HV2903 Analog Switch Evaluation Board User's Guide 2017 Microchip Technology Inc. DS50002582A Note the following details of the code protection feature on Microchip devices: * Microchip products meet the specification contained in their particular Microchip Data Sheet. * Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. * There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. * Microchip is willing to work with the customer who is concerned about the integrity of their code. * Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-5224-2444-4 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC(R) MCUs and dsPIC(R) DSCs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS50002582A-page 2 2017 Microchip Technology Inc. HV2903 ANALOG SWITCH EVALUATION BOARD Table of Contents Preface ........................................................................................................................... 6 Introduction............................................................................................................ 6 Document Layout .................................................................................................. 6 Conventions Used in this Guide ............................................................................ 7 Warranty Registration............................................................................................ 7 Recommended Reading........................................................................................ 8 The Microchip Web Site ........................................................................................ 8 Customer Support ................................................................................................. 8 Document Revision History ................................................................................... 8 Chapter 1. Product Overview 1.1 Introduction ..................................................................................................... 9 1.2 HV2903 IC - Description ................................................................................. 9 1.3 HV2903 Analog Switch Evaluation Board - Features ..................................... 9 1.4 HV2903 Analog Switch Evaluation Board - Functional Description ............... 9 1.5 HV2903 Analog Switch Evaluation Board Technical Kit ............................... 11 1.6 What the HV2903 Analog Switch Evaluation Board Kit Includes ................. 12 Chapter 2. Installation and Operation 2.1 Getting Started ............................................................................................. 13 2.2 HV MUX GUI Installation............................................................................... 13 2.3 Setup Procedure .......................................................................................... 16 2.4 Interface Connections .................................................................................. 18 2.5 Testing the HV2903 Analog Switch Evaluation Board ................................. 19 2.6 HV MUX Controller Board and GUI Manual ................................................. 19 2.7 Generation of Pulser Output at SW8A of HV2903 ....................................... 22 Chapter 3. PCB Design and Layout Notes 3.1 PCB Layout Techniques for HV2903 ........................................................... 25 Appendix A. Schematic & Layouts A.1 Introduction .................................................................................................. 26 A.2 ADM00795 - Schematic ............................................................................... 27 A.3 ADM00795 - Top Silk ................................................................................... 28 A.4 ADM00795 - Top Copper and Silk ............................................................... 28 A.5 ADM00795 - Top Copper ............................................................................. 29 A.6 ADM00795 - Inner 1 ..................................................................................... 29 A.7 ADM00795 - Inner 2 ..................................................................................... 30 A.8 ADM00795 - Inner 3 ..................................................................................... 30 A.9 ADM00795 - Bottom Copper ........................................................................ 31 2017 Microchip Technology Inc. DS50002582A-page 3 A.10 ADM00795 - Bottom Copper and Silk ........................................................ 31 A.11 ADM00795 - Bottom Silk ............................................................................ 32 A.12 ADM00825 - Schematic (Connection) ....................................................... 33 A.13 ADM00825 - Schematic (Power Supply) ................................................... 34 A.14 ADM00825 - Schematic (USB to SPI) ....................................................... 35 A.15 ADM00825 - Schematic (Programmable Clock) ........................................ 36 A.16 ADM00825 - Schematic (FPGA) ................................................................ 37 A.17 ADM00825 - Schematic (FPGA Decoupling Capacitors) ........................... 38 A.18 ADM00825 - Schematic (Connectors) ....................................................... 39 A.19 ADM00825 - Top Silk ................................................................................. 40 A.20 ADM00825 - Top Copper and Silk ............................................................. 40 A.21 ADM00825 - Top Copper ........................................................................... 41 A.22 ADM00825 - Inner 1 ................................................................................... 41 A.23 ADM00825 - Inner 2 ................................................................................... 42 A.24 ADM00825 - Inner 3 ................................................................................... 42 A.25 ADM00825 - Inner 4 ................................................................................... 43 A.26 ADM00825 - Bottom Copper ...................................................................... 43 A.27 ADM00825 - Bottom Copper and Silk ........................................................ 44 A.28 ADM00825 - Bottom Silk ............................................................................ 44 Appendix B. Bill of Materials B.1 HV2903 Analog Switch Evaluation Board .................................................... 45 B.2 HV MUX Controller Board.............................................................................. 46 Appendix C. Demo Board Waveforms C.1 Board Typical Waveforms ............................................................................ 51 Worldwide Sales and Service .................................................................................... 52 2017 Microchip Technology Inc. DS50002582A-page 4 HV2903 ANALOG SWITCH EVALUATION BOARD USER'S GUIDE Preface NOTICE TO CUSTOMERS All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available. Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXX" is the document number and "A" is the revision level of the document. For the most up-to-date information on development tools, see the www.microchip.com on line help. Select the Help menu, and then Topics to open a list of available online help files. INTRODUCTION This chapter contains general information that will be useful to know before using the HV2903 Analog Switch Evaluation Board. Items discussed in this chapter include: * * * * * * Document Layout Conventions Used in this Guide Recommended Reading The Microchip Web Site Customer Support Document Revision History DOCUMENT LAYOUT This document describes how to use the HV2903 Analog Switch Evaluation Board as a development tool to evaluate the HV2903 No High-Voltage Bias, Low Harmonic Distortion, 32-Channel, High-Voltage Analog Switch IC. The user's guide layout is as follows: * Chapter 1. "Product Overview" - Important information about the HV2903 Analog Switch Evaluation Board. * Chapter 2. "Installation and Operation" - This chapter includes a detailed description of each function of the demonstration board and instructions for how to begin using the HV2903 Analog Switch Evaluation Board. * Chapter 3. "PCB Design and Layout Notes" - This chapter explains important points of the PCB design and layout of HV2903 Analog Switch Evaluation Board. * Appendix A. "Schematic & Layouts" - Shows the schematic and PCB layout diagrams for the HV2903 Analog Switch Evaluation Board and the HV MUX Controller Board. * Appendix B. "Bill of Materials" - Lists the parts used to build the HV2903 Analog Switch Evaluation Board and the HV MUX Controller Board. * Appendix C. "Demo Board Waveforms" - Describes the various demo waveforms for the HV2903 Analog Switch Evaluation Board. 2017 Microchip Technology Inc. DS50002582A-page 5 Preface CONVENTIONS USED IN THIS GUIDE This manual uses the following documentation conventions: DOCUMENTATION CONVENTIONS Description Represents Examples Arial font: Italic characters Initial caps Referenced books MPLAB(R) IDE User's Guide Emphasized text ...is the only compiler... A window the Output window A dialog the Settings dialog A menu selection select Enable Programmer Quotes A field name in a window or dialog "Save project before build" Underlined, italic text with right angle bracket A menu path File>Save Bold characters A dialog button Click OK A tab Click the Power tab N`Rnnnn A number in verilog format, 4`b0010, 2`hF1 where N is the total number of digits, R is the radix and n is a digit. Text in angle brackets < > A key on the keyboard Press , Sample source code #define START Filenames autoexec.bat File paths c:\mcc18\h Keywords _asm, _endasm, static Command-line options -Opa+, -Opa- Bit values 0, 1 Courier New font: Plain Courier New Constants 0xFF, `A' Italic Courier New A variable argument file.o, where file can be any valid filename Square brackets [ ] Optional arguments mcc18 [options] file [options] Curly brackets and pipe character: { | } Choice of mutually exclusive arguments; an OR selection errorlevel {0|1} Ellipses... Replaces repeated text var_name [, var_name...] Represents code supplied by user void main (void) { ... } 2017 Microchip Technology Inc. DS50002582A-page 6 HV2903 Analog Switch Evaluation Board User's Guide RECOMMENDED READING This user's guide describes how to use the HV2903 Analog Switch Evaluation Board. Another useful document is listed below. The following Microchip document is available and recommended as a supplemental reference resource. * HV2903 Data Sheet - "HV2803/HV2903/HV2904 - No High-Voltage Bias, Low Harmonic Distortion, 32-Channel, High-Voltage Analog Switch. THE MICROCHIP WEB SITE Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. The web site contains the following information: * Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software * General Technical Support - Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing * Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: * * * * Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com. DOCUMENT REVISION HISTORY Revision A (December 2017) * Initial Release of this Document. DS50002582A-page 7 2017 Microchip Technology Inc. HV2903 ANALOG SWITCH EVALUATION BOARD USER'S GUIDE Chapter 1. Product Overview 1.1 INTRODUCTION HV2903 Analog Switch Evaluation Board (ADM00795) works with HV MUX Controller Board (ADM00825) to provide 32-Channel HV Analog Switches without HV Supplies, demonstration including basic switch ON/OFF operation, and 2:1 MUX operation with two built-in MD1822 and TC6320 pulser circuit. 1.2 HV2903 IC - DESCRIPTION The HV2903 is 32-Channel HV Analog Switches without HV Supplies. It is designed for use in applications requiring high-voltage switching controlled by low-voltage control signals, such as medical ultrasound imaging, driving piezoelectric transducers and in printers. The typical 10 on resistance analog switch can pass the analog pulse signal up to 3A of current at 100V without high-voltage supplies such as 100V. It requires only 6V or 5V for switch ON/OFF operation and 3.3V for logic operation. The HV2903 has two modes of operation: individual switching mode and bank switching mode. The user can select the mode by MODE pin logic input. The 32 analog switches can be controlled individually through digital interface when MODE input is high (Individual switching mode). The digital interface clock operates up to 66 MHz. All 16 even switches and all 16 odd switches can be controlled together through simple 2 logic inputs when MODE input is low (bank switching mode). The HV2903 has standby mode to decrease power consumption at idle state. When STBY logic input is low, it operates in standby mode and consumes very low current. When STBY logic input is high, it operates normally. 1.3 HV2903 ANALOG SWITCH EVALUATION BOARD - FEATURES * * * * * * * 1.4 One HV2903 32-Channel HV Analog Switches without HV Supplies Designed to work with Microchip HV MUX Controller Board Two 2:1MUX with built-in MD1822 + TC6320 pulsers 5 MHz 3 level voltage pulse waveform outputs On-board 330 pF//2.5 k dummy load per SW8A, SW9A, SW24A, SW25A Mode selection and Switch ON/OFF control through PC GUI and controller board Pulser ON/OFF and time domain control through PC GUI and controller board HV2903 ANALOG SWITCH EVALUATION BOARD - FUNCTIONAL DESCRIPTION The HV2903 Analog Switch Evaluation Board can control the HV2903 operation and built-in pulsers that are connected to two 2:1 MUX switches for demonstration. Four switch output of two 2:1 MUX have SMA connectors, and the user can connect four transducer elements. The other side of the 2:1 MUX is connected to two built-in MD1822 + TC6320 pulsers. The HV2903 Analog Switch Evaluation Board can drive four transducer elements with 5 MHz 100V pulse signals. 2017 Microchip Technology Inc. DS50002582A-page 8 HV2903 Analog Switch Evaluation Board User's Guide The evaluation board features one HV2903/AHA 12x12x1.2 mm 132-lead TFBGA packaged integrated circuit, two MD1822K6-G 3x3x1 mm 16-lead QFN packaged integrated circuits and four TC6320K6-G 4x4x1 mm 8-lead DFN packaged NMOS and PMOS pair integrated circuits. The board uses two high-speed 20 signal pair carrying capable right-angle backplane connector, which is designed to work with Microchip HV MUX Controller Board (ADM00825) as a control signal source. The HV MUX Controller Board has an FPGA that generates pulser waveform and logic control signals and a USB-bridge IC that connects the control board to a PC. By means of a Microsoft Windows(R) driver and GUI, the user can control the HV2903 and two built-in pulsers. Four switch terminals consisting two MUX configuration on the PCB have SMA connectors to which user can connect loads. Jumpers close to SMA connectors are for connecting the on-board dummy R-C load (330 pF//2.5 K) optionally to the pulser output. WARNING Risk warning of electrical shock. This board uses multiple hazardous high voltages. Disconnect all high voltage supplies before working on it. Electrical safety precautions must be taken when working on or using this board. DS50002582A-page 9 2017 Microchip Technology Inc. 1.5 HV2903 ANALOG SWITCH EVALUATION BOARD TECHNICAL KIT Parameter Value HV2903 Modes of Operation Individual Switching, Bank Switching and Standby modes Pulser frequency 5 MHz Number of pulses in the train 1 to 90 TOFF time between pulse trains 5 to 30 msec Pulse Peak Voltage & Current 0 to 100V and 3A typical Interface of FPGA Control Signals & USB PC-GUI Software J1 and J2 Connects to ADM00825 Controller Interface Board Pulser R-C Test-Load & User's Transducer Interface Built-in, 330 pF//2.5 K per Channel with jumper and 50 SMA PCB Board Dimension 115x110 mm (4.5x4.3 in.) FPGA HV2903 PC + GUI SW9B SW9A 330pF CH1 Pulser MD1822 + TC6320 SW8B SWA 330pF SW24B SW25B 2.5k SW25A 330pF FIGURE 1-1: 2.5k SW24A 330pF CH2 Pulser MD1822 + TC6320 2.5k 2.5k HV2903 Analog Switch Evaluation Board Simplified Block Diagram. 2017 Microchip Technology Inc. DS50002582A-page 10 HV2903 Analog Switch Evaluation Board User's Guide 1.6 WHAT THE HV2903 ANALOG SWITCH EVALUATION BOARD KIT INCLUDES The HV2903 Analog Switch Evaluation Board includes: * HV2903 Analog Switch Evaluation Board (ADM00795) * Important Information Sheet DS50002582A-page 11 2017 Microchip Technology Inc. HV2903 ANALOG SWITCH EVALUATION BOARD USER'S GUIDE Chapter 2. Installation and Operation 2.1 GETTING STARTED The HV2903 Analog Switch Evaluation Board is fully assembled and tested. The board requires six power supply voltage rails of +3.3V, +10V, 6.0V and 100V. 2.1.1 Additional Tools Required for Operation 1. An oscilloscope with minimum 500 MHz bandwidth and two high-impedance probes - make sure the grounds of the power supply sources are correctly connected to the same ground as the testing oscilloscope ground 2. A Microchip HV MUX Controller (ADM00825) 3. A Microsoft Windows(R) 7 PC that has the HV MUX Controller GUI software installed and running. - connect J1 and J2 to the HV MUX Controller - connect the HV MUX Controller via USB to the Windows 7 PC 2.2 HV MUX GUI INSTALLATION The HV MUX GUI software installer can be downloaded from the Microchip web site at www.mircochip.com. Search for the evaluation board on the web site by part number ADM000795. 1. Open the HVMUXGUI-v1.0.0-windows-installer.exe. 2. Initiate the HV MUX GUI software installer by launching the Application Install dialog box. 3. Click Next to start the installation. FIGURE 2-1: 2017 Microchip Technology Inc. HV MUX GUI - Application Install Dialog Box. DS50002582A-page 12 HV2903 Analog Switch Evaluation Board User's Guide 4. Read the License Agreement and accept by checking the box corresponding to "I accept the agreement", then click Next to proceed with the installation. FIGURE 2-2: HV MUX GUI - License Agreement Dialog Box. 5. On the Installation Directory dialog box, browse for the desired location, or click Next to install in the default location. FIGURE 2-3: HV MUX GUI - Installation Directory Dialog Box. 6. Once the installation path is chosen, the software is ready to install. Click Next. DS50002582A-page 13 2017 Microchip Technology Inc. FIGURE 2-4: HV MUX GUI - Ready to Install Dialog Box. 7. The installation status window appears, showing the installation progress. 8. After the installation has completed, Click Next to continue. FIGURE 2-5: HV MUX GUI - Installation Status Dialog Box. 9. Once Installation Complete dialog box appears, click the Finish button to exit the installer. 2017 Microchip Technology Inc. DS50002582A-page 14 HV2903 Analog Switch Evaluation Board User's Guide FIGURE 2-6: 2.3 HV MUX GUI - Installation Complete Dialog Box. SETUP PROCEDURE To operate the HV2903 Analog Switch Evaluation Board, the following steps must be completed: 1. Attach to the HV MUX Controller (ADM00825) with connector J1 and J2. 2. Connect all jumpers on J5, J6, J7 and J11 for the on-board R-C load. 3. Connect all power supplies to the voltage supply input connector J3 and J4, as indicated in Table 2-1 by observing the polarity. WARNING Please observe the polarity of each power supply rail and set the voltage and current limit carefully. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. DS50002582A-page 15 Turn on the VSS first and then turn on the VDD. Turn on the VLL. Turn on the VGP and VPP/VNN. Connect a USB cable from the Controller Board to the PC. Connect +12V/1A power to the Controller Board. Run the HVMUX GUI software in the PC. Click the Initialize HV MUX Controller button in the GUI and the status window in the bottom will show an "initialization complete" message. Unselect the STBY check box to set HV2903 in normal operation and choose the switching mode by selecting/unselecting the MODE check box. Click the Set HV MUX button. All digital control signals are applied to HV MUX. Set the number of pulses and TOFF time of the pulser. Select CH1 or CH2 to set pulser ch1 or pulser ch2. Click the Start button. Then, the selected pulser will start to generate pulse trains. 2017 Microchip Technology Inc. 16. Click the Stop Button. Then, the selected pulser will stop generating the pulse train. TABLE 2-1: POWER SUPPLY VOLTAGES AND CURRENT-LIMIT SETTINGS Terminal Rail Name Voltage Average-Current Limit J3-1 VDD +6V +20 mA J3-2 GND 0V -- J3-3 VSS -6V -20 mA J4-1 VLL +3.3V +150 mA J4-2 GND 0V -- J4-3 VGP +5 to +11.5V +10 mA J4-4 VPP +100V +5 mA J11-2 VNN -100V -5 mA FIGURE 2-7: 2017 Microchip Technology Inc. HV2903 Analog Switch Evaluation Board - Front View. DS50002582A-page 16 HV2903 Analog Switch Evaluation Board User's Guide 2.3.1 Recommended Power-Up and Power-Down Sequences Table 2-2 shows the recommended power-up and power-down sequences of the HV2903 Analog Switch Evaluation Board. TABLE 2-2: Step 1 HV2903 ANALOG SWITCH EVALUATION BOARD POWER-UP AND POWER-DOWN SEQUENCES Power-Up Description Step Power-Down Description VSS on 1 VPP and VNN off 2 VDD on 2 VGP off 3 VLL on with logic signal low 3 VLL off with logic signal low 4 VGP on 4 VDD off 5 VPP and VNN on 5 VSS off WARNING Powering HV2903 Evaluation Board up/down in an arbitrary sequence may cause damage to the device. 2.4 INTERFACE CONNECTIONS TABLE 2-3: PIN # J2 CONTROL INTERFACE SIGNALS Name Test Point I/O Type Signal Discretion J2-A2 SCK -- LVCMOS-2.5V Input EEPROM Serial Clock Input J2-B2 CSB -- LVCMOS-2.5V Input EEPROM Chip Select Input J2-A3 MISO -- LVCMOS-2.5V Output J2-B3 MOSI -- LVCMOS-2.5V Input J2-A5 CLR TP15 LVCMOS-3.3V Input HV2903 Latch Clear Logic Input J2-B5 CLK TP14 LVCMOS-3.3V Input HV2903 Clock Logic Input EEPROM Serial Data Output EEPROM Serial Data input J2-C5 LE/EN TP12 LVCMOS-3.3V Input HV2903 Latch Enable Logic Input J2-D5 MODE TP13 LVCMOS-3.3V Input HV2903 Mode Logic Input J2-A6 DIN/AB TP20 LVCMOS-3.3V Input HV2903 Data In Logic Input J2-B6 STBY TP21 LVCMOS-3.3V Input HV2903 Standby Logic Input, Low active J2-C6 1_A TP11 LVCMOS-3.3V Input Ch1 Pulser input for NMOS to VNN J2-D6 1_B TP10 LVCMOS-3.3V Input Ch1 Pulser input for PMOS to VPP J2-A7 1_DMP TP9 LVCMOS-3.3V Input Ch1 Pulser Damp Input for PMOS/NMOS to GND J2-B7 2_A TP19 LVCMOS-3.3V Input Ch2 Pulser input for NMOS to VNN J2-C7 2_B TP18 LVCMOS-3.3V Input Ch2 Pulser input for PMOS to VPP J2-D7 2_DMP TP17 LVCMOS-3.3V Input Ch2 Pulser Damp Input for PMOS/NMOS to GND Note 1: All the pins that are not included in this table are no-connect. DS50002582A-page 17 2017 Microchip Technology Inc. 2.5 TESTING THE HV2903 ANALOG SWITCH EVALUATION BOARD 2.5.1 HV2903 Individual Switching Mode Operation (STBY=1, MODE=1): In the individual switching mode, the user can turn on/off 32 switches individually through the USB connected PC GUI software program: 1. 2. 3. 4. Click the Initialize HV MUX Controller button at the top left corner. Unselect STBY to set HV2903 in normal operation. Select MODE to set HV2903 in individual switching mode. Put 32 bit data in DIN to set switches ON and OFF. Data 1 means the switch is ON and data 0 means the switch is OFF. 5. Click the Set HV MUX button. 6. Then, the GUI and controller board generate 32-bit data and 32 clocks followed by one LE negative pulse, and switches are ON and OFF according to DIN in the GUI. 7. If the user selects CLR and then clicks the Set HV MUX button, all the switches are OFF. 2.5.2 HV2903 Bank Switching Mode Operation (STBY=1, MODE=0): In the bank switching mode, the user can turn on/off all the even switches (SW0, SW2,..., SW30) together and all the odd switches (SW1, SW3,..., SW31) together through the USB connected PC GUI software program: 1. 2. 3. 4. 5. 6. 7. 8. Click the Initialize HV MUX Controller button at the top left corner. Unselect STBY to set HV MUX in normal operation. Unselect MODE to set HV2903 in bank switching mode. Select EN to set HV2903 bank switching to active. If EN is not selected, all the switches are set to OFF. Select A/B to set all the even switches ON and all the odd switches OFF. Or, unselect A/B to set all the even switches OFF and all the odd switches ON. Click the Set HV MUX button. The GUI and the HV MUX Controller generate digital control signals according to the control data of the GUI that the user sets. Note: 2.6 The typical voltage and waveforms are provided in Appendix C. "Demo Board Waveforms". HV MUX CONTROLLER AND GUI MANUAL The HV MUX Controller generates control signals for HV2903 Analog Switch Evaluation Board. It features a Spartan-6 XC6SLX9 FPGA. 2.6.1 SETUP PROCEDURE 1. Before powering up the HV2903 Analog Switch Evaluation Board and the HV MUX Controller, please make sure that the latest GUI software is installed on the PC. 2. Start the GUI program. On the bottom left of the status bar, "Not Connected" will appear. 3. Connect the appropriate power supply and turn on the power switch to power-up the HV MUX Controller. The FPGA_OK(LD1) and DC_IN (LD2) on the HV MUX Controller should light up green. A "Connected" message should be displayed on the bottom left of the status bar of the GUI. 2017 Microchip Technology Inc. DS50002582A-page 18 HV2903 Analog Switch Evaluation Board User's Guide The HV MUX Controller is now ready to control the HV2903 Evaluation Board. OFF/ON Switch 12V/1A Power Connector DC_IN (LD2) J1 PWR_OK (LD4) USB_Fault (LD5) J2 Mini-USB Connector FPGA_OK (LD1) FIGURE 2-8: PROM JTAG HV MUX Controller(ADM00825) - Front View. 2.6.2 HV2903 Analog Switch Evaluation Board GUI Description Please see Figure 2-9 for a screen capture of the GUI. Every item indicated by circled numbers is explained after the figure. The selection of the check box, binary data in the DIN entry box and number in Pulses and TOFF entry box are just settings, and do not change the operation of HV2903 and built-in pulsers immediately. By clicking Set HV MUX, Start and Stop buttons, the control data set by the user in the GUI changes operation of HV2903 and turn on/off the built-in pulsers in the HV2903 Analog Switch Evaluation Board. Please see the explanation for each corresponding item. DS50002582A-page 19 2017 Microchip Technology Inc. 1 2 3 8 5 6 12 4 7 9 10 13 11 15 14 16 FIGURE 2-9: HV MUX Controller Board GUI Screen Capture. 1. Initialize HV MUX Controller: when clicked, the GUI starts the initialization of FPGA on the HV MUX Controller and the communication between the GUI and the HV MUX Controller. If there is no error, the user will see "Initialization Complete" in the message window. 2. STBY: when unselected, the STBY logic input is set to high and HV2903 is set to operate in normal mode. When selected, the STBY logic input is set to low and HV2903 is set to operate in standby mode to decrease power consumption. 3. MODE: when selected, the MODE logic input is set to high and HV2903 is set to operate in individual switching mode. When unselected, the MODE logic input is set to low and HV2903 is set to operate in bank switching mode. 4. DIN: 32-bit data entry boxes. Each bit in the boxes is related to each analog switch. If data entry is 1, the associated switch is set to ON. If data entry is 0, the associated switch is set to OFF. 5. CLR: when selected, the CLR logic input is set to high and all the switches of HV2903 are set to OFF. When unselected, the CLR logic input is set to low and the 32 switches of HV2903 are set to ON/OFF states, according to the DIN data entry. 6. EN: when selected, the EN logic input is set to high and HV2903 is set to active for bank switching mode. When unselected, the EN logic input is set to low and 2017 Microchip Technology Inc. DS50002582A-page 20 HV2903 Analog Switch Evaluation Board User's Guide all the switches are set to OFF. 7. A/B: when selected, the A/B logic input is set to high, all the even switches are set to ON and all the odd switches are set to OFF. When unselected, the A/B logic input is set to low, all the even switches are set to OFF and all the odd switches are set to ON. 8. Set HV MUX: when clicked, the data that the user sets at steps 2 to 7 is applied to HV2903. Please note that the 32-bit DIN data, 32 clocks and one negative LE pulse are applied one time only at the individual switching mode. 9. Pulses: entry box to define the number of pulses in the pulse train generated by the selected pulser. A pulse is a half of the cycle and the pulse train always starts the positive pulse first. 10. TOFF: entry box to define the OFF time between pulse trains generated by the selected pulser. 11. CH1/CH2: when checked, the selected pulser is set to generate 5 MHz pulse trains defined at steps 9 and 10 by the user. 12. Start: when clicked, the selected pulser starts generating the pulse train. 13. Stop: when clicked, the selected pulser stops generating the pulse train. 14. Message window: shows information from the GUI program. 15. Clear: when clicked, the messages in the message window are cleared. 16. Connection Status window: shows status of the connection between the GUI and the HV MUX Controller. 2.7 GENERATION OF PULSER OUTPUT AT SW8A OF HV MUX This section provides the simple step-by-step procedure to make the Ch1 pulser output at SW8A SMA connector by configuring the GUI. 1. Before powering up the HV2903 Analog Switch Evaluation Board, make sure that the latest GUI software is installed on the PC. 2. Start the GUI program. On the bottom left of the status bar, "Not Connected" will appear. 3. Power up the HV MUX Controller and HV2903 Analog Switch Evaluation Board as described in the previous section. The prompt "Connected" will appear in the status bar. 4. Click the Initialize HV MUX Controller button and check the message window to see "Initialization Complete". 5. Unselect STBY to set the HV2903 to operate normally. 6. Select MODE to set the HV2903 to individual switching mode. 7. Change the DIN to Bit 8 from 0 to 1 to set SW8 ON (DIN = 00000000 00000000 00000001 00000000). 8. Click the Set HV MUX button. HV2903 SW8 will turn on. 9. Change Pulses to 10. 10. Select CH1. 11. Click the Start button. The CH1 pulser will start to generate pulse trains with 10 pulses and 30 ms TOFF time. The Ch1 and Ch2 of the oscilloscope in Figure 2-10 show the SW8A and the SW9A. DS50002582A-page 21 2017 Microchip Technology Inc. CH1 50V/div CH2 50V/div ! ! ! ! ! ! !!! ! !!! ! ! ! !!! !! ! !!! !! !! ! ! !!! !! ! !!! ! ! ! !!! ! ! ! ! !! !! !!!!!! !! ! ! ! ! ! !! !! ! ! !!!!!!! ! !!! FIGURE 2-10: Typical Waveform of 2:1 MUX Connected to Pulser. 2017 Microchip Technology Inc. DS50002582A-page 22 HV2903 Analog Switch Evaluation Board User's Guide NOTES: DS50002582A-page 23 2017 Microchip Technology Inc. HV2903 ANALOG SWITCH EVALUATION BOARD USER'S GUIDE Chapter 3. PCB Design and Layout Notes 3.1 PCB LAYOUT TECHNIQUES FOR HV2903 The HV2903 is an analog switch to pass high-voltage, high-current and high-frequency pulses. The PCB design and layout are important to ensure the success of the implementation. 3.1.1 High-Voltage & High-Speed Grounding and Layout Techniques The center balls at the bottom of the HV2903 TFBGA package are internally connected to the IC's substrate (VSUB). These balls should be connected to GND, externally on the PCB. The designer must pay attention to the connecting traces, since the analog switches pass the high-voltage and high-speed signals. In particular, controlled impedance of 50to the ground plane and more trace spacing needs to be applied in this situation. High-speed PCB trace design practices are used for the HV2903 PCB layout. The internal circuitry of the HV2903 can operate at quite a high frequency, with the primary speed limitation being the load capacitance. Because of this high speed and the high transient currents that result from driving capacitive loads, the supply voltage bypass capacitors should be as close to the pins as possible. All the GND pins should have low inductance feed-through via connections that are connected directly to a solid ground plane at the second layer of the PCB. It is advisable to minimize the trace length to the ground plane, and to insert a ferrite bead in the power supply lead to the capacitor to prevent resonance in the power supply lines. Pay particular attention to minimizing trace lengths and using sufficient trace width to reduce inductance. Surface mount components are highly recommended. The use of a solid ground plane and good power and signal layout practices will prevent any possible parasitic capacitance coupling. The user should also ensure that the circulating ground return current from a capacitive load cannot react with common inductance to create noise voltages in the input logic circuitry. 3.1.2 Decoupling Capacitors Selection The VLL, VDD and VSS supply voltage rails can provide fast transient current. Therefore, they should have a low-impedance bypass capacitor at each of the chip's pins. Use a surface-mounted ceramic capacitor of 1.0 to 2.2 F capacitance with an appropriate voltage rating. The user needs to pay additional attention to what type of ceramic capacitor is selected for these bypass capacitors. The low impedance means low ESR/ESL impedance within the frequency bandwidth range of ultrasound pulses transmitted, including the very fast dV/dt of the pulse's rising and falling edges. A capacitor with low-temperature coefficient and low-voltage coefficient is also recommended. The type of X7R and X5R or other more advanced multilayer-ceramic types should be selected for these purposes. 2017 Microchip Technology Inc. DS50002582A-page 24 HV2903 ANALOG SWITCH EVALUATION BOARD USER'S GUIDE Appendix A. Schematic & Layouts A.1 INTRODUCTION This appendix contains the following schematics and layouts for the HV2903 Analog Switch Evaluation Board (ADM00795) and the HV MUX Controller Board (ADM00825) * HV2903 Analog Switch Evaluation Board (ADM00795): - ADM00795 - Schematic - ADM00795 - Top Silk - ADM00795 - Top Copper and Silk - ADM00795 - Top Copper - ADM00795 - Inner 1 - ADM00795 - Inner 2 - ADM00795 - Inner 3 - ADM00795 - Bottom Copper - ADM00795 - Bottom Copper and Silk - ADM00795 - Bottom Silk * HV MUX Controller Board (ADM00825): - ADM00825 - Schematic (Connection) - ADM00825 - Schematic (Power Supply) - ADM00825 - Schematic (USB to SPI) - ADM00825 - Schematic (Programmable Clock) - ADM00825 - Schematic (FPGA) - ADM00825 - Schematic (FPGA Decoupling Capacitors) - ADM00825 - Schematic (Connectors) - ADM00825 - Top Silk - ADM00825 - Top Copper and Silk - ADM00825 - Top Copper - ADM00825 - Inner 1 - ADM00825 - Inner 2 - ADM00825 - Inner 3 - ADM00825 - Inner 4 - ADM00825 - Bottom Copper - ADM00825 - Bottom Copper and Silk - ADM00825 - Bottom Silk 2017 Microchip Technology Inc. DS50002582A-page 25 ADM00795 - SCHEMATIC GND T3 SW8A T6 VDD GND VSS 1 2 3 0.1uF 25V 0603 J3 C26 C32 C33 C34 0.1uF 25V 0603 0.1uF 25V 0603 0.1uF 25V 0603 0.1uF 25V 0603 C35 C36 C37 C38 C39 0.1uF 25V 0603 0.1uF 25V 0603 0.1uF 25V 0603 0.1uF 25V 0603 0.1uF 25V 0603 VLL 4 6 GND GND VGP 2A GND T10 T11 16 1_B 1 1_DMP 4 OUTD D1 R5 GND 9 C15 U6 1 SN 2 GN 8 DN 7 DN 3 GP 4 SP 6 DP 5 DP J1 SW10A A3 SW11A A4 SW12A A5 12A SW13A A6 13A SW14A A7 14A 15A C8 C11 0.1uF 35V 0402 1uF 35V 0402 C21 1 uF 250V VNN 16 2_B 1 2_DMP 4 5 2 VDD 11 VH 10 VH GND GND PE INA U2 MD1822 OUTA INB OUTB INC OUTC IND OUTD 3 VSS 6 GND 7 VL 14 VL 17 PAD 15 GND VPP C22 1 uF 250V 12 SW16A A9 SW17A A10 SW18A A11 18A SW19A A12 19A SW20A A13 T16 U7 1 SN 2 GN 8 DN 7 DN 3 GP 4 SP 6 DP 5 DP 20A SW21A A14 21A SW22A F14 22A SW23A G14 SW24A H14 23A TC6320 DFN-8 D2 R6 SW25A J14 SW26A P14 26A SW27A P13 27A SW28A P12 SW24B 13 5 GND 8 Diode-MMBD3004BRM-300V GND 9 U8 C16 T12 T13 1 SN 2 GN 8 DN 7 DN 3 GP 4 SP 6 DP 5 DP 28A GND SW29A P11 29A SW30A P10 30A SW31A P9 A2 SW1B SW2A SW2B SW3A SW3B SW4A SW4B SW5A SW5B SW6A SW6B SW7A SW7B SW8A SW8B SW9A SW9B SW10A SW10B SW11A SW11B SW12A SW12B SW13A SW13B SW14A SW14B SW15A SW15B SW16A SW16B SW17A SW17B SW18A SW18B SW19A SW19B SW20A SW20B SW21A SW21B SW22A SW22B SW23A SW23B SW24A SW24B SW25A SW25B SW26A SW26B SW27A SW27B SW28A SW28B SW29A SW29B SW30A SW30B SW31A SW31B SW0B N7 SW1B N6 SW2B N5 SW3B 2B N4 SW4B 3B N3 SW5B 4B K2 SW6B 5B J2 SW7B 6B H2 SW8B 7B SW0B GND 1_A 1_B GND GND GND GND SW0A VLL B3 SW10B B4 SW11B 10B B5 SW12B 11B 0.1uF 35V 0402 U14 1 8 CE VDD 2 7 SO/SIO1 HOLD/SIO3 3 6 WP/SIO2 SCK 4 5 VSS SI/SIO0 R3 MISO 0R 0402 SST26VF016B VLL J29 CLK B1 B6 SW13B 12B B7 SW14B 13B B8 SW15B 14B B9 SW16B 15B B10 SW17B B11 SW18B B12 SW19B 18B B13 SW20B 19B B14 SW21B 20B F13 SW22B 21B G13 SW23B 22B H13 SW24B 23B GND GND J16 J8 J12 R4 R10 C9 49.9R 0603 1% 15pF 50V 0805 1k 1206 1% GND SW17A SW26B N13 SW27B 26B N12 SW28B 27B N11 SW29B 28B N10 SW30B 29B N9 SW31B 30B GND SW16A J19 J23 GND J25 N14 GND J26 R12 J27 C12 49.9R 0603 1% 1k 1206 1% 15pF 50V 0805 GND J13 R7 C5 49.9R 0603 1% R11 GND 15pF 50V 0805 R13 J28 R14 1k 1206 1% C17 49.9R 0603 1% GND 15pF 50V 0805 R15 1k 1206 1% GND GND T7 DIN/ABb D1 LEb/EN C1 SW16B CLK A1 DOUT GND SW17B J24 GND GND GND GND VLL LE/EN RGND RGND R17 GND 100R 0402 1% CLR B2 RGND CLR RGND SCK RGND R18 MOSI STBYb 100R 0402 1% D2 STBY RGND RGND GND MODE C2 RGND P2 P1 N2 DS50002582A-page 26 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 GND GND J10 J15 J6 J11 K14 K13 GND GND C14 C13 MODE GND SW24A SW25A N1 GND T22 J20 GND DIN/AB R19 4.7k 0402 1% J21 GND J13 C6 4.7k 0402 1% SW1A J17 G2 VLL CSB J22 31B DOUT R16 SW1B J18 GND LEb/EN MODE 2_B 2_DMP N8 31A TC6320 DFN-8 GND A8 SW0B SW1A DGND GND GND GND GND GND GND C1 D1 DG1 C2 D2 DG2 C3 D3 DG3 C4 D4 DG4 C5 D5 DG5 C6 D6 DG6 C7 D7 DG7 C8 D8 DG8 C9 D9 DG9 C10 D10 DG10 GND SW15A GND C4 0.1uF 35V 0402 K1 G1 GND VLL SW6A H1 11A TC6320 DFN-8 GND P3 SW7A 10A Diode-MMBD3004BRM-300V GND P4 SW5A SW9A SW8B 5 8 P5 SW4A SW8A 7A TC6320 DFN-8 13 CONN-6469169-1 GND 6A SW3A SW0A GND U13 E1 E5 F5 G5 H5 J5 K5 T20 T21 OUTC 6 DP 5 DP P6 VSS VSS VSS VSS VSS VSS VSS 1_DMP 2_A OUTB INC 3 GP 4 SP 5A P7 SW2A E13 E14 F1 L1 L2 L13 L14 DIN/ABb STBYb OUTA INB C20 1 uF 250V 8 DN 7 DN P8 SW1A VSS CLR CLK INA IND VPP U1 MD1822 12 T8 1 SN 2 GN VGP J2 MISO MOSI PE 5 4A U5 GND GND 15 GND 1_A 2_A T14 T15 3A C19 1 uF 250V VNN 2 VDD 11 VH 10 VH T9 T17 T18 T19 GND SCK CSB 1uF 35V 0402 3 VSS 6 GND 7 VL 14 VL 17 PAD C1 D1 DG1 C2 D2 DG2 C3 D3 DG3 C4 D4 DG4 C5 D5 DG5 C6 D6 DG6 C7 D7 DG7 C8 D8 DG8 C9 D9 DG9 C10 D10 DG10 0.1uF 35V 0402 CONN-6469169-1 A1 B1 BG1 A2 B2 BG2 A3 B3 BG3 A4 B4 BG5 A5 B5 BG4 A6 B6 BG6 A7 B7 BG7 A8 B8 BG8 A9 B9 BG9 A10 B10 BG10 C14 0.1uF 35V 0402 C3 J1 A1 B1 BG1 A2 B2 BG2 A3 B3 BG3 A4 B4 BG5 A5 B5 BG4 A6 B6 BG6 A7 B7 BG7 A8 B8 BG8 A9 B9 BG9 A10 B10 BG10 C7 SW0A VLL D13 D14 E2 F2 M1 M2 M13 M14 GND VDD VDD VDD VDD VDD VDD VDD VDD GND VLL GND GND 3 1 GND GND BAT54DW GND HDR-2.54 Male 1x5 C10 0805 330 pF 250V R8 2W 2.55k 1% GND D16 D15 B1100 1 2 3 4 5 J4 GND C27 0805 330 pF 250V R1 2W 2.55k 1% VDD GND C1 1 uF 250V 1 6 C25 0.1uF 25V 0603 T4 VNN BAT54DW GND J7 GND C31 GND D13 J14 J5 D14 B1100 T1 VLL SW9A J9 VLL C2 1 uF 250V GND VSS T5 VGP 4 VDD VPP T2 3 2017 Microchip Technology Inc. A.2 R9 2W 2.55k 1% GND C13 0805 330 pF 250V R2 2W 2.55k 1% GND C28 0805 330 pF 250V HV2903 Analog Switch Evaluation Board User's Guide A.3 ADM00795 - TOP SILK A.4 ADM00795 - TOP COPPER AND SILK DS50002582A-page 27 2017 Microchip Technology Inc. A.5 ADM00795 - TOP COPPER A.6 ADM00795 - INNER 1 2017 Microchip Technology Inc. DS50002582A-page 28 HV2903 Analog Switch Evaluation Board User's Guide A.7 ADM00795 - INNER 2 A.8 ADM00795 - INNER 3 DS50002582A-page 29 2017 Microchip Technology Inc. A.9 ADM00795 - BOTTOM COPPER A.10 ADM00795 - BOTTOM COPPER AND SILK 2017 Microchip Technology Inc. DS50002582A-page 30 HV2903 Analog Switch Evaluation Board User's Guide A.11 ADM00795 - BOTTOM SILK DS50002582A-page 31 2017 Microchip Technology Inc. 2017 Microchip Technology Inc. A.12 ADM00825 - SCHEMATIC (CONNECTION) FPGA01.SchDoc MUPB001_PWR.SchDoc USB_TO_SPI.SchDoc SPI_CSBAR SPI_SCK SPI_MOSI SPI_MISO CSBAR SCK MOSI MISO FPGA_RST SPI_RST USB_CONFIG FPGA_RST SPI_RST USB_CONFIG FPGA_RST SPI_RST USB_CONFIG EXT_INT FPGA_DONE EXT_INT FPGA_DONE EXT_INT FPGA_DONE GP8 PROGB_IN PROGB_IN GP4 GP7 GP4 GP7 GP4 GP7 CTRL_OEC CTRL_OED CTRL_OEB CTRL_OEC CTRL_OED CTRL_OEB CTRL_OEC CTRL_OED CTRL_OEB CTRL_SCK CTRL_CSB SDO CTRL_SDI CTRL_SCK CTRL_CSB SDO CTRL_SDI CTRL_SCK CTRL_CSB SDO CTRL_SDI CSBAR SCK MOSI MISO PROG_CLK.SchDoc 40MHz_N 40MHz_P 40MHz_QA1_N 40MHz_QA1_P 40MHz_N 40MHz_P CLK0_P CLK0_N CLK0_P CLK0_N CLK0_P CLK0_N CLK1_P CLK1_N CLK1_P CLK1_N CLK1_P CLK1_N CLK2_P CLK2_N CLK2_P CLK2_N CLK4 CLK3_P CLK3_N CLK5 Connector.SchDoc IO_2V5_0_P IO_2V5_0_N IO_2V5_1_P IO_2V5_1_N IO_2V5_0_P IO_2V5_0_N IO_2V5_1_P IO_2V5_1_N IO_2V5_0_P IO_2V5_0_N IO_2V5_1_P IO_2V5_1_N IO_2V5_2_P IO_2V5_2_N IO_2V5_3_P IO_2V5_3_N IO_2V5_4_P IO_2V5_4_N IO_2V5_5_P IO_2V5_5_N IO_2V5_2_P IO_2V5_2_N IO_2V5_3_P IO_2V5_3_N IO_2V5_4_P IO_2V5_4_N IO_2V5_5_P IO_2V5_5_N IO_2V5_2_P IO_2V5_2_N IO_2V5_3_P IO_2V5_3_N IO_2V5_4_P IO_2V5_4_N IO_2V5_5_P IO_2V5_5_N IO_2V5_6_P IO_2V5_6_N IO_2V5_7_P IO_2V5_7_N IO_2V5_8_P IO_2V5_8_N IO_2V5_9_P IO_2V5_9_N IO_2V5_6_P IO_2V5_6_N IO_2V5_7_P IO_2V5_7_N IO_2V5_8_P IO_2V5_8_N IO_2V5_9_P IO_2V5_9_N IO_2V5_6_P IO_2V5_6_N IO_2V5_7_P IO_2V5_7_N IO_2V5_8_P IO_2V5_8_N IO_2V5_9_P IO_2V5_9_N IO_2V5_10_P IO_2V5_10_N IO_2V5_11_P IO_2V5_11_N IO_2V5_12_P IO_2V5_12_N IO_2V5_13_P IO_2V5_13_N IO_2V5_14_P IO_2V5_14_N IO_2V5_10_P IO_2V5_10_N IO_2V5_11_P IO_2V5_11_N IO_2V5_12_P IO_2V5_12_N IO_2V5_13_P IO_2V5_13_N IO_2V5_14_P IO_2V5_14_N IO_2V5_10_P IO_2V5_10_N IO_2V5_11_P IO_2V5_11_N IO_2V5_12_P IO_2V5_12_N IO_2V5_13_P IO_2V5_13_N IO_2V5_14_P IO_2V5_14_N IO_3V3_1 IO_3V3_2 IO_3V3_3 IO_3V3_4 IO_3V3_5 IO_3V3_1 IO_3V3_2 IO_3V3_3 IO_3V3_4 IO_3V3_5 IO_3V3_1 IO_3V3_2 IO_3V3_3 IO_3V3_4 IO_3V3_5 CLK2_P CLK2_N CLK4 CLK4 CLK3_P CLK3_N CLK5 IO_2V5_15_P IO_2V5_15_N IO_2V5_16_P IO_2V5_16_N IO_2V5_17_P IO_2V5_17_N IO_2V5_18_P IO_2V5_18_N IO_2V5_19_P IO_2V5_19_N IO_2V5_20_P IO_2V5_20_N IO_2V5_21_P IO_2V5_21_N DS50002582A-page 32 IO_3V3_6_P IO_3V3_6_N IO_3V3_7_P IO_3V3_7_N IO_3V3_8_P IO_3V3_8_N IO_3V3_9_P IO_3V3_9_N IO_3V3_10_P IO_3V3_10_N IO_3V3_11_P IO_3V3_11_N IO_3V3_12_P IO_3V3_12_N IO_3V3_13_P IO_3V3_13_N IO_3V3_14_P IO_3V3_14_N IO_3V3_15 IO_3V3_16 IO_3V3_17 IO_2V5_15_P IO_2V5_15_N IO_2V5_16_P IO_2V5_16_N IO_2V5_17_P IO_2V5_17_N IO_2V5_18_P IO_2V5_18_N IO_2V5_19_P IO_2V5_19_N IO_2V5_20_P IO_2V5_20_N IO_2V5_21_P IO_2V5_21_N IO_3V3_6_P IO_3V3_6_N IO_3V3_7_P IO_3V3_7_N IO_3V3_8_P IO_3V3_8_N IO_3V3_9_P IO_3V3_9_N IO_3V3_10_P IO_3V3_10_N IO_3V3_11_P IO_3V3_11_N IO_3V3_12_P IO_3V3_12_N IO_3V3_13_P IO_3V3_13_N IO_3V3_14_P IO_3V3_14_N CLK2_P CLK2_N CLK4 IO_2V5_15_P IO_2V5_15_N IO_2V5_16_P IO_2V5_16_N IO_2V5_17_P IO_2V5_17_N IO_2V5_18_P IO_2V5_18_N IO_2V5_19_P IO_2V5_19_N IO_2V5_20_P IO_2V5_20_N IO_2V5_21_P IO_2V5_21_N IO_3V3_6_P IO_3V3_6_N IO_3V3_7_P IO_3V3_7_N IO_3V3_8_P IO_3V3_8_N IO_3V3_9_P IO_3V3_9_N IO_3V3_10_P IO_3V3_10_N IO_3V3_11_P IO_3V3_11_N IO_3V3_12_P IO_3V3_12_N IO_3V3_13_P IO_3V3_13_N IO_3V3_14_P IO_3V3_14_N IO_3V3_15 IO_3V3_16 IO_3V3_17 CLK3_P CLK3_N CLK5 U3 2 VIN 3 VIN R18 20BQ030P 1k 0603 5% POWER 2.5mm C47 C48 C49 10uF 35V 1206 10uF 35V 1206 10uF 35V 1206 LD2 C50 0.1uF 50V 0603 9 GREEN GND_D BOOST VIN D1 1 3 2 R19 GND_D 390R 0603 5% GND_D EN 1 SW 12 SW 13 SW 16 SW VFB 4 SGND 17 EP 14 PGND 15 PGND J6 10 C41 22000pF 50V 0603 PG 1 L1 D5V ON-POWER ON 2 TP1 XAL6060 R16 39k 0603 1% 5 C42 C43 C44 C45 C46 0.1uF 50V 0603 10uF 10V 0805 10uF 10V 0805 10uF 10V 0805 10uF 10V 0805 D2 30V Via_2.5x1.5 8 R21 8.66k 0603 1% GND_D GND_D SW1 1 GND_D 2 3 SLIDE SPDT GND_D D5V C51 C52 10uF 10V 0805 0.1uF 50V 0603 MCP172X ADJ DFN-8 1 8 VIN VOUT 2 VIN 7 ADJ 3 6 SHDN CDELAY 9 EP 5 4 PWRGD GND R23 10k 0603 5% 19.1k 0603 1% C53 C54 10uF 10V 0805 0.1uF 50V 0603 D3 30V Via_2.5x1.5 D5V C59 C60 10uF 10V 0805 0.1uF 50V 0603 MCP172X ADJ DFN-8 1 8 VIN VOUT 2 VIN 7 ADJ 3 6 SHDN CDELAY 9 EP 5 4 PWRGD GND U6 10k 0603 1% GND_D PG_1V2_VCCINT R17 TP2 R22 U4 PG_3V3_CLK 1V2_VCCINT D5V GND_D 3V3_VDD 69.8k 0603 1% R29 10k 0603 5% 10k 0603 5% PG_3V3_VDD R30 C61 C62 10uF 10V 0805 0.1uF 50V 0603 D4 30V 10k 0603 1% D5V GND_D R24 TP4 Via_2.5x1.5 R26 GND_D 3.6V (Supply to Ripple Blocker) D5V 2017 Microchip Technology Inc. C55 C56 10uF 10V 0805 0.1uF 50V 0603 GND_D MCP172X ADJ DFN-8 1 8 VIN VOUT 2 VIN 7 ADJ 3 6 SHDN CDELAY 9 EP 5 4 PWRGD GND D5V R27 390R 0603 5% U5 2V5_VDD R25 51k 0603 1% R28 GND_D D5V Via_2.5x1.5 C57 C58 10uF 10V 0805 0.1uF 50V 0603 10k 0603 1% D5 30V C63 C64 10uF 10V 0805 0.1uF 50V 0603 PG_3V3_CLK MCP172X ADJ DFN-8 1 8 VIN VOUT 2 VIN 7 ADJ 3 6 SHDN CDELAY 9 EP 5 4 PWRGD GND U7 3V3_CLK GND_D TP5 Via_2.5x1.5 R31 82k 0603 1% C65 10uF 10V 0805 R32 10.7k 0603 1% GND_D LD4 GREEN TP3 GND_D C66 0.1uF 50V 0603 D6 30V HV2903 Analog Switch Evaluation Board User's Guide DS50002582A-page 33 A.13 ADM00825 - SCHEMATIC (POWER SUPPLY) 2017 Microchip Technology Inc. A.14 ADM00825 - SCHEMATIC (USB TO SPI) 3V3_VDD R50 J7 USB_D+ USB_D- 3V3_VDD USB_DUSB_D+ 0 USB MINI-B Female 1 VBUS 2 D3 D+ 4 ID 5 GND C105 C104 4.7uF 16V 1206 0.1uF 25V 0603 GND_D 20 19 18 17 16 15 14 13 12 11 GP8 GP7 EXT_INT MISO USB_CONFIG SCK MCP2210 SSOP-20 1 VSS VDD 2 D+ OSC1 3 DOSC2 4 VUSB RST 5 GP8 GP0 6 GP7 GP1 7 GP6 GP2 8 MISO GP3 9 GP5 MOSI 10 SCK GP4 10k 0603 5% C106 4.7uF 16V 1206 0.1uF 25V 0603 GND_D X1 OSC1 OSC2 12MHz J10 J11 GND_D GND_D 2 3 GND_D C103 1 USB_CONFIG LED, ON- SUSPEND, OFF - ACTIVE CSBAR FPGA_DONE FPGA_RST SPI_RST MOSI GP4 GND_D U9 R51 GND_D J12 J13 GND_D GND_D 150R 0603 5% LD5 RED GND_D Ground Posts for Scope Probe ground DS50002582A-page 34 GND_D 3 0603 16V 0.1uF X2 XTAL-40MHz 1 C67 40MHz_N R20 100R 0603 1% GND_D MIC94325YMT-TR C107 C70 C71 C72 C73 10000pF 50V 0603 4.7uF 16V 0603 0.010uF 25V 0603 4700pF 50V 0603 10000pF 10000pF 10000pF 10000pF 10000pF 10000pF 50V 50V 50V 50V 50V 50V 0603 0603 0603 0603 0603 0603 C74 C75 C76 C77 C78 GND_D D7 30V CLK4 VDD GND_D GND_D VDDOCD 0603 16V 0.1uF C81 CLK1_P 4.7uF 16V 0603 R38 10k 0603 1% 1 VOUT 2 ADJ 3 GND MIC94325YMT-TR VDDOCD R37 VDDOAB R45 100k 0603 1% R46 1/10 W 78.7k 1% CTRL_OEC 100R 0603 1% CLK1_N C108 C83 C85 C86 C87 10000pF 50V 0603 4.7uF 16V 0603 0.010uF 25V 0603 4700pF 50V 0603 10000pF 10000pF 10000pF 50V 50V 50V 0603 0603 0603 C88 C91 C82 GND_D 0.1uF 16V 0603 D8 30V CTRL_OED GND_D GND_D C93 GND_D CLK3_P 0.1uF 16V 0603 R39 DNI 2017 Microchip Technology Inc. C96 4.7uF 16V 0603 R42 10k 0603 1% 1 VOUT 2 ADJ 3 GND MIC94325YMT-TR 0.1uF 16V 0603 VDDOCD C109 C97 C98 C99 C100 C101 10000pF 50V 0603 4.7uF 16V 0603 0.010uF 25V 0603 4700pF 50V 0603 10000pF 50V 0603 10000pF 10000pF 50V 50V 0603 0603 R48 1/10 W 78.7k 1% GND_D GND_D C102 D9 30V SM803004 VDD /QA1 QA1 VDDOA /QA2 QA2 VDDOA OEA1/2/3 /QB1 QB1 VSS OEB1/2/3 GND_D DNI 36 35 34 33 32 31 30 29 28 27 26 25 R34 0603 INF VDD R41 DNI INF GND_D CTRL_SCK CTRL_CSB SDO CTRL_SDI 0R R49 CLK2_N VDDOAB CLK2_P VDDOAB VDDOAB R36 DNI R35 INF 75k 0603 1% R52 0R 0603 GND_D GND_D CTRL_OEB C92 0.1uF 16V 0603 CLK0_N R40 100R 0603 1% C94 R47 100k 0603 1% VDDAP2 VDD QC1 VDDOC /QC1 QC2 /QC2 OEC1/2/3 QD1 VDDOD /QD1 VSS 0.1uF 16V 0603 C95 U12 6 VIN 5 VIN 4 EN U10 INF CLK3_N 3V3_CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 C84 U11 6 VIN 5 VIN 4 EN VDD GND_D R44 1/10 W 78.7k 1% 3V3_CLK GND_D VDDOAB 10k 0603 1% 100k 0603 1% 49 48 47 46 45 44 43 42 41 40 39 38 37 R33 VDD R43 EPAD VSS VSS /REFIN2 REFIN2 XTAL_OUT XTAL_XIN VDDI2 VDDI1 /REFIN1 REFIN1 VSS VDDAP1 4.7uF 16V 0603 CLK5 1 VOUT 2 ADJ 3 GND 40MHz_P 0.1uF 16V 0603 OED1/2/3 VDDOD QD3 /QD3 GND SCK CSB SDO SDI QB2 VDDOB /QB2 C69 U8 6 VIN 5 VIN 4 EN VDDOCD 3V3_CLK VDD C68 CLK0_P HV2903 Analog Switch Evaluation Board User's Guide DS50002582A-page 35 A.15 ADM00825 - SCHEMATIC (PROGRAMMABLE CLOCK) 3V3_VDD 4.7k 0603 5% EXT_INT INIT_B SCK MOSI MISO CSBAR FPGA_RST SPI_RST USB_CONFIG IO_3V3_17 GP4 GP7 IO_3V3_12_N IO_3V3_12_P IO_3V3_10_N IO_3V3_10_P IO_L66N_SCP0_0 IO_L66P_SCP1_0 IO_L65N_SCP2_0 IO_L65P_SCP3_0 IO_L64N_SCP4_0 IO_L64P_SCP5_0 IO_L63N_SCP6_0 IO_L63P_SCP7_0 IO_L62N_VREF_0 IO_L62P_0 IO_L37N_GCLK12_0 IO_L37P_GCLK13_0 IO_L36N_GCLK14_0 IO_L36P_GCLK15_0 IO_L35N_GCLK16_0 IO_L35P_GCLK17_0 IO_L34N_GCLK18_0 IO_L34P_GCLK19_0 IO_L4N_0 IO_L4P_0 IO_L3N_0 IO_L3P_0 IO_L2N_0 IO_L2P_0 IO_L1N_VREF_0 IO_L1P_HSWAPEN_0 M1 IO_3V3_8_N IO_3V3_8_P IO_3V3_16 DIN M0 51R CCLKR FPGA_DONE R3 3V3_VDD IO_3V3_6_N IO_3V3_6_P R2 4.7k 0603 5% 111 112 114 115 116 117 118 119 120 121 123 124 126 127 131 132 133 134 137 138 139 140 141 142 143 144 CTRL_OEB CTRL_OED CTRL_OEC CTRL_SDI CTRL_CSB CTRL_SCK IO_3V3_7_N IO_3V3_7_P IO_3V3_9_N IO_3V3_9_P 40MHz_N 40MHz_P IO_3V3_11_N IO_3V3_11_P IO_3V3_13_N IO_3V3_13_P IO_3V3_14_N IO_3V3_14_P IO_3V3_1 IO_3V3_2 IO_3V3_3 IO_3V3_4 IO_3V3_5 IO_3V3_15 SDO U1F PROG_B IO_L83N_VREF_3 IO_L83P_3 IO_L52N_3 IO_L52P_3 IO_L51N_3 IO_L51P_3 IO_L50N_3 IO_L50P_3 IO_L49N_3 IO_L49P_3 IO_L44N_GCLK20_3 IO_L44P_GCLK21_3 IO_L43N_GCLK22_IRDY2_3 IO_L43P_GCLK23_3 IO_L42N_GCLK24_3 IO_L42P_GCLK25_TRDY2_3 IO_L41N_GCLK26_3 IO_L41P_GCLK27_3 IO_L37N_3 IO_L37P_3 IO_L36N_3 IO_L36P_3 IO_L2N_3 IO_L2P_3 IO_L1N_VREF_3 IO_L1P_3 1 2 5 6 7 8 9 10 11 12 14 15 16 17 21 22 23 24 26 27 29 30 32 33 34 35 IO_2V5_0_N IO_2V5_0_P IO_2V5_1_N IO_2V5_1_P IO_2V5_2_N IO_2V5_2_P IO_2V5_4_N IO_2V5_4_P IO_2V5_3_N IO_2V5_3_P CLK0_N CLK0_P IO_2V5_16_N IO_2V5_16_P IO_2V5_18_N IO_2V5_18_P IO_2V5_20_N IO_2V5_20_P IO_2V5_6_N IO_2V5_6_P IO_2V5_5_N IO_2V5_5_P IO_2V5_7_N IO_2V5_7_P IO_2V5_21_N IO_2V5_21_P BANK 1 38 39 40 41 43 44 45 46 47 48 50 51 55 56 57 58 59 60 61 62 64 65 66 67 69 70 71 72 37 BANK 0 IO_L65N_CSO_B_2 IO_L65P_INIT_B_2 IO_L64N_D9_2 IO_L64P_D8_2 IO_L62N_D6_2 IO_L62P_D5_2 IO_L49N_D4_2 IO_L49P_D3_2 IO_L48N_RDWR_B_VREF_2 IO_L48P_D7_2 IO_L31N_GCLK30_D15_2 IO_L31P_GCLK31_D14_2 IO_L30N_GCLK0_USERCCLK_2 IO_L30P_GCLK1_D13_2 IO_L14N_D12_2 IO_L14P_D11_2 IO_L13N_D10_2 IO_L13P_M1_2 IO_L12N_D2_MISO3_2 IO_L12P_D1_MISO2_2 IO_L3N_MOSI_CSI_B_MISO0_2 IO_L3P_DO_DIN_MISO_MISO1_2 IO_L2N_CMPMOSI_2 IO_L2P_CMPCLK_2 IO_L1N_M0_CMPMISO_2 IO_L1P_CCLK_2 DONE_2 CMPCS_B_2 PROGRAM_B_2 BANK 3 R1 BANK 2 2017 Microchip Technology Inc. A.16 ADM00825 - SCHEMATIC (FPGA) IO_L74N_DOUT_BUSY_1 IO_L74P_AWAKE_1 IO_L47N_1 IO_L47P_1 IO_L46N_1 IO_L46P_1 IO_L45N_1 IO_L45P_1 IO_L43N_GCLK4_1 IO_L43P_GCLK5_1 IO_L42N_GCLK6_TRDY1_1 IO_L42P_GCLK7_1 IO_L41N_GCLK8_1 IO_L41P_GCLK9_IRDY1_1 IO_L40N_GCLK10_1 IO_L40P_GCLK11_1 IO_L34N_1 IO_L34P_1 IO_L33N_1 IO_L33P_1 IO_L32N_1 IO_L32P_1 IO_L1N_VREF_1 IO_L1P_1 74 75 78 79 80 81 82 83 84 85 87 88 92 93 94 95 97 98 99 100 101 102 104 105 OUT1 OUT2 IO_2V5_13_N IO_2V5_13_P IO_2V5_9_N IO_2V5_9_P IO_2V5_10_N IO_2V5_10_P CLK1_N CLK1_P IO_2V5_15_N IO_2V5_15_P IO_2V5_17_N IO_2V5_17_P IO_2V5_14_N IO_2V5_14_P IO_2V5_12_N IO_2V5_12_P IO_2V5_11_N IO_2V5_11_P IO_2V5_8_N IO_2V5_8_P IO_2V5_19_N IO_2V5_19_P U1E U1C U1D FPGA_DONE GND_D 3V3_VDD PUSHBUTTON TO FORCE THE RECONFIGURATION 122 VCCO_0 125 VCCO_0 135 VCCO_0 3V3_VDD 2V5_VDD FPGA JTAG **DNI (Do Not Install) 3 4 J4 PROGB_IN 0R TACT SPST0603 SW2 OUT1 106 TDO 107 TMS 109 TCK 110 TDI FPGA_TDO FPGA_TMS FPGA_TCK FPGA_TDI FPGA_TMS FPGA_TCK FPGA_TDO FPGA_TDI 73 HDR-2.54 Male 1x6 SUSPEND U1B GND_D 2 1 76 VCCO_1 86 VCCO_1 103 VCCO_1 J9 3V3_VDD 1 2 3 4 5 6 R5 PROG_B J8 OUT2 1 2 4.7k 0603 5% 1 3 13 25 49 54 68 77 91 96 108 113 130 136 2 R4 GND_D RF Coaxial SMA Female GND_D RF Coaxial SMA Female OUT1 OUT2 GND_D GND_D GND GND GND GND GND GND GND GND GND GND GND GND GND Default config set to Master Serial M(1:0) = 01 3V3_VDD 3V3_VDD D5V R6 R7 100R 100R 0603 GREEN DS50002582A-page 36 R14 4.7k 0603 5% 3 R15 0R **DNI 0603 CCLKR PROM_TDI PROM_TMS PROM_TCK R12 M1 M0 FPGA_DONE 330R 0603 5% Q1 1 BSS123 2 GND_D GND_D "DONE" LED R9 DIN LD1 4.7k 0603 5% 3V3_VDD R13 INIT_B FPGA_DONE 1V2_VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT 4.7k 22R U2 1 2 3 4 5 6 7 8 9 10 19 28 52 89 128 3V3_VDD U_FPGA_DECOUPLE FPGA_DECOUPLE.SchDoc 51R R11 2V5_VDD 4 VCCO_3 18 VCCO_3 31 VCCO_3 GND_D R8 R10 **DNI 0R 3V3_VDD 42 VCCO_2 63 VCCO_2 D0 (DNC) CLK TDI TMS TCK CF OE/RESET (DNC) CE VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX GND_D 3V3_VDD VCCJ VCCO VCCINT TDO (DNC) (DNC) (DNC) CEO (DNC) GND 20 19 18 17 16 15 14 13 12 11 PROM JTAG J5 PROM_TDO XCF04S-VOG20C 3V3_VDD 1 2 3 4 5 6 U1A PROM_TMS PROM_TCK PROM_TDO PROM_TDI HDR-2.54 Male 1x6 GND_D GND_D 20 36 53 90 129 For 1V2_VCCINT 1V2_VCCINT C3 100uF 6.3V TANT-B C4 47nF 16V 0603 C5 1000pF 50V 0603 C6 1000pF 50V 0603 C7 1000pF 50V 0603 C8 1000pF 50V 0603 C9 1000pF 50V 0603 GND_D For VCCO_1 For VCCO_0 For VCCAUX 2V5_VDD 3V3_VDD 3V3_VDD C10 33uF 10V TANT-B C13 47nF 16V 0603 C14 1000pF 50V 0603 C15 1000pF 50V 0603 GND_D C16 1000pF 50V 0603 C11 33uF 10V TANT-B C17 47nF 16V 0603 C18 1000pF 50V 0603 C19 1000pF 50V 0603 C20 1000pF 50V 0603 GND_D C12 33uF 10V TANT-B C21 C22 C23 C24 C37 C38 C39 C40 47nF 16V 0603 1000pF 50V 0603 1000pF 50V 0603 1000pF 50V 0603 GND_D For VCCO_2 3V3_VDD C27 33uF 10V TANT-B C30 47nF 16V 0603 C31 1000pF 50V 0603 C32 1000pF 50V 0603 For VCCO_3 For XCF04S 2V5_VDD 3V3_VDD 2017 Microchip Technology Inc. C28 GND_D 33uF 10V TANT-B GND_D C33 47nF 16V 0603 C34 1000pF 50V 0603 C35 1000pF 50V 0603 C36 1000pF 50V 0603 C29 33uF 10V TANT-B GND_D 47nF 16V 0603 1000pF 50V 0603 1000pF 50V 0603 1000pF 50V 0603 C25 1000pF 50V 0603 C26 1000pF 50V 0603 HV2903 Analog Switch Evaluation Board User's Guide DS50002582A-page 37 A.17 ADM00825 - SCHEMATIC (FPGA DECOUPLING CAPACITORS) 2017 Microchip Technology Inc. A.18 ADM00825 - SCHEMATIC (CONNECTORS) PWR5V0 C1 33uF 10V TANT-B D5V PWR5V0 C90 C2 33uF 10V TANT-B 0.1uF 25V 0603 J1 GND_D A1 B1 BG1 A2 B2 BG2 A3 B3 BG3 A4 B4 BG5 A5 B5 BG4 A6 B6 BG6 A7 B7 BG7 A8 B8 BG8 A9 B9 BG9 A10 B10 BG10 IO_2V5_1_P IO_2V5_1_N IO_2V5_3_P IO_2V5_3_N IO_2V5_5_P IO_2V5_5_N IO_2V5_7_P IO_2V5_7_N IO_2V5_9_P IO_2V5_9_N IO_2V5_11_P IO_2V5_11_N IO_2V5_13_P IO_2V5_13_N IO_3V3_1 IO_3V3_2 IO_3V3_5 CLK4 D5V C89 0.1uF 25V 0603 J2 GND_D IO_2V5_0_P IO_2V5_0_N C1 D1 DG1 C2 D2 DG2 C3 D3 DG3 C4 D4 DG4 C5 D5 DG5 C6 D6 DG6 C7 D7 DG7 C8 D8 DG8 C9 D9 DG9 C10 D10 DG10 IO_2V5_2_P IO_2V5_2_N IO_2V5_16_P IO_2V5_16_N IO_2V5_4_P IO_2V5_4_N IO_2V5_18_P IO_2V5_18_N IO_2V5_6_P IO_2V5_6_N IO_2V5_20_P IO_2V5_20_N IO_2V5_8_N IO_2V5_8_P IO_3V3_6_P IO_3V3_6_N IO_2V5_10_P IO_2V5_10_N IO_3V3_8_P IO_3V3_8_N IO_2V5_12_P IO_2V5_12_N IO_3V3_10_P IO_3V3_10_N IO_2V5_14_N IO_2V5_14_P IO_3V3_12_P IO_3V3_12_N IO_3V3_3 IO_3V3_4 IO_3V3_14_P IO_3V3_14_N CLK2_P CLK2_N IO_3V3_17 CLK5 A1 B1 BG1 A2 B2 BG2 A3 B3 BG3 A4 B4 BG5 A5 B5 BG4 A6 B6 BG6 A7 B7 BG7 A8 B8 BG8 A9 B9 BG9 A10 B10 BG10 CONN-1469028 DS50002582A-page 38 GND_D IO_2V5_15_P IO_2V5_15_N C1 D1 DG1 C2 D2 DG2 C3 D3 DG3 C4 D4 DG4 C5 D5 DG5 C6 D6 DG6 C7 D7 DG7 C8 D8 DG8 C9 D9 DG9 C10 D10 DG10 IO_2V5_17_P IO_2V5_17_N IO_2V5_19_P IO_2V5_19_N IO_2V5_21_P IO_2V5_21_N IO_3V3_7_P IO_3V3_7_N IO_3V3_9_P IO_3V3_9_N IO_3V3_11_P IO_3V3_11_N IO_3V3_13_P IO_3V3_13_N IO_3V3_15 IO_3V3_16 CLK3_P CLK3_N CONN-1469028 GND_D GND_D GND_D HV2903 Analog Switch Evaluation Board User's Guide A.19 ADM00825 - TOP SILK A.20 ADM00825 - TOP COPPER AND SILK DS50002582A-page 39 2017 Microchip Technology Inc. A.21 ADM00825 - TOP COPPER A.22 ADM00825 - INNER 1 2017 Microchip Technology Inc. DS50002582A-page 40 HV2903 Analog Switch Evaluation Board User's Guide A.23 ADM00825 - INNER 2 A.24 ADM00825 - INNER 3 DS50002582A-page 41 2017 Microchip Technology Inc. A.25 ADM00825 - INNER 4 A.26 ADM00825 - BOTTOM COPPER 2017 Microchip Technology Inc. DS50002582A-page 42 HV2903 Analog Switch Evaluation Board User's Guide A.27 ADM00825 - BOTTOM COPPER AND SILK A.28 ADM00825 - BOTTOM SILK DS50002582A-page 43 2017 Microchip Technology Inc. HV2903 ANALOG SWITCH EVALUATION BOARD USER'S GUIDE Appendix B. Bill of Materials B.1 HV2903 ANALOG SWITCH EVALUATION BOARD TABLE B-1: Qty. BILL OF MATERIALS (BOM) Reference Description Manufacturer Part Number 6 C1, C2, C19, C20, C21, C22 Capacitor TDK Corporation C4532X7T2E105M250KA 4 C10, C13, C27, C28 Capacitor Murata Manufacturing Co., Ltd. GCM21A7U2E331JX01D 2 C15, C16 Capacitor-Array-10nF AVX Corporation W3A41C103MAT2A 11 C25, C26, C31, C32, C33, C34, C35, C36, C37, C38, C39 Capacitor Cal-Chip Electronics Inc. GMC10Y5V104Z25NTLF 7 C3, C4, C6, C7, C8, C11, C14 Capacitor TDK Corporation CGA2B3X7R1V104K050BB 4 C5, C9, C12, C17 Capacitor Panasonic(R) - ECG ECU-V1H150JCN 2 D1, D2 MMBD3004BRM-300V Diodes Incorporated(R) MMBD3004BRM-7-F 2 D13, D16 2 D14, D15 DIO SCTKY B1100 790mV 1A 70V DO-214AC_SMA 2 J1, J2 CONN HEADER 40POS TE Connectivity, Ltd. 2ROW R/A HM-ZD TIN 6469169-1 1 J3 -- Samtec, Inc. TSW-103-07-T-S 1 J4 -- Samtec, Inc. TSW-105-07-S-S 13 J5, J6, J7, J11, J8, J12, J13, J16, J25, J26, J27, J28, J29 -- FCI 77311-118-02LF 12 J9, J10, J14, J15, J17, CONN SMA J18, J19, J20, J21, J22, J23, J24 TE Connectivity, Ltd. 5-1814832-1 1 PCB HV2903 Analog Switch Evaluation Board - Printed Circuit Board Microchip Technology Inc. 04-10599 4 R1, R2, R8, R9 Resistor-2.55K 2W Panasonic(R) - ECG ERJ-1TNF2551U 1 R16, R19 Resistor Yageo Corporation RC0402JR-074K7L 5 R17, R18 Resistor Panasonic(R) - ECG -- 1 R3 Resistor Yageo Corporation RC0402JR-070RL 4 R4, R10, R12, R14 Resistor Vishay Intertechnology, Inc. CRCW060349R9FKEAHP 2 R5, R6 RES 4.99OHM 1/16W SMD0805 Stackpole Electronics, Inc. RMCF0805FT4R99 4 R7, R11, R13, R15 Resistor Yageo Corporation RC1206FR-071KL Note 1: Diodes Incorporated(R) Diodes Incorporated(R) BAT54DW-7FDICT-ND B1100-13-F The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components. 2017 Microchip Technology Inc. DS50002582A-page 44 HV2903 Analog Switch Evaluation Board User's Guide TABLE B-1: Qty. BILL OF MATERIALS (BOM) (CONTINUED) Reference Description Manufacturer Part Number 12 T24, T25, T26, T27, T28, T29, T30, T31, T32, T33, T34, T35, T36 Test Point -- -- 2 U1, U2 MD1822 Microchip Technology Inc. MD1822K6-G 1 U13 HV2903 Microchip Technology Inc. HV2903/AHA 1 U14 SQI Serial Flash Micron Technology Inc. N25Q128A13ESE40E 4 U5, U6, U7, U8 TC6320 DFN-8 Microchip Technology Inc. TC6320K6-G Note 1: B.2 The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components. HV MUX CONTROLLER BOARD TABLE B-2: Qty. BILL OF MATERIALS (BOM) Reference Description Manufacturer Part Number 8 C1, C10, C11, C12, C27, C28, C29, C90 CAP TANT 33uF 10V 10% 1.4Ohm SMD B KEMET T494B336K010AT 2 C103, C105 CAP CER 4.7uF 16V 10% X7R SMD 1206 KEMET C1206C475K4RACTU 4 C2, C89, C104, C106 CAP CER 0.1uF 25V 10% X7R SMD 0603 Murata Manufacturing Co., Ltd. GRM188R71E104KA01D 1 C3 CAP TANT 100uF 6.3V 10% 400mOhm SMD B AVX Corporation TPSB107K006R0400 7 C4, C13, C17, C21, C30, C33, C37 CAP CER 47nF 16V 10% X7R Murata SMD 0603 Manufacturing Co., Ltd. GRM188R71C473KA01D 1 C41 CAP CER 22000pF 50V 5% X7R SMD 0603 AVX Corporation 06035C223JAT2A 10 C42, C50, C52, C54, C56, C58, C60, C62, C64, C66 CAP CER 0.1uF 50V 20% X7R SMD 0603 TDK Corporation C1608X7R1H104M 12 C43, C44, C45, C46, C51, C53, C55, C57, C59, C61, C63, C65 CAP CER 10uF 10V 10% X7R Murata SMD 0805 Manufacturing Co., Ltd. GRM21BR71A106KE51 L 3 C47, C48, C49 CAP CER 10uF 35V 10% X5R Taiyo Yuden Co., Ltd. SMD 1206 GMK316BJ106KL-T 24 C5, C6, C7, C8, C9, C14, C15, C16, C18, C19, C20, C22, C23, C24, C25, C26, C31, C32, C34, C35, C36, C38, C39, C40 CAP CER 1000pF 50V 10% X7R SMD 0603 NIC Components Corp. NMC0603X7R102K50T RPF 8 C67, C68, C81, C82, C92, C93, C94, C95 CAP CER 0.1uF 16V 10% X7R SMD 0603 Samsung Electro-Mechanics America, Inc. CL10B104KO8NNNC 9 C69, C70, C83, C84, C96, C97,107,108,109 CAP CER 4.7uF 16V 10% X5R SMD 0603 TDK Corporation C1608X5R1C475K080 AC 3 C71, C85, C98 CAP CER 0.010uF 25V 10% X7R SMD 0603 Yageo Corporation CC0603KRX7R8BB103 Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components. DS50002582A-page 45 2017 Microchip Technology Inc. TABLE B-2: Qty. BILL OF MATERIALS (BOM) (CONTINUED) Reference Description Manufacturer Part Number 3 C72, C86, C99 CAP CER 4700pF 50V 10% X7R SMD 0603 KEMET C0603C472K5RACTU 12 C73, C74, C75, C76, C77, C78, C87, C88, C91, C100, C101, C102 CAP CER 10000PF 50V 10% X7R 0603 AVX Corporation 06035C103KAT2A 1 D1 DIO SCTKY 20BQ030P 470mV 2A 30V DO-214AA_SMB ON Semiconductor(R) MBRS130LT3G 8 D2, D3, D4, D5, D6, D7, D8, D9 DIODE SCHOTTKY 30V 200MA SOD523 Micro Commercial Components BAT54WX-TP 2 J1, J2 CONN RCPT 40POS 2ROW RT ANG T/H TE Connectivity -- 1469028-1 4 J10, J11, J12, J13 CONN PC PIN CIRC 0.030DIA GOLD Mill-Max Mfg. Corporation 3132-0-00-15-00-00-080 2 J4, J5 CON HDR-2.54 Male 1x6 Tin 5.84MH TH VERT Sullins Connector Solutions PEC06SAAN 1 J6 CON POWER 2.5mm 5.5mm SWITCH TH R/A CUI Inc. PJ-002B 1 J7 CON USB MINI-B Female SMD R/A Hirose Electric Co., Ltd. UX60SC-MB-5ST(80) 2 J8, J9 CON RF Coaxial SMA Female TE Connectivity, Ltd. 2P TH VERT 5-1814832-1 1 L1 4.7uH 11A Inductor Coilcraft XAL6060-472MEB 3 LD1, LD2, LD4 DIO LED GREEN 2.2V 25mA 15mcd Clear SMD 0603 Kingbright Electronic Co., Ltd. APT1608SGC 1 LD5 DIO LED RED 2V 25mA 104mcd Diffuse SMD 0603 OSRAM Opto LS Semiconductors GmbH. Q976-NR-1-0-20-R18 1 PCB HV MUX Controller Board - Printed Circuit Board Microchip Technology Inc. 04-10636 1 Q1 TRANS FET N-CH BSS123 100V 170mA 300mW SOT-23-3 Diodes Incorporated(R) BSS123-7-F 6 R1, R2, R4, R11, R13, R14 RES TKF 4.7k 5% 1/10W SMD 0603 Panasonic(R) - ECG ERJ-3GEYJ472V 1 R12 RES MF 330R 5% 1/16W SMD 0603 Panasonic(R) - ECG ERA-V33J331V 1 R16 RES TKF 39k 1% 1/10W SMD Panasonic(R) - ECG 0603 ERJ-3EKF3902V 1 R17 RES TKF 19.1k 1% 1/10W SMD 0603 Panasonic(R) - ECG ERJ-3EKF1912V 1 R18 RES TKF 1k 5% 1/10W SMD 0603 Panasonic(R) - ECG ERJ-3GEYJ102V 2 R19, R27 RES TKF 390R 5% 1/10W SMD 0603 Panasonic(R) - ECG ERJ-3GEYJ391V 3 R20, R37, R40 RES TKF 100R 1% 1/10W SMD 0603 Panasonic(R) - ECG ERJ-3EKF1000V 1 R21 RES TKF 8.66k 1% 1/10W SMD 0603 Yageo Corporation RC0603FR-078K66L Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components. 2017 Microchip Technology Inc. DS50002582A-page 46 HV2903 Analog Switch Evaluation Board User's Guide TABLE B-2: Qty. BILL OF MATERIALS (BOM) (CONTINUED) Reference Description Manufacturer Part Number 6 R22, R28, R29, R33, R38, R42 RES TF 10k 1% 1/8W SMD 0603 4 R23, R24, R30, R50 RES TKF 10k 5% 1/10W SMD Panasonic(R) - ECG 0603 ERJ-3GEYJ103V 1 R25 RES TKF 51k 1% 1/10W SMD Panasonic(R) - ECG 0603 ERJ-3EKF5102V 1 R26 RES TKF 69.8k 1% 1/10W SMD 0603 Panasonic(R) - ECG ERJ-3EKF6982V 2 R3, R8 RES TKF 51R 5% 1/10W SMD Panasonic(R) - ECG 0603 ERJ-3GEYJ510V 1 R31 RES TKF 82K 1% 1/10W SMD Panasonic(R) - ECG 0603 ERJ-3EKF8202V 1 R32 RES TKF 10.7k 1% 1/10W SMD 0603 Panasonic(R) - ECG ERJ-3EKF1072V 4 R34, R35, R39, R41 RES TKF 150R 1% 1/10W SMD 0603 Stackpole Electronics, Inc. RMCF0603FT150R 1 R36 RES TKF 75k 1% 1/10W SMD Panasonic(R) - ECG 0603 3 R43,R45,R47 RES TKF 100k 1% 1/10W SMD 0603 Panasonic(R) - ECG -- 3 R44, R46, R48 RES 78.7k 1% 1/10W SMD 0603 Yageo Corporation RC0603FR-0778K7L 2 R49,R52 RES SMD 0.0OHM JUMPER Panasonic(R) - ECG 1/10W 0603 ERJ-3GEY0R00V 3 R5, R10, R15 RES TKF 0R 1/10W SMD 0603 NIC Components Corp. NRC06Z0TRF 1 R51 RES TKF 150R 5% 1/10W SMD 0603 Panasonic(R) - ECG ERJ-3GEYJ151V 2 R6, R7 RES TKF 100R 5% 1/10W SMD 0603 Vishay Intertechnology, Inc. CRCW0603100RJNEA 1 R9 RES TKF 22R 5% 1/10W SMD Panasonic(R) - ECG 0603 1 SW1 SWITCH SLIDE SPDT MINI 50V 0.5A G4050X-R TH Jameco(R) Electronics G4050X-R 1 SW2 SWITCH TACT SPST 12V 50mA TL3301NF160QG/TR SMD E-Switch(R), Inc. TL3301NF260QG/TR 1 U1 IC FPGA 102 I/O 144TQFP Xilinx Inc. XC6SLX9-2TQG144C 1 U10 FLEXIBLE ULTRA-LOW JITTER CLOCK GENERATOR Microchip Technology Inc. SM803234 1 U2 IC PROM SRL FOR 4M GATE Xilinx Inc. XCF04SVOG20C 1 U3 3A BUCK 5V QFN-16 TS30013-M000QFNR 4 U4, U5, U6, U7 MCHP ANALOG LDO 0.8V-5V Microchip MCP1727T-ADJE/MF DFN-8 Technology Inc. MCP1727-ADJE/MF 3 U8, U11, U12 Adjustable LDO ripple blocker Microchip Technology Inc. MIC94325YMT-TR 1 U9 MCHP INTERFACE USB SPI MCP2210-I/SS SSOP-20 Microchip Technology Inc. MCP2210T-I/SS Note 1: Vishay Beyschlag MCT06030C1002FP50 0 ERJ-3EKF7502V ERJ-3GSYJ220V Semtech Corporation The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components. DS50002582A-page 47 2017 Microchip Technology Inc. TABLE B-2: Qty. BILL OF MATERIALS (BOM) (CONTINUED) Reference Description Manufacturer Part Number Murata Manufacturing Co., Ltd. CSTCE12M0G15L99-R 0 1 X1 RESONATOR 12MHz 0.1% SMD CSTCE-G 1 X2 40 MHz 30ppm Crystal 12pF TXC Corporation 40 Ohm -20C ~ 70C Surface Mount 4-SMD Note 1: 7B-40.000MAAE-T The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components. 2017 Microchip Technology Inc. DS50002582A-page 48 HV2903 Analog Switch Evaluation Board User's Guide NOTES: DS50002582A-page 49 2017 Microchip Technology Inc. HV2903 ANALOG SWITCH EVALUATION BOARD USER'S GUIDE Appendix C. Demo Board Waveforms C.1 BOARD TYPICAL WAVEFORMS Ch1 5V/div 1_A Ch2 5V/div 1_B Ch3 5V/div 1_DMP CH4 1V/div Ch1 Pulser Output FIGURE C-1: 5 MHz 4 Pulses Ch1 Pulser Input and Output When All SW OFF. Ch1 100V/div SW8A (SW8 ON) Ch2 5V/div SW9A (SW9 OFF) Ch3 100V/div SW24A (SW24 ON) Ch4 5V/div SW25A (SW25 OFF) FIGURE C-2: 5 MHz 10 Pulses, VPP/VNN = 100V, VDD/VSS = 6V, VGP = 10V, 330 pF//2.5 K Load. 2017 Microchip Technology Inc. DS50002582A-page 50 HV2903 Analog Switch Evaluation Board User's Guide DS50002582A-page 51 2017 Microchip Technology Inc. Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Australia - Sydney Tel: 61-2-9868-6733 India - Bangalore Tel: 91-80-3090-4444 China - Beijing Tel: 86-10-8569-7000 India - New Delhi Tel: 91-11-4160-8631 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Chengdu Tel: 86-28-8665-5511 India - Pune Tel: 91-20-4121-0141 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 China - Chongqing Tel: 86-23-8980-9588 Japan - Osaka Tel: 81-6-6152-7160 Finland - Espoo Tel: 358-9-4520-820 China - Dongguan Tel: 86-769-8702-9880 Japan - Tokyo Tel: 81-3-6880- 3770 China - Guangzhou Tel: 86-20-8755-8029 Korea - Daegu Tel: 82-53-744-4301 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 China - Hangzhou Tel: 86-571-8792-8115 Korea - Seoul Tel: 82-2-554-7200 China - Hong Kong SAR Tel: 852-2943-5100 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 China - Nanjing Tel: 86-25-8473-2460 Malaysia - Penang Tel: 60-4-227-8870 China - Qingdao Tel: 86-532-8502-7355 Philippines - Manila Tel: 63-2-634-9065 China - Shanghai Tel: 86-21-3326-8000 Singapore Tel: 65-6334-8870 China - Shenyang Tel: 86-24-2334-2829 Taiwan - Hsin Chu Tel: 886-3-577-8366 China - Shenzhen Tel: 86-755-8864-2200 Taiwan - Kaohsiung Tel: 886-7-213-7830 Israel - Ra'anana Tel: 972-9-744-7705 China - Suzhou Tel: 86-186-6233-1526 Taiwan - Taipei Tel: 886-2-2508-8600 China - Wuhan Tel: 86-27-5980-5300 Thailand - Bangkok Tel: 66-2-694-1351 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 China - Xian Tel: 86-29-8833-7252 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 DS50002582A-page 52 China - Xiamen Tel: 86-592-2388138 China - Zhuhai Tel: 86-756-3210040 Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-67-3636 Germany - Karlsruhe Tel: 49-721-625370 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 Italy - Padova Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7289-7561 Poland - Warsaw Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 2017 Microchip Technology Inc. 10/25/17