REGSC[CLKBIASDIS] ... "
Updated conditions for VLPR
Removed Idd/MHz for S32K144
Updated numbers for S32K142 and S32K148
Removed use case footnotes
In section Modes configuration :
Replaced table "Modes configuration" with spreadsheet attachment:
'S32K1xx_Power_Modes _Master_configuration_sheet'
In table: DC electrical specifications at 3.3 V Range :
Added footnotes to Vih Input Buffer High Voltage and Vih Input Buffer
Low Voltage
Added footnote to High drive port pins
In table: DC electrical specifications at 5.0 V Range :
Table continues on the next page...
9
Pinouts
S32K1xx Data Sheet, Rev. 4, 06/2017
66 Preliminary NXP Semiconductors
Table 40. Revision History
Rev. No. Date Substantial Changes
Added footnotes Vih Input Buffer High Voltage and Vih Input Buffer Low
Voltage
Updated table: AC electrical specifications at 3.3 V range
Updated table: AC electrical specifications at 5 V range
In table: Standard input pin capacitance
Added footnote to Normal run mode (S32K14x series)
Removed note from 1M ohms Feedback Resistor in figure Oscillator
connections scheme
In table: External System Oscillator electrical specifications
Updated typical of IDDOSC Supply current — low-gain mode (low-power
mode) (HGO=0) 1 for 4 and 8 MHz
Removed rows for Ilk_ext EXTAL/XTAL impedence High-frequency, low-
gain mode (low-power mode) and high-frequency, high-gain mode and
VEXTAL
Updated Typ. of RS low-gain mode
Updated description of RF, RS, and VPP
Removed footnote from RF Feedback resistor
Updated footnote for C1 C2 and RF
In table: Table 16
Removed mention of high-frequency
Added HGO 0, 1 information
In table: Fast internal RC Oscillator electrical specifications
Updated FFIRC
Updated description of ΔF
Updated typ and max values of TJIT cycle-to-cycle jitter and TJIT Long
term jitter over 1000 cycles
Added footnotes to TJIT cycle-to-cycle jitter and TJIT Long term jitter
over 1000 cycles
Updated naming convention of IDDFIRC Supply current
Added footnote to IDDFIRC Supply current
Added footnote to column Parameter
In table: Slow internal RC oscillator (SIRC) electrical specifications
Removed VDD Supply current in 2 MHz Mode
Removed footnote and updated description of ΔF
Updated footnote to FSIRC and IDDSIRC
In table: SPLL electrical specifications
Added row for FSPLL_REF PLL Reference
Updated naming convention throughout the table
Updated the max value of TSPLL_LOCK Lock detector detection time
In table: Table 21
Added footnotes:
All command times assumes ...
For all EEPROM Emulation terms ...
'First time' EERAM writes after a POR ...
Removed footnote 'Assumes 25 MHz or ...'
Updated Max of teewr32bers
Added parameters tquickwr and tquickwrClnup
In table: Table 22
Removed Typ. values for all parameters
Removed footnote 'Typical values represent ... '
Added footnote 'Any other EEE driver usage ... '
Updated QuadSPI AC specifications
Removed topic: Reliability, Safety and Security modules
In table: 12-bit ADC operating conditions
Updated VDDA
Table continues on the next page...
Revision History
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 67
Table 40. Revision History (continued)
Rev. No. Date Substantial Changes
Updated values for VREFH and VREFL to add refernce to the section
"voltage and current operating requirments" for Min and Max valaues
Updated footnote to Typ.
Removed footnote from RAS Analog source resistance
Updated figure: ADC input impedance equivalency diagram
In table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL =
VSS)
Removed rows for VTEMP_S and VTEMP25
Updated footnote to Typ.
In table: 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL =
VSS)
Removed rows for VTEMP_S and VTEMP25
Removed number for TUE
Updated footnote to Typ.
In table: Comparator with 8-bit DAC electrical specifications
Updated Typ. of IDDLS Supply current, Low-speed mode
Updated Typ. of tDLSB Propagation delay, Low-speed mode
Updated Typ. of tDHSS Propagation delay, High-speed mode
Updated tDLSS Propagation delay
Added row for tDDAC Initialization and switching settling time
Updated footnote
Updated section LPSPI electrical specifications
Added section: SAI electrical specifications
Updated section: Ethernet AC specifications
Added section: Clockout frequency
Added section: Trace electrical specifications
Updated table: Table 38 : Updated numbers for S32K142 and S32K148
Updated table: Table 39 : Updated numbers for S32K148
Updated Document number for 32-pin QFN in topic Obtaining package
dimensions
314 March 2017 In Table 2
Updated min. value of VDD_OFF
Added parameter IINJSUM_AF
Updated Power mode transition operating behaviors
Updated Power consumption
Updated footnote to TSPLL_LOCK in SPLL electrical specifications
In 12-bit ADC electrical characteristics
Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH =
VDDA, VREFL = VSS)
Added typ. value to IDDA_ADC, TUE, DNL, and INL
Added min. value to SMPLTS
Removed footnote 'All the parameters in this table ... '
Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH =
VDDA, VREFL = VSS)
Added typ. value to IDDA_ADC
Removed footnote 'All the parameters in this table ... '
In Table 21 updated Max. value of tvfykey to 33 μs
402 June 2017 In section: Block diagram, added block diagram for S32K11x series.
Updated figure: S32K1xx product series comparison.
In section: Determining valid orderable parts , added reference to
attachement S32K_Part_Numbers.xlsx.
In section: Ordering information
Updated figure: Ordering information.
In Table 1,
Revision History
S32K1xx Data Sheet, Rev. 4, 06/2017
68 Preliminary NXP Semiconductors
Table 40. Revision History
Rev. No. Date Substantial Changes
Updated note 'All the limits defined ... '
Updated parameter 'IINJPAD_DC_ABS', 'VIN_DC', IINJSUM_DC_ABS.
In Table 2,
Updated parameter IINJPAD_DC_OP and IINJSUM_DC_OP.
In Table 5, updated TBDs for VLVR_HYST, VLVD_HYST, and VLVW_HYST
In Table 6,
Added VLPR VLPS
Added VLPS VLPR
Updated TBDs for VLPS Asynchronous DMA Wakeup, STOP1
Asynchronous DMA Wakeup, and STOP2 Asynchronous DMA
Wakeup
In Table 7, updated the specifications for S32K144.
Updated the attachment S32K1xx_Power_Modes _Configuration.xlsx.
In Table 13, removed CIN_A.
In Table 15,
Updated specificatins for gmXOSC.
Removed IDDOSC
In Table 17,
Added parameter ΔF125.
Removed IDDFIRC
In Table 18,
Added parameter ΔF125.
Removed IDDSIRC
In Table 19, removed ILPO
Updated section: Flash memory module (FTFC) electrical specifications
In section: 12-bit ADC operating conditions,
Updated TBDs for IDDA_ADC and TUE in Table 25
Updated TBDs for IDDA_ADC and TUE in Table 26
In section: QuadSPI AC specifications, updated figure 'QuadSPI output
timing (HyperRAM mode) diagram'.
In section: 12-bit ADC operating conditions, updated Table 24.
In section: CMP with 8-bit DAC electrical specifications, added note 'For
comparator IN signals adjacent ... '
In table: Table 29, minor update in footnote 6.
In table: Table 38, updated specifications for S32K146.
Revision History
S32K1xx Data Sheet, Rev. 4, 06/2017
NXP Semiconductors Preliminary 69
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customerʼs technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,
JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,
MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,
CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,
Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,
QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service
names are the property of their respective owners. ARM, AMBA, ARM Powered,
Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are
registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,
DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and
Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.
© 2015–2017 NXP B.V.
Document Number S32K1XX
Revision 4, 06/2017
Preliminary