February 2010 Doc ID 4475 Rev 7 1/17
17
TS914, TS914A
Rail-to-rail CMOS quad operational amplifier
Features
Rail-to-rail input and output voltage ranges
Single (or dual) supply operation from 2.7 to
16 V
Extremely low input bias current: 1 pA typ
Low input offset voltage: 5 mV max. (A grade)
Specified for 600 Ω and 100 Ω loads
Low supply current: 200 μA/ampli (VCC = 3 V)
Latch-up immunity
Spice macromodel included in this specification
Description
The TS914 is a rail-to-rail CMOS quad
operational amplifier designed to operate with a
single or dual supply voltage.
The input voltage range Vicm includes the two
supply rails VCC+ and VCC-.
The output reaches VCC- +50 mV, VCC+ -50 mV,
with RL = 10 kΩ, and VCC- +350 mV,
VCC+ -350 mV, with RL = 600 Ω.
This product offers a broad supply voltage
operating range from 2.7 to 16 V and a supply
current of only 200 μA/amp (VCC = 3 V).
The source and sink output current capability is
typically 40 mA (at VCC = 3 V), fixed by an internal
limitation circuit.
D
SO-14
(Plastic micropackage)
Inverting Input 2
Non-inverting Input 2
Non-inverting Input 1
CC
V -
CC
V
1
2
3
4
8
5
6
7
9
10
11
12
13
14
+
Output 3
Output 4
Non-inverting Input 4
Inverting Input 4
Non-inverting Input 3
Inverting Input 3
-
+
-
+
-
+
-
+
Output 1
Inverting Input 1
Output 2
Pin connections (top view)
www.st.com
Absolute maximum ratings and operating conditions TS914, TS914A
2/17 Doc ID 4475 Rev 7
1 Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
VCC Supply voltage (1)
1. All voltage values, except differential voltage are with respect to network ground terminal.
18 V
Vid Differential input voltage (2)
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
±18 V
Vin Input voltage (3)
3. The magnitude of input and output voltages must never exceed VCC+ +0.3 V.
-0.3 to 18 V
Iin Current on inputs ±50 mA
IoCurrent on outputs ±130 mA
TjMaximum junction temperature 150 °C
Tstg Storage temperature -65 to +150 °C
Rthja Thermal resistance junction to ambient (4)
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-
circuit on all amplifiers. These are typical values.
103 °C/W
Rthjc Thermal resistance junction to case 31 °C/W
ESD
HBM: human body model(5)
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
1kV
MM: machine model(6)
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
50 V
CDM: charged device model(7)
7. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
1.5 kV
Table 2. Operating conditions
Symbol Parameter Value Unit
VCC Supply voltage 2.7 to 16 V
Vicm Common mode input voltage range VCC- -0.2 to VCC+ +0.2 V
Toper Operating free air temperature range -40 to + 125 °C
TS914, TS914A Schematic diagram
Doc ID 4475 Rev 7 3/17
2 Schematic diagram
Figure 1. Schematic diagram
Non-inverting
InputInverting
Input
Internal
Vref
Output
V
CC
V
CC
Electrical characteristics TS914, TS914A
4/17 Doc ID 4475 Rev 7
3 Electrical characteristics
Table 3. VCC+ = 3 V, Vcc- = 0 V, RL, CL connected to VCC/2, Tamb = 25° C (unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Vio
Input offset voltage
(Vicm = Vo = VCC/2)
TS914
TS914A
Tmin T
amb T
max, TS914
Tmin T
amb T
max, TS914A
10
5
12
7
mV
ΔVio Input offset voltage drift 5 μV/°C
Iio
Input offset current (1)
Tmin T
amb T
max
1 100
200 pA
Iib
Input bias current (1)
Tmin. T
amb T
max
1 150
300 pA
ICC Supply current per amplifier, AVCL = 1, no load
Tmin T
amb T
max
200 300
400 μA
CMR Common mode rejection ratio Vicm = 0 to 3 V, Vo = 1.5 V 70 dB
SVR Supply voltage rejection ratio VCC+ = 2.7 to 3.3 V, Vo = VCC/2 80 dB
Avd Large signal voltage gain RL = 10 kΩ, Vo = 1.2 V to 1.8 V
Tmin T
amb T
max
3
2
10 V/mV
VOH High level output voltage
Vid = 1 V,
RL = 10 kΩ
RL = 600 Ω
RL = 100 Ω
Vid = 1V, Tmin T
amb T
max
RL = 10 kΩ
RL = 600 Ω
2.9
2.2
2.8
2.1
2.97
2.7
2V
VOL Low level output voltage
Vid = -1 V,
RL = 10 kΩ
RL = 600 Ω
RL = 100 Ω
Vid = -1 V, Tmin T
amb T
max
RL = 10 kΩ
RL = 600 Ω
50
300
900
100
600
150
900
mV
IoOutput short circuit current
Vid = ±1 V
Source (Vo = VCC-)
Sink (Vo = VCC+)
40
40
mA
GBP Gain bandwidth product AVCL =100, R
L=10kΩ,
CL= 100 pF, f = 100 kHz 0.8 MHz
SR Slew rate AVCL =1, R
L=10kΩ, CL= 100 pF,
Vin = 1.3 V to 1.7 V 0.5 V/μs
φmPhase margin 30 °
enEquivalent input noise voltage Rs = 100 Ω, f = 1 kHz 30 nV/Hz
VO1/VO2 Channel separation f = 1 kHz 120 dB
1. Maximum values include unavoidable inaccuracies of the industrial tests.
TS914, TS914A Electrical characteristics
Doc ID 4475 Rev 7 5/17
Table 4. VCC+ = 5 V, Vcc- = 0 V, RL, CL connected to VCC/2, Tamb = 25° C (unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Vio
Input offset voltage
(Vicm = Vo = VCC/2)
TS914
TS914A
Tmin T
amb T
max, TS914
Tmin Tamb Tmax, TS914A
10
5
12
7
mV
ΔVio Input offset voltage drift 5 μV/°C
Iio Input offset current (1)
Tmin Tamb Tmax
1 100
200 pA
Iib Input bias current (1)
Tmin Tamb Tmax
1 150
300 pA
ICC Supply current per amplifier, AVCL = 1, no load
Tmin Tamb Tmax
230 350
450 μA
CMR Common mode rejection ratio Vicm = 1.5 to 3 V, Vo = 2.5 V 85 dB
SVR Supply voltage rejection ratio VCC+ = 3 to 5 V, Vo = VCC/2 80 dB
Avd Large signal voltage gain RL = 10 kΩ, Vo = 1.5 V to 3.5 V
Tmin Tamb Tmax
10
7
40 V/mV
VOH High level output voltage
Vid = 1 V,
RL = 10 kΩ
RL = 600 Ω
RL = 100 Ω
Vid = 1 V, Tmin Tamb Tmax
RL = 10 kΩ
RL = 600 Ω
4.85
4.20
4.8
4.1
4.95
4.65
3.7 V
VOL Low level output voltage
Vid = -1 V,
RL = 10 kΩ
RL = 600 Ω
RL = 100 Ω
Vid = -1 V, Tmin Tamb Tmax
RL = 10 kΩ
RL = 600 Ω
50
350
1400
100
680
150
900
mV
IoOutput short circuit current
Vid = ±1 V
Source (Vo = VCC-)
Sink (Vo = VCC+)
60
60
mA
GBP Gain bandwidth product AVCL =100, R
L=10kΩ, CL= 100 pF,
f = 100 kHz 1MHz
SR Slew rate AVCL =1, R
L=10kΩ, CL= 100 pF,
Vin =1Vto4V 0.8 V/μs
φmPhase margin 30 °
enEquivalent input noise voltage Rs = 100 Ω, f = 1 kHz 30 nV/Hz
VO1/VO2 Channel separation f = 1 kHz 120 dB
1. Maximum values include unavoidable inaccuracies of the industrial tests.
Electrical characteristics TS914, TS914A
6/17 Doc ID 4475 Rev 7
Table 5. VCC+ = 10 V, VDD = 0 V, RL, CL connected to VCC/2, Tamb = 25° C
(unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
Vio
Input offset voltage (Vicm =
Vo = VCC/2)
TS914
TS914A
Tmin T
amb T
max, TS914
Tmin Tamb Tmax, TS914A
10
5
12
7
mV
ΔVio Input offset voltage drift 5 μV/°C
Iio Input offset current (1)
Tmin T
amb T
max
1 100
200 pA
Iib Input bias current (1)
Tmin T
amb T
max
1 150
300 pA
CMR Common mode rejection
ratio
Vicm = 3 to 7 V, Vo = 5 V
Vicm = 0 to 10 V, Vo = 5 V
90
75 dB
SVR Supply voltage rejection ratio VCC+= 5 to 10 V, Vo = VCC/2 90 dB
Avd Large signal voltage gain RL = 10 kΩ, Vo = 2.5 V to 7.5 V
Tmin T
amb T
max
15
10
60 V/mV
VOH High level output voltage
Vid = 1 V,
RL = 10 kΩ
RL = 600 Ω
RL = 100 Ω
Vid = 1 V, Tmin T
amb T
max
RL = 10 kΩ
RL = 600 Ω
9.85
9
9.8
9
9.95
9.35
7.8 V
VOL Low level output voltage
Vid = -1 V,
RL = 10 kΩ
RL = 600 Ω
RL = 100 Ω
Vid = -1 V, Tmin T
amb T
max
RL = 10 kΩ
RL = 600 Ω
50
650
2300
180
800
150
900
mV
IoOutput short-circuit current Vid = ±1 V 60 mA
ICC Supply current / operator AVCL = 1, no load,
Tmin T
amb Tmax
400 600
700 μA
GBP Gain bandwidth product AVCL = 100, RL=10kΩ, CL= 100 pF,
f=100kHz 1.4 MHz
SR Slew rate AVCL =1, R
L=10kΩ, CL=100pF,
Vi= 2.5 V to 7.5 V 1V/μs
φmPhase margin Rs = 100 Ω, f = 1 kHz 40 °
en
Equivalent input noise
voltage Rs = 100 Ω, f = 1 kHz 30 nV/Hz
THD Total harmonic distortion AVCL =1, R
L=10kΩ, CL=100pF,
Vo= 4.75 to 5.25 V, f = 1 kHz 0.02 %
Cin Input capacitance 1.5 pF
TS914, TS914A Electrical characteristics
Doc ID 4475 Rev 7 7/17
Rin Input resistance >10 Tera Ω
VO1/VO2 Channel separation f = 1 kHz 120 dB
1. Maximum values include unavoidable inaccuracies of the industrial tests.
Table 5. VCC+ = 10 V, VDD = 0 V, RL, CL connected to VCC/2, Tamb = 25° C
(unless otherwise specified) (continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
Electrical characteristics TS914, TS914A
8/17 Doc ID 4475 Rev 7
Figure 2. Supply current (each amplifier)
vs. supply voltage
Figure 3. High level output voltage vs. high
level output current
CC
SUPPLY VOLTAGE, V (V)
0 4 8 12 16
T = 25°C
A = 1
V = V / 2
amb
VCL
O CC
CC
m
SUPPLY CURRENT, I (
A)
600
500
400
300
200
100
5
-70 -40 -20 0
OUTPUT VOLTAGE, V (V)
OH
amb
id
T = 25 C
V = 100mV
°
V = +5V
CC
V = +3V
CC
4
3
2
1
0
OH
OUTPUT CURRENT, I (mA)
Figure 4. Low level output voltage vs. low
level output current
Figure 5. Input bias current vs. temperature
1
OUTPUT VOLTAGE, V (V)
OL
amb
id
T = 25 C
V = -100mV
°
V = +5V
CC
V = +3V
CC
0 30 50 70 90
OL
OUTPUT CURRENT, I (mA)
2
3
4
5
25 50 75 100 125
INPUT BIAS CURRENT, I (pA)
ib
V = 10V
V = 5V
No load
CC
i
100
10
1
amb
TEMPERATURE, T ( C)
°
Figure 6. High level output voltage vs. high
level output current
Figure 7. Low level output voltage vs. low
level output current
4
0
OUTPUT VOLTAGE, V (V)
OH
V = +16V
CC
V = +10V
CC
OH
OUTPUT CURRENT, I (mA)
12
8
20
16
-70 -40 -20 0
amb
id
°
T = 25 C
V = 100mV
2
OUTPUT VOLTAGE, V (V)
OL
amb
id
T = 25 C
V = -100mV
°
0
V = 10V
CC
V = 16V
CC
OL
OUTPUT CURRENT, I (mA)
4
6
8
10
30 50 70 90
TS914, TS914A Electrical characteristics
Doc ID 4475 Rev 7 9/17
Figure 8. Gain and phase vs. frequency Figure 9. Gain bandwidth product vs. supply
voltage
50
40
30
20
10
0
-10
GAIN (dB)
PHASE (Degrees)
0
45
90
135
180
FREQUENCY, f (Hz)
PHASE
GAIN
Phase
Margin
Gain
Bandwidth
Product
6
10
10
23
10
4
10
5
10
7
10
T = 25°C
V = 10V
R = 10k W
C = 100pF
A = 100
amb
CC
L
L
VCL
SUPPLY VOLTAGE, V (V)
CC
0 4 8 12 1
6
1800
GAIN BANDW. PROD., GBP (kHz)
T = 25°C
R = 10k
W
C = 100pF
amb
L
L
1400
1000
600
200
Figure 10. Phase margin vs. supply voltage Figure 11. Gain and phase vs. frequency
SUPPLY VOLTAGE, V (V)
CC
0 4 8 12 1
6
60
50
40
30
20
PHASE MARGIN, m (Degrees)
T = 25°C
R = 10k
W
C = 100pF
amb
L
L
f
50
40
30
20
10
0
-
10
GAIN (dB)
PHASE (Degrees)
0
45
90
135
180
FREQUENCY, f (Hz)
PHASE
GAIN
Phase
Margin
Gain
Bandwidth
Product
6
10
10
23
10
4
10
5
10
7
10
T = 25°C
V = 10V
R = 600
W
C = 100pF
A = 100
amb
CC
L
L
VCL
Figure 12. Gain bandwidth product vs. supply
voltage
Figure 13. Phase margin vs. supply voltage
SUPPLY VOLTAGE, V (V)
CC
0 4 8 12 16
GAIN BANDW. PROD., GBP (kHz)
T = 25°C
R = 600
W
C = 100pF
amb
L
L
1800
1400
1000
600
200
SUPPLY VOLTAGE, V (V)
CC
0 4 8 12 1
6
60
50
40
30
20
PHASE MARGIN, m (Degrees)
f
T = 25°C
R = 600
W
C = 100pF
amb
L
L
Electrical characteristics TS914, TS914A
10/17 Doc ID 4475 Rev 7
Figure 14. Input voltage noise vs. frequency
150
100
50
0
10 100 1000 10000
FREQUENCY (Hz)
= 10V
= 25°C
T
amb
V
CC
= 100
W
R
S
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
TS914, TS914A Macromodels
Doc ID 4475 Rev 7 11/17
4 Macromodels
4.1 Important note concerning this macromodel
All models are a trade-off between accuracy and complexity (that is, simulation time).
Macromodels are not a substitute for breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (such as temperature or supply voltage, etc). Thus, the
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the
main parameters of the product.
Data derived from macromodels used outside of the specified conditions (such as VCC,
or temperature) or even worse, outside of the device’s operating conditions (such as
VCC or Vicm) is not reliable in any way.
The values provided in Ta bl e 6 are derived from this macromodel.
Table 6. VCC+ = 3 V, VCC- = 0 V, RL, CL connected to VCC/2, Tamb = 25° C
(unless otherwise specified)
Symbol Conditions Value Unit
Vio 0mV
Avd RL = 10 kΩ10 V/mV
ICC No load, per operator 100 μA
Vicm -0.2 to 3.2 V
VOH RL = 600 Ω2.96 V
VOL RL = 60 Ω300 mV
Isink VO = 3 V 40 mA
Isource VO = 0 V 40 mA
GBP RL = 10 kΩ, CL = 100 pF 0.8 MHz
SR RL = 10 kΩ, CL = 100 pF 0.3 V/μs
φmPhase margin 30 Degrees
Macromodels TS914, TS914A
12/17 Doc ID 4475 Rev 7
4.2 Macromodel code
* Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
*
.SUBCKT TS914 1 2 3 4 5
*************************************************
.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.322092E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.498970E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.750000E+00
FCN 5 4 VOFN 5.750000E+00
* AMPLIFYING STAGE
FIP 5 19 VOFP 4.400000E+02
FIN 5 19 VOFN 4.400000E+02
RG1 19 5 4.904961E+05
RG2 19 4 4.904961E+05
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 1.8E+03
HZTN 5 30 VOFN 1.8E+03
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3800
VIPM 28 4 230
HONM 21 27 VOUT 3800
VINM 5 27 230
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 82
COUT 3 5 1.000000E-12
DOP 19 68 MDTH 400E-12
VOP 4 25 1.724
TS914, TS914A Macromodels
Doc ID 4475 Rev 7 13/17
HSCP 68 25 VSCP1 0.8E+8
DON 69 19 MDTH 400E-12
VON 24 5 1.7419107
HSCN 24 69 VSCN1 0.8E+8
VSCTHP 60 61 0.0875
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.55
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
.ENDS
Package information TS914, TS914A
14/17 Doc ID 4475 Rev 7
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 15. SO-14 package mechanical drawing
Table 7. SO-14 package mechanical data
Dimensions
Ref.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.35 1.75 0.05 0.068
A1 0.10 0.25 0.004 0.009
A2 1.10 1.65 0.04 0.06
B 0.33 0.51 0.01 0.02
C 0.19 0.25 0.007 0.009
D 8.55 8.75 0.33 0.34
E 3.80 4.0 0.15 0.15
e1.27 0.05
H 5.80 6.20 0.22 0.24
h 0.25 0.50 0.009 0.02
L 0.40 1.27 0.015 0.05
k 8° (max.)
ddd 0.10 0.004
TS914, TS914A Ordering information
Doc ID 4475 Rev 7 15/17
6 Ordering information
Table 8. Order codes
Order code Temperature
range Package Packing Marking
TS914ID
TS914IDT
-40, +125° C
SO-14 Tube and tape & reel 914I
TS914AID
TS914AIDT SO-14 Tube and tape & reel 914AI
TS914IYD(1)
TS914IYDT(1)
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent.
SO-14
(Automotive grade level) Tube and tape & reel 914IY
TS914AIYDT(1) SO-14
(Automotive grade level) Tape & reel 914AIY
Revision history TS914, TS914A
16/17 Doc ID 4475 Rev 7
7 Revision history
Table 9. Document revision history
Date Revision Changes
01-Dec-2001 1 Initial release.
01-Nov-2004 2 Changed Vio max. on cover page from 2 mV to 5 mV.
01-Jun-2005 3 Inserted PIPAP references (see order code table on cover page).
01-Feb-2006 4 Added parameters in Table 1: Absolute maximum ratings on
page 2 (Tj, ESD, Rthja, Rthjc).
08-Jan-2007 5 Corrected package names in order codes table on cover page.
Corrected macromodel.
02-Apr-2009 6
Minor text edits.
Removed table of contents.
Updated package information in Chapter 5.
Moved Table 8: Order codes from cover page to end of
datasheet.
Added footnote to Table 8: Order codes.
04-Feb-2010 7
Added parameters for TS914A.
Removed DIP14 package information.
Removed TS914AIYD order code from Ta b le 8 .
TS914, TS914A
Doc ID 4475 Rev 7 17/17
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com