This is information on a product in full production.
April 2017 DocID028094 Rev 5 1/142
STM32F410x8 STM32F410xB
ARM®-Cortex®-M4 32b MCU+FPU, 125 DMIPS, 128KB Flash,
32KB RAM, 9 TIMs, 1 ADC, 1 DAC, 1 LPTIM, 9 comm. interfaces
Datasheet - production data
Features
Dynamic Efficiency Line with eBAM (enhanced
Batch Acquisition Mode)
1.7 V to 3.6 V power supply
-40 °C to 85/105/125 °C temperature range
Core: ARM® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 100 MHz,
memory protection unit,
125 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1),
and DSP instructions
Memories
Up to 128 Kbytes of Flash memory
512 bytes of OTP memory
32 Kbytes of SRAM
Clock, reset and supply management
1.7 V to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Power consumption
Run: 89 µA/MHz (peripheral off)
Stop (Flash in Stop mode, fast wakeup
time): 40 µA Typ @ 25 °C; 49 µA max
@25 °C
Stop (Flash in Deep power down mode,
slow wakeup time): down to 6 µA @ 25 °C;
14 µA max @25 °C
Standby: 2.4 µA @25 °C / 1.7 V without
RTC; 12 µA @85 °C @1.7 V
–V
BAT supply for RTC: 1 µA @25 °C
1×12-bit, 2.4 MSPS ADC: up to 16 channels
1×12-bit D/A converter
General-purpose DMA: 16-stream DMA
controllers with FIFOs and burst support
Up to 9 timers
One low-power timer (available in Stop
mode)
One 16-bit advanced motor-control timer
Three 16-bit general purpose timers
One 32-bit timer up to 100 MHz with up to
four IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
Two watchdog timers (independent
window)
SysTick timer.
Debug mode
Serial wire debug (SWD) & JTAG
interfaces
–Cortex
® -M4 Embedded Trace Macrocell™
Up to 50 I/O ports with interrupt capability
Up to 45 fast I/Os up to 100 MHz
Up to 49 5 V-tolerant I/Os
Up to 9 communication interfaces
Up to 3x I2C interfaces (SMBus/PMBus)
including 1x I2C Fast-mode at 1 MHz
Up to 3 USARTs (2 x 12.5 Mbit/s,
1 x 6.25 Mbit/s), ISO 7816 interface, LIN,
IrDA, modem control)
Up to 3 SPI/I2Ss (up to 50 Mbit/s SPI or
I2S audio protocol)
True random number generator
CRC calculation unit
96-bit unique ID
RTC: subsecond accuracy, hardware calendar
All packages are ECOPACK®2
Table 1. Device summary
Reference Part number
STM32F410x8 STM32F410T8, STM32F410C8,
STM32F410R8
STM32F410xB STM32F410TB, STM32F410CB,
STM32F410RB
WLCSP36 UFQFPN48
(7×7mm)
(2.553x2.579mm)
LQFP48 (7x7mm)
&"'!
UFBGA64
(
5x5mm
)
LQFP64 (10×10mm)
www.st.com
Contents STM32F410x8/B
2/142 DocID028094 Rev 5
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . 16
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 16
3.3 Batch Acquisition mode (BAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 17
3.7 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 19
3.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16.1 Internal power supply supervisor availability . . . . . . . . . . . . . . . . . . . . . 22
3.17 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23
3.18 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.20.1 Advanced-control timers (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20.2 General-purpose timers (TIM5, TIM9 and TIM11) . . . . . . . . . . . . . . . . . 26
3.20.3 Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DocID028094 Rev 5 3/142
STM32F410x8/B Contents
5
3.20.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.20.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.20.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.20.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.21 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.22 Universal synchronous/asynchronous receiver transmitters (USART) . . 28
3.23 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.24 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.25 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.26 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.27 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.28 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.29 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.30 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.31 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.2 VCAP_1 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.3 Operating conditions at power-up/power-down (regulator ON) . . . . . . . 56
6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 56
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 57
Contents STM32F410x8/B
4/142 DocID028094 Rev 5
6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 86
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 91
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.25 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1 WLCSP36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
7.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Appendix A Recommendations when using the internal reset OFF . . . . . . . . 137
A.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.1 Sensor Hub application example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
DocID028094 Rev 5 5/142
STM32F410x8/B Contents
5
B.2 Batch Acquisition Mode (BAM) example. . . . . . . . . . . . . . . . . . . . . . . . . 139
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
List of tables STM32F410x8/B
6/142 DocID028094 Rev 5
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F410x8/B features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 4. Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 22
Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 7. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 8. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 9. STM32F410x8/B pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 10. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 11. STM32F410x8/B register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 12. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 13. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 14. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 15. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 16. Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 17. VCAP_1 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 18. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 56
Table 19. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 56
Table 20. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 21. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 22. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 23. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V. . . 61
Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V . . 62
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 3.6 V. . . . . . . . . . . . . . . 63
Table 26. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 1.7 V. . . . . . . . . . . . . . . 64
Table 27. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V . . . . . 65
Table 28. Typical and maximum current consumption in Sleep mode - VDD = 3.6 V . . . . . . . . . . . . . 66
Table 29. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V . . . . . . . . . . . . . 68
Table 30. Typical and maximum current consumptions in Stop mode - VDD = 1.7 V . . . . . . . . . . . . . 70
Table 31. Typical and maximum current consumption in Stop mode - VDD=3.6 V. . . . . . . . . . . . . . . 70
Table 32. Typical and maximum current consumption in Standby mode - VDD= 1.7 V . . . . . . . . . . . 70
Table 33. Typical and maximum current consumption in Standby mode - VDD= 3.6 V . . . . . . . . . . . 71
Table 34. Typical and maximum current consumptions in VBAT mode
(LSE and RTC ON, LSE low- drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 35. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 36. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 37. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 38. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 39. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 40. HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
DocID028094 Rev 5 7/142
STM32F410x8/B List of tables
8
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 42. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 43. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 44. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 45. SSCG parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 46. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 47. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 48. Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 49. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 50. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 51. EMI characteristics for LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 52. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 53. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 54. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 55. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 56. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 57. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 58. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 59. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 60. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 61. SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 62. SCL frequency (fPCLK1= 42 MHz.,VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 63. FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 64. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 65. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 66. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 67. ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 68. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 69. ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 70. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 111
Table 71. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 111
Table 72. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 73. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 74. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 75. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 76. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 77. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 78. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 79. WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 80. WLCSP36 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 121
Table 81. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 82. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 83. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data. . . . . . . . . 130
Table 84. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 85. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . 133
Table 86. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 87. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 88. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 137
List of tables STM32F410x8/B
8/142 DocID028094 Rev 5
Table 89. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
DocID028094 Rev 5 9/142
STM32F410x8/B List of figures
10
List of figures
Figure 1. Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2. STM32F410x8/B block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 21
Figure 5. LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 6. LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 7. UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 8. UFBGA64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 9. WLCSP36 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 10. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 12. Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 15. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 16. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
in “low power” mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 17. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
in “high-drive” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 18. Low-power mode wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 19. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 20. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 21. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 22. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 23. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 24. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 25. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 26. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 27. FT/TC I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 28. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 29. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 30. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 31. FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 32. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 33. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 34. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 35. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 36. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 37. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 38. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 39. Power supply and reference decoupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 40. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 41. WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 42. WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 43. WLCSP36 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 44. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
List of figures STM32F410x8/B
10/142 DocID028094 Rev 5
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 45. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 46. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 125
Figure 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 49. LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 129
Figure 51. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 52. LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 53. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 54. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 55. UFBGA64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 56. Sensor hub application example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 57. Sensor hub application example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 58. Batch Acquisition Mode (BAM) example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
DocID028094 Rev 5 11/142
STM32F410x8/B Introduction
31
1 Introduction
This datasheet provides the description of the STM32F410x8/B microcontrollers.
For information on the Cortex-M4 core, please refer to the Cortex-M4 programming
manual (PM0214) available from www.st.com.
Description STM32F410x8/B
12/142 DocID028094 Rev 5
2 Description
The STM32F410X8/B devices are based on the high-performance ARM® Cortex® -M4 32-
bit RISC core operating at a frequency of up to 100 MHz. Their Cortex®-M4 core features a
Floating point unit (FPU) single precision which supports all ARM single-precision data-
processing instructions and data types. It also implements a full set of DSP instructions and
a memory protection unit (MPU) which enhances application security.
The STM32F410X8/B belong to the STM32 Dynamic Efficiency product line (with
products combining power efficiency, performance and integration) while adding a new
innovative feature called Batch Acquisition Mode (BAM) allowing to save even more power
consumption during data batching.
The STM32F410X8/B incorporate high-speed embedded memories (up to 128 Kbytes of
Flash memory, 32 Kbytes of SRAM), and an extensive range of enhanced I/Os and
peripherals connected to two APB buses, one AHB bus and a 32-bit multi-AHB bus matrix.
All devices offer one 12-bit ADC, one 12-bit DAC, a low-power RTC, three general-purpose
16-bit timers, one PWM timer for motor control, one general-purpose 32-bit timers and one
16-bit low-power timer. They also feature standard and advanced communication interfaces.
Up to three I2Cs
Three SPIs
Three I2Ss
To achieve audio class accuracy, the I2S peripherals can be clocked via the internal
PLL or via an external clock to allow synchronization.
Three USARTs.
The STM32F410x8/B are offered in 5 packages ranging from 36 to 64 pins. The set of
available peripherals depends on the selected package. Refer to Table 2: STM32F410x8/B
features and peripheral counts for the peripherals available for each part number.
The STM32F410x8/B operate in the – 40 to +125 °C temperature range from a 1.7 (PDR
OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design
of low-power applications.
These features make the STM32F410x8/B microcontrollers suitable for a wide range of
applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile phone sensor hub
Figure 2 shows the general block diagram of the devices.
DocID028094 Rev 5 13/142
STM32F410x8/B Description
31
Table 2. STM32F410x8/B features and peripheral counts
Peripherals
STM32
F410
T8Y
STM32
F410
TBY
STM32
F410
C8U
STM32
F410
CBU
STM32
F410
C8T
STM32
F410
CBT
STM32
F410
R8T
STM32
F410
RBT
STM32
F410
R8I
STM32
F410
RBI
Flash memory in Kbytes 64 128 64 128 64 128 64 128 64 128
SRAM in Kbytes System 32
Timers
General-
purpose 4
Low-power
timer 1
Advanced-
control 1
Random number generator 1
Communication
interfaces
SPI/ I2S1 3
I2C2 3
USART 2 3
GPIOs 23 36 50
12-bit ADC
Number of channels
1
410 16
12-bit DAC
Number of channels
1
1
Maximum CPU frequency 100 MHz
Operating voltage 1.7 to 3.6 V 1.8 to 3.6 V 1.7 to 3.6 V 1.8 to 3.6 V 1.7 to 3.6 V
Operating temperatures
Ambient temperatures: – 40 to +85 °C / – 40 to + 105 °C / – 40 to + 125 °C
Junction temperature: –40 to + 130 °C
Package WLCSP36 UFQFPN48 LQFP48 LQFP64 UFBGA64
Description STM32F410x8/B
14/142 DocID028094 Rev 5
2.1 Compatibility with STM32F4 series
The STM32F410x8/B are fully software and feature compatible with the STM32F4 series
(STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407)
The STM32F410x8/B can be used as drop-in replacement of the other STM32F4 products
but some slight changes have to be done on the PCB board.
Figure 1. Compatible board design for LQFP64 package
1. For STM32F410xB devices, pin 54 is bonded to PB11 instead of PD2.
06Y9
9&$3LQFUHDVHGWRI
(65RUEHORZ
966
966
670)[670)670)OLQH
9''
9''
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9&$3B
    
















   
3&
3&
3&
3$
3$
9''
9&$3B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3B
9''
   
















   
3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3B
9''
966
3%
9''
966
966
9''
9&$3LQFUHDVHGWRI
(65RUEHORZ
670)[%
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9&$3B
    
















   
3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3B
9''
966
9''
966
966
9''

3'

3%

3%

3'

3%

3%

3%

3%
DocID028094 Rev 5 15/142
STM32F410x8/B Description
31
Figure 2. STM32F410x8/B block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 100 MHz.
06Y9
.%)ODVK
PHPRU\
*3,23257$
$+%
$3%
(;7,7:.83
$)
3$>@
7,03:0
86$57
5;7;6&.
&76576DV$)
63,,6
DQDORJLQSXWV
9''5()B$'&
$/$50B287
26&B,1
26&B287
9''$966$
1567
VPFDUG
LU'$
E
9%$7 WR9
'0$
6&/6'$60%$DV$)
,&)060%86
-7$*6:
$50&RUWH[0
&RUWH[0
0+]
19,&
(70
038)38
'0$
6WUHDPV
),)2
$&&(/
&$&+(
$+%0+]
86$5 7 0%SV
7HPSHUDWXUHVHQVRU
$'& ,)
#9''$
3253'5
%25
6XSSO\
VXSHUYLVLRQ
#9''$
39'
,QW
325
UHVHW
;7$/N+]
0$1 $*7
57&
5& +6
5& / 6
3:5
LQWHUIDFH
:'*.
#9
%$7
#9''
$:8
5HVHW
FORFN
FRQWURO
3//
$3%&/.
9ROWDJH
UHJXODWRU
WR9
9'' WR9
966
9&$3B
9'' 3RZHUPDQDJPW
#9''
67$03
%DFNXSUHJLVWHU
$+%EXVPDWUL[60
$3%0+]
/6
7,0
FKDQQHOVDV$)
7,0
'%86
$3%0+]PD[
-7567-7',
-7&.6:&/.
-7'26:'-7'2
75$&(&/.
75$&('>@ ,%86
6%86
'0$
6WUHDPV
),)2
3%>@
3&>@
*3,23257%
*3,23257&
E
7,0 E
VPFDUG
LU'$ 86$57
FKDQQHODV$)
5;7;6&.DV$)
,&60%86
,&60%86
6&/6'$60%$DV$)
6&/6'$60%$DV$)
63,6 026,0,626&.
166:60&.DV$)
5;7;6&.
&76576DV$)
86$57
VPFDUG
LU'$
E FKDQQHOVDV$)
'0$
$+%
$3%
/6
26&B,1
26&B287
+&/.
;7$/26&
0+]
.%65$0
::'*
$3%&/.
$+%3&/.
&5&
3+>@ *3,23257+
026,6'0,626&.166
:6DV$)
63,,6
026,6'0,626&.166
:6DV$)
51*
3:03:0
(75%.,1DV$)
#9''$
3&/.
/37,0 E FKDQQHOV&+2
,75DV$)
7,0(5 E
'$&
#9''$
'$&DV$)
,7)
Functional overview STM32F410x8/B
16/142 DocID028094 Rev 5
3 Functional overview
3.1 ARM® Cortex®-M4 with FPU core with embedded Flash and
SRAM
The ARM Cortex-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4 with FPU 32-bit RISC processor features exceptional code-
efficiency, delivering the high-performance expected from an ARM core in the memory size
usually associated with 8- and 16-bit devices. The processor supports a set of DSP
instructions which allow efficient signal processing and complex algorithm execution. Its
single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F410x8/B devices are compatible with all ARM tools and software.
Figure 2 shows the general block diagram of the STM32F410x8/B.
Note: Cortex-M4 with FPU is binary compatible with Cortex-M3.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard ARM® Cortex-M4 with FPU processors. It balances the inherent performance
advantage of the ARM Cortex-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 125 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 100 MHz.
3.3 Batch Acquisition mode (BAM)
The Batch acquisition mode allows enhanced power efficiency during data batching. It
enables data acquisition through any communication peripherals directly to memory using
the DMA in reduced power consumption as well as data processing while the rest of the
system is in low-power mode (including the flash and ART). For example in an audio
system, a smart combination of PDM audio sample acquisition and processing from the I2S
directly to RAM (flash and ART stopped) with the DMA using BAM followed by some very
short processing from flash allows to drastically reduce the power consumption of the
application. A dedicated application note (AN4515) describes how to implement the
STM32F410x8/B BAM to allow the best power efficiency.
DocID028094 Rev 5 17/142
STM32F410x8/B Functional overview
31
3.4 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.5 Embedded Flash memory
The devices embed up to 128 Kbytes of Flash memory available for storing programs and
data, plus 512 bytes of OTP memory organized in 16 blocks which can be independently
locked.
To optimize the power consumption the Flash memory can also be switched off in Run or in
Sleep mode (see Section 3.18: Low-power modes).
Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between
power saving and startup time.
Before disabling the Flash, the code must be executed from the internal RAM.
3.6 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.7 Embedded SRAM
All devices embed 32 Kbytes of system SRAM which can be accessed (read/write) at CPU
clock speed with 0 wait states
Functional overview STM32F410x8/B
18/142 DocID028094 Rev 5
3.8 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient
operation even when several high-speed peripherals work simultaneously.
Figure 3. Multi-AHB matrix
3.9 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART
General-purpose, basic and advanced-control timers TIMx
ADC
DAC.
06Y9
$50
&RUWH[0
*3
'0$
*3
'0$
%XVPDWUL[6
6 6 6 6 6 6
,&2'(
'&2'(
$&&(/
)ODVK
.%
65$0
.E\WHV
0
0
0
,EXV
'EXV
6EXV
'0$B3,
'0$B0(0
'0$B0(0
'0$B3
0 $+%
SHULSK $3%
$3%
DocID028094 Rev 5 19/142
STM32F410x8/B Functional overview
31
3.10 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the
Cortex-M4 with FPU.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.11 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 21 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 50 GPIOs can be connected
to the 16 external interrupt lines.
3.12 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The
application can then select as system clock either the RC oscillator or an external 4-26 MHz
clock source. This clock can be monitored for failure. If a failure is detected, the system
automatically switches back to the internal RC oscillator and a software interrupt is
generated (if enabled). This clock source is input to a PLL thus allowing to increase the
frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is
available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the AHB bus, the high-speed APB (APB2) and
the low-speed APB (APB1) domains. The maximum frequency of the AHB bus and high-
speed APB domains is 100 MHz. The maximum allowed frequency of the low-speed APB
domain is 50 MHz.
Functional overview STM32F410x8/B
20/142 DocID028094 Rev 5
3.13 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The bootloader is located in system memory. It is used to reprogram the Flash memory by
using the interfaces described in Table 3.
Refer to Table 9: STM32F410x8/B pin definitions) for the GPIOs available on the selected
package.
For more detailed information on the bootloader, refer to Application Note: AN2606,
STM32™ microcontroller system memory boot mode.
3.14 Power supply schemes
VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor
(POR/PDR) disabled, provided externally through VDD pins. Requires the use of an
external power supply supervisor connected to the VDD and PDR_ON pins.
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with
decoupling technique.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Table 3. Embedded bootloader interfaces
Package USART1 USART2 I2C1 I2C2 I2C4 FM+ SPI1 SPI3
WLCSP36 X
PA2/PA3 PB6/PB7
X PB10/PB3 PA15/PA5
/PB4/PB5 X
UFQFPN48
PA9/PA10
X
PB14/PB15 PA4/PA5/
PA6/PA7
X
LQFP64 PB10/PB11 PB12/PB13
/PC2/PC3
DocID028094 Rev 5 21/142
STM32F410x8/B Functional overview
31
3.15 Power supply supervisor
3.15.1 Internal reset ON
This feature is available for VDD operating voltage range 1.8 V to 3.6 V.
The internal power supply supervisor is enabled by holding PDR_ON high.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.15.2 Internal reset OFF
This feature is available on WLCSP36 package only. The internal power-on reset (POR) /
power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low.
An external power supply supervisor should monitor VDD and should set the device in reset
mode when VDD is below 1.7 V. NRST should be connected to this external power supply
supervisor. Refer to Figure 4: Power supply supervisor interconnection with internal reset
OFF.
Figure 4. Power supply supervisor interconnection with internal reset OFF(1)
1. The PRD_ON pin is available on WLCSP36 package only.
06Y9
3'5B21
9''
1567
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
9''
Functional overview STM32F410x8/B
22/142 DocID028094 Rev 5
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry must be disabled.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
3.16 Voltage regulator
The regulator has three operating modes:
Main regulator mode (MR)
Low power regulator (LPR)
Power-down
The three power modes configured by software:
MR is used in the nominal regulation mode (With different voltage scaling in Run)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
LPR is used in the Stop modes
The LP regulator mode is configured by software when entering Stop mode.
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
An external ceramic capacitor should be connected to the VCAP_1 pin.
3.16.1 Internal power supply supervisor availability
Table 4. Regulator ON/OFF and internal power supply supervisor availability
Package Power supply supervisor ON Power supply supervisor OFF
UFQFPN48 Yes No
WLCSP36 Yes
PDR_ON set to VDD
Yes
PDR_ON set to VSS(1)
1. An external power supervisor must be used (refer to Section 3.15.2: Internal reset OFF).
LQFP64 Yes No
DocID028094 Rev 5 23/142
STM32F410x8/B Functional overview
31
3.17 Real-time clock (RTC) and backup registers
The backup domain includes:
The real-time clock (RTC)
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC features a reference clock detection, a more precise
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC
provides a programmable alarm and programmable periodic interrupts with wakeup from
Stop and Standby modes. The sub-seconds value is also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.18: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
The RTC and backup registers are supplied through a switch that is powered either from the
VDD supply when present or from the VBAT pin.
3.18 Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
To further reduce the power consumption, the Flash memory can be switched off
before entering in Sleep mode. Note that this requires a code execution from the RAM.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
Functional overview STM32F410x8/B
24/142 DocID028094 Rev 5
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The RTC and the low-power timer (LPTIM1) can remain active in Stop mode. They can
consequently be used to wake up the device from this mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, LPTIM1, the RTC alarm/
wakeup/ tamper/ time stamp events).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm/ wakeup/ tamper/time stamp event
occurs.
Standby mode is not supported when the embedded voltage regulator is bypassed and
the 1.2 V domain is controlled by an external power.
3.19 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
super-capacitor, or from VDD when no external battery and an external super-capacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC and the backup registers.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal
Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected
to VDD.
3.20 Timers and watchdogs
The devices embed one advanced-control timer, four general purpose timers, one low
power timer, two watchdog timers and one SysTick timer.
All timer counters can be frozen in debug mode.
Table 5 compares the features of the advanced-control and general-purpose timers.
DocID028094 Rev 5 25/142
STM32F410x8/B Functional overview
31
Table 5. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complemen-
tary output
Max.
interface
clock
(MHz)
Max.
timer
clock
(MHz)
Advanced
-control TIM1 16-bit
Up,
Down,
Up/down
Any
integer
between
1 and
65536
Yes 4 Yes 100 100
General
purpose
TIM5 32-bit
Up,
Down,
Up/down
Any
integer
between
1 and
65536
Yes 4 No 50 100
TIM9 16-bit Up
Any
integer
between
1 and
65536
No 2 No 100 100
TIM11 16-bit Up
Any
integer
between
1 and
65536
No 1 No 100 100
Basic TIM6 16-bit Up
Any
integer
between
1 and
65536
Yes 0 No 50 100
Low-
power LPTIM1 16-bit Up Between
1 and 128 No 2 No 50 100
Functional overview STM32F410x8/B
26/142 DocID028094 Rev 5
3.20.1 Advanced-control timers (TIM1)
The advanced-control timer (TIM1) can be seen as three-phase PWM generator multiplexed
on 4 independent channels. It has complementary PWM outputs with programmable
inserted dead times. It can also be considered as a complete general-purpose timer. Its 4
independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, it has the same features as the general-purpose
TIMx timers. If configured as a 16-bit PWM generator, it has full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 supports independent DMA request generation.
3.20.2 General-purpose timers (TIM5, TIM9 and TIM11)
There are three synchronizable general-purpose timers embedded in the STM32F410x8/B
(see Table 5 for differences).
TIM5
The STM32F410x8/B devices includes a full-featured general-purpose timer, TIM5.
TIM5 timer is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. It
features four independent channels for input capture/output compare, PWM or one-
pulse mode output.
TIM5 can operate in conjunction with the other general-purpose timers and TIM1
advanced-control timer via the Timer Link feature for synchronization or event chaining.
TIM5 general-purpose timer can be used to generate PWM output.
All TIM5 channels have independent DMA request generation. They are capable of
handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4
hall-effect sensors.
TIM9 and TIM11
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM11 features one independent channel, whereas TIM9 has two independent
channels for input capture/output compare, PWM or one-pulse mode output. They can
be synchronized with TIM5 full-featured general-purpose timer or used as simple time
bases.
3.20.3 Basic timer (TIM6)
This timer is mainly used for DAC triggering and waveform generation. It can also operate
as generic 16-bit timers.
TIM6 supports independent DMA request generation.
DocID028094 Rev 5 27/142
STM32F410x8/B Functional overview
31
3.20.4 Low-power timer (LPTIM1)
The devices embed one low-power timer. This timer features an independent clock and runs
in Stop mode if it is clocked by LSE, LSI or by an external clock. It is able to wake up the
system from Stop mode.
The low-power timer main features are the following:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous/ one shot mode
Selectable software/hardware input trigger
Selectable clock source
Internal clock sources: LSE, LSI, HSI or APB1 clock
External clock source over LPTIM input (working even when no internal clock
source is running and used by pulse-counter applications).
Programmable digital glitch filter
Encoder mode
Active in Stop mode.
3.20.5 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.20.6 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.20.7 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
Functional overview STM32F410x8/B
28/142 DocID028094 Rev 5
3.21 Inter-integrated circuit interface (I2C)
The devices feature up to three I2C bus interfaces which can operate in multimaster and
slave modes:
One I2C interface supports the Standard mode (up to 100 kHz), Fast-mode (up to
400 kHz) modes and Fast-mode plus (up to 1 MHz).
Two I2C interfaces support the Standard mode (up to 100 KHz) and the Fast mode (up
to 400 KHz). Their frequency can be increased up to 1 MHz. For more details on the
complete solution, refer to the nearest STMicroelectronics sales office.
All I2C interfaces features 7/10-bit addressing mode and 7-bit addressing mode (as slave)
and embed a hardware CRC generation/verification.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 6).
3.22 Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed three universal synchronous/asynchronous receiver transmitters
(USART1, USART2 and USART6).
These three interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 12.5 Mbit/s. The USART2 interface communicates at up to
6.25 bit/s.
USART1 and USART2 also provide hardware management of the CTS and RTS signals,
Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All
interfaces can be served by the DMA controller.
Table 6. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15 I2C peripheral clocks
DocID028094 Rev 5 29/142
STM32F410x8/B Functional overview
31
3.23 Serial peripheral interface (SPI)
The devices feature three SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1 and SPI5 can communicate at up to 50 Mbit/s, SPI2 can
communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and
the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification
supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
3.24 Inter-integrated sound (I2S)
Three standard I2S interfaces (multiplexed with SPI1 to SPI5) are available. They can be
operated in master or slave mode, in simplex communication modes and can be configured
to operate with a 16-/32-bit resolution as an input or output channel. All the I2Sx audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
3.25 Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
Table 7. USART feature comparison
USART
name
Standard
features
Modem
(RTS/CTS) LIN SPI
master irDA Smartcard
(ISO 7816)
Max. baud
rate in Mbit/s
(oversampling
by 16)
Max. baud
rate in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X(1) X X X X 6.25 12.5
APB2
(max.
100 MHz)
USART2 X X(1) XX
(1) XX
(1) 3.12 6.25
APB1
(max.
50 MHz)
USART6
(1) XN.AXX
(1)(2) XX
(1)(2) 6.25 12.5
APB2
(max.
50 MHz)
1. Not available on WLCSP36 package.
2. Not available on UFQFPN48 package.
Functional overview STM32F410x8/B
30/142 DocID028094 Rev 5
3.26 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 100 MHz.
3.27 Analog-to-digital converter (ADC)
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,
performing conversions in the single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1 or
TIM5 timer.
3.28 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the ADC_IN18 input channel which is used to convert the sensor output
voltage into a digital value. Refer to the reference manual for additional information.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.29 Digital-to-analog converter (DAC)
One 12-bit buffered DAC channel can be used to convert a digital signal into an analog
voltage signal output. The chosen design structure is composed of integrated resistor
strings and an amplifier in inverting configuration.
This digital interface supports the following features:
8-bit or 12-bit monotonic output
Buffer offset calibration (factory and user trimming)
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
DocID028094 Rev 5 31/142
STM32F410x8/B Functional overview
31
Triangular-wave generation
DMA capability for each channel
External triggers for conversion
Sample and hold low-power mode, with internal or external capacitor
The DAC channel is triggered through TIM6 update output that is also connected to different
DMA channels.
3.30 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.31 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F410x8/B through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using any high-speed
channel available. Real-time instruction and data flow activity can be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
Pinouts and pin description STM32F410x8/B
32/142 DocID028094 Rev 5
4 Pinouts and pin description
Figure 5. LQFP48 pinout
1. The above figure shows the package top view.
Figure 6. LQFP64 pinout
1. The above figure shows the package top view.
06Y9
/4)3



9%$7
3&$17,B7$03
3&26&B,1
3&26&B287
3+26&B,1
3+26&B287
1567
966$95()
9''$95()
3$:.83
3$
3$




































3$
3$
3$
3%
9''
3$
3$
3%
3%
3%
9&$3B
966
9''
966
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
9''
3'5B21
%227
3%
3$
966
3%
3%
3%
3%
3%
3$
0VY9
/4)3







9%$7
3&26&B,1
3&26&B287
3+26&B,1
3+26&B287
1567
3&
3&
3&
3&
966$95()
9''$95()
3$
3$
3$
3&
















































3$
966
3$
3&
3%
9''
3$
3&
9&$3B
3$
3$
966
3%
3%
3%
9''
9''
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
966
9''
966
%227
3%
3&
3%
3%
3%
3&
3%
3%
3$
3%
3%
3&
3$
DocID028094 Rev 5 33/142
STM32F410x8/B Pinouts and pin description
43
Figure 7. UFQFPN48 pinout
1. The above figure shows the package top view.
Figure 8. UFBGA64 pinout
1. The above figure shows the package top view.
069
966
%227
3%
3%
3%
3%
3%
3$
3$
        
 9''
 966
 3$
8)4)31
 3$
966$95()
 3$
9''$95()
 3$
3$
 3$
3$
 3$
3$

9''
        
3$
3$
3$
3$
3$
3%
3%
3%
966






  
  
3%
9&$3B
3%
3%
3%
3%
9%$7
3&
3&26&B,1
3+26&B,1
1567
3%
3%
9''
3&26&B287
3+26&B287
06Y9
3&
26&B,1 9%$7 3% %227 3% 3& 3$ 3$

$
%
&
'
(
)
*
+
3&
26&B287
3&
$17,B7$03 3% 3% 3% 3& 3$ 3$
3+
26&B,1 966 3'5B21 3% 3% 3$
3+
26&B287 9'' 3&
1567 3& 3&
966$ 3&
95() 3$:.83
9''$ 3$ 3$
3$
3$
3&
3&
3%
9''
3&
3$
3$
3$
9''
3%
9&$3B
3%
3%
3&
3$
3%
3%
3&
3$
966
3& 3$
3%
3%
3%
3&
3&
Pinouts and pin description STM32F410x8/B
34/142 DocID028094 Rev 5
Figure 9. WLCSP36 pinout
1. The above figure shows the package bump side.
06Y9
$
%
(
'
&
)
9''
3&
26&B,1
3+
26&B,1
1567
9''$
95()
966
9%$7
3&
26&B
287
3$
3$
3%
3'5B
21
3+
26&B287
3%
3%
3%
3$
3$
9''
966
3%
3$
3%
3$
9''
3$
9&$3
B
966
3&
%227
3$
3$
3%
3%
3%
966$
95()
Table 8. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input/ output pin
I/O structure
FT 5 V tolerant I/O
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
NRST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
DocID028094 Rev 5 35/142
STM32F410x8/B Pinouts and pin description
43
Table 9. STM32F410x8/B pin definitions
Pin Number
Pin name
(function after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP36
LQFP48
UFQFPN48
LQFP64
UFBGA64
B5 1 1 1 A2 VBAT S - - - VBAT
- - - - C2 VSS S - - - -
C4 2 2 2 B2 PC13 I/O FT (2)(3) EVENTOUT
RTC_TAMP1,
RTC_OUT,
RTC_TS
B6 3 3 3 A1 PC14-
OSC32_IN I/O FT
(2)(3)
(4) EVENTOUT OSC32_IN
C6 4 4 4 B1 PC15-
OSC32_OUT I/O FT (2)(4) EVENTOUT OSC32_OUT
-- - -D2 VDD S-- - -
C5 5 5 5 C1 PH0 - OSC_IN I/O FT (4) EVENTOUT OSC_IN
D6 6 6 6 D1 PH1 -
OSC_OUT I/O FT (4) EVENTOUT OSC_OUT
D5 7 7 7 E1 NRST NR
ST -- - -
-- - 8D3 PC0 I/OFT- LPTIM1_IN1,
EVENTOUT
ADC1_10,
WKUP2
- - - 9 E2 PC1 I/O FT - LPTIM1_OUT,
EVENTOUT
ADC1_11,
WKUP3
-- -10E3 PC2 I/OFT-
LPTIM1_IN2,
SPI2_MISO,
EVENTOUT
ADC1_12
-- -11F2 PC3 I/OFT-
LPTIM1_ETR,
SPI2_MOSI/I2S2_SD,
EVENTOUT
ADC1_13
E6 8 8 12 F1 VSSA/VREF- S - - - -
F6 9 9 13 - VDDA/VREF+ S - - - -
- - - - G1 VREF+ S - - - -
- - - - H1 VDDA S - - - -
E5 10 10 14 G2 PA0 I/O FT -
TIM5_CH1,
USART2_CTS,
EVENTOUT
ADC1_0,
WKUP1
-111115H2 PA1 I/OFT-
TIM5_CH2,
USART2_RTS,
EVENTOUT
ADC1_1
Pinouts and pin description STM32F410x8/B
36/142 DocID028094 Rev 5
E4 12 12 16 F3 PA2 I/O FT -
TIM5_CH3,
TIM9_CH1,
I2S2_CKIN,
USART2_TX,
EVENTOUT
ADC1_2
F5 13 13 17 G3 PA3 I/O FT -
TIM5_CH4,
TIM9_CH2,
I2S2_MCK,
USART2_RX,
EVENTOUT
ADC1_3
- - - 18 D5 VSS S - - - -
-- -19E4 VDD S-- - -
-141420H3 PA4 I/OFT-
SPI1_NSS/I2S1_WS,
USART2_CK,
EVENTOUT
ADC1_4
F4 15 15 21 F4 PA5 I/O TC - SPI1_SCK/I2S1_CK,
EVENTOUT
ADC1_5,
DAC_OUT1
-161622G4 PA6 I/OFT-
TIM1_BKIN,
SPI1_MISO,
I2S2_MCK,
EVENTOUT
ADC1_6
-171723H4 PA7 I/OFT-
TIM1_CH1N,
SPI1_MOSI/I2S1_SD,
EVENTOUT
ADC1_7
-- -24G5 PC4 I/OFT- TIM9_CH1,
EVENTOUT ADC1_14
-- -25H5 PC5 I/OFT-
TIM9_CH2,
I2C4_SMBA,
EVENTOUT
ADC1_15
- 18 18 26 F5 PB0 I/O FT -
TIM1_CH2N,
SPI5_SCK/I2S5_CK,
EVENTOUT
ADC1_8
- 19 19 27 G6 PB1 I/O TC -
TIM1_CH3N,
SPI5_NSS/I2S5_WS,
EVENTOUT
ADC1_9
F3 20 20 28 H6 PB2 I/O FT - LPTIM1_OUT,
EVENTOUT BOOT1
Table 9. STM32F410x8/B pin definitions (continued)
Pin Number
Pin name
(function after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP36
LQFP48
UFQFPN48
LQFP64
UFBGA64
DocID028094 Rev 5 37/142
STM32F410x8/B Pinouts and pin description
43
E3 21 21 29 G7 PB10 I/O FT -
I2C2_SCL,
SPI2_SCK/I2S2_CK,
I2S1_MCK,
I2C4_SCL,
EVENTOUT
-
E2 22 22 30 H7 VCAP_1 S - - - -
F2 23 23 31 D6 VSS S - - - -
F1 24 24 32 E5 VDD S - - - -
E1 25 25 33 H8 PB12 I/O FT -
TIM1_BKIN,
TIM5_CH1,
I2C2_SMBA,
SPI2_NSS/I2S2_WS,
EVENTOUT
-
- 26 26 34 G8 PB13 I/O FT -
TIM1_CH1N,
I2C4_SMBA,
SPI2_SCK/I2S2_CK,
EVENTOUT
-
- 27 27 35 F8 PB14 I/O FT -
TIM1_CH2N,
I2C4_SDA,
SPI2_MISO,
EVENTOUT
-
- 28 28 36 F7 PB15 I/O FT -
RTC_50Hz,
TIM1_CH3N,
I2C4_SCL,
SPI2_MOSI/I2S2_SD,
EVENTOUT
-
-- -37F6 PC6 I/OFT-
TRACECLK,
I2C4_SCL,
I2S2_MCK,
USART6_TX,
EVENTOUT
-
-- -38E7 PC7 I/OFT-
I2C4_SDA,
SPI2_SCK/I2S2_CK,
I2S1_MCK,
USART6_RX,
EVENTOUT
-
-- -39E8 PC8 I/OFT- USART6_CK,
EVENTOUT -
-- -40D8 PC9 I/OFT-
MCO_2, I2C4_SDA,
I2S2_CKIN,
EVENTOUT
-
Table 9. STM32F410x8/B pin definitions (continued)
Pin Number
Pin name
(function after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP36
LQFP48
UFQFPN48
LQFP64
UFBGA64
Pinouts and pin description STM32F410x8/B
38/142 DocID028094 Rev 5
D1 29 29 41 C8 PA8 I/O FT -
MCO_1, TIM1_CH1,
I2C4_SCL,
USART1_CK,
EVENTOUT
-
-303042B8 PA9 I/OFT-
TIM1_CH2,
USART1_TX,
EVENTOUT
-
-313143 E6 PA10 I/OFT-
TIM1_CH3,
SPI5_MOSI/I2S5_SD,
USART1_RX,
EVENTOUT
-
-323244D7 PA11 I/OFT-
TIM1_CH4,
USART1_CTS,
USART6_TX,
EVENTOUT
-
D2 33 33 45 A8 PA12 I/O FT -
TIM1_ETR,
SPI5_MISO,
USART1_RTS,
USART6_RX,
EVENTOUT
-
C1 34 34 46 C7 PA13 I/O FT - JTMS-SWDIO,
EVENTOUT -
B1 35 35 47 D5 VSS S - - - -
-363648 - VDD S- - - -
A1 - - - - VDD S - - - -
B2 37 37 49 B7 PA14 I/O FT - JTCK-SWCLK,
EVENTOUT -
A2 38 38 50 A7 PA15 I/O FT -
JTDI,
SPI1_NSS/I2S1_WS,
USART1_TX,
EVENTOUT
-
-- -51C6 PC10 I/OFT-
TRACED0,
TIM5_CH2,
EVENTOUT
-
-- -52B6 PC11 I/OFT-
TRACED1,
TIM5_CH3,
EVENTOUT
-
-- -53A6 PC12 I/OFT-
TRACED2,
TIM11_CH1,
EVENTOUT
-
Table 9. STM32F410x8/B pin definitions (continued)
Pin Number
Pin name
(function after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP36
LQFP48
UFQFPN48
LQFP64
UFBGA64
DocID028094 Rev 5 39/142
STM32F410x8/B Pinouts and pin description
43
- - - 54 B5 PB11 I/O FT -
TRACED3,
TIM5_CH4,
I2C2_SDA,
I2S2_CKIN,
EVENTOUT
-
C2 39 39 55 A5 PB3 I/O FT -
JTDO-SWO,
I2C4_SDA,
SPI1_SCK/I2S1_CK,
USART1_RX,
I2C2_SDA,
EVENTOUT
-
D3 40 40 56 C5 PB4 I/O FT - JTRST, SPI1_MISO,
EVENTOUT -
A3 41 41 57 D4 PB5 I/O FT -
LPTIM1_IN1,
I2C1_SMBA,
SPI1_MOSI/I2S1_SD,
EVENTOUT
-
B3 42 42 58 C4 PB6 I/O FT -
LPTIM1_ETR,
I2C1_SCL,
USART1_TX,
EVENTOUT
-
C3 43 43 59 B4 PB7 I/O FT -
LPTIM1_IN2,
I2C1_SDA,
USART1_RX,
EVENTOUT
-
D4 44 44 60 A4 BOOT0 I B - - BOOT0
A4 45 45 61 B3 PB8 I/O FT -
LPTIM1_OUT,
I2C1_SCL,
SPI5_MOSI/I2S5_SD,
EVENTOUT
-
- - 46 62 A3 PB9 I/O FT -
TIM11_CH1,
I2C1_SDA,
SPI2_NSS/I2S2_WS,
I2C2_SDA,
EVENTOUT
-
A5 46 47 63 - VSS S - - - -
B4 47 - - C3 PDR_ON I FT - - -
A6 48 48 64 - VDD S - - - -
1. Function availability depends on the chosen device.
Table 9. STM32F410x8/B pin definitions (continued)
Pin Number
Pin name
(function after
reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
WLCSP36
LQFP48
UFQFPN48
LQFP64
UFBGA64
Pinouts and pin description STM32F410x8/B
40/142 DocID028094 Rev 5
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F410x8/Breference manual.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
STM32F410x8/B Pinouts and pin description
DocID028094 Rev 5 41/142
Table 10. Alternate function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF TIM1/LPTIM1 TIM5 TIM9/
TIM11
I2C1/I2C2
/I2C4
SPI1/I2S1/S
PI2/I2S2
SPI1/I2S1/
SPI2/I2S2/
SPI5/I2S5
USART1/
USART2 USART6 I2C2/
I2C4 -----SYS_AF
Port A
PA0 - - TIM5_
CH1 -- - -
USART2_
CTS - - - - - - - EVENTOUT
PA1 - - TIM5_
CH2 -- - -
USART2_
RTS - - - - - - - EVENTOUT
PA2 - - TIM5_
CH3
TIM9_
CH1 -I2S2_
CKIN -USART2_
TX - - - - - - - EVENTOUT
PA3 - - TIM5_
CH4
TIM9_
CH2 - I2S2_MCK - USART2_
RX - - - - - - - EVENTOUT
PA4 - - - - - SPI1_NSS/
I2S1_WS -USART2_
CK - - - - - - - EVENTOUT
PA5 - - - - - SPI1_SCK/
I2S1_CK - - - - - - - - - EVENTOUT
PA6 - TIM1_BKIN - - - SPI1_MISO I2S2_MCK - - - - - - - - EVENTOUT
PA7 - TIM1_CH1N - - - SPI1_MOSI
/I2S1_SD - - - - - - - - - EVENTOUT
PA8 MCO_1 TIM1_CH1 - - I2C4_
SCL --
USART1_
CK - - - - - - - EVENTOUT
PA9 - TIM1_CH2 - - - - - USART1_
TX - - - - - - - EVENTOUT
PA10 - TIM1_CH3 - - - - SPI5_MOSI
/I2S5_SD
USART1_
RX - - - - - - - EVENTOUT
PA11 - TIM1_CH4 - - - - - USART1_
CTS
USART6
_TX - - - - - - EVENTOUT
PA12 - TIM1_ETR - - - - SPI5_MISO USART1_
RTS
USART6
_RX - - - - - - EVENTOUT
PA13 JTMS-
SWDIO - - - - - - - - - - - - - - EVENTOUT
PA14 JTCK-
SWCLK - - - - - - - - - - - - - - EVENTOUT
PA15 JTDI - - - - SPI1_NSS/
I2S1_WS -USART1_
TX - - - - - - - EVENTOUT
Pinouts and pin description STM32F410x8/B
42/142 DocID028094 Rev 5
Port B
PB0 - TIM1_CH2N - - - - SPI5_SCK/
I2S5_CK - - - - - - - - EVENTOUT
PB1 - TIM1_CH3N - - - - SPI5_NSS/
I2S5_WS - - - - - - - - EVENTOUT
PB2 - LPTIM1_OUT - - - - - - - - - - - - - EVENTOUT
PB3 JTDO-
SWO ---
I2C4_
SDA
SPI1_SCK/I
2S1_CK -USART1_
RX -I2C2_
SDA - - - - - EVENTOUT
PB4 JTRST - - - - SPI1_MISO - - - - - - - - - EVENTOUT
PB5 - LPTIM1_IN1 - - I2C1_
SMBA
SPI1_MOSI
/I2S1_SD - - - - - - - - - EVENTOUT
PB6 - LPTIM1_ETR - - I2C1_
SCL --
USART1_
TX - - - - - - - EVENTOUT
PB7 - LPTIM1_IN2 - - I2C1_
SDA --
USART1_
RX - - - - - - - EVENTOUT
PB8 - LPTIM1_OUT - - I2C1_
SCL -SPI5_MOSI
/I2S5_SD - - - - - - - - EVENTOUT
PB9 - - - TIM11_
CH1
I2C1_
SDA
SPI2_NSS/
I2S2_WS ---
I2C2_
SDA - - - - - EVENTOUT
PB10 - - - - I2C2_
SCL
SPI2_SCK/
I2S2_CK I2S1_MCK - - I2C4_
SCL - - - - - EVENTOUT
PB11 TRACED3 - TIM5_
CH4 -I2C2_
SDA I2S2_CKIN - - - - - - - - - EVENTOUT
PB12 - TIM1_BKIN TIM5_
CH1 -I2C2_
SMBA
SPI2_NSS/
I2S2_WS - - - - - - - - - EVENTOUT
PB13 - TIM1_CH1N - - I2C4_
SMBA
SPI2_SCK
/I2S2_CK - - - - - - - - - EVENTOUT
PB14 - TIM1_CH2N - - I2C4_
SDA SPI2_MISO - - - - - - - - - EVENTOUT
PB15 RTC_
50Hz TIM1_CH3N - - I2C4_
SCL
SPI2_MOSI
/I2S2_SD - - - - - - - - - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF TIM1/LPTIM1 TIM5 TIM9/
TIM11
I2C1/I2C2
/I2C4
SPI1/I2S1/S
PI2/I2S2
SPI1/I2S1/
SPI2/I2S2/
SPI5/I2S5
USART1/
USART2 USART6 I2C2/
I2C4 -----SYS_AF
STM32F410x8/B Pinouts and pin description
DocID028094 Rev 5 43/142
Port C
PC0 - LPTIM1_IN1 - - - - - - - - - - - - - EVENTOUT
PC1 - LPTIM1_OUT - - - - - - - - - - - - - EVENTOUT
PC2 - LPTIM1_IN2 - - - SPI2_MISO - - - - - - - - - EVENTOUT
PC3 - LPTIM1_ETR - - - SPI2_MOSI
/I2S2_SD - - - - - - - - - EVENTOUT
PC4 - - - TIM9_
CH1 - - - - - - - - - - - EVENTOUT
PC5 - - - TIM9_
CH2
I2C4_
SMBA - - - - - - - - - - EVENTOUT
PC6 TRACE
CLK ---
I2C4_
SCL I2S2_MCK - - USART6
_TX - - - - - - EVENTOUT
PC7 - - - - I2C4_
SDA
SPI2_SCK/
I2S2_CK I2S1_MCK - USART6
_RX - - - - - - EVENTOUT
PC8 - - - - - - - - USART6
_CK - - - - - - EVENTOUT
PC9 MCO_2 - - - I2C4_
SDA I2S2_CKIN - - - - - - - - - EVENTOUT
PC10 TRACED0 - TIM5_
CH2 - - - - - - - - - - - - EVENTOUT
PC11 TRACED1 - TIM5_
CH3 - - - - - - - - - - - - EVENTOUT
PC12 TRACED2 - - TIM11_
CH1 - - - - - - - - - - - EVENTOUT
PC13 - - - - - - - - - - - - - - - EVENTOUT
PC14 - - - - - - - - - - - - - - - EVENTOUT
PC15 - - - - - - - - - - - - - - - EVENTOUT
Port H
PH0 - - - - - - - - - - - - - - - EVENTOUT
PH1 - - - - - - - - - - - - - - - EVENTOUT
Table 10. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF TIM1/LPTIM1 TIM5 TIM9/
TIM11
I2C1/I2C2
/I2C4
SPI1/I2S1/S
PI2/I2S2
SPI1/I2S1/
SPI2/I2S2/
SPI5/I2S5
USART1/
USART2 USART6 I2C2/
I2C4 -----SYS_AF
Memory mapping STM32F410x8/B
44/142 DocID028094 Rev 5
5 Memory mapping
The memory map is shown in Figure 10.
Figure 10. Memory map
06Y9
0E\WH
EORFN
&RUWH[0V
LQWHUQDO
SHULSKHUDOV
0E\WH
EORFN
1RWXVHG
0E\WH
EORFN
3HULSKHUDOV
0E\WH
EORFN
65$0
[
[)))))))
[
[)))))))
[
[)))))))
[
[&
[')))))))
[(
[))))))))
0E\WH
EORFN
&RGH
[[)))))))
[
5HVHUYHG
[))
[[))))
[
[')))))))
5HVHUYHG
65$0.%DOLDVHG
E\ELWEDQGLQJ [[)))
$3%
$3%
[))
[[))))
5HVHUYHG
[
[))
$+%
)ODVKPHPRU\
[[))())))
[)))&[)))&
[[))))
[[))))))
[[))))
5HVHUYHG
5HVHUYHG
$OLDVHGWR)ODVK
V\VWHPPHPRU\RU
65$0GHSHQGLQJRQ
WKH%227SLQV
6\VWHPPHPRU\
[)))&[)))))))
[)))$[)))%)))
[)))[)))))
2SWLRQE\WHV
[
&RUWH[0LQWHUQDO
SHULSKHUDOV [([()))))
5HVHUYHG [([))))))))
5HVHUYHG
[%)))))))
5HVHUYHG
5HVHUYHG
5HVHUYHG
273DUHDORFN [)))[)))$)
DocID028094 Rev 5 45/142
STM32F410x8/B Memory mapping
47
Table 11. STM32F410x8/B register boundary addresses(1)
Bus Boundary address Peripheral
-0xE010 0000 - 0xFFFF FFFF Reserved
Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals
-0x5000 0000 - 0xDFFF FFFF Reserved
AHB1
0x4008 0400 - 0x4FFF FFFF Reserved
0x4008 0000 - 0x4008 03FF RNG
0x4002 6800 - 0x4007 FFFF Reserved
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0x4002 5000 - 0x4002 4FFF Reserved
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0x4002 3400 - 0x4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2800 - 0x4002 2FFF Reserved
0x4002 2400 - 0x4002 27FF LPTIM1
0x4002 2000 - 0x4002 23FF Reserved
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 0C00 - 0x4002 1BFF Reserved
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
Memory mapping STM32F410x8/B
46/142 DocID028094 Rev 5
APB2
0x4001 5400- 0x4001 FFFF Reserved
0x4001 5000 - 0x4001 53FF SPI5/I2S5
0x4001 4C00- 0x4001 4FFF Reserved
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF Reserved
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF Reserved
0x4001 3000 - 0x4001 33FF SPI1/I2S1
0x4001 2400 - 0x4001 2FF Reserved
0x4001 2000 - 0x4001 23FF ADC1
0x4001 1800 - 0x4001 1FFF Reserved
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0400 - 0x4001 0FFF Reserved
0x4001 0000 - 0x4001 03FF TIM1
Table 11. STM32F410x8/B register boundary addresses(1)
Bus Boundary address Peripheral
DocID028094 Rev 5 47/142
STM32F410x8/B Memory mapping
47
APB1
0x4000 7800 - 0x4000 FFFF Reserved
0x4000 7400 - 0x4000 77FF DAC
0x4000 7000 - 0x4000 73FF PWR
0x4000 6400 - 0x4000 6FFF Reserved
0x4000 6000 - 0x4000 63FF I2C4 FM+
0x4000 5C00 - 0x4000 5FFF Reserved
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 4800 - 0x4000 53FF Reserved
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF Reserved
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF Reserved
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 1400 - 0x4000 27FF Reserved
0x4000 1000 - 0x4000 13FF TIM6
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0000 - 0x4000 0BFF Reserved
1. The gray color is used for reserved boundary address.
Table 11. STM32F410x8/B register boundary addresses(1)
Bus Boundary address Peripheral
Electrical characteristics STM32F410x8/B
48/142 DocID028094 Rev 5
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3 σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2 σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
Figure 11. Pin loading conditions
-36
#P&
-#5PIN
DocID028094 Rev 5 49/142
STM32F410x8/B Electrical characteristics
118
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 12. Input voltage measurement
-36
-#5PIN
6).
Electrical characteristics STM32F410x8/B
50/142 DocID028094 Rev 5
6.1.6 Power supply scheme
Figure 13. Power supply scheme
1. To connect PDR_ON pin, refer to Section 3.15: Power supply supervisor.
Caution: Each power supply pair (for example VDD/VSS, VDDA/VSSA) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below, the appropriate pins on the underside of the PCB to ensure good operation of
the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
06Y9
ĂĐŬƵƉĐŝƌĐƵŝƚƌLJ
;K^ϯϮ<Zd
tĂŬĞƵƉůŽŐŝĐ
ĂĐŬƵƉƌĞŐŝƐƚĞƌƐͿ
<ĞƌŶĞůůŽŐŝĐ
;WhĚŝŐŝƚĂů
ΘZDͿ
ŶĂůŽŐ
ZƐ 
W>> 
WŽǁĞƌ
ƐǁŝƚĐŚ
sd
'W/KƐ
Khd
/E
ϰп ϭ ϬϬŶ&
нϭпϰϳђ&
sdс
ϭ ϲϱƚŽϯϲs
sŽůƚĂŐĞ
ƌĞŐƵůĂƚŽƌ
s

>ĞǀĞůƐŚŝĨƚĞƌ
/K
>ŽŐŝĐ
s
ϭϬϬŶ&
нϭђ&
&ůĂƐŚŵĞŵŽƌLJ
sWͺϭ
ϭdžϰϳђ&
WZͺKE
ZĞƐĞƚ
ĐŽŶƚƌŽůůĞƌ
s
ϭ Ϯ  ϰ
s^^
ϭ Ϯ  ϰ
s
s^^
sZ&
ϭϬϬŶ&
нϭђ&
DocID028094 Rev 5 51/142
STM32F410x8/B Electrical characteristics
118
6.1.7 Current consumption measurement
Figure 14. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 12: Voltage characteristics,
Table 13: Current characteristics, and Table 14: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
DL
9%$7
9''
9''$
,''B9%$7
,''
Table 12. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VDD and
VBAT)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on FT and TC pins(2)
2. VIN maximum value must always be respected. Refer to Table 13 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4.0
Input voltage on any other pin VSS–0.3 4.0
Input voltage for BOOT0 VSS 9.0
|VDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS|Variations between all the different ground pins
including VREF-
-50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 6.3.14:
Absolute maximum
ratings (electrical
sensitivity)
V
Electrical characteristics STM32F410x8/B
52/142 DocID028094 Rev 5
Table 13. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source)(1) 160
mA
Σ IVSS Total current out of sum of all VSS_x ground lines (sink)(1) -160
IVDD Maximum current into each VDD_x power line (source)(1) 100
IVSS Maximum current out of each VSS_x ground line (sink)(1) -100
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/O and control pin -25
ΣIIO
Total output current sunk by sum of all I/O and control pins (2) 120
Total output current sourced by sum of all I/Os and control pins(2) -120
IINJ(PIN) (3) Injected current on FT and TC pins (4)
–5/+0
Injected current on NRST and B pins (4)
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5) ±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 14. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150
°C
TJMaximum junction temperature 130
TLEAD
Maximum lead temperature during soldering
(WLCSP36, LQFP48, LQFP64, UFQFPN48,
UFBGA64)
see note (1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK® 7191395
specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July
2011).
DocID028094 Rev 5 53/142
STM32F410x8/B Electrical characteristics
118
6.3 Operating conditions
6.3.1 General operating conditions
Table 15. General operating conditions
Symbol Parameter Conditions Min Typ Max Unit
fHCLK Internal AHB clock frequency
Power Scale3: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x01 0-64
MHz
Power Scale2: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x10 0 - 84
Power Scale1: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x11 0-100
fPCLK1 Internal APB1 clock frequency - 0 - 50 MHz
fPCLK2 Internal APB2 clock frequency - 0 - 100 MHz
VDD Standard operating voltage - 1.7(1) -3.6V
VDDA(2)(3)
Analog operating voltage
(ADC limited to 1.2 M
samples)
Must be the same potential as VDD(4)
1.7(1) -2.4
V
Analog operating voltage
(ADC limited to 2.4 M
samples)
2.4 - 3.6
VBAT Backup operating voltage - 1.65 - 3.6 V
V12
Regulator ON: 1.2 V internal
voltage on VCAP_1 pins
VOS[1:0] bits in PWR_CR register = 0x01
Max frequency 64 MHz
1.08
(5) 1.14 1.20(5)
V
VOS[1:0] bits in PWR_CR register = 0x10
Max frequency 84 MHz
1.20
(5) 1.26 1.32(5)
VOS[1:0] bits in PWR_CR register = 0x11
Max frequency 100 MHz 1.26 1.32 1.38
V12
Regulator OFF: 1.2 V external
voltage must be supplied on
VCAP_1 pins
Max frequency 64 MHz 1.10 1.14 1.20
VMax frequency 84 MHz 1.20 1.26 1.32
Max frequency 100 MHz 1.26 1.32 1.38
VIN
Input voltage on RST, FT and
TC pins(6)
2 V VDD 3.6 V –0.3 - 5.5
VVDD 2 V –0.3 - 5.2
Input voltage on BOOT0 pin - 0 - 9
Electrical characteristics STM32F410x8/B
54/142 DocID028094 Rev 5
PD
Maximum allowed package
power dissipation at
TA = 85 °C (range 6) or 105 °C
(range 7)(7)
LQFP48 - - 364
mW
LQFP64 - - 435
UFQFPN48 - - 606
WLCSP36 - - 328
UFBGA64 - - 253
Power dissipation at TA =
125 °C for range 3(7)
LQFP48 - - 91
LQFP64 - - 108
UFQFPN48 - - 151
WLCSP36 - - 81
UFBGA64 - - 63
TA
Ambient temperature for
range 6
Maximum power dissipation –40 - 85
°C
Low power dissipation(8) –40 - 105
Ambient temperature for
range 7
Maximum power dissipation –40 - 105
Low power dissipation(8) –40 - 125
Ambient temperature for
range 3
Maximum power dissipation -40 - 110
Low power dissipation(8) -40 - 130
TJ Junction temperature range
Range 6 –40 - 105
Range 7 –40 - 125
Range 3 –40 - 130
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.15.2: Internal
reset OFF).
2. When the ADC is used, refer to Table 66: ADC characteristics.
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
5. Guaranteed by test in production.
6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
7. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
8. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 15. General operating conditions (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID028094 Rev 5 55/142
STM32F410x8/B Electrical characteristics
118
Table 16. Features depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
I/O operation
Clock output
frequency on
I/O pins(3)
Possible
Flash
memory
operations
VDD =1.7 to
2.1 V(4)
Conversion
time up to
1.2 Msps
16 MHz(5) 100 MHz with 6
wait states
No I/O
compensation up to 30 MHz
8-bit erase
and program
operations
only
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
18 MHz 100 MHz with 5
wait states
No I/O
compensation up to 30 MHz
16-bit erase
and program
operations
VDD = 2.4 to
2.7 V
Conversion
time up to
2.4 Msps
24 MHz 100 MHz with 4
wait states
–I/O
compensation
works
up to 50 MHz
16-bit erase
and program
operations
VDD = 2.7 to
3.6 V
Conversion
time up to
2.4 Msps
30 MHz 100 MHz with 3
wait states
–I/O
compensation
works
–up to
100 MHz
when VDD =
3.0 to 3.6 V
–up to
50 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. Refer to Table 57: I/O AC characteristics for frequencies vs. external load.
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.15.2: Internal
reset OFF).
5. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
Electrical characteristics STM32F410x8/B
56/142 DocID028094 Rev 5
6.3.2 VCAP_1 external capacitor
Stabilization for the main regulator is achieved by connecting the external capacitor CEXT to
the VCAP_1 pin.
CEXT is specified in Table 17.
Figure 15. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
6.3.3 Operating conditions at power-up/power-down (regulator ON)
Subject to general operating conditions for TA.
6.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 17. VCAP_1 operating conditions
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 4.7 µF
ESR ESR of external capacitor < 1
069
(65
5/HDN
&
Table 18. Operating conditions at power-up / power-down (regulator ON)
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Table 19. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 rise time rate Power-up 20
VCAP_1 fall time rate Power-down 20
DocID028094 Rev 5 57/142
STM32F410x8/B Electrical characteristics
118
6.3.5 Embedded reset and power control block characteristics
The parameters given in Table 20 are derived from tests performed under ambient
temperature and VDD supply voltage @ 3.3V.
Table 20. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.09 2.14 2.19
V
PLS[2:0]=000 (falling edge) 1.98 2.04 2.08
PLS[2:0]=001 (rising edge) 2.23 2.30 2.37
PLS[2:0]=001 (falling edge) 2.13 2.19 2.25
PLS[2:0]=010 (rising edge) 2.39 2.45 2.51
PLS[2:0]=010 (falling edge) 2.29 2.35 2.39
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65
PLS[2:0]=011 (falling edge) 2.44 2.51 2.56
PLS[2:0]=100 (rising edge) 2.70 2.76 2.82
PLS[2:0]=100 (falling edge) 2.59 2.66 2.71
PLS[2:0]=101 (rising edge) 2.86 2.93 2.99
PLS[2:0]=101 (falling edge) 2.65 2.84 3.02
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10
PLS[2:0]=110 (falling edge) 2.85 2.93 2.99
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21
PLS[2:0]=111 (falling edge) 2.95 3.03 3.09
VPVDhyst(2) PVD hysteresis - - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60(1) 1.68 1.76
V
Rising edge 1.64 1.72 1.80
VPDRhyst(2) PDR hysteresis - - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24
V
Rising edge 2.23 2.29 2.33
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56
Rising edge 2.53 2.59 2.63
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88
Rising edge 2.85 2.92 2.97
VBORhyst(2) BOR hysteresis - - 100 - mV
TRSTTEMPO
(2)(3) POR reset timing - 0.5 1.5 3.0 ms
Electrical characteristics STM32F410x8/B
58/142 DocID028094 Rev 5
6.3.6 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted to both fHCLK frequency and VDD ranges
(refer to Table 16: Features depending on the operating power supply range).
The voltage scaling is adjusted to fHCLK frequency as follows:
Scale 3 for fHCLK 64 MHz
Scale 2 for 64 MHz < fHCLK 84 MHz
Scale 1 for 84 MHz < fHCLK 100 MHz
The system clock is HCLK, fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
IRUSH(2)
In-Rush current on
voltage regulator power-
on (POR or wakeup from
Standby)
- - 160 200 mA
ERUSH(2)
In-Rush energy on
voltage regulator power-
on (POR or wakeup from
Standby)
VDD = 1.7 V, TA = 125 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design.
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first
instruction is fetched by the user application code.
Table 20. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID028094 Rev 5 59/142
STM32F410x8/B Electrical characteristics
118
Table 21. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
(1)
Typ Max(2)
Unit
TA=
25 °C
TA=
25 °C
TA=
85 °C
TA=
105 °C
TA=
125 °C
IDD
Supply
current in
Run mode
External
clock,
all peripherals
enabled(3)(4)
100 S1 200 17.4 18.3(5) 19.1 19.4(6) 20.2(5)
mA
84 S2 168 14.1 14.8(5) 15.4 15.8(6) 16.6(5)
64 S3 128 9.8 10.3(5) 10.7 11.0(6) 11.7(5)
50 S3 100 7.7 8.1 8.5 8.8 9.5
25 S3 100 4.1 4.4 4.7 5.0 5.7
20 S3 160 3.5 3.8 4.1 4.4 5.1
HSI, PLL off,
all peripherals
enabled(3)(4)
16 S3 off 2.5 2.6 2.9 3.2 4.0
1 S3 off 0.4 0.5 0.8 1.2 2.0
External
clock,
all peripherals
disabled(3)
100 S1 200 11.8 12.5 12.9 13.3 14.1
84 S2 168 9.6 10.1 10.4 10.8 11.6
64 S3 128 6.7 7.2 7.4 7.7 8.4
50 S3 100 5.3 5.6 5.9 6.2 6.9
25 S3 100 2.9 3.1 3.3 3.7 4.4
20 S3 160 2.5 2.7 2.9 3.2 3.9
HSI, PLL off,
all peripherals
disabled(3)
16 S3 off 1.7 1.9 2.1 2.4 3.2
1 S3 off 0.3 0.4 0.7 1.1 1.9
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register)
5. Guaranteed by tests in production.
6. Guaranteed by test in production for temperature range 7 salestypes only.
Electrical characteristics STM32F410x8/B
60/142 DocID028094 Rev 5
Table 22. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
(1)
Typ Max(2)
Unit
TA=
25 °C
TA=
25 °C
TA=
85 °C
TA=
105 °C
TA=
125 °C
IDD
Supply
current in
Run mode
External clock,
all peripherals
enabled(3)(4)
100 S1 200 17.7 19.1(5) 19.3 19.7(6) 20.5(5)
mA
84 S2 168 14.4 15.3(5) 15.7 16.0(6) 16.8(5)
64 S3 128 10.1 10.6(5) 11.0 11.3(6) 12.0(5)
50 S3 100 8.0 8.4 8.8 9.1 9.8
25 S3 100 4.4 4.7 4.9 5.2 5.9
20 S3 160 3.8 4.1 4.3 4.6 5.3
HSI, PLL off,
all peripherals
enabled(3)(4)
16 S3 off 2.5 2.6 2.9 3.2 4.0
1 S3 off 0.4 0.5 0.8 1.2 2.0
External clock,
all peripherals
disabled(3)
100 S1 200 12.1 13.1(5) 13.1 13.5(6) 14.3(5)
84 S2 168 9.8 10.6(5) 10.7 11.0(6) 11.8(5)
64 S3 128 7.0 7.4(5) 7.6 7.9(6) 8.6(5)
50 S3 100 5.6 5.9 6.1 6.4 7.2
25 S3 100 3.1 3.3 3.5 3.9 4.8
20 S3 160 2.8 3.0 3.2 3.5 4.4
HSI, PLL off, all
peripherals
disabled(3)
16 S3 off 1.7 1.8 2.1 2.4 3.3
1 S3 off 0.4 0.4 0.7 1.1 1.8
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register)
5. Guaranteed by tests in production.
6. Guaranteed by test in production for temperature range 7 salestypes only.
DocID028094 Rev 5 61/142
STM32F410x8/B Electrical characteristics
118
Table 23. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
(1)
Typ Max(2)
Unit
TA=
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Run mode
External clock,
all peripherals
enabled(3)(4)
100 S1 200 15.7 16.5 16.5 16.9 17.8
mA
84 S2 168 12.7 13.3 13.4 13.8 14.6
64 S3 128 8.8 9.3 9.4 9.7 10.6
50 S3 100 7.0 7.4 7.5 7.8 8.6
25 S3 100 3.9 4.1 4.3 4.7 5.6
20 S3 160 3.4 3.6 3.8 4.2 5.1
HSI, PLL OFF,
all peripherals
enabled(3)(4)
16 S3 off 2.4 2.5 2.8 3.2 4.1
1 S3 off 0.6 0.7 1.0 1.4 2.3
External clock,
all peripherals
disabled(3)
100 S1 200 10.1 10.7 10.8 11.2 12.0
84 S2 168 8.2 8.6 8.7 9.1 10.0
64 S3 128 5.7 6.1 6.2 6.6 7.4
50 S3 100 4.6 4.9 5.0 5.4 6.3
25 S3 100 2.6 2.8 3.0 3.4 4.3
20 S3 160 2.4 2.5 2.8 3.1 4.0
HSI, PLL OFF,
all peripherals
disabled(3)
16 S3 off 1.7 1.8 2.1 2.4 3.3
1 S3 off 0.6 0.6 1.0 1.4 2.2
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register)
Electrical characteristics STM32F410x8/B
62/142 DocID028094 Rev 5
Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
(1)
Typ Max(2)
Unit
TA=
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Run mode
External
clock,
all peripherals
enabled(3)(4)
100 S1 200 16.3 17.3(5) 17.1 17.5(6) 18.4(5)
mA
84 S2 168 13.2 14.1 14.0 14.3 15.2
64 S3 128 9.3 10.0 9.9 10.2 11.1
50 S3 100 7.4 8.0 8.0 8.3 9.2
25 S3 100 4.2 4.7 4.8 5.0 5.9
20 S3 160 3.7 4.2 4.3 4.6 5.5
HSI, PLL
OFF,
all peripherals
enabled(3)(4)
16 S3 off 2.4 2.8 3.0 3.4 4.3
1 S3 off 0.6 1.0 1.2 1.5 2.4
External
clock,
all peripherals
disabled(3)
100 S1 200 10.6 11.4(5) 11.4 11.7(6) 12.6(5)
84 S2 168 8.7 9.4 9.3 9.7 10.6
64 S3 128 6.2 6.8 6.8 7.1 7.9
50 S3 100 5.0 5.5 5.5 5.8 6.8
25 S3 100 2.9 3.4 3.5 3.8 4.7
20 S3 160 2.7 3.1 3.2 3.5 4.4
HSI, PLL
OFF,
all peripherals
disabled(3)
16 S3 off 1.7 2.1 2.3 2.6 3.5
1 S3 off 0.6 0.9 1.1 1.5 2.4
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register)
5. Guaranteed by tests in production.
6. Guaranteed by test in production on temperature range 7 salestypes only.
DocID028094 Rev 5 63/142
STM32F410x8/B Electrical characteristics
118
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
(1)
Typ Max(2)
Unit
TA=
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Run mode
External clock,
all peripherals
enabled(3)(4)
100 S1 200 24.7 26.3 26.5 27.0 28.0
mA
84 S2 168 21.6 23.0 23.2 23.7 24.7
64 S3 128 15.9 17.0 17.1 17.6 18.6
50 S3 100 13.1 14.2 14.3 14.7 15.7
25 S3 100 7.5 8.2 8.3 8.7 9.7
20 S3 160 6.5 7.1 7.2 7.5 8.5
HSI, PLL OFF,
all peripherals
enabled(3)(4)
16 S3 off 4.7 5.3 5.5 5.9 6.9
1 S3 off 0.8 1.2 1.6 1.9 2.9
External clock,
all peripherals
disabled(3)
100 S1 200 19.1 20.5 20.7 21.3 22.3
84 S2 168 17.1 18.3 18.6 19.1 20.1
64 S3 128 12.8 13.8 14.0 14.5 15.5
50 S3 100 10.7 11.7 11.8 12.2 13.2
25 S3 100 6.3 7.0 7.1 7.4 8.3
20 S3 160 5.4 6.0 6.2 6.5 7.4
HSI, PLL OFF,
all peripherals
disabled(3)
16 S3 off 4.0 4.5 5.0 5.1 6.0
1 S3 off 0.8 1.1 1.5 1.8 2.7
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register)
Electrical characteristics STM32F410x8/B
64/142 DocID028094 Rev 5
Table 26. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
(1)
Typ Max(2)
Unit
TA=
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Run mode
External clock,
all peripherals
enabled(3)(4)
100 S1 200 24.2 26.2 25.7 26.5 27.6
mA
84 S2 168 20.0 21.8 21.4 22.1 23.1
64 S3 128 15.8 17.2 17.0 17.7 18.7
50 S3 100 13.3 16.5 14.4 15.0 16.0
25 S3 100 7.5 9.5 8.3 8.8 9.8
20 S3 160 6.7 8.2 7.3 7.7 8.6
HSI, PLL OFF,
all peripherals
enabled(3)(4)
16 S3 off 5.1 6.4 5.7 6.2 7.1
1 S3 off 0.8 1.0 1.3 1.7 2.6
External clock,
all peripherals
disabled(3)
100 S1 200 18.6 23.0 23.4 23.9 24.9
84 S2 168 15.5 19.3 19.9 20.4 21.4
64 S3 128 12.7 16.1 16.7 17.0 18.0
50 S3 100 10.9 13.9 14.3 14.7 15.7
25 S3 100 6.3 8.1 8.4 8.7 9.7
20 S3 160 5.6 7.2 7.3 7.6 8.4
HSI, PLL OFF,
all peripherals
disabled(3)
16 S3 off 4.3 5.5 5.8 6.2 7.1
1 S3 off 0.8 1.0 1.3 1.6 2.5
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register)
DocID028094 Rev 5 65/142
STM32F410x8/B Electrical characteristics
118
Table 27. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
(1)
Typ Max(2)
Unit
TA=
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Run mode
External clock,
all peripherals
enabled(3)(4)
100 S1 200 27.1 28.9 28.9 29.5 30.5
mA
84 S2 168 23.2 24.8 24.9 25.5 26.5
64 S3 128 17.0 18.3 18.4 18.8 19.8
50 S3 100 13.6 14.7 14.7 15.2 16.2
25 S3 100 7.5 8.2 8.3 8.7 9.7
20 S3 160 6.5 7.1 7.2 7.5 8.5
HSI, PLL OFF,
all peripherals
enabled(3)(4)
16 S3 off 4.7 5.3 5.5 5.9 6.9
1 S3 off 0.8 1.2 1.4 1.8 2.8
External clock,
all peripherals
disabled(3)
100 S1 200 21.5 23.0 23.2 23.8 24.8
84 S2 168 18.7 20.0 20.3 20.8 21.8
64 S3 128 14.0 15.1 15.2 15.7 16.7
50 S3 100 11.2 12.2 12.3 12.7 13.7
25 S3 100 6.3 7.0 7.1 7.4 8.4
20 S3 160 5.4 6.0 6.2 6.5 7.5
HSI, PLL OFF,
all peripherals
disabled(3)
16 S3 off 4.0 4.5 4.8 5.1 6.1
1 S3 off 0.8 1.1 1.4 1.7 2.7
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register)
Electrical characteristics STM32F410x8/B
66/142 DocID028094 Rev 5
Table 28. Typical and maximum current consumption in Sleep mode - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
(1)
Typ Max(2)
Unit
TA=
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Sleep
mode
All peripherals
enabled(3)(4),
External clock,
PLL ON, Flash
memory in Deep
power down
mode
100 S1 200 8.0 8.2(5) 9.0 9.4(6) 10.2(5)
mA
84 S2 168 6.5 6.7 7.4 7.7 8.5
64 S3 128 4.6 4.7 5.2 5.5 6.3
50 S3 100 3.7 3.9 4.3 4.6 5.4
25 S3 100 2.2 2.3 2.6 2.9 3.8
20 S3 160 2.1 2.2 2.5 2.8 3.6
All peripherals
enabled(3)(4),
HSI, PLL OFF,
Flash memory in
Deep power
down mode
16 S3 off 1.1 1.2 1.5 1.9 2.7
1 S3 off 0.3 0.4 0.7 1.1 1.9
All peripherals
enabled(3)(4),
External clock,
PLL ON, Flash
memory ON
100 S1 200 8.4 8.7 9.5 9.9 10.7
84 S2 168 6.9 7.1 7.7 8.1 8.9
64 S3 128 4.9 5.1 5.5 5.9 6.7
50 S3 100 4.0 4.2 4.6 4.9 5.7
25 S3 100 2.5 2.6 2.9 3.2 4.0
20 S3 160 2.4 2.5 2.7 3.1 3.9
All peripherals
enabled(3), HSI,
PLL OFF, Flash
memory ON
16 S3 off 1.4 1.4 1.8 2.2 3.0
1 S3 off 0.6 0.6 1.0 1.3 2.0
DocID028094 Rev 5 67/142
STM32F410x8/B Electrical characteristics
118
IDD
(continued)
Supply
current in
Sleep
mode
(continued)
All peripherals
disabled,
External clock,
PLL ON, Flash
memory in Deep
power down
mode
100 S1 200 2.2 2.3(5) 2.6 3.0(6) 3.8(5)
mA
84 S2 168 1.8 1.9 2.2 2.6 3.4
64 S3 128 1.4 1.5 1.8 2.1 2.9
50 S3 100 1.2 1.3 1.6 1.9 2.7
25 S3 100 0.9 1.0 1.3 1.7 2.5
20 S3 160 1.0 1.2 1.4 1.7 2.5
All peripherals
disabled, HSI,
PLL OFF, Flash
memory in Deep
power down
mode
16 S3 off 0.3 0.4 0.7 1.1 1.9
1 S3 off 0.3 0.3 0.7 1.0 1.8
All peripherals
disabled,
External clock,
PLL ON, Flash
memory ON
100 S1 200 2.6 2.7 3.0 3.4 4.2
84 S2 168 2.2 2.3 2.6 3.0 3.8
64 S3 128 1.8 1.9 2.1 2.5 3.3
50 S3 100 1.5 1.6 1.9 2.2 3.1
25 S3 100 1.2 1.4 1.6 2.0 2.8
20 S3 160 1.3 1.4 1.7 2.0 2.8
All peripherals
disabled, HSI,
PLL OFF, Flash
memory in Deep
power down
mode
16 S3 off 0.6 0.6 1.0 1.3 2.0
1 S3 off 0.5 0.6 0.9 1.3 2.0
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register)
5. Guaranteed by tests in production.
6. Guaranteed by test in production on temperature range 7 salestypes only.
Table 28. Typical and maximum current consumption in Sleep mode - VDD = 3.6 V (continued)
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)
(1)
Typ Max(2)
Unit
TA=
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
Electrical characteristics STM32F410x8/B
68/142 DocID028094 Rev 5
Table 29. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)(1)
Typ Max(2)
Unit
TA=
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Sleep
mode
All peripherals
enabled(3) (4),
External clock,
PLL ON, Flash
memory in
Deep power
down mode
100 S1 200 7.7 7,9 8,8 9,2 10.0
mA
84 S2 168 6.2 6,4 7,1 7,5 8.3
64 S3 128 4.3 4,5 5,0 5,3 6.1
50 S3 100 3.4 3,6 4,0 4,4 5.2
25 S3 100 2.0 2,1 2,4 2,7 3.5
20 S3 160 1.8 1,9 2,3 2,6 3.4
All peripherals
enabled(3)(4),
HSI, PLL OFF,
Flash memory
in Deep power
down mode
16 S3 off 1.1 1,2 1,5 1,9 2.7
1 S3 off 0.3 0,4 0,7 1,0 1.8
All peripherals
enabled(3)(4),
External clock,
PLL ON, Flash
memory ON
100 S1 200 8.1 8,4 9,3 9,7 10.5
84 S2 168 6.6 6,8 7,5 7,9 8.7
64 S3 128 4.7 4,8 5,4 5,7 6.5
50 S3 100 3.8 3,9 4,4 4,7 5.5
25 S3 100 2.3 2,4 2,7 3,1 3.9
20 S3 160 2.1 2,2 2,6 2,9 3.7
All peripherals
enabled(3)(4),
HSI, PLL OFF,
Flash memory
ON
16 S3 off 1.4 1,5 1,8 2,2 3.0
1 S3 off 0.5 0,6 1,0 1,3 2.0
DocID028094 Rev 5 69/142
STM32F410x8/B Electrical characteristics
118
IDD
(continued)
Supply
current in
Sleep
mode
(continued)
All peripherals
disabled,
External clock,
PLL ON, Flash
memory in
Deep power
down mode
100 S1 200 1.9 2,0 2,4 2,7 3.5
mA
84 S2 168 1.6 1,7 2,0 2,4 3.2
64 S3 128 1.1 1,2 1,5 1,9 2.7
50 S3 100 0.9 1,0 1,3 1,7 2.5
25 S3 100 0.7 0,8 1,1 1,4 2.2
20 S3 160 0.8 0,8 1,2 1,5 2.3
All peripherals
disabled, HSI,
PLL OFF, Flash
memory in
Deep power
down mode
16 S3 off 0.3 0,4 0,7 1,0 1.8
1 S3 off 0.2 0,3 0,6 1,0 1.8
All peripherals
disabled,
External clock,
PLL ON, Flash
memory ON
100 S1 200 2.3 2,4 2,9 3,3 4.0
84 S2 168 2.0 2,1 2,4 2,8 3.6
64 S3 128 1.5 1,6 1,9 2,3 3.1
50 S3 100 1.3 1,4 1,7 2,0 2.8
25 S3 100 1.0 1,1 1,4 1,7 2.5
20 S3 160 1.0 1,2 1,5 1,8 2.6
All peripherals
disabled, HSI,
PLL OFF, Flash
memory in
Deep power
down mode
16 S3 off 0.6 0,6 1,0 1,4 2.1
1 S3 off 0.5 0,6 0,9 1,3 2.0
1. Refer to Table 44 and RM0401 for the possible PLL VCO setting
2. Guaranteed by characterization, unless otherwise specified.
3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.
4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register)
Table 29. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V (continued)
Symbol Parameter Conditions fHCLK
(MHz)
Voltage
scale
PLL
VCO
(MHz)(1)
Typ Max(2)
Unit
TA=
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
Electrical characteristics STM32F410x8/B
70/142 DocID028094 Rev 5
Table 30. Typical and maximum current consumptions in Stop mode - VDD = 1.7 V
Symbol Conditions
Typ Max
Unit
TA =
25 °C
TA =
25 °C(1)
TA =
85 °C
TA =
105 °C(1)
TA =
125 °C(1)
IDD_STOP
Flash in Stop mode,
all oscillators OFF,
no independent
watchdog
Main regulator usage 105.6 117.1 385.1 665.7 1270.0
µA
Low power regulator usage 39.5 48.7 287.5 548.4 1070.0
Flash in Deep power
down mode, all
oscillators OFF, no
independent
watchdog
Main regulator usage 77.8 87.5 351.3 630.1 1222.0
Low power regulator usage 11.0 20.0 254.2 512.0 1006.0
Low power low voltage
regulator usage 6.1 13.6 217.0 442.5 941.0
1. Guaranteed by characterization.
Table 31. Typical and maximum current consumption in Stop mode - VDD=3.6 V
Symbol Conditions
Typ Max
Unit
TA =
25 °C
TA =
25 °C(1)
TA =
85 °C
TA =
105 °C(1)
TA =
125 °C(1)
IDD_STOP
Flash in Stop mode,
all oscillators OFF,
no independent
watchdog
Main regulator usage 108.6 126(2) 392.8 675.4(3) 1280.0(2)
µA
Low power regulator usage 41.03 50.31(2) 290.9 554.2(3) 1077.0(2)
Flash in Deep power
down mode, all
oscillators OFF, no
independent
watchdog
Main regulator usage 80.32 94.0(2) 357.0 639.5(3) 1232.0(2)
Low power regulator usage 12.41 21.5(2) 258.1 518.1(3) 1010.0(2)
Low power low voltage
regulator usage 7.53 15.2(2) 221.6 449.2(3) 947.0(2)
1. Guaranteed by characterization.
2. Guaranteed by tests in production.
3. Guaranteed by test in production on temperature range 7 salestypes only.
Table 32. Typical and maximum current consumption in Standby mode - VDD= 1.7 V
Symbol Parameter Conditions
Typ Max
Unit
TA =
25 °C
TA =
25 °C(1)
TA =
85 °C
TA =
105 °C(1)
TA =
125 °C(1)
IDD_STBY
Supply current
in Standby
mode
Low-speed oscillator (LSE)
and RTC ON 2.1 2.9 6.5 18.2 60.0
µA
RTC and LSE OFF 1.2 1.9 5.5 17.1 59.0
1. Guaranteed by characterization, unless otherwise specified.
DocID028094 Rev 5 71/142
STM32F410x8/B Electrical characteristics
118
Table 33. Typical and maximum current consumption in Standby mode - VDD= 3.6 V
Symbol Parameter Conditions
Typ Max
Uni
t
TA =
25 °C
TA =
25 °C(1)
TA =
85 °C
TA =
105 °C(1)
TA =
125 °C(1)
IDD_STBY
Supply current
in Standby
mode
Low-speed oscillator (LSE)
and RTC ON 3.4 4.3 8.9 22.8 65.0
µA
RTC and LSE OFF 2.5 3.3(2) 7.8 21.6(3) 64.0(2)
1. Guaranteed by characterization, unless otherwise specified.
2. Guaranteed by tests in production.
3. Guaranteed by test in production on temperature range 7 salestypes only.
Table 34. Typical and maximum current consumptions in VBAT mode
(LSE and RTC ON, LSE low- drive mode)
Symbol Parameter Conditions(1)
Typ Max(2)
Unit
TA = 25 °C TA =
85 °C
TA =
105 °C
TA =
125 °C
VBAT =
1.7 V
VBAT=
2.4 V
VBAT =
3.3 V VBAT = 3.6 V
IDD_VBAT
Backup
domain
supply
current
Low-speed oscillator (LSE in
low-drive mode) and RTC ON 0.7 0.8 1.1 2.8 4.2 5.6
µALow-speed oscillator (LSE in
high-drive mode) and RTC ON 1.4 1.6 1.9 4.2 7.0 8.6
RTC and LSE OFF 0.1 0.1 0.1 2.0 4.0 5.8
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization.
Electrical characteristics STM32F410x8/B
72/142 DocID028094 Rev 5
Figure 16. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
in “low power” mode selection
Figure 17. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
in “high-drive” mode selection)
I/O system current consumption
The current consumption of the I/O system has two components: static and
dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 55: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
069








  
,''B9%$7$
7HPSHUDWXUH&






069
       
,''B9%$7$
7HPSHUDWXUH&






DocID028094 Rev 5 73/142
STM32F410x8/B Electrical characteristics
118
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 36: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDD fSW C××=
Electrical characteristics STM32F410x8/B
74/142 DocID028094 Rev 5
Table 35. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
IDDIO I/O switching
current
VDD = 3.3 V
C = CINT
2 MHz 0.05
mA
8 MHz 0.15
25 MHz 0.45
50 MHz 0.85
60 MHz 1.00
84 MHz 1.40
90 MHz 1.67
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT + CS
2 MHz 0.10
8 MHz 0.35
25 MHz 1.05
50 MHz 2.20
60 MHz 2.40
84 MHz 3.55
90 MHz 4.23
VDD = 3.3 V
CEXT =10 pF
C = CINT + CEXT + CS
2 MHz 0.20
8 MHz 0.65
25 MHz 1.85
50 MHz 2.45
60 MHz 4.70
84 MHz 8.80
90 MHz 10.47
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT + CS
2 MHz 0.25
8 MHz 1.00
25 MHz 3.45
50 MHz 7.15
60 MHz 11.55
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT + CS
2 MHz 0.32
8 MHz 1.27
25 MHz 3.88
50 MHz 12.34
DocID028094 Rev 5 75/142
STM32F410x8/B Electrical characteristics
118
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
The ART accelerator is ON.
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.
HCLK is the system clock at 100 MHz. fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with only one peripheral clocked on
Ambient operating temperature is 25 °C and VDD=3.3 V.
Table 36. Peripheral current consumption
Peripheral
IDD (Typ)
Unit
Voltage
scale1
Voltage
scale2
Voltage
scale3
AHB1
(up to 100 MHz)
GPIOA 1.68 1.62 1.42
µA/MHz
GPIOB 1.67 1.60 1.41
GPIOC 1.63 1.56 1.39
GPIOH 0.61 0.61 0.52
CRC 0.31 0.32 0.25
DMA1(1) 1.67N +
3.12
1.60N +
2.96
1.43N +
2.64
DMA2(1) 1.59N +
2.83
1.52N +
2.65
1.36N +
2.41
RNG 0.90 0.88 0.75
APB1
(up to 50 MHz)
APB1 to AHB 0,78 0,74 0,63
µA/MHz
TIM5 13,38 12,76 11,41
TIM6 2,14 1,98 1,75
LPTIM 8,22 7,88 7,06
WWDG 0,64 0,64 0,56
SPI2/I2S2 2,42 2,33 2,06
USART2 3,38 3,29 2,91
I2C1 3,46 3,33 2,97
I2C2 3,50 3,31 2,97
I2C4 4,82 4,64 4,09
PWR 0,66 0,64 0,62
DAC 0,84 0,81 0,78
Electrical characteristics STM32F410x8/B
76/142 DocID028094 Rev 5
APB2
(up to 100 MHz)
APB2 to AHB 0,22 0,19 0,17
µA/MHz
TIM1 6,62 6,36 5,66
USART1 3,19 3,10 2,77
USART6 3,10 2,99 2,66
ADC1 3,35 3,25 2,88
SPI1/I2S1 1,82 1,77 1,58
SYSCFG 0,83 0,81 0,72
EXTI 0,92 0,88 0,80
TIM9 2,90 2,81 2,48
TIM11 2,13 2,06 1,81
SPI5/I2S5 1,88 1,83 1,59
Bus matrix 1.91 1.82 1.64
1. Valid if all the DMA streams are activated (please refer to the reference manual RM0401).
Table 36. Peripheral current consumption (continued)
Peripheral
IDD (Typ)
Unit
Voltage
scale1
Voltage
scale2
Voltage
scale3
DocID028094 Rev 5 77/142
STM32F410x8/B Electrical characteristics
118
6.3.7 Wakeup time from low-power modes
The wakeup times given in Table 37 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
Figure 18. Low-power mode wakeup
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
5HJXODWRU
UDPSXS
+6,UHVWDUW )ODVKVWRSH[LW
&38UHVWDUW
:DNHXSIURP6WRSPRGH
PDLQUHJXODWRU
5HJXODWRU
UDPSXS
+6,UHVWDUW )ODVK'HHS3GUHFRYHU\
&38UHVWDUW
:DNHXSIURP6WRSPRGH
PDLQUHJXODWRU
IODVKLQ'HHSSRZHUGRZQPRGH
5HJXODWRU
UDPSXS
+6,UHVWDUW )ODVKVWRSH[LW
&38UHVWDUW
:DNHXSIURP6WRS
UHJXODWRULQORZSRZHUPRGH
5HJXODWRU
UDPSXS
+6,UHVWDUW
&38UHVWDUW
:DNHXSIURP6WRS
UHJXODWRULQORZSRZHUPRGH
IODVKLQ'HHSSRZHUGRZQPRGH
5HJXODWRU
UHVWDUW
+6,UHVWDUW
&38UHVWDUW
:DNHXSIURP6WDQGE\PRGH
&38UHVWDUW
:DNHXSIURP6OHHSDQG
)ODVKLQ'HHSSRZHUGRZQ
069
)ODVK'HHS3GUHFRYHU\
2SWLRQE\WHVDUHQRWUHORDGHG
2SWLRQE\WHVDUHQRWUHORDGHG
)ODVK'HHS3GUHFRYHU\ 2SWLRQE\WHVORDGLQJ
)ODVK'HHS3GUHFRYHU\
2SWLRQE\WHVDUHQRWUHORDGHG
2SWLRQE\WHVDUHQRWUHORDGHG
5HJXODWRU
2))
2SWLRQE\WHVDUHQRWUHORDGHG
5HJXODWRU
21
Electrical characteristics STM32F410x8/B
78/142 DocID028094 Rev 5
6.3.8 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 55. However, the recommended clock input
waveform is shown in Figure 19.
The characteristics given in Table 38 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 15.
Table 37. Low-power mode wakeup timings(1)
Symbol Parameter Conditions Min Typ Max Unit
tWUSLEEP(2)
Wakeup from Sleep mode
--46
CPU
clock
cycles
tWUSLEEPFDSM(2) Flash memory in Deep power
down mode - - 40,0
µs
tWUSTOP(2)
Wakeup from Stop mode,
code execution from Flash
memory
Main regulator - 12.9 15.0
Main regulator, Flash memory
in Deep power down mode - 104.9 115.0
Regulator in low-power mode(3) - 20.8 25.0
Regulator in low-power mode,
Flash memory in Deep power
down mode
- 112.9 120.0
Wakeup from Stop mode,
code execution from RAM
Main regulator, Flash memory
in Stop or Deep power down
mode
-4.97.0
Regulator in low-power mode,
Flash memory in Stop or Deep
power down mode(3)
- 12.8 20.0
tWUSTDBY(2)(4) Wakeup from Standby
mode - - 316.8 350.0
tWUFLASH
Wakeup of Flash memory From Flash_Stop mode - - 10.0
Wakeup of Flash memory From Flash Deep power down
mode - - 40.0
1. Guaranteed by characterization.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. The specification is valid for wakeup from regulator in low power mode or in low power low voltage mode, since the timing
difference is negligible.
4. tWUSTDBY maximum value is given at - 40 °C.
DocID028094 Rev 5 79/142
STM32F410x8/B Electrical characteristics
118
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 55. However, the recommended clock input
waveform is shown in Figure 20.
The characteristics given in Table 39 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 15.
Table 38. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1)
-
1-50MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) --5-pF
DuCy(HSE) Duty cycle - 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Table 39. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) --5-pF
DuCy(LSE) Duty cycle - 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design.
Electrical characteristics STM32F410x8/B
80/142 DocID028094 Rev 5
Figure 19. High-speed external clock source AC timing diagram
Figure 20. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 40. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
AI
/3# ?) .
%XTERNAL
34-&
CLOCKSOURCE
6(3%(
TF(3% T7(3%
),


4(3%
T
TR(3% T7(3%
F(3%?EXT
6(3%,
DL
26&B,1
([WHUQDO
670)
FORFNVRXUFH
9/6(+
WI/6( W:/6(
,/


7/6(
W
WU/6( W:/6(
I/6(BH[W
9/6(/
DocID028094 Rev 5 81/142
STM32F410x8/B Electrical characteristics
118
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 21). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 21. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 41. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 40. HSE 4-26 MHz oscillator characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 - 26 MHz
RFFeedback resistor - - 200 - k
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 ,
CL=5 pF @25 MHz
-450-
µA
VDD=3.3 V,
ESR= 30 ,
CL=10 pF @25 MHz
-530-
Gm_crit_max Maximum critical crystal gmStartup - - 1 mA/V
tSU(HSE)(2)
2. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
DL
26&B287
26&B,1 I+6(
&/
5)
670)
0+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
5(;7
&/
Electrical characteristics STM32F410x8/B
82/142 DocID028094 Rev 5
The LSE high-power mode allows to cover a wider range of possible crystals but with a cost
of higher power consumption.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
For information about the LSE high-power mode, refer to the reference manual RM0401.
Figure 22. Typical application with a 32.768 kHz crystal
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - - 18.4 - M
IDD LSE current consumption
Low-power mode
(default) --1
µA
High-drive mode - - 3
Gm_crit_max Maximum critical crystal gm
Startup, low-power
mode - - 0.56
µA/V
Startup, high-drive
mode - - 1.50
tSU(LSE)(2)
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is guaranteed by characterization. It is measured for a
standard crystal resonator and it can vary significantly with the crystal manufacturer.
startup time VDD is stabilized - 2 - s
DL
26&B287
26&B,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
DocID028094 Rev 5 83/142
STM32F410x8/B Electrical characteristics
118
6.3.9 Internal clock source characteristics
The parameters given in Table 42 and Table 43 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 15.
High-speed internal (HSI) RC oscillator
L
Figure 23. ACCHSI versus temperature
1. Guaranteed by characterization.
Table 42. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 125 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
Accuracy of the HSI
oscillator
User-trimmed with the RCC_CR
register(2)
2. Guaranteed by design.
--1%
Factory-
calibrated
TA = –40 to 125 °C(3)
3. Guaranteed by characterization.
–8 - 5.5 %
TA = –10 to 85 °C(3) –4 - 4 %
TA = 25 °C(4)
4. Factory calibrated non-soldered parts.
–1 - 1 %
tsu(HSI)(2) HSI oscillator
startup time --2.24µs
IDD(HSI)(2) HSI oscillator
power consumption - - 60 80 µA
-36








-IN
-AX
4YPICAL
4!#
!##(3)
Electrical characteristics STM32F410x8/B
84/142 DocID028094 Rev 5
Low-speed internal (LSI) RC oscillator
Figure 24. ACCLSI versus temperature
6.3.10 PLL characteristics
The parameters given in Table 44 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 15.
Table 43. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 125 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed by characterization.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
-36









 
.ORMALIZEDDEVIATI ON

4EMPER AT URE#
MAX
AVG
MIN
Table 44. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10MHz
fPLL_OUT PLL multiplier output clock - 24 - 100 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock - - 48 75 MHz
fVCO_OUT PLL VCO output - 100 - 432 MHz
DocID028094 Rev 5 85/142
STM32F410x8/B Electrical characteristics
118
tLOCK PLL lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Cycle-to-cycle jitter
System clock
100 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75
mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of two PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization.
Table 44. Main PLL characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F410x8/B
86/142 DocID028094 Rev 5
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 51: EMI characteristics for LQFP64). It is available only on the
main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Table 45. SSCG parameter constraints
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 kHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP (Modulation period) * (Increment Step) - - 215-1 -
1. Guaranteed by design.
MODEPER round fPLL_IN 4f
Mod
×()[]=
MODEPER round 106410
3
×()[]250==
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2240××()100 5×250×()[]126md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
mdquantized% 250 126×100×5×()215 1()240×()2.002%(peak)==
DocID028094 Rev 5 87/142
STM32F410x8/B Electrical characteristics
118
Figure 25 and Figure 26 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 25. PLL output clock waveforms in center spread mode
Figure 26. PLL output clock waveforms in down spread mode
6.3.12 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 125 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
MD
AI
MD
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
[PG
DLE
Table 46. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.7 V - 5 -
mAWrite / Erase 16-bit mode, VDD = 2.1 V - 8 -
Write / Erase 32-bit mode, VDD = 3.3 V - 12 -
Electrical characteristics STM32F410x8/B
88/142 DocID028094 Rev 5
Table 47. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by characterization.
Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.42.8
Program/erase parallelism
(PSIZE) = x 32 -12
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6 V
Table 48. Flash memory programming with VPP voltage
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
-16100
(2) µs
tERASE16KB Sector (16 KB) erase time - 230 -
mstERASE64KB Sector (64 KB) erase time - 490 -
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 3.50 - s
Vprog Programming voltage - 2.7 - 3.6 V
VPP VPP voltage range - 7 - 9 V
IPP
Minimum current sunk on
the VPP pin -10--mA
tVPP(3) Cumulative time during
which VPP is applied - - - 1 hour
DocID028094 Rev 5 89/142
STM32F410x8/B Electrical characteristics
118
6.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 51. They are based on the EMS levels and classes
defined in application note AN1709.
1. Guaranteed by design.
2. The maximum programming time is measured after 100K erase operations.
3. VPP should only be connected during programming/erasing.
Table 49. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
NEND Endurance
TA = - 40 to +85 °C (6 suffix versions)
TA = - 40 to +105 °C (7 suffix versions)
TA = - 40 to +125 °C (3 suffix versions)
10 Kcycle
tRET Data retention
1 kcycle(2) at TA = 85 °C 30
Years
1 kcycle(2) at TA = 105 °C 10
1 kcycle(2) at TA = 125 °C 3
10 kcycle(2) at TA = 55 °C 20
1. Guaranteed by characterization.
2. Cycling performed over the whole temperature range.
Table 50. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25 °C,
fHCLK = 100 MHz, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25 °C,
fHCLK = 100 MHz, conforms to
IEC 61000-4-4
4A
Electrical characteristics STM32F410x8/B
90/142 DocID028094 Rev 5
In noisy environments, it is recommended to avoid pin exposition to disturbances. The pins
showing a middle range robustness are PA14 and PA15.
As a consequence, it is recommended to add a serial resistor (1 k maximum) located as
close as possible to the MCU pins exposed to noise (connected to tracks longer than 50 mm
on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 51. EMI characteristics for LQFP64
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
8/100 MHz
SEMI Peak level VDD = 3.6 V, TA = 25 °C, conforming to
IEC61967-2
0.1 to 30 MHz 10
dBµV30 to 130 MHz 11
130 MHz to 1 GHz 5
SAE EMI Level 2.5 -
DocID028094 Rev 5 91/142
STM32F410x8/B Electrical characteristics
118
6.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
6.3.15 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Table 52. ESD absolute maximum ratings(1)
Symbol Ratings Conditions Class Maximum
value(2) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to
ANSI/JEDEC JS-001 2 2000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to
ANSI/ESD STM5.3.1
UFQFPN48 4 500
WLCSP36 3 250
LQFP48 4 500
LQPF64 4 500
UFBGA64 TBD TBD
1. TBD stands for “to be defined”.
2. Guaranteed by characterization.
Table 53. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +125 °C conforming to JESD78A II level A
Electrical characteristics STM32F410x8/B
92/142 DocID028094 Rev 5
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator
frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 54.
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under the conditions summarized in Table 15. All I/Os are CMOS and TTL
compliant.
Table 54. I/O current injection susceptibility(1)
1. NA = not applicable.
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 pin - 0 NA
mA
Injected current on NRST pin - 0 NA
Injected current on PB3, PB4, PB5, PB6,
PB7, PB8, PB9, PC13, PC14, PC15, PH1,
PDR_ON, PC0, PC1, PC2, PC3
- 0 NA
Injected current on any other FT pin - 5 NA
Injected current on any other pins - 5 + 5
Table 55. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, TC and NRST I/O input low
level voltage 1.7 V VDD 3.6 V - - 0.3VDD(1)
V
BOOT0 I/O input low level
voltage
1.75 V VDD 3.6 V,
- 40 °C TA 125 °C --
0.1VDD+0.1(2)
1.7 V VDD 3.6 V,
0 °C TA 125 °C --
DocID028094 Rev 5 93/142
STM32F410x8/B Electrical characteristics
118
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT and TC I/Os is shown in Figure 27.
VIH
FT, TC and NRST I/O input high
level voltage(5) 1.7 V VDD 3.6 V 0.7VDD(1) --
V
BOOT0 I/O input high level
voltage
1.75 V VDD 3.6 V,
-40 °C TA 125 °C 0.17VDD+
0.7(2) --
1.7 V VDD 3.6 V,
0 °C TA 125 °C
VHYS
FT, TC and NRST I/O input
hysteresis 1.7 V VDD 3.6 V - 10% VDD(3) -V
BOOT0 I/O input hysteresis
1.75 V VDD 3.6 V,
- 40 °C TA 125 °C
-100 -mV
1.7 V VDD 3.6 V,
0 °C TA 125 °C
Ilkg
I/O input leakage current (4) VSS VIN VDD -- ±1
µA
I/O FT/TC input leakage current
(5) VIN = 5 V - - 3
RPU
Weak pull-up
equivalent
resistor(6)
All pins
except for
PA10
(OTG_FS_ID)
VIN = VSS 30 40 50
k
PA10
(OTG_FS_ID) - 7 10 14
RPD
Weak pull-down
equivalent
resistor(7)
All pins
except for
PA10
(OTG_FS_ID)
VIN = VDD 30 40 50
PA10
(OTG_FS_ID) - 7 10 14
CIO(8) I/O pin capacitance - - 5 - pF
1. Guaranteed by tests in production.
2. Guaranteed by design.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 54: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 54: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization.
Table 55. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F410x8/B
94/142 DocID028094 Rev 5
Figure 27. FT/TC I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed
should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 13).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 13).
Output voltage levels
Unless otherwise specified, the parameters given in Table 56 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 15. All I/Os are CMOS and TTL compliant.
069



     



9''9
9,/9,+9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,+PLQ 9''
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
%DVHGRQ'HVLJQVLPXODWLRQV9,/PD[ 9''
77/UHTXLUHPHQW
9,+PLQ 9
77/UHTXLUHPHQW9,/PD[
9


$UHDQRW
GHWHUPLQHG


%DVHGRQ'HVLJQVLPXODWLRQV9,+PLQ 9''
DocID028094 Rev 5 95/142
STM32F410x8/B Electrical characteristics
118
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 28 and
Table 57, respectively.
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 15.
Table 56. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 13.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin CMOS port(2)
IIO = +8 mA
2.7 V VDD 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 13 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin VDD–0.4 -
VOL (1) Output low level voltage for an I/O pin TTL port(2)
IIO =+8 mA
2.7 V VDD 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin 2.4 -
VOL(1) Output low level voltage for an I/O pin IIO = +20 mA
2.7 V VDD 3.6 V
-1.3
(4)
4. Guaranteed by characterization results.
V
VOH(3) Output high level voltage for an I/O pin VDD–1.3(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +6 mA
1.8 V VDD 3.6 V
-0.4
(4)
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +4 mA
1.7 V VDD 3.6 V
-0.4
(5)
5. Guaranteed by design.
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(5) -
Table 57. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.70 V - - 4
MHz
CL = 50 pF, VDD 1.7 V - - 2
CL = 10 pF, VDD 2.70 V - - 8
CL = 10 pF, VDD 1.7 V - - 4
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.7 V to 3.6 V - - 100 ns
Electrical characteristics STM32F410x8/B
96/142 DocID028094 Rev 5
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.70 V - - 25
MHz
CL = 50 pF, VDD 1.7 V - - 12.5
CL = 10 pF, VDD 2.70 V - - 50
CL = 10 pF, VDD 1.7 V - - 20
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD 2.7 V - - 10
ns
CL = 50 pF, VDD 1.7 V - - 20
CL = 10 pF, VDD 2.70 V - - 6
CL = 10 pF, VDD 1.7 V - - 10
10
fmax(IO)out Maximum frequency(3)
CL = 40 pF, VDD 2.70 V - - 50(4)
MHz
CL = 40 pF, VDD 1.7 V - - 25
CL = 10 pF, VDD 2.70 V - - 100(
4)
CL = 10 pF, VDD 1.7 V - - 50(4)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD 2.70 V - - 6
ns
CL = 40 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 2.70 V - - 4
CL = 10 pF, VDD 1.7 V - - 6
11
Fmax(IO)out Maximum frequency(3) CL = 30 pF, VDD 2.70 V - - 100(
4) MHz
CL = 30 pF, VDD 1.7 V - - 50(4)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD 2.70 V - - 4
ns
CL = 30 pF, VDD 1.7 V - - 6
CL = 10 pF, VDD 2.70 V - - 2.5
CL = 10 pF, VDD 1.7 V - - 4
-t
EXTIpw
Pulse width of external
signals detected by the EXTI
controller
-10--ns
1. Guaranteed by characterization.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 28.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
Table 57. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
DocID028094 Rev 5 97/142
STM32F410x8/B Electrical characteristics
118
Figure 28. I/O AC characteristics definition
6.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 55).
Unless otherwise specified, the parameters given in Table 58 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 15. Refer to Table 55: I/O static characteristics for the values of VIH and VIL for
NRST pin.
DLG



WU,2RXW
287387
(;7(51$/
21&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´



7
WI,2RXW
Table 58. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU
Weak pull-up equivalent
resistor(1) VIN = VSS 30 40 50 k
VF(NRST)(2) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset
source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
Electrical characteristics STM32F410x8/B
98/142 DocID028094 Rev 5
Figure 29. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 58. Otherwise the reset is not taken into account by the device.
6.3.18 TIM timer characteristics
The parameters given in Table 59 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
Table 59. TIMx characteristics(1)(2)
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.
2. Guaranteed by design.
Symbol Parameter Conditions(3)
3. The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE
bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise
TIMxCLK >= 4x PCLKx.
Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx
prescaler=1 or 2 or 4,
fTIMxCLK = 100 MHz
1-t
TIMxCLK
11.9 - ns
AHB/APBx
prescaler>4, fTIMxCLK =
100 MHz
1-t
TIMxCLK
11.9 - ns
fEXT
Timer external clock
frequency on CH1 to
CH4 fTIMxCLK = 100 MHz
0f
TIMxCLK/2 MHz
050MHz
ResTIM Timer resolution - 16/32 bit
tCOUNTER
16-bit counter clock
period when internal
clock is selected
fTIMxCLK = 100 MHz 0.0119 780 µs
tMAX_COUNT
Maximum possible count
with 32-bit counter
--
65536 ×
65536 tTIMxCLK
fTIMxCLK = 100 MHz - 51.1 S
DocID028094 Rev 5 99/142
STM32F410x8/B Electrical characteristics
118
6.3.19 Communications interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-
drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 60. Refer also to Section 6.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
The I2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400
kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the
complete solution, please contact your local ST sales representative.
Table 60. I2C characteristics
Symbol Parameter
Standard mode
I2C(1)(2)
1. Guaranteed by design.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0 3450(3)
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
0900
(4)
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - µs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - µs
tSP
Pulse width of the spikes
that are suppressed by the
analog filter for standard fast
mode
050
(5) 050
(5) ns
Cb
Capacitive load for each bus
line - 400 - 400 pF
Electrical characteristics STM32F410x8/B
100/142 DocID028094 Rev 5
Figure 30. I2C bus AC waveforms and measurement circuit
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
5. The minimum width of the spikes filtered by the analog filter is above tSP (max)
Table 61. SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 k
400 0x8019
300 0x8021
200 0x8032
100 0x0096
50 0x012C
20 0x02EE
06Y9
53
,ð&EXV
670)[[
6'$
6&/
WI6'$ WU6'$
WK67$
WZ6&//
WZ6&/+
WVX6'$
WU6&/ WI6&/
WK6'$
67$575(3($7('
WVX67$
WVX672
6723 WZ67267$
5356
56
67$57
67$57
6'$
6&/
9''B,& 9''B,&
DocID028094 Rev 5 101/142
STM32F410x8/B Electrical characteristics
118
Table 62. SCL frequency (fPCLK1= 42 MHz.,VDD = VDD_I2C = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 k
400 0x8019
300 0x8021
200 0x8032
100 0x0096
50 0x012C
20 0x02EE
Electrical characteristics STM32F410x8/B
102/142 DocID028094 Rev 5
FMPI2C characteristics
The FMPI2C characteristics are described in Table 63.
Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output
alternate function characteristics (SDA and SCL).
Table 63. FMPI2C characteristics(1)
-Parameter
Standard mode Fast mode Fast+ mode
Unit
Min Max Min Max Min Max
fFMPI2CC FMPI2CCLK frequency 2 - 8 - 17
16(2) -
us
tw(SCLL) SCL clock low time 4.7 - 1.3 - 0.5 -
tw(SCLH) SCL clock high time 4.0 - 0.6 - 0.26 -
tsu(SDA) SDA setup time 0.25 - 0.10 - 0.05 -
tH(SDA) SDA data hold time 0 - 0 - 0 -
tv(SDA,ACK) Data, ACK valid time - 3.45 - 0.9 - 0.45
tr(SDA)
tr(SCL)
SDA and SCL rise time - 0.100 - 0.30 - 0.12
tf(SDA)
tf(SCL)
SDA and SCL fall time - 0.30 - 0.30 - 0.12
th(STA) Start condition hold time 4 - 0.6 - 0.26 -
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 - 0.26 -
tsu(STO) Stop condition setup time 4 - 0.6 - 0.26 -
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - 0.5 -
tSP
Pulse width of the spikes that
are suppressed by the
analog filter for standard and
fast mode
- - 0.05 0.09 0.05 0.09
Cb
Capacitive load for each bus
Line - 400 - 400 - 550(3) pF
1. Guaranteed based on test during characterization.
2. When tr(SDA,SCL)<=110 ns.
3. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:
tr(SDA/SCL) = 0.8473 x Rp x Cload
Rp(min) = (VDD -VOL(max)) / IOL(max)
DocID028094 Rev 5 103/142
STM32F410x8/B Electrical characteristics
118
Figure 31. FMPI2C timing diagram and measurement circuit
06Y9
53
,ð&EXV
670)[[
6'$
6&/
WI6'$ WU6'$
WK67$
WZ6&//
WZ6&/+
WVX6'$
WU6&/ WI6&/
WK6'$
67$575(3($7('
WVX67$
WVX672
6723 WZ67267$
5356
56
67$57
67$57
6'$
6&/
9''B,& 9''B,&
Electrical characteristics STM32F410x8/B
104/142 DocID028094 Rev 5
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 64 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 15, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 64. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master full duplex/receiver mode,
2.7 V < VDD < 3.6 V
SPI1/4/5
--42
MHz
Master full duplex/receiver mode,
3.0 V < VDD < 3.6 V
SPI1/4/5
--
50
Master transmitter mode
1.7 V < VDD < 3.6 V
SPI1/4/5
--
50
Master mode
1.7 V < VDD < 3.6 V
SPI1/2/3/4/5
--
25
Slave transmitter/full duplex mode
2.7 V < VDD < 3.6 V
SPI1/4/5
--
38(2)
Slave receiver mode,
1.8 V < VDD < 3.6 V
SPI1/4/5
--50
Slave mode,
1.8 V < VDD < 3.6 V
SPI1/2/3/4/5 --
25
Duty(SCK) Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode, SPI presc = 2 TPCLK
- 1.5 TPCLK
TPCLK
+1.5 ns
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 3TPCLK --ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2TPCLK --ns
tsu(MI) Data input setup time
Master mode 4 - - ns
tsu(SI) Slave mode 2.5 - - ns
th(MI) Data input hold time
Master mode 7.5 - - ns
th(SI) Slave mode 3.5 - - ns
DocID028094 Rev 5 105/142
STM32F410x8/B Electrical characteristics
118
Figure 32. SPI timing diagram - slave mode and CPHA = 0
ta(SO) Data output access time Slave mode 7 - 21 ns
tdis(SO) Data output disable time Slave mode 5 - 12 ns
tv(SO) Data output valid time
Slave mode (after enable edge),
2.7 V < VDD < 3.6 V -1113ns
Slave mode (after enable edge),
1.7 V < VDD < 3.6 V - 11 18.5 ns
th(SO) Data output hold time Slave mode (after enable edge),
1.7 V < VDD < 3.6 V 8--ns
tv(MO) Data output valid time Master mode (after enable edge) - 4 6 ns
th(MO) Data output hold time Master mode (after enable edge) 0 - - ns
1. Guaranteed by characterization.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50%
Table 64. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DLF
6&.,QSXW
166LQSXW
W
68166
W
F6&.
W
K166
&3+$ 
&32/ 
&3+$ 
&32/ 
W
Z6&.+
W
Z6&./
W
962
W
K62
W
U6&.
W
I6&.
W
GLV62
W
D62
0,62
287387
026,
,1387
06%287 %,7287 /6%287
W
VX6,
W
K6,
06%,1 %,7,1 /6%,1
Electrical characteristics STM32F410x8/B
106/142 DocID028094 Rev 5
Figure 33. SPI timing diagram - slave mode and CPHA = 1(1)
Figure 34. SPI timing diagram - master mode(1)
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
DocID028094 Rev 5 107/142
STM32F410x8/B Electrical characteristics
118
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 65 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 15, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Note: Refer to the I2S section of RM0401 reference manual for more details on the sampling
frequency (FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
Table 65. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256x8K 256xFs(2) MHz
fCK I2S clock frequency
Master data: 32 bits - 64xFs
MHz
Slave data: 32 bits - 64xFs
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode 0 7
ns
th(WS) WS hold time Master mode 1.5 -
tsu(WS) WS setup time Slave mode 1.5 -
th(WS) WS hold time Slave mode 3 -
tsu(SD_MR) Data input setup time
Master receiver 1 -
tsu(SD_SR) Slave receiver 2.5 -
th(SD_MR) Data input hold time
Master receiver 7 -
th(SD_SR) Slave receiver 2.5 -
tv(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 20
tv(SD_MT) Master transmitter (after enable edge) - 6
th(SD_ST) Data output hold time
Slave transmitter (after enable edge) 8 -
th(SD_MT) Master transmitter (after enable edge) 2 -
1. Guaranteed by characterization.
2. The maximum value of 256xFs is 50 MHz (APB1 maximum frequency).
Electrical characteristics STM32F410x8/B
108/142 DocID028094 Rev 5
Figure 35. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 36. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
&.,QSXW
&32/ 
&32/ 
WF&.
:6LQSXW
6'WUDQVPLW
6'UHFHLYH
WZ&.+ WZ&./
WVX:6 WY6'B67 WK6'B67
WK:6
WVX6'B65 WK6'B65
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW /6%WUDQVPLW
DLE
/6%UHFHLYH
/6%WUDQVPLW
#+OUTPUT
#0/,
#0/,
TC#+
73OUTPUT
3$RECEIVE
3$TRANSMIT
TW#+(
TW#+,
TSU3$?-2
TV3$?-4 TH3$?-4
TH73
TH3$?-2
-3"RECEIVE "ITNRECEIVE ,3"RECEIVE
-3"TRANSMIT "ITNTRANSMIT ,3"TRANSMIT
AIB
TF#+ TR#+
TV73
,3"RECEIVE
,3"TRANSMIT
DocID028094 Rev 5 109/142
STM32F410x8/B Electrical characteristics
118
6.3.20 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 66 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 15.
Table 66. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply
VDDA VREF+ < 1.2 V
1.7(1) -3.6
VVREF+ Positive reference voltage 1.7(1) -V
DDA
VREF- Negative reference voltage - - 0 -
fADC ADC clock frequency
VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V 0.6 30 36 MHz
fTRIG(2) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
---171/f
ADC
VAIN Conversion voltage range(3) -0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(2) External input impedance See Equation 1 for
details --50κΩ
RADC(2)(4) Sampling switch resistance - - - 6 κΩ
CADC(2) Internal sample and hold
capacitor --47pF
tlat(2) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
---3
(5) 1/fADC
tlatr(2) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
---2
(5) 1/fADC
tS(2) Sampling time
fADC = 30 MHz 0.100 - 16 µs
- 3 - 480 1/fADC
tSTAB(2) Power-up time - - 2 3 µs
tCONV(2) Total conversion time
(including sampling time)
fADC = 30 MHz
12-bit resolution 0.50 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.30 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
Electrical characteristics STM32F410x8/B
110/142 DocID028094 Rev 5
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
fS(2)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC - - 2 Msps
12-bit resolution
Interleave Dual ADC
mode
- - 3.75 Msps
12-bit resolution
Interleave Triple ADC
mode
- - 6 Msps
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
- - 300 500 µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
--1.61.8mA
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.15.2:
Internal reset OFF).
2. Guaranteed by characterization.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66.
Table 66. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
RAIN
k0.5()
fADC CADC 2N2+
()ln××
---------------------------------------------------------------- RADC
=
Table 67. ADC accuracy at fADC = 18 MHz(1)
Symbol Parameter Test conditions Typ Max(2) Unit
ET Total unadjusted error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±3 ±4
LSB
EO Offset error ±2 ±3
EG Gain error ±1 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±2 ±3
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Guaranteed by characterization.
DocID028094 Rev 5 111/142
STM32F410x8/B Electrical characteristics
118
Table 68. ADC accuracy at fADC = 30 MHz(1)
Symbol Parameter Test conditions Typ Max(2) Unit
ET Total unadjusted error
fADC = 30 MHz,
RAIN < 10 k,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA VREF < 1.2 V
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±4
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Guaranteed by characterization.
Table 69. ADC accuracy at fADC = 36 MHz(1)
Symbol Parameter Test conditions Typ Max(2) Unit
ET Total unadjusted error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±4 ±7
LSB
EO Offset error ±2 ±3
EG Gain error ±3 ±6
ED Differential linearity error ±2 ±3
EL Integral linearity error ±3 ±6
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Guaranteed by characterization.
Table 70. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.3 10.4 - bits
SINAD Signal-to-noise and distortion ratio 64 64.2 -
dBSNR Signal-to-noise ratio 64 65 -
THD Total harmonic distortion - -72 -67
1. Guaranteed by characterization.
Table 71. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC = 36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.6 10.8 - bits
SINAD Signal-to noise and distortion ratio 66 67 -
dBSNR Signal-to noise ratio 64 68 -
THD Total harmonic distortion - -72 -70
1. Guaranteed by characterization.
Electrical characteristics STM32F410x8/B
112/142 DocID028094 Rev 5
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.16 does not affect the ADC accuracy.
Figure 37. ADC accuracy characteristics
1. See also Table 68.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
AIC
%/
%'
, 3")$%!,



    


%4
%$
%,

6$$!
633!
62%&
 ORDEPENDINGONPACKAGE=
6$$!

;,3" )$%!,

DocID028094 Rev 5 113/142
STM32F410x8/B Electrical characteristics
118
Figure 38. Typical connection diagram using the ADC
1. Refer to Table 66 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
DL
670)
9''
$,1[
,/$
9
97
5$,1
&SDUDVLWLF
9$,1
9
97
5$'&
&$'&
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
Electrical characteristics STM32F410x8/B
114/142 DocID028094 Rev 5
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 39. The 10 nF capacitors
should be ceramic (good quality). They should be placed as close as possible to the chip.
Figure 39. Power supply and reference decoupling
6.3.21 Temperature sensor characteristics
06Y9
670)
)Q)
95()9''$
95()9''$
Table 72. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 - mV/°C
V25(1) Voltage at 25 °C - 0.76 - V
tSTART(2) Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Guaranteed by characterization.
2. Guaranteed by design.
Table 73. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F
DocID028094 Rev 5 115/142
STM32F410x8/B Electrical characteristics
118
6.3.22 VBAT monitoring characteristics
6.3.23 Embedded reference voltage
The parameters given in Table 75 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 15.
Table 74. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-K
Q Ratio on VBAT measurement - 4 - -
Er(1) Error on Q –1 - +1 %
TS_vbat(2) ADC sampling time when reading the VBAT
1 mV accuracy 5- -µs
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 75. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage - 40 °C < TA < + 125 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage -10--µs
VRERINT_s(2) Internal reference voltage spread over
the temperature range VDD = 3 V ± 10m V - 3 5 mV
TCoeff(2) Temperature coefficient - - 30 50 ppm/°C
tSTART(2) Startup time - - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design
Table 76. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL
Raw data acquired at temperature of
30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B
Electrical characteristics STM32F410x8/B
116/142 DocID028094 Rev 5
6.3.24 DAC electrical characteristics
Table 77. DAC characteristics
Symbol Parameter Conditions Min Typ Max Unit Comments
VDDA
Analog supply
voltage -1.7
(1) -3.6 V -
VREF+
Reference supply
voltage -1.7
(1) -3.6VV
REF+ VDDA
VSSA Ground - 0 - 0 V -
RLOAD(2) Resistive load
DAC
output
buffer ON
RLOAD
connected
to VSSA
5- -k-
RLOAD
connected
to VDDA
25 - - k-
RO(2) Impedance output
with buffer OFF ---15k
When the buffer is OFF, the
Minimum resistive load
between DAC_OUT and VSS
to have a 1% accuracy is
1.5 M
CLOAD(2) Capacitive load - - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the
buffer is ON).
DAC_OUT
min(2)
Lower DAC_OUT
voltage with buffer
ON
-0.2 --V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input
code (0x0E0) to (0xF1C) at
VREF+ = 3.6 V and (0x1C7)
to (0xE38) at VREF+ = 1.7 V
DAC_OUT
max(2)
Higher DAC_OUT
voltage with buffer
ON
---
VDDA
– 0.2 V
DAC_OUT
min(2)
Lower DAC_OUT
voltage with buffer
OFF
--0.5-mV
It gives the maximum output
excursion of the DAC.
DAC_OUT
max(2)
Higher DAC_OUT
voltage with buffer
OFF
---
VREF+
1LSB
V
IVREF+(4)
DAC DC VREF
current
consumption in
quiescent mode
(Standby mode)
--170240
µA
With no load, worst code
(0x800) at VREF+ = 3.6 V in
terms of DC consumption on
the inputs
- - 50 75
With no load, worst code
(0xF1C) at VREF+ = 3.6 V in
terms of DC consumption on
the inputs
DocID028094 Rev 5 117/142
STM32F410x8/B Electrical characteristics
118
IDDA(4)
DAC DC VDDA
current
consumption in
quiescent mode(3)
- - 280 380 µA With no load, middle code
(0x800) on the inputs
- - 475 625 µA
With no load, worst code
(0xF1C) at VREF+ = 3.6 V in
terms of DC consumption on
the inputs
DNL(4)
Differential non
linearity Difference
between two
consecutive code-
1LSB)
- - - ±0.5 LSB Given for the DAC in 10-bit
configuration.
---±2 LSB
Given for the DAC in 12-bit
configuration.
INL(4)
Integral non
linearity (difference
between
measured value at
Code i and the
value at Code i on
a line drawn
between Code 0
and last Code
1023)
---±1LSB
Given for the DAC in 10-bit
configuration.
---±4LSB
Given for the DAC in 12-bit
configuration.
Offset(4)
Offset error
(difference
between
measured value at
Code (0x800) and
the ideal value =
VREF+/2)
---±10mV
Given for the DAC in 12-bit
configuration
---±3LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
- - - ±12 LSB Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain
error(4) Gain error - - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING(
4)
Total Harmonic
Distortion
Buffer ON
--36µs
CLOAD 50 pF,
RLOAD 5 k
THD(4) -----dB
CLOAD 50 pF,
RLOAD 5 k
Update
rate(2)
Max frequency for
a correct
DAC_OUT change
when small
variation in the
input code (from
code i to i+1LSB)
---1
MS/
s
CLOAD 50 pF,
RLOAD 5 k
Table 77. DAC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit Comments
Electrical characteristics STM32F410x8/B
118/142 DocID028094 Rev 5
Figure 40. 12-bit buffered/non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.25 RTC characteristics
tWAKEUP(4)
Wakeup time from
off state (Setting
the ENx bit in the
DAC Control
register)
--6.510µs
CLOAD 50 pF, RLOAD 5 k
input code between lowest
and highest possible ones.
PSRR+ (2)
Power supply
rejection ratio (to
VDDA) (static DC
measurement)
- - - –67 - 40 dB No RLOAD, CLOAD = 50 pF
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.15.2:
Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed based on test during characterization.
Table 77. DAC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit Comments

%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
%XIIHUHGQRQEXIIHUHG'$&
'$&[B287
5/2$'
&/2$'
DLG
Table 78. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
DocID028094 Rev 5 119/142
STM32F410x8/B Package information
139
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 WLCSP36 package information
Figure 41. WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
%DOO$
RULHQWDWLRQ
UHIHUHQFH
:DIHUEDFNVLGH
(
'
'HWDLO$
URWDWHG
6HDWLQJSODQH
$
%XPS
E
6LGHYLHZ
$
$
'HWDLO$
H
)
*
H
H
%DOO$EDOOORFDWLRQ
H
$
%XPSVLGH
HHH =
)URQWYLHZ
$)B0(B9
)
$
$
E
$
EEE =
FFF
GGG
=;<
=
DDD
;
=
$
Package information STM32F410x8/B
120/142 DocID028094 Rev 5
Figure 42. WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint
Table 79. WLCSP36 - 36-pin, 2.553 x 2.579 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.170 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3(2)
2. Back side coating.
- 0.025 - - 0.0010 -
b(3)
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.220 0.250 0.280 0.0087 0.0098 0.0110
D 2.518 2.553 2.588 0.1012 0.1026 0.1039
E 2.544 2.579 2.614 0.1050 0.1064 0.1078
e - 0.400 - - 0.0157 -
e1 - 2.000 - - 0.0787 -
e2 - 2.000 - - 0.0787 -
F - 0.2765 - - 0.0119 -
G - 0.2895 - - 0.0138 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
$)B)3B9
'SDG
'VP
DocID028094 Rev 5 121/142
STM32F410x8/B Package information
139
WLCSP36 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 43. WLCSP36 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
Table 80. WLCSP36 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4 mm
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
06Y9
)%
:: < 5
3URGXFWLGHQWLILFDWLRQ
%DOO
LGHQWLILHU
'DWHFRGH
5HYLVLRQFRGH
Package information STM32F410x8/B
122/142 DocID028094 Rev 5
7.2 UFQFPN48 package information
Figure 44. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
$%B0(B9
'
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
((
'<
'
(
([SRVHGSDG
DUHD
=

'HWDLO=
5W\S

/
&[
SLQFRUQHU
$
6HDWLQJ
SODQH
$
E
H
GGG
'HWDLO<
7
DocID028094 Rev 5 123/142
STM32F410x8/B Package information
139
Figure 45. UFQFPN48 recommended footprint
1. Dimensions are in millimeters.
Table 81. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.




 







!"?&0?6


 



Package information STM32F410x8/B
124/142 DocID028094 Rev 5
UFQFPN48 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 46. UFQFPN48 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
670)
&%8
< ::
5
3LQLGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
5HYLVLRQFRGH
DocID028094 Rev 5 125/142
STM32F410x8/B Package information
139
7.3 LQFP48 package information
Figure 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
Package information STM32F410x8/B
126/142 DocID028094 Rev 5
Table 82. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
DocID028094 Rev 5 127/142
STM32F410x8/B Package information
139
Figure 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
  













AID

Package information STM32F410x8/B
128/142 DocID028094 Rev 5
LQFP48 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 49. LQFP48 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
670)
&8
06Y9
3LQ
LQGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
5HYLVLRQFRGH
$
<::
DocID028094 Rev 5 129/142
STM32F410x8/B Package information
139
7.4 LQFP64 package information
Figure 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not to scale.
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
Package information STM32F410x8/B
130/142 DocID028094 Rev 5
Figure 51. LQFP64 recommended footprint
1. Dimensions are in millimeters.
Table 83. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.



 










DocID028094 Rev 5 131/142
STM32F410x8/B Package information
139
LQFP64 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 52. LQFP64 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
5HYLVLRQFRGH
670)
5%7
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
3LQLGHQWLILHU
5
Package information STM32F410x8/B
132/142 DocID028094 Rev 5
7.5 UFBGA64 package information
Figure 53. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array
package outline
1. Drawing is not to scale.
Table 84. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 0.080 0.130 0.180 0.0031 0.0051 0.0071
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.170 0.280 0.330 0.0067 0.0110 0.0130
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D1 3.450 3.500 3.550 0.1358 0.1378 0.1398
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E1 3.450 3.500 3.550 0.1358 0.1378 0.1398
e - 0.500 - - 0.0197 -
$B0(B9
6HDWLQJSODQH
$
H)
)
'
+
EEDOOV
$
(
7239,(:%277209,(:
H
$
<
;
=
GGG =
'
(
HHH = < ;
III
0
0=
$
$
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
$
DocID028094 Rev 5 133/142
STM32F410x8/B Package information
139
Figure 54. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array
package recommended footprint
F 0.700 0.750 0.800 0.0276 0.0295 0.0315
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 85. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
Table 84. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
$B)3B9
'SDG
'VP
Package information STM32F410x8/B
134/142 DocID028094 Rev 5
UFBGA64 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 55. UFBGA64 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
)%
$
<::
06Y9
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH <HDUZHHN
%DOO$
5HYLVLRQ
FRGH
DocID028094 Rev 5 135/142
STM32F410x8/B Package information
139
7.6 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 15: General operating conditions on page 53.
The maximum chip-junction temperature, TJ max., in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.6.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 86. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP48 55
°C/W
Thermal resistance junction-ambient
LQFP64 46
Thermal resistance junction-ambient
UFQFPN48 33
Thermal resistance junction-ambient
WLCSP36 61
Thermal resistance junction-ambient
UFBGA64 79
Part numbering STM32F410x8/B
136/142 DocID028094 Rev 5
8 Part numbering
Table 87. Ordering information scheme
Example: STM32 F 410 C B Y 6 TR
Device family
STM32 = ARM®-based 32-bit microcontroller
Product type
F = General-purpose
Device subfamily
410 = 410 line
Pin count
T = 36 pins
C = 48 pins
R = 64 pins
Flash memory size
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
Package
I = UFBGA
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = Industrial temperature range, - 40 to 85 °C
3 = Industrial temperature range, - 40 to 125 °C
Packing
TR = tape and reel
No character = tray or tube
DocID028094 Rev 5 137/142
STM32F410x8/B Recommendations when using the internal reset OFF
139
Appendix A Recommendations when using the internal
reset OFF
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on-reset (POR)/power-down reset (PDR) circuitry is disabled.
The brownout reset (BRO) circuitry must be disabled. By default BOR is OFF.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
A.1 Operating conditions
Table 88. Limitations depending on the operating power supply range
Operating
power supply
range
ADC
operation
Maximum
Flash memory
access
frequency
with no wait
state
(fFlashmax)
Maximum
Flash memory
access
frequency
with no wait
states(1) (2)
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no
wait state is required.
2. Thanks to the ART Accelerator and the 128-bit Flash memory, the number of wait states given here does
not impact the execution speed from Flash memory since the ART Accelerator allows to achieve a
performance equivalent to 0 wait state program execution.
I/O operation
Possible
Flash memory
operations
VDD = 1.7 to
2.1 V(3)
3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to
Section 3.15.1: Internal reset ON).
Conversion
time up to
1.2 Msps
20 MHz(4)
4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and
power.
100 MHz with
6 wait states
No I/O
compensation
8-bit erase and
program
operations only
Application block diagrams STM32F410x8/B
138/142 DocID028094 Rev 5
Appendix B Application block diagrams
B.1 Sensor Hub application example
Figure 56. Sensor hub application example 1
Figure 57. Sensor hub application example 2
06Y9
$FFHOHURPHWHU
*\URVFRSH
0DJQHWRPHWHU
3UHVVXUH
$PELHQWOLJKW
3UR[LPLW\
63,
7HPSHUDWXUHKXPLGLW\
6&/
6'$
3%
3$ 6&.
0,62
3%
3$
7;
5;
3$
3$
8$57
,&
$'&
3&
N+]RVFLOODWRU
6:',2
3$
3$
-7$*
3'5B21
9''
*3,2
[*3,2V
%227
N
670)[%
:/&63SDFNDJH
+267
3%
3&
1567
6:&/. 3$ 166
026,
3%
3%
6:2
06Y9
$FFHOHURPHWHU
*\URVFRSH
0DJQHWRPHWHU
3UHVVXUH
$PELHQWOLJKW
3UR[LPLW\
7HPSHUDWXUHKXPLGLW\
6&/
6'$
3%
3$
7;
5;
3$
3$
8$57
,&
$'&
3&
N+]RVFLOODWRU
3'5B21
9''
*3,2
[*3,2V
%227
N
670)[%
:/&63SDFNDJH
3%
3&
63,
6&.
3$
3%
0LFURSKRQH
0,62
0+],&)0
3$ 6&/
6'$
3% +267
1567
,1 3%
/RZ
SRZHU
WLPHU 287 3%
6:',2
3$
3$
-7$* 6:&/.
DocID028094 Rev 5 139/142
STM32F410x8/B Application block diagrams
139
B.2 Batch Acquisition Mode (BAM) example
Data is transferred through the DMA from interfaces into the internal SRAM while the rest of
the MCU is set in low power mode.
Code execution from RAM before switching off the Flash.
Flash is set in power down and flash interface (ART accelerator™) clock is stopped.
The clocks are enabled only for the required interfaces.
MCU core is set in sleep mode (core clock stopped waiting for interrupt).
Only the needed DMA channels are enabled and running.
Figure 58. Batch Acquisition Mode (BAM) example
06Y9
$FFHOHURPHWHU
*\URVFRSH
0DJQHWRPHWHU
3UHVVXUH
$PELHQWOLJKW
3UR[LPLW\
0LFURSKRQH
0+],&)0
7HPSHUDWXUHKXPLGLW\
63,
6&/
6'$
3%
6&.
0,62
3$ 6&/
6'$
3%
3$
7;
5;
3$
3$
8$57
,&
$'&
3&
N+]RVFLOODWRU
6:',2
3$
3$
-7$*
3'5B21
9''
*3,2
[*3,2V
%227
N
670)[%
:/&63SDFNDJH
+267
3%
3$
3%
3&
1567
6:&/.
,1
3%
3%
/RZ
SRZHU
WLPHU
287
&RUWH[0FRUH
0+]
)38038
.%)ODVK
PHPRU\
$57$FFHOHUDWRU
.%5$0
'0$
/RZSRZHUEORFNV
Revision history STM32F410x8/B
140/142 DocID028094 Rev 5
Revision history
Table 89. Document revision history
Date Revision Changes
28-Sep-2015 1 Initial release.
07-Dec-2015 2 Junction temperature range changed to –40 to + 110 °C for WLCSP49 package.
Updated Figure 7: UFQFPN48 pinout.
10-Aug-2016 3
Updated:
Table 2: STM32F410x8/B features and peripheral counts
Table 9: STM32F410x8/B pin definitions
Table 14: Thermal characteristics
Table 15: General operating conditions
Table 20: Embedded reset and power control block characteristics
Tables from Table 21: Typical and maximum current consumption, code with
data processing (ART accelerator disabled) running from SRAM - VDD = 1.7 V
to Table 34: Typical and maximum current consumptions in VBAT mode (LSE
and RTC ON, LSE low- drive mode)
Table 42: HSI oscillator characteristics
Table 43: LSI oscillator characteristics
Table 49: Flash memory endurance and data retention
Table 52: ESD absolute maximum ratings
Table 55: I/O static characteristics
Table 66: ADC characteristics
Table 75: Embedded internal reference voltage
Table 77: DAC characteristics
Table 87: Ordering information scheme
Figure 16: Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
in “low power” mode selection
Section 7: Package information
Added:
Figure 5: LQFP48 pinout
Figure 8: UFBGA64 pinout
Figure 49: LQFP48 marking example (package top view)
Figure 55: UFBGA64 marking example (package top view)
DocID028094 Rev 5 141/142
STM32F410x8/B Revision history
141
06-Mar-2017 4
Updated:
Features
Section 3.20: Timers and watchdogs
Table 9: STM32F410x8/B pin definitions
Table 21: Typical and maximum current consumption, code with data processing
(ART accelerator disabled) running from SRAM - VDD = 1.7 V
Table 22: Typical and maximum current consumption, code with data processing
(ART accelerator disabled) running from SRAM - VDD = 3.6 V
Table 24: Typical and maximum current consumption in run mode, code with
data processing (ART accelerator enabled except prefetch) running from Flash
memory - VDD = 3.6 V
Table 28: Typical and maximum current consumption in Sleep mode - VDD =
3.6 V
Table 31: Typical and maximum current consumption in Stop mode - VDD=3.6 V
Table 34: Typical and maximum current consumptions in VBAT mode (LSE and
RTC ON, LSE low- drive mode)
04-Apr-2017 5
The maximum current consumption at 30 °C has been redefined to be in line with
the actual silicon performance. For a typical customer application the impact on the
average current consumption will be insignificant.
Updated:
Table 21: Typical and maximum current consumption, code with data processing
(ART accelerator disabled) running from SRAM - VDD = 1.7 V
Table 22: Typical and maximum current consumption, code with data processing
(ART accelerator disabled) running from SRAM - VDD = 3.6 V
Table 23: Typical and maximum current consumption in run mode, code with
data processing (ART accelerator enabled except prefetch) running from Flash
memory- VDD = 1.7 V
Table 24: Typical and maximum current consumption in run mode, code with
data processing (ART accelerator enabled except prefetch) running from Flash
memory - VDD = 3.6 V
Table 25: Typical and maximum current consumption in run mode, code with
data processing (ART accelerator disabled) running from Flash memory - VDD
= 3.6 V
Table 26: Typical and maximum current consumption in run mode, code with
data processing (ART accelerator disabled) running from Flash memory - VDD
= 1.7 V
Table 27: Typical and maximum current consumption in run mode, code with
data processing (ART accelerator enabled with prefetch) running from Flash
memory - VDD = 3.6 V
Table 37: Low-power mode wakeup timings
Figure 30: I2C bus AC waveforms and measurement circuit
Figure 31: FMPI2C timing diagram and measurement circuit
Table 89. Document revision history (continued)
Date Revision Changes
STM32F410x8/B
142/142 DocID028094 Rev 5
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved