December 2008 Rev 4 1/26
26
VND600SP
Double channel high-side solid state relay
Features
DC short circuit current: 25A
CMOS compatible inputs
Proportional load current sense
Under-voltage and over-voltage shutdown
Over-voltage clamp
Thermal shutdown
Current limitation
Very low standby power consumption
Protection against loss of ground and loss of
VCC
Reverse battery protection
Description
The VND600SP is a monolithic device made
using STMicroelectronics VIPower M0-3
technology. It is intended for driving resistive or
inductive loads with one side connected to
ground.
Active VCC pin voltage clamp protects the device
against low energy spikes (see ISO7637 transient
compatibility table). This device has two channels
in high-side configuration; each channel has an
analog sense output on which the sensing current
is proportional (according to a known ratio) to the
corresponding load current.
Built-in thermal shutdown and outputs current
limitation protect the chip from over-temperature
and short circuit. Device turns-off in case of
ground pin disconnection.
Type RDS(on) IOUT VCC
VND600SP 30m
(1)
1. Per each channel.
25A(1) 36V
PowerSO-10
1
10
Table 1. Device summary
Package
Order codes
Tube Tape and reel
PowerSO-10 VND600SP VND600SP13TR
www.st.com
Contents VND600SP
2/26
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 16
3.1.1 Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 16
3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 17
3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . . . . . . . . 18
4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 PowerSO-10 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 PowerSO-10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 PowerSO-10 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
VND600SP List of tables
3/26
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 6. Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 7. VCC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 8. Current sense (9V VCC 16V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 9. Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 10. Switching (VCC = 13V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 11. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 12. Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 13. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 14. PowerSO-10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 15. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
List of figures VND600SP
4/26
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. IOUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Off-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 11. Over-voltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 14. On-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 16. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 18. Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 19. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 20. Maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 21. PowerSO-10 PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 22. Rthj-amb Vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 19
Figure 23. Thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 24. Thermal fitting model of a quad channel HSD in PowerSO-10. . . . . . . . . . . . . . . . . . . . . . 20
Figure 25. PowerSO-10 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 26. PowerSO-10 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 27. PowerSO-10 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 28. PowerSO-10 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
VND600SP Block diagram and pin description
5/26
1 Block diagram and pin description
Figure 1. Block diagram
Figure 2. Configuration diagram (top view)
Table 2. Suggested connections for unused and not connected pins
Connection / pin Current sense N.C. Output Input
Floating X X X
To ground Through 10K
resistor XThrough 10K
resistor
LOGIC
UNDER-VOLTAGE
OVER-VOLTAGE
OVER-TEMP. 1
OVER-TEMP. 2
I
LIM2
PwCLAMP 2
K
I
OUT2
I
LIM1
PwCLAMP 1
K
I
OUT1
INPUT 1
INPUT 2
GND
V
CC
OUTPUT 1
CURRENT
SENSE 1
OUTPUT 2
CURRENT
SENSE 2
DRIVER 2
DRIVER 1
V
CC
CLAMP
Ot1
Ot2
Ot1
Ot2
V
dslim1
V
dslim2
1
2
3
4
5
6
7
8
9
10
11
OUTPUT 2
OUTPUT 2
N.C.
OUTPUT 1
OUTPUT 1
GROUND
INPUT 2
INPUT 1
C.SENSE1
C.SENSE2
V
CC
Electrical specifications VND600SP
6/26
2 Electrical specifications
Figure 3. Current and voltage conventions
2.1 Absolute maximum ratings
Stressing the device above the rating listed in the “Absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the Operating sections of
this specification is not implied. Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality document.
I
S
I
GND
OUTPUT2
V
CC
I
OUT2
V
CC
V
SENSE2
CURRENT SENSE 1
I
SENSE1
V
OUT2
OUTPUT1
I
OUT1
CURRENT SENSE 2
I
SENSE2
V
SENSE1
V
OUT1
INPUT2
I
IN2
INPUT1
I
IN1
V
IN2
V
IN1
GROUND
V
F1
(*)
Table 3. Absolute maximum ratings
Symbol Parameter Value Unit
VCC DC supply voltage 41 V
-VCC Reverse supply voltage - 0.3 V
- IGND DC reverse ground pin current - 200 mA
IOUT Output current Internally limited A
IRReverse output current - 21 A
IIN Input current +/- 10 mA
VCSENSE Current sense maximum voltage - 3
+ 15
V
V
VESD
Electrostatic discharge (human body model: R = 1.5KΩ;
C = 100pF)
- INPUT
- CURRENT SENSE
- OUTPUT
- VCC
4000
2000
5000
5000
V
V
V
V
VND600SP Electrical specifications
7/26
2.2 Thermal data
2.3 Electrical characteristics
Values specified in this section are for 8V < VCC < 36V; -40°C < Tj < 150°C, unless
otherwise stated.
Symbol Parameter Value Unit
EMAX
Maximum switching energy
(L = 0.13mH; RL = 0; Vbat = 13.5V; Tjstart = 150ºC; IL = 40A) 145 mJ
Ptot Power dissipation at Tc = 25°C 96.1 W
TjJunction operating temperature Internally limited °C
TcCase operating temperature -40 to 150 °C
TSTG Storage temperature -55 to 150 °C
Table 3. Absolute maximum ratings (continued)
Table 4. Thermal data
Symbol Parameter Max. value Unit
Rthj-case Thermal resistance junction-case 1.3 °C/W
Rthj-amb Thermal resistance junction-ambient 51.3(1)
1. When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35 µm thick).
37(2)
2. When mounted on a standard single-sided FR-4 board with 6 cm2 of Cu (at least 35 µm thick).
°C/W
Table 5. Power
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC(1) Operating supply
voltage 5.5 13 36 V
VUSD(1) Under-voltage shutdown 3 4 5.5 V
VOV(1) Over-voltage shutdown 36 V
RON On-state resistance
IOUT = 5A; Tj = 25°C
IOUT = 5A; Tj = 150°C
IOUT = 3A; VCC = 6V
30
60
100
m
m
m
Vclamp Clamp voltage ICC = 20mA(2) 41 48 55 V
IS(1) Supply current
Off-state; VCC=13V; VIN=VOUT=0V
Off-state; VCC=13V; VIN=VOUT=0V;
Tj=25°C
On-state; VIN = 5V; VCC = 13V;
IOUT = 0A; RSENSE = 3.9k
12
12
40
25
6
µA
mA
mA
IL(off1) Off-state output current VIN = VOUT = 0V 0 50 µA
Electrical specifications VND600SP
8/26
Note: To ensure long term reliability under heavy over-load or short circuit conditions, protection
and related diagnostic signals must be used together with a proper software strategy. If the
device is subjected to abnormal conditions, this software must limit the duration and number
of activation cycles.
IL(off2) Off-state output current VIN = 0V; VOUT = 3.5V -75 0 µA
IL(off3) Off-state output current VIN = VOUT=0V; VCC=13V;
Tj =125°C A
IL(off4) Off-state output current VIN =VOUT = 0V; VCC = 13V;
Tj = 25°C A
1. Per device.
2. Vclamp and VOV are correlated. Typical difference is 5V.
Table 6. Protections
Symbol Parameter Test conditions Min. Typ. Max. Unit
Ilim DC short circuit current VCC = 13V
5.5V < VCC < 36V
25 40 70
70
A
A
TTSD
Thermal shutdown
temperature 150 175 200 °C
TR
Thermal reset
temperature 135 °C
THYST Thermal hysteresis 7 15 °C
Vdemag
Turn-off output voltage
clamp IOUT = 2A; VIN = 0V; L = 6mH VCC-
41
VCC-
48
VCC-
55 V
VON
Output voltage drop
limitation
IOUT = 0.5A
Tj = -40°C...+150°C 50 mV
Table 5. Power (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Table 7. VCC - output diode
Symbol Parameter Test conditions Min. Typ. Max. Unit
VFForward on voltage - IOUT = 2.6A; Tj = 150°C 0.6 V
VND600SP Electrical specifications
9/26
Table 8. Current sense (9V VCC 16V)
Symbol Parameter Test conditions Min. Typ. Max. Unit
K1IOUT/ISENSE
IOUT1 or IOUT2 = 0.5A;
VSENSE = 0.5V; other channels open;
Tj = -40°C...150°C
3300 4400 6000
dK1/K1
Current sense
ratio drift
IOUT1 or IOUT2 = 0.5A;
VSENSE = 0.5V; other channels open;
Tj= - 40°C...150°C
-10 +10 %
K2IOUT/ISENSE
IOUT1 or IOUT2 = 5A;
VSENSE = 4V; other channels open;
Tj = - 40°C
Tj= 25°C...150°C
4200
4400
4900
4900
6000
5750
dK2/K2
Current sense
ratio drift
IOUT1 or IOUT2 = 5A; VSENSE = 4V;
other channels open;
Tj = -40°C...150°C
-6 +6 %
K3IOUT/ISENSE
IOUT1 or IOUT2 = 15A; VSENSE = 4V;
other channels open;
Tj = -40°C
Tj = 25°C...150°C
4200
4400
4900
4900
5500
5250
dK3/K3
Current sense
ratio drift
IOUT1 or IOUT2 = 15A; VSENSE = 4V;
other channels open;
Tj = -40°C...150°C
-6 +6 %
VSENSE1,2
Max analog
sense
output voltage
VCC = 5.5V; IOUT1,2 = 2.5A;
RSENSE = 10k
VCC > 8V, IOUT1,2 = 5A;
RSENSE = 10k
2
4
V
V
VSENSEH
Analog sense
output voltage in
over-temperature
condition
VCC = 13V; RSENSE = 3.9k5.5 V
RVSENSEH
Analog sense
output
impedance in
over-temperature
condition
VCC = 13V; Tj > TTSD;
all channels open 400
tDSENSE
Current sense
delay response To 90 % I SENSE(1)
1. Current sense signal delay after positive input slope.
500 µs
Electrical specifications VND600SP
10/26
Table 9. Logic inputs
Symbol Parameter Test conditions Min. Typ. Max. Unit
VIL Input low level voltage 1.25 V
IIL Low level input current VIN = 1.25V 1 µA
VIH Input high level voltage 3.25 V
IIH High level input current VIN = 3.25V 10 µA
VI(hyst) Input hysteresis voltage 0.5 V
VICL Input clamp voltage IIN = 1mA
IIN = - 1mA
66.8
-0.7
8V
V
Table 10. Switching (VCC = 13V)
Symbol Parameter Test conditions Min. Typ. Max. Unit
td(on) Turn-on delay time RL= 2.6 (see Figure 4.)30 µs
td(off) Turn-on delay time RL = 2.6 (see Figure 4.)30 µs
(dVOUT/dt)on Turn-on voltage slope RL = 2.6 (see Figure 4.)See
Figure 10. V/µs
(dVOUT/dt)off Turn-off voltage slope RL = 2.6 (see Figure 4.)See
Figure 12. V/µs
Table 11. Truth table
Conditions Input Output Sense
Normal operation L
H
L
H
0
Nominal
Over-temperature L
H
L
L
0
VSENSEH
Under-voltage L
H
L
L
0
0
Over-voltage L
H
L
L
0
0
Short circuit to GND
L
H
H
L
L
L
0
(Tj<TTSD) 0
(Tj>TTSD) VSENSEH
Short circuit to VCC
L
H
H
H
0
< Nominal
Negative output voltage clamp L L 0
VND600SP Electrical specifications
11/26
Figure 4. Switching characteristics
Table 12. Electrical transient requirements
ISO T/R
7637/1
Test pulse
Test level
I II III IV Delays and impedance
1- 25V
(1)
1. All functions of the device are performed as designed after exposure to disturbance.
- 50V(1) - 75V(1) - 100V(1) 2ms, 10
2 + 25V(1) + 50V(1) + 75V(1) + 100V(1) 0.2ms, 10
3a - 25V(1) - 50V(1) - 100V(1) - 150V(1) 0.1µs, 50
3b + 25V(1) + 50V(1) + 75V(1) + 100V(1) 0.1µs, 50
4- 4V
(1) - 5V(1) - 6V(1) - 7V(1) 100ms, 0.01
5+ 26.5V
(1) + 46.5V(2)
2. One or more functions of the device is not performed as designed after exposure and cannot be returned to
proper operation without replacing the device.
+ 66.5V(2) + 86.5V(2) 400ms, 2
VOUT
dVOUT/dt(on)
tr
80%
10% tf
dVOUT/dt(off)
ISENSE
t
t
90%
td(off)
INPUT
t
90%
td(on)
tDSENSE
Electrical specifications VND600SP
12/26
Figure 5. IOUT/ISENSE versus IOUT
0 2 4 6 8 10 12 14 16
3000
3500
4000
4500
5000
5500
6000
6500
min.Tj=-40°C
max.Tj=-40°C
min.Tj=25...15C
max.Tj=25...150°C
typical value
IOUT/ISENSE
IOUT (A)
VND600SP Electrical specifications
13/26
Figure 6. Waveforms
SENSEn
INPUTn
NORMAL OPERATION
UNDER-VOLTAGE
VCC
VUSD
VUSDhyst
INPUTn
OVER-VOLTAGE
VCC
SENSEn
INPUTn
SENSEn
LOAD CURRENTn
LOAD CURRENTn
LOAD CURRENTn
VOV
VCC > VOV
VCC < VOV
SHORT TO GROUND
INPUTn
LOAD CURRENTn
SENSEn
LOAD VOLTAGEn
INPUTn
LOAD VOLTAGEn
SENSEn
LOAD CURRENTn
<Nominal <Nominal
SHORT TO VCC
OVER-TEMPERATURE
INPUTn
SENSEn
TTSD
TR
Tj
LOAD CURRENTn
ISENSE=RSENSE
VSENSEH
Electrical specifications VND600SP
14/26
2.4 Electrical characteristics curves
Figure 7. Off-state output current Figure 8. High level input current
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
2.25
2.5
IL(off1) (uA)
Off state
Vcc=36V
Vin=Vout=0V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Iih (uA )
Vin=3.25V
Figure 9. Input clamp voltage Figure 10. Turn-on voltage slope
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8
Vicl (V)
Ii n =1 m A
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
250
300
350
400
450
500
550
600
650
700
750
dVout/dt(on) (V/ms)
Vcc=13V
Rl=2.6Ohm
Figure 11. Over-voltage shutdown Figure 12. Turn-off voltage slope
-50 -25 0 25 50 75 100 125 150 175
Tc (°C )
30
32
34
36
38
40
42
44
46
48
50
Vov (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
0
50
100
150
200
250
300
350
400
450
500
dVout/dt(off) (V /ms)
Vcc=13V
Rl=2.6Ohm
VND600SP Electrical specifications
15/26
Figure 13. ILIM vs Tcase Figure 14. On-state resistance vs VCC
-50 -25 0 25 50 75 100 125 150 175
Tc (°C )
0
10
20
30
40
50
60
70
80
Ili m (A )
Vcc=13V
5 10152025303540
Vcc (V)
0
10
20
30
40
50
60
70
80
Ron (mOhm)
Io u t =5 A
Tc = 150°C
Tc = 25°C
Tc = - 40°C
Figure 15. Input high level Figure 16. Input hysteresis voltage
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vih (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
Vhyst (V)
Figure 17. On-state resistance vs Tcase Figure 18. Input low level
-75 -50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
10
20
30
40
50
60
70
80
90
100
Ron (mOhm)
Io u t =5 A
Vcc=8V & 36V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
Vil (V)
Application information VND600SP
16/26
3 Application information
Figure 19. Application schematic
3.1 GND protection network against reverse battery
This section provides two solutions for implementing a ground protection network against
reverse battery.
3.1.1 Solution 1: a resistor in the ground line (RGND only)
This can be used with any type of load.
The following show how to dimension the RGND resistor:
1. RGND 600mV / 2 (IS(on)max)
2. RGND ≥ ( - VCC) / ( - IGND)
where - IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device datasheet.
Power dissipation in RGND (when VCC < 0 during reverse battery situations) is:
PD = ( - VCC)2/ RGND
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
V
CC
GND OUTPUT2
CURRENT SENSE1
D
ld
+5V
R
prot
R
SENSE2
OUTPUT1
R
SENSE1
INPUT1
D
GND
R
GND
V
GND
CURRENT SENSE2
INPUT2
µ
CR
prot
R
prot
R
prot
VND600SP Application information
17/26
Please note that, if the microprocessor ground is not shared by the device ground, then the
RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift will vary depending on how many devices are ON in the case of several
high-side drivers sharing the same RGND .
If the calculated power dissipation requires the use of a large resistor, or several devices
have to share the same resistor, then ST suggests using solution 2 below.
3.1.2 Solution 2: a diode (DGND) in the ground line
A resistor (RGND = 1k) should be inserted in parallel to DGND if the device will be driving
an inductive load. This small signal diode can be safely shared amongst several different
HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in
the input threshold and the status output values if the microprocessor ground is not common
with the device ground. This shift will not vary if more than one HSD shares the same
diode/resistor network. Series resistor in INPUT and STATUS lines are also required to
prevent that, during battery voltage transient, the current exceeds the Absolute Maximum
Rating. Safest configuration for unused INPUT and STATUS pin is to leave them
unconnected.
3.2 Load dump protection
Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the
VCC maximum DC rating. The same applies if the device is subject to transients on the VCC
line that are greater than those shown in the ISO T/R 7637/1 table.
3.3 MCU I/O protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to
prevent the µC I/O pins from latching up.
The value of these resistors is a compromise between the leakage current of µC and the
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC
I/Os:
- VCCpeak / Ilatchup Rprot (VOHµC - VIH - VGND) / IIHmax
Example
For the following conditions:
VCCpeak = - 100V
Ilatchup 20mA
VOHµC 4.5V
5k Rprot 65k.
Recommended values are:
Rprot = 10k
Application information VND600SP
18/26
3.4 Maximum demagnetization energy (VCC = 13.5V)
Figure 20. Maximum turn-off current versus load inductance
Note: Values are generated with RL = 0Ω.
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse
must not exceed the temperature specified above for curves B and C.
V
IN
, I
L
t
Demagnetization Demagnetization Demagnetization
A = single pulse at TJstart = 150ºC
B= repetitive pulse at TJstart = 100ºC
C= repetitive pulse at TJstart = 125ºC
1
10
100
0,01 0,1 1 10 100
L(mH)
ILMAX (A)
A
B
C
VND600SP Package and PCB thermal data
19/26
4 Package and PCB thermal data
4.1 PowerSO-10 thermal data
Figure 21. PowerSO-10 PC board
Note: Layout condition of Rth and Zth measurements (PCB FR4 area = 58mm x 58mm, PCB
thickness = 2mm, Cu thickness = 35µm, Copper areas: from minimum pad-lay-out to 8cm2).
Figure 22. Rthj-amb Vs PCB copper area in open box free air condition
30
35
40
45
50
55
0246810
PCB Cu heatsink area (cm^2)
RTHj_amb (°C/W)
Tj-Tamb=5C
Package and PCB thermal data VND600SP
20/26
Figure 23. Thermal impedance junction ambient single pulse
Equation 1: pulse calculation formula
Figure 24. Thermal fitting model of a quad channel HSD in PowerSO-10
0.01
0.1
1
10
100
1000
0.0001 0.001 0.01 0.1 1 10 100 1000
Time (s)
ZT H (°C /W)
Footprint
6 cm2
ZTHδRTH δZTHtp 1δ()+=
where
δtpT=
T_amb
Pd1
C1
R4
C3 C4
R3R1 R6R5R2
C5 C6C2
Pd2
R2
C1 C2
R1
Tj_1
Tj_2
VND600SP Package and PCB thermal data
21/26
Table 13. Thermal parameters
Area / island (cm2) Footprint 6
R1 (°C/W) 0.05
R2 (°C/W) 0.3
R3 (°C/W) 0.3
R4 (°C/W) 0.8
R5 (°C/W) 12
R6 (°C/W) 37 22
C1 (W.s/°C) 0.001
C2 (W.s/°C) 5E-03
C3 (W.s/°C) 0.02
C4 (W.s/°C) 0.3
C5 (W.s/°C) 0.75
C6 (W.s/°C) 3 5
Package and packing information VND600SP
22/26
5 Package and packing information
5.1 ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2 PowerSO-10 mechanical data
Figure 25. PowerSO-10 package dimensions
DETAIL "A"
PLANE
SEATING
α
L
A1
F
A1
h
A
D
D1
= =
= =
E4
0.10 A
E
C
A
B
B
DETAIL "A"
SEATING
PLANE
E2
10
1
eB
HE
0.25
VND600SP Package and packing information
23/26
Table 14. PowerSO-10 mechanical data
Dim.
mm
Min. Typ. Max.
A 3.35 3.65
A(1)
1. Muar only POA P013P.
3.4 3.6
A1 0 0.10
B 0.40 0.60
B(1) 0.37 0.53
C 0.35 0.55
C(1) 0.23 0.32
D 9.40 9.60
D1 7.40 7.60
E 9.30 9.50
E2 7.20 7.60
E2(1) 7.30 7.50
E4 5.90 6.10
E4(1) 5.90 6.30
e1.27
F 1.25 1.35
F(1) 1.20 1.40
H 13.80 14.40
H(1) 13.85 14.35
h0.50
L 1.20 1.80
L(1) 0.80 1.10
α
α(1)
Package and packing information VND600SP
24/26
5.3 PowerSO-10 packing information
Figure 28. PowerSO-10 tape and reel shipment (suffix “TR”)
Figure 26. PowerSO-10 suggested
pad layout
Figure 27. PowerSO-10 tube shipment
(no suffix)
6.30
10.8 - 11
14.6 - 14.9
9.5
1
2
3
4
5
1.27
0.67 - 0.73
0.54 - 0.6
10
9
8
7
6
B
A
C
All dimensions are in mm.
Base Q.ty Bulk Q.ty Tube length (±
0.5) AB C (±
0.1)
Casablanca 50 1000 532 10.4 16.4 0.8
Muar 50 1000 532 4.9 17.2 0.8
C
A
B
MUARCASABLANCA
Base Q.ty 600
Bulk Q.ty 600
A (max) 330
B (min) 1.5
C (± 0.2) 13
F20.2
G (+ 2 / -0) 24.4
N (min) 60
T (max) 30.4
Tape dimensions
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
All dimensions are in mm.
Tape width W 24
Tape Hole Spacing P0 (± 0.1) 4
Component Spacing P 24
Hole Diameter D (± 0.1/-0) 1.5
Hole Diameter D1 (min) 1.5
Hole Position F (± 0.05) 11.5
Compartment Depth K (max) 6.5
Hole Spacing P1 (± 0.1) 2
Top
cover
tape
End
Start
No componentsNo components Components
500mm min
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
Reel dimensions
VND600SP Revision history
25/26
6 Revision history
Table 15. Document revision history
Date Revision Changes
07-Jul-2004 1 Initial release.
09-Sep-2004 2
Current and voltage convention update (page 2).
Configuration diagram (top view) & suggested connections for unused
and n.c. pins insertion (page 2).
6 cm2 Cu condition insertion in thermal data table (page 3).
VCC - output diode section update (page 3).
Revision history table insertion (page 17).
Disclaimers update (page 18).
03-May-2006 3 Suggested connections for unused and n.c. pins correction.
15-Dec-2008 4
Document reformatted and restructured.
Added contents, list of tables and figures.
Added ECOPACK® packages information.
VND600SP
26/26
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com