2017 Microchip Technology Inc. DS50002582A
HV2903
Analog Switch
Evaluation Board
Users Guide
DS50002582A-page 2 2017 Microchip Technology Inc.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2017, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
ISBN: 978-1-5224-2444-4
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
HV2903
ANALOG SWITCH
EVALUATION BOARD
2017 Microchip Technology Inc. DS50002582A-page 3
Table of Contents
Preface ........................................................................................................................... 6
Introduction............................................................................................................ 6
Document Layout .................................................................................................. 6
Conventions Used in this Guide ............................................................................ 7
Warranty Registration............................................................................................ 7
Recommended Reading........................................................................................ 8
The Microchip Web Site ........................................................................................ 8
Customer Support ................................................................................................. 8
Document Revision History ................................................................................... 8
Chapter 1. Product Overview
1.1 Introduction ..................................................................................................... 9
1.2 HV2903 IC - Description ................................................................................. 9
1.3 HV2903 Analog Switch Evaluation Board - Features ..................................... 9
1.4 HV2903 Analog Switch Evaluation Board - Functional Description ............... 9
1.5 HV2903 Analog Switch Evaluation Board Technical Kit ............................... 11
1.6 What the HV2903 Analog Switch Evaluation Board Kit Includes ................. 12
Chapter 2. Installation and Operation
2.1 Getting Started ............................................................................................. 13
2.2 HV MUX GUI Installation............................................................................... 13
2.3 Setup Procedure .......................................................................................... 16
2.4 Interface Connections .................................................................................. 18
2.5 Testing the HV2903 Analog Switch Evaluation Board ................................. 19
2.6 HV MUX Controller Board and GUI Manual ................................................. 19
2.7 Generation of Pulser Output at SW8A of HV2903 ....................................... 22
Chapter 3. PCB Design and Layout Notes
3.1 PCB Layout Techniques for HV2903 ........................................................... 25
Appendix A. Schematic & Layouts
A.1 Introduction .................................................................................................. 26
A.2 ADM00795 - Schematic ............................................................................... 27
A.3 ADM00795 - Top Silk ................................................................................... 28
A.4 ADM00795 - Top Copper and Silk ............................................................... 28
A.5 ADM00795 - Top Copper ............................................................................. 29
A.6 ADM00795 - Inner 1 ..................................................................................... 29
A.7 ADM00795 - Inner 2 ..................................................................................... 30
A.8 ADM00795 - Inner 3 ..................................................................................... 30
A.9 ADM00795 - Bottom Copper ........................................................................ 31
2017 Microchip Technology Inc. DS50002582A-page 4
A.10 ADM00795 - Bottom Copper and Silk ........................................................ 31
A.11 ADM00795 - Bottom Silk ............................................................................ 32
A.12 ADM00825 - Schematic (Connection) ....................................................... 33
A.13 ADM00825 - Schematic (Power Supply) ................................................... 34
A.14 ADM00825 - Schematic (USB to SPI) ....................................................... 35
A.15 ADM00825 - Schematic (Programmable Clock) ........................................ 36
A.16 ADM00825 - Schematic (FPGA) ................................................................ 37
A.17 ADM00825 - Schematic (FPGA Decoupling Capacitors) ........................... 38
A.18 ADM00825 - Schematic (Connectors) ....................................................... 39
A.19 ADM00825 - Top Silk ................................................................................. 40
A.20 ADM00825 - Top Copper and Silk ............................................................. 40
A.21 ADM00825 - Top Copper ........................................................................... 41
A.22 ADM00825 - Inner 1 ................................................................................... 41
A.23 ADM00825 - Inner 2 ................................................................................... 42
A.24 ADM00825 - Inner 3 ................................................................................... 42
A.25 ADM00825 - Inner 4 ................................................................................... 43
A.26 ADM00825 - Bottom Copper ...................................................................... 43
A.27 ADM00825 - Bottom Copper and Silk ........................................................ 44
A.28 ADM00825 - Bottom Silk ............................................................................ 44
Appendix B. Bill of Materials
B.1 HV2903 Analog Switch Evaluation Board .................................................... 45
B.2 HV MUX Controller Board.............................................................................. 46
Appendix C. Demo Board Waveforms
C.1 Board Typical Waveforms ............................................................................ 51
Worldwide Sales and Service .................................................................................... 52
HV2903
ANALOG SWITCH
EVALUATION BOARD
USERS GUIDE
2017 Microchip Technology Inc. DS50002582A-page 5
Preface
INTRODUCTION
This chapter contains general information that will be useful to know before using the
HV2903 Analog Switch Evaluation Board. Items discussed in this chapter include:
Document Layout
Conventions Used in this Guide
Recommended Reading
The Microchip Web Site
Customer Support
Document Revision History
DOCUMENT LAYOUT
This document describes how to use the HV2903 Analog Switch Evaluation Board as
a development tool to evaluate the HV2903 No High-Voltage Bias, Low Harmonic
Distortion, 32-Channel, High-Voltage Analog Switch IC. The user’s guide layout is as
follows:
Chapter 1. “Product Overview” – Important information about the HV2903 Ana-
log Switch Evaluation Board.
Chapter 2. “Installation and Operation” – This chapter includes a detailed
description of each function of the demonstration board and instructions for how to
begin using the HV2903 Analog Switch Evaluation Board.
Chapter 3. “PCB Design and Layout Notes” – This chapter explains important
points of the PCB design and layout of HV2903 Analog Switch Evaluation Board.
Appendix A. “Schematic & Layouts” – Shows the schematic and PCB layout
diagrams for the HV2903 Analog Switch Evaluation Board and the HV MUX
Controller Board.
Appendix B. “Bill of Materials” – Lists the parts used to build the HV2903 Ana-
log Switch Evaluation Board and the HV MUX Controller Board.
Appendix C. “Demo Board Waveforms” – Describes the various demo wave-
forms for the HV2903 Analog Switch Evaluation Board.
NOTICE TO CUSTOMERS
All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.
Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.
For the most up-to-date information on development tools, see the www.microchip.com on
line help. Select the Help menu, and then Topics to open a list of available online help files.
Preface
2017 Microchip Technology Inc. DS50002582A-page 6
CONVENTIONS USED IN THIS GUIDE
This manual uses the following documentation conventions:
DOCUMENTATION CONVENTIONS
Description Represents Examples
Arial font:
Italic characters Referenced books MPLAB® IDE User’s Guide
Emphasized text ...is the only compiler...
Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or
dialog
“Save project before build”
Underlined, italic text with
right angle bracket
A menu path File>Save
Bold characters A dialog button Click OK
A tab Click the Power tab
N‘Rnnnn A number in verilog format,
where N is the total number of
digits, R is the radix and n is a
digit.
4‘b0010, 2‘hF1
Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier New font:
Plain Courier New Sample source code #define START
Filenames autoexec.bat
File paths c:\mcc18\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants 0xFF, ‘A’
Italic Courier New A variable argument file.o, where file can be
any valid filename
Square brackets [ ] Optional arguments mcc18 [options] file
[options]
Curly brackets and pipe
character: { | }
Choice of mutually exclusive
arguments; an OR selection
errorlevel {0|1}
Ellipses... Replaces repeated text var_name [,
var_name...]
Represents code supplied by
user
void main (void)
{ ...
}
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 7 2017 Microchip Technology Inc.
RECOMMENDED READING
This user’s guide describes how to use the HV2903 Analog Switch Evaluation Board.
Another useful document is listed below. The following Microchip document is available
and recommended as a supplemental reference resource.
HV2903 Data Sheet – “HV2803/HV2903/HV2904 - No High-Voltage Bias, Low
Harmonic Distortion, 32-Channel, High-Voltage Analog Switch.
THE MICROCHIP WEB SITE
Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
The web site contains the following information:
Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software
General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing
Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives
CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://support.microchip.com.
DOCUMENT REVISION HISTORY
Revision A (December 2017)
Initial Release of this Document.
HV2903
ANALOG SWITCH
EVALUATION BOARD
USERS GUIDE
2017 Microchip Technology Inc. DS50002582A-page 8
Chapter 1. Product Overview
1.1 INTRODUCTION
HV2903 Analog Switch Evaluation Board (ADM00795) works with HV MUX Controller
Board (ADM00825) to provide 32-Channel HV Analog Switches without HV Supplies,
demonstration including basic switch ON/OFF operation, and 2:1 MUX operation with
two built-in MD1822 and TC6320 pulser circuit.
1.2 HV2903 IC - DESCRIPTION
The HV2903 is 32-Channel HV Analog Switches without HV Supplies. It is designed for
use in applications requiring high-voltage switching controlled by low-voltage control
signals, such as medical ultrasound imaging, driving piezoelectric transducers and in
printers. The typical 10 on resistance analog switch can pass the analog pulse signal
up to ±3A of current at ±100V without high-voltage supplies such as ±100V. It requires
only ±6V or ±5V for switch ON/OFF operation and 3.3V for logic operation.
The HV2903 has two modes of operation: individual switching mode and bank switch-
ing mode. The user can select the mode by MODE pin logic input. The 32 analog
switches can be controlled individually through digital interface when MODE input is
high (Individual switching mode). The digital interface clock operates up to 66 MHz. All
16 even switches and all 16 odd switches can be controlled together through simple 2
logic inputs when MODE input is low (bank switching mode).
The HV2903 has standby mode to decrease power consumption at idle state. When
STBY logic input is low, it operates in standby mode and consumes very low current.
When STBY logic input is high, it operates normally.
1.3 HV2903 ANALOG SWITCH EVALUATION BOARD - FEATURES
One HV2903 32-Channel HV Analog Switches without HV Supplies
Designed to work with Microchip HV MUX Controller Board
Two 2:1MUX with built-in MD1822 + TC6320 pulsers
5 MHz 3 level voltage pulse waveform outputs
On-board 330 pF//2.5 k dummy load per SW8A, SW9A, SW24A, SW25A
Mode selection and Switch ON/OFF control through PC GUI and controller board
Pulser ON/OFF and time domain control through PC GUI and controller board
1.4 HV2903 ANALOG SWITCH EVALUATION BOARD - FUNCTIONAL
DESCRIPTION
The HV2903 Analog Switch Evaluation Board can control the HV2903 operation and
built-in pulsers that are connected to two 2:1 MUX switches for demonstration. Four
switch output of two 2:1 MUX have SMA connectors, and the user can connect four
transducer elements. The other side of the 2:1 MUX is connected to two built-in
MD1822 + TC6320 pulsers. The HV2903 Analog Switch Evaluation Board can drive
four transducer elements with 5 MHz ±100V pulse signals.
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 9 2017 Microchip Technology Inc.
The evaluation board features one HV2903/AHA 12x12x1.2 mm 132-lead TFBGA
packaged integrated circuit, two MD1822K6-G 3x3x1 mm 16-lead QFN packaged inte-
grated circuits and four TC6320K6-G 4x4x1 mm 8-lead DFN packaged NMOS and
PMOS pair integrated circuits.
The board uses two high-speed 20 signal pair carrying capable right-angle backplane
connector, which is designed to work with Microchip HV MUX Controller Board
(ADM00825) as a control signal source.
The HV MUX Controller Board has an FPGA that generates pulser waveform and
logic control signals and a USB-bridge IC that connects the control board to a PC. By
means of a Microsoft Windows® driver and GUI, the user can control the HV2903 and
two built-in pulsers.
Four switch terminals consisting two MUX configuration on the PCB have SMA
connectors to which user can connect loads. Jumpers close to SMA connectors are
for connecting the on-board dummy R-C load (330 pF//2.5 K) optionally to the pulser
output.
WARNING
Risk warning of electrical shock. This board uses multiple hazardous high
voltages. Disconnect all high voltage supplies before working on it. Electrical
safety precautions must be taken when working on or using this board.
2017 Microchip Technology Inc. DS50002582A-page 10
1.5 HV2903 ANALOG SWITCH EVALUATION BOARD TECHNICAL KIT
FIGURE 1-1: HV2903 Analog Switch Evaluation Board Simplified Block Diagram.
Parameter Value
HV2903 Modes of Operation Individual Switching, Bank Switching and Standby
modes
Pulser frequency 5 MHz
Number of pulses in the train 1 to 90
TOFF time between pulse trains 5 to 30 msec
Pulse Peak Voltage & Current 0 to ±100V and ±3A typical
Interface of FPGA Control Signals & USB PC-GUI Software J1 and J2 Connects to ADM00825 Controller Interface
Board
Pulser R-C Test-Load & User’s Transducer Interface Built-in, 330 pF//2.5 K per Channel with jumper and
50 SMA
PCB Board Dimension 115x110 mm (4.5x4.3 in.)
HV2903
CH1 Pulser
MD1822 + TC6320
SW9A
SW25A
SWA
SW24A
330pF 2.5kȖ
SW9B
330pF 2.5kȖ
SW8B
330pF 2.5kȖ
SW24B
330pF 2.5kȖ
SW25B
CH2 Pulser
MD1822 + TC6320
FPGA
PC
+
GUI
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 11 2017 Microchip Technology Inc.
1.6 WHAT THE HV2903 ANALOG SWITCH EVALUATION BOARD KIT INCLUDES
The HV2903 Analog Switch Evaluation Board includes:
HV2903 Analog Switch Evaluation Board (ADM00795)
Important Information Sheet
HV2903
ANALOG SWITCH
EVALUATION BOARD
USERS GUIDE
2017 Microchip Technology Inc. DS50002582A-page 12
Chapter 2. Installation and Operation
2.1 GETTING STARTED
The HV2903 Analog Switch Evaluation Board is fully assembled and tested. The board
requires six power supply voltage rails of +3.3V, +10V, ±6.0V and ±100V.
2.1.1 Additional Tools Required for Operation
1. An oscilloscope with minimum 500 MHz bandwidth and two high-impedance
probes
- make sure the grounds of the power supply sources are correctly connected
to the same ground as the testing oscilloscope ground
2. A Microchip HV MUX Controller (ADM00825)
3. A Microsoft Windows® 7 PC that has the HV MUX Controller GUI software
installed and running.
- connect J1 and J2 to the HV MUX Controller
- connect the HV MUX Controller via USB to the Windows 7 PC
2.2 HV MUX GUI INSTALLATION
The HV MUX GUI software installer can be downloaded from the Microchip web site at
www.mircochip.com. Search for the evaluation board on the web site by part number
ADM000795.
1. Open the HVMUXGUI-v1.0.0-windows-installer.exe.
2. Initiate the HV MUX GUI software installer by launching the Application Install
dialog box.
3. Click Next to start the installation.
FIGURE 2-1: HV MUX GUI - Application Install Dialog Box.
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 13 2017 Microchip Technology Inc.
4. Read the License Agreement and accept by checking the box corresponding to
“I accept the agreement”, then click Next to proceed with the installation.
FIGURE 2-2: HV MUX GUI - License Agreement Dialog Box.
5. On the Installation Directory dialog box, browse for the desired location, or click
Next to install in the default location.
FIGURE 2-3: HV MUX GUI - Installation Directory Dialog Box.
6. Once the installation path is chosen, the software is ready to install. Click Next.
2017 Microchip Technology Inc. DS50002582A-page 14
FIGURE 2-4: HV MUX GUI - Ready to Install Dialog Box.
7. The installation status window appears, showing the installation progress.
8. After the installation has completed, Click Next to continue.
FIGURE 2-5: HV MUX GUI - Installation Status Dialog Box.
9. Once Installation Complete dialog box appears, click the Finish button to exit the
installer.
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 15 2017 Microchip Technology Inc.
FIGURE 2-6: HV MUX GUI - Installation Complete Dialog Box.
2.3 SETUP PROCEDURE
To operate the HV2903 Analog Switch Evaluation Board, the following steps must be
completed:
1. Attach to the HV MUX Controller (ADM00825) with connector J1 and J2.
2. Connect all jumpers on J5, J6, J7 and J11 for the on-board R-C load.
3. Connect all power supplies to the voltage supply input connector J3 and J4, as
indicated in Tab l e 2-1 by observing the polarity.
4. Turn on the VSS first and then turn on the VDD.
5. Turn on the VLL.
6. Turn on the VGP and VPP/VNN.
7. Connect a USB cable from the Controller Board to the PC.
8. Connect +12V/1A power to the Controller Board.
9. Run the HVMUX GUI software in the PC.
10. Click the Initialize HV MUX Controller button in the GUI and the status window
in the bottom will show an “initialization complete” message.
11. Unselect the STBY check box to set HV2903 in normal operation and choose the
switching mode by selecting/unselecting the MODE check box.
12. Click the Set HV MUX button. All digital control signals are applied to HV MUX.
13. Set the number of pulses and TOFF time of the pulser.
14. Select CH1 or CH2 to set pulser ch1 or pulser ch2.
15. Click the Start button. Then, the selected pulser will start to generate pulse
trains.
WARNING
Please observe the polarity of each power supply rail and set the voltage and current
limit carefully.
2017 Microchip Technology Inc. DS50002582A-page 16
16. Click the Stop Button. Then, the selected pulser will stop generating the pulse
train.
FIGURE 2-7: HV2903 Analog Switch Evaluation Board - Front View.
TABLE 2-1: POWER SUPPLY VOLTAGES AND CURRENT-LIMIT SETTINGS
Terminal Rail Name Voltage Average-Current Limit
J3-1 VDD +6V +20 mA
J3-2 GND 0V
J3-3 VSS –6V –20 mA
J4-1 VLL +3.3V +150 mA
J4-2 GND 0V
J4-3 VGP +5 to +11.5V +10 mA
J4-4 VPP +100V +5 mA
J11-2 VNN –100V –5 mA
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 17 2017 Microchip Technology Inc.
2.3.1 Recommended Power-Up and Power-Down Sequences
Tab l e 2- 2 shows the recommended power-up and power-down sequences of the
HV2903 Analog Switch Evaluation Board.
2.4 INTERFACE CONNECTIONS
TABLE 2-2: HV2903 ANALOG SWITCH EVALUATION BOARD POWER-UP
AND POWER-DOWN SEQUENCES
Step Power-Up Description Step Power-Down Description
1V
SS on 1 VPP and VNN off
2V
DD on 2 VGP off
3V
LL on with logic signal low 3 VLL off with logic signal low
4V
GP on 4 VDD off
5V
PP and VNN on 5 VSS off
WARNING
Powering HV2903 Evaluation Board up/down in an arbitrary sequence may cause
damage to the device.
TABLE 2-3: J2 CONTROL INTERFACE SIGNALS
PIN # Name Test Point I/O Type Signal Discretion
J2-A2 SCK LVCMOS-2.5V Input EEPROM Serial Clock Input
J2-B2 CSB LVCMOS-2.5V Input EEPROM Chip Select Input
J2-A3 MISO LVCMOS-2.5V Output EEPROM Serial Data Output
J2-B3 MOSI LVCMOS-2.5V Input EEPROM Serial Data input
J2-A5 CLR TP15 LVCMOS-3.3V Input HV2903 Latch Clear Logic Input
J2-B5 CLK TP14 LVCMOS-3.3V Input HV2903 Clock Logic Input
J2-C5 LE/EN TP12 LVCMOS-3.3V Input HV2903 Latch Enable Logic Input
J2-D5 MODE TP13 LVCMOS-3.3V Input HV2903 Mode Logic Input
J2-A6 DIN/AB TP20 LVCMOS-3.3V Input HV2903 Data In Logic Input
J2-B6 STBY TP21 LVCMOS-3.3V Input HV2903 Standby Logic Input, Low active
J2-C6 1_A TP11 LVCMOS-3.3V Input Ch1 Pulser input for NMOS to VNN
J2-D6 1_B TP10 LVCMOS-3.3V Input Ch1 Pulser input for PMOS to VPP
J2-A7 1_DMP TP9 LVCMOS-3.3V Input Ch1 Pulser Damp Input for PMOS/NMOS to GND
J2-B7 2_A TP19 LVCMOS-3.3V Input Ch2 Pulser input for NMOS to VNN
J2-C7 2_B TP18 LVCMOS-3.3V Input Ch2 Pulser input for PMOS to VPP
J2-D7 2_DMP TP17 LVCMOS-3.3V Input Ch2 Pulser Damp Input for PMOS/NMOS to GND
Note 1: All the pins that are not included in this table are no-connect.
2017 Microchip Technology Inc. DS50002582A-page 18
2.5 TESTING THE HV2903 ANALOG SWITCH EVALUATION BOARD
2.5.1 HV2903 Individual Switching Mode Operation (STBY=1,
MODE=1):
In the individual switching mode, the user can turn on/off 32 switches individually
through the USB connected PC GUI software program:
1. Click the Initialize HV MUX Controller button at the top left corner.
2. Unselect STBY to set HV2903 in normal operation.
3. Select MODE to set HV2903 in individual switching mode.
4. Put 32 bit data in DIN to set switches ON and OFF. Data 1 means the switch is
ON and data 0 means the switch is OFF.
5. Click the Set HV MUX button.
6. Then, the GUI and controller board generate 32-bit data and 32 clocks followed
by one LE negative pulse, and switches are ON and OFF according to DIN in the
GUI.
7. If the user selects CLR and then clicks the Set HV MUX button, all the switches
are OFF.
2.5.2 HV2903 Bank Switching Mode Operation (STBY=1, MODE=0):
In the bank switching mode, the user can turn on/off all the even switches (SW0,
SW2,..., SW30) together and all the odd switches (SW1, SW3,..., SW31) together
through the USB connected PC GUI software program:
1. Click the Initialize HV MUX Controller button at the top left corner.
2. Unselect STBY to set HV MUX in normal operation.
3. Unselect MODE to set HV2903 in bank switching mode.
4. Select EN to set HV2903 bank switching to active. If EN is not selected, all the
switches are set to OFF.
5. Select A/B to set all the even switches ON and all the odd switches OFF.
6. Or, unselect A/B to set all the even switches OFF and all the odd switches ON.
7. Click the Set HV MUX button.
8. The GUI and the HV MUX Controller generate digital control signals according to
the control data of the GUI that the user sets.
2.6 HV MUX CONTROLLER AND GUI MANUAL
The HV MUX Controller generates control signals for HV2903 Analog Switch Evalua-
tion Board. It features a Spartan-6 XC6SLX9 FPGA.
2.6.1 SETUP PROCEDURE
1. Before powering up the HV2903 Analog Switch Evaluation Board and the HV
MUX Controller, please make sure that the latest GUI software is installed on the
PC.
2. Start the GUI program. On the bottom left of the status bar, “Not Connected” will
appear.
3. Connect the appropriate power supply and turn on the power switch to power-up
the HV MUX Controller. The FPGA_OK(LD1) and DC_IN (LD2) on the HV MUX
Controller should light up green. A “Connected” message should be displayed on
the bottom left of the status bar of the GUI.
Note: The typical voltage and waveforms are provided in Appendix C. “Demo
Board Waveforms”.
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 19 2017 Microchip Technology Inc.
The HV MUX Controller is now ready to control the HV2903 Evaluation Board.
FIGURE 2-8: HV MUX Controller(ADM00825) - Front View.
2.6.2 HV2903 Analog Switch Evaluation Board GUI Description
Please see Figure 2-9 for a screen capture of the GUI. Every item indicated by circled
numbers is explained after the figure. The selection of the check box, binary data in the
DIN entry box and number in Pulses and TOFF entry box are just settings, and do not
change the operation of HV2903 and built-in pulsers immediately. By clicking Set HV
MUX, Start and Stop buttons, the control data set by the user in the GUI changes oper-
ation of HV2903 and turn on/off the built-in pulsers in the HV2903 Analog Switch Eval-
uation Board. Please see the explanation for each corresponding item.
Mini-USB
Connector
USB_Fault
(LD5)
PWR_OK
(LD4)
12V/1A
Power
Connector
OFF/ON Switch
J1
J2
DC_IN (LD2)
FPGA_OK (LD1) PROM JTAG
2017 Microchip Technology Inc. DS50002582A-page 20
FIGURE 2-9: HV MUX Controller Board GUI Screen Capture.
1. Initialize HV MUX Controller: when clicked, the GUI starts the initialization of
FPGA on the HV MUX Controller and the communication between the GUI and
the HV MUX Controller. If there is no error, the user will see “Initialization Com-
plete” in the message window.
2. STBY: when unselected, the STBY logic input is set to high and HV2903 is set
to operate in normal mode. When selected, the STBY logic input is set to low and
HV2903 is set to operate in standby mode to decrease power consumption.
3. MODE: when selected, the MODE logic input is set to high and HV2903 is set to
operate in individual switching mode. When unselected, the MODE logic input is
set to low and HV2903 is set to operate in bank switching mode.
4. DIN: 32-bit data entry boxes. Each bit in the boxes is related to each analog
switch. If data entry is 1, the associated switch is set to ON. If data entry is 0, the
associated switch is set to OFF.
5. CLR: when selected, the CLR logic input is set to high and all the switches of
HV2903 are set to OFF. When unselected, the CLR logic input is set to low and
the 32 switches of HV2903 are set to ON/OFF states, according to the DIN data
entry.
6. EN: when selected, the EN logic input is set to high and HV2903 is set to active
for bank switching mode. When unselected, the EN logic input is set to low and
1
2 3
45
67
8
910
11
12 13
14
16
15
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 21 2017 Microchip Technology Inc.
all the switches are set to OFF.
7. A/B: when selected, the A/B logic input is set to high, all the even switches are
set to ON and all the odd switches are set to OFF. When unselected, the A/B
logic input is set to low, all the even switches are set to OFF and all the odd
switches are set to ON.
8. Set HV MUX: when clicked, the data that the user sets at steps 2 to 7 is applied
to HV2903. Please note that the 32-bit DIN data, 32 clocks and one negative LE
pulse are applied one time only at the individual switching mode.
9. Pulses: entry box to define the number of pulses in the pulse train generated by
the selected pulser. A pulse is a half of the cycle and the pulse train always starts
the positive pulse first.
10. TOFF: entry box to define the OFF time between pulse trains generated by the
selected pulser.
11. CH1/CH2: when checked, the selected pulser is set to generate 5 MHz pulse
trains defined at steps 9 and 10 by the user.
12. Start: when clicked, the selected pulser starts generating the pulse train.
13. Stop: when clicked, the selected pulser stops generating the pulse train.
14. Message window: shows information from the GUI program.
15. Clear: when clicked, the messages in the message window are cleared.
16. Connection Status window: shows status of the connection between the GUI and
the HV MUX Controller.
2.7 GENERATION OF PULSER OUTPUT AT SW8A OF HV MUX
This section provides the simple step-by-step procedure to make the Ch1 pulser output
at SW8A SMA connector by configuring the GUI.
1. Before powering up the HV2903 Analog Switch Evaluation Board, make sure
that the latest GUI software is installed on the PC.
2. Start the GUI program. On the bottom left of the status bar, “Not Connected” will
appear.
3. Power up the HV MUX Controller and HV2903 Analog Switch Evaluation Board
as described in the previous section. The prompt “Connected” will appear in the
status bar.
4. Click the Initialize HV MUX Controller button and check the message window
to see “Initialization Complete”.
5. Unselect STBY to set the HV2903 to operate normally.
6. Select MODE to set the HV2903 to individual switching mode.
7. Change the DIN to Bit 8 from 0 to 1 to set SW8 ON (DIN = 00000000
00000000 00000001 00000000).
8. Click the Set HV MUX button. HV2903 SW8 will turn on.
9. Change Pulses to 10.
10. Select CH1.
11. Click the Start button. The CH1 pulser will start to generate pulse trains with 10
pulses and 30 ms TOFF time.
The Ch1 and Ch2 of the oscilloscope in Figure 2-10 show the SW8A and the SW9A.
2017 Microchip Technology Inc. DS50002582A-page 22
FIGURE 2-10: Typical Waveform of 2:1 MUX Connected to Pulser.
CH1
50V/div
CH2
50V/div








      
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!!
!
!! !!
!
!
!
!!
!
!

!!
!
!
!
!

     


HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 23 2017 Microchip Technology Inc.
NOTES:
HV2903
ANALOG SWITCH
EVALUATION BOARD
USERS GUIDE
2017 Microchip Technology Inc. DS50002582A-page 24
Chapter 3. PCB Design and Layout Notes
3.1 PCB LAYOUT TECHNIQUES FOR HV2903
The HV2903 is an analog switch to pass high-voltage, high-current and high-frequency
pulses. The PCB design and layout are important to ensure the success of the
implementation.
3.1.1 High-Voltage & High-Speed Grounding and Layout Techniques
The center balls at the bottom of the HV2903 TFBGA package are internally connected
to the IC’s substrate (VSUB). These balls should be connected to GND, externally on
the PCB.
The designer must pay attention to the connecting traces, since the analog switches
pass the high-voltage and high-speed signals. In particular, controlled impedance of
50to the ground plane and more trace spacing needs to be applied in this situation.
High-speed PCB trace design practices are used for the HV2903 PCB layout. The
internal circuitry of the HV2903 can operate at quite a high frequency, with the primary
speed limitation being the load capacitance. Because of this high speed and the high
transient currents that result from driving capacitive loads, the supply voltage bypass
capacitors should be as close to the pins as possible.
All the GND pins should have low inductance feed-through via connections that are
connected directly to a solid ground plane at the second layer of the PCB.
It is advisable to minimize the trace length to the ground plane, and to insert a ferrite
bead in the power supply lead to the capacitor to prevent resonance in the power sup-
ply lines.
Pay particular attention to minimizing trace lengths and using sufficient trace width to
reduce inductance. Surface mount components are highly recommended.
The use of a solid ground plane and good power and signal layout practices will prevent
any possible parasitic capacitance coupling. The user should also ensure that the cir-
culating ground return current from a capacitive load cannot react with common induc-
tance to create noise voltages in the input logic circuitry.
3.1.2 Decoupling Capacitors Selection
The VLL, VDD and VSS supply voltage rails can provide fast transient current. Therefore,
they should have a low-impedance bypass capacitor at each of the chip’s pins. Use a
surface-mounted ceramic capacitor of 1.0 to 2.2 μF capacitance with an appropriate
voltage rating.
The user needs to pay additional attention to what type of ceramic capacitor is selected
for these bypass capacitors. The low impedance means low ESR/ESL impedance
within the frequency bandwidth range of ultrasound pulses transmitted, including the
very fast dV/dt of the pulse’s rising and falling edges. A capacitor with low-temperature
coefficient and low-voltage coefficient is also recommended. The type of X7R and X5R
or other more advanced multilayer-ceramic types should be selected for these pur-
poses.
HV2903
ANALOG SWITCH
EVALUATION BOARD
USERS GUIDE
2017 Microchip Technology Inc. DS50002582A-page 25
Appendix A. Schematic & Layouts
A.1 INTRODUCTION
This appendix contains the following schematics and layouts for the HV2903 Analog
Switch Evaluation Board (ADM00795) and the HV MUX Controller Board (ADM00825)
HV2903 Analog Switch Evaluation Board (ADM00795):
- ADM00795 - Schematic
- ADM00795 - Top Silk
- ADM00795 - Top Copper and Silk
- ADM00795 - Top Copper
- ADM00795 - Inner 1
- ADM00795 - Inner 2
- ADM00795 - Inner 3
- ADM00795 - Bottom Copper
- ADM00795 - Bottom Copper and Silk
- ADM00795 - Bottom Silk
HV MUX Controller Board (ADM00825):
- ADM00825 - Schematic (Connection)
- ADM00825 - Schematic (Power Supply)
- ADM00825 - Schematic (USB to SPI)
- ADM00825 - Schematic (Programmable Clock)
- ADM00825 - Schematic (FPGA)
- ADM00825 - Schematic (FPGA Decoupling Capacitors)
- ADM00825 - Schematic (Connectors)
- ADM00825 - Top Silk
- ADM00825 - Top Copper and Silk
- ADM00825 - Top Copper
- ADM00825 - Inner 1
- ADM00825 - Inner 2
- ADM00825 - Inner 3
- ADM00825 - Inner 4
- ADM00825 - Bottom Copper
- ADM00825 - Bottom Copper and Silk
- ADM00825 - Bottom Silk
2017 Microchip Technology Inc. DS50002582A-page 26
A.2 ADM00795 - SCHEMATIC
A1
B1
BG1
A2
B2
BG2
A3
B3
BG3
A4
B4
BG5
A5
B5
BG4
A6
B6
BG6
A7
B7
BG7
A8
B8
BG8
A9
B9
BG9
A10
B10
BG10
C1
D1
DG1
C2
D2
DG2
C3
D3
DG3
C4
D4
DG4
C5
D5
DG5
C6
D6
DG6
C7
D7
DG7
C8
D8
DG8
C9
D9
DG9
C10
D10
DG10
J1
CONN-6469169-1
1_A
1_B
1_DMP
A1
B1
BG1
A2
B2
BG2
A3
B3
BG3
A4
B4
BG5
A5
B5
BG4
A6
B6
BG6
A7
B7
BG7
A8
B8
BG8
A9
B9
BG9
A10
B10
BG10
C1
D1
DG1
C2
D2
DG2
C3
D3
DG3
C4
D4
DG4
C5
D5
DG5
C6
D6
DG6
C7
D7
DG7
C8
D8
DG8
C9
D9
DG9
C10
D10
DG10
J2
CONN-6469169-1
J10
INB
1
VDD 2
VSS
3
INC
4
IND
5
GND
6
VL
7
OUTC 8
OUTD 9
VH 10
VH 11
OUTA 12
OUTB 13
VL
14
PE
15
INA
16
PAD
17
U2
MD1822
J9
INB
1
VDD 2
VSS
3
INC
4
IND
5
GND
6
VL
7
OUTC 8
OUTD 9
VH 10
VH 11
OUTA 12
OUTB 13
VL
14
PE
15
INA
16
PAD
17
U1
MD1822
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
2_A
2_B
2_DMP
VGP
VGP
VLL
VLL
1_A
1_B
1_DMP
GND GND
GNDGND
2_A
2_B
2_DMP
VPP
VNN
GND
VGP
VLL
GND
GND
GND
GND
C15
C16
VPP
VNN
VPP
VNN
GND
1uF
35V
0402
C14
1uF
35V
0402
C11
GND
0.1uF
35V
0402
C3
0.1uF
35V
0402
C7
0.1uF
35V
0402
C4
0.1uF
35V
0402
C8
1 uF
250V
C19
1 uF
250V
C21
1 uF
250V
C22
1 uF
250V
C20
2 W
2.55k
1%
R1
0805
330 pF
250V
C27
2 W
2.55k
1%
R2
0805
330 pF
250V
C28
J5
SN
1
GN
2
SP
4GP
3
DP 5
DP 6
DN 7
DN 8
U6
TC6320 DFN-8
SN
1
GN
2
SP
4GP
3
DP 5
DP 6
DN 7
DN 8
U8
TC6320 DFN-8
VDD
VLL
VSS
GND
CLK
DIN/ABb
LEb/EN
STBYb
MODE
CLR
DOUT
GND
SW0B N8
SW1B N7
SW2B N6
SW3B N5
SW4B N4
SW5B N3
SW6B K2
SW7B J2
SW8B H2
SW9B G2
SW10B B3
SW11B B4
SW12B B5
SW13B B6
SW14B B7
SW15B B8
SW16B B9
SW17B B10
SW18B B11
SW19B B12
SW20B B13
SW21B B14
SW22B F13
SW23B G13
SW9A
G1
SW11A
A4
SW12A
A5
SW13A
A6
SW14A
A7
SW8A
H1
SW7A
J1
SW10A
A3
VLL A2
SW5A
P3
SW1A
P7
SW0A
P8
VSS
E14
DGND
E1
VDD D14
SW3A
P5
SW4A
P4
SW2A
P6
SW6A
K1
SW15A
A8
SW16A
A9
SW17A
A10
SW18A
A11
SW19A
A12
SW20A
A13
SW21A
A14
SW22A
F14
SW23A
G14
STBY
D2
LE/EN
C1
CLK
B1
DIN/AB
D1
SW24A
H14
SW25A
J14
SW26A
P14
SW27A
P13
SW28A
P12
SW29A
P11
SW30A
P10
SW31A
P9
SW24B H13
SW25B J13
SW26B N14
SW27B N13
SW28B N12
SW29B N11
SW30B N10
SW31B N9
RGND K13
RGND C14
RGND C13
DOUT A1
MODE
C2
CLR
B2
VSS
E13
VDD D13
GND
E5
VDD E2
VSS
F1
VDD F2
GND
F5
GND
G5
GND
H5
GND
J5
GND
K5
RGND K14
VSS
L2 VSS
L1
VSS
L13
VSS
L14
VDD M2
VDD M1
VDD M13
VDD M14
RGND P1
RGND N2
RGND N1
RGND P2
U13
SW8B
SW24B
SW8A
SW24A
VSS
VLL
GND
VDD
GND
0.1uF
25V
0603
C26
0.1uF
25V
0603
C32
0.1uF
25V
0603
C33
0.1uF
25V
0603
C34
GND
0.1uF
25V
0603
C35
0.1uF
25V
0603
C36
0.1uF
25V
0603
C37
0.1uF
25V
0603
C38
0.1uF
25V
0603
C39
CLK
DIN/ABb
LEb/EN
STBYb
MODE
CLR
SST26VF016B
CE
1
SO/SIO1
2
WP/SIO2
3
VSS
4SI/SIO0 5
SCK 6
HOLD/SIO3 7
VDD 8
U14
GND
VLL
0.1uF
35V
0402
C6
SCK
MOSI
GND
GND
CSB
MISO
CSB
MISO
SCK
MOSI
5
R5
5
R6
GNDVDD VSS
GND GND
0.1uF
25V
0603
C31
0.1uF
25V
0603
C25
J14
GND
GND
GND
2 W
2.55k
1%
R8
0805
330 pF
250V
C10
SW9A
J15
GND
GND
GND
2 W
2.55k
1%
R9
0805
330 pF
250V
C13
SW25A
SW2B
SW1B
SW31A
SW30A
SW29B
SW3A
SW2A
SW1A
SW31B
SW30B
SW28B
SW29A
SW4A
SW3B
SW27B
SW28A
SW5A
SW4B
SW26B
SW27A
SW6A
SW5B
SW26A
SW7A
SW6B
SW24B
SW25A
SW7B
SW23B
SW24A
SW8B
SW22B
SW23A
SW22A
SW10B
SW20B
SW21A
SW12A
SW11B
SW19B
SW20A
SW13A
SW12B
SW14A
SW15A
SW16A
SW17A
SW18A
SW19A
SW13B
SW14B
SW15B
SW16B
SW17B
SW18B
GND
GND
SW8A
SW9A
SW10A
SW11A
SW0B
J17
GND
GND
J21
GND
GND
J18
GND
GND
J22
GND
GND
J19
GND
GND
J23
GND
GND
J20
GND
GND
J24
GND
GND
SW0A
SW0A SW1A
SW17A SW16A
SW0B SW1B
SW17BSW16B
B1100
D14
B1100
D15
GND
GND
1 6
43
BAT54DW
D13
GND
1 6
43
BAT54DW
D16
GND
T4
T3
T2
T1
T5 T6
12345
HDR-2.54 Male 1x5
J4
31A
2A
3A
4A
5A
6A
7A
12A
13A
14A
10A
11A
15A
18A
19A
22A
23A
26A
27A
28A
29A
30A
31B
2B
3B
4B
5B
6B
7B
12B
13B
14B
10B
11B
15B
18B
19B
22B
23B
26B
27B
28B
29B
30B
SN
1
GN
2
SP
4GP
3
DP 5
DP 6
DN 7
DN 8
U5
TC6320 DFN-8
SN
1
GN
2
SP
4GP
3
DP 5
DP 6
DN 7
DN 8
U7
TC6320 DFN-8
1
1
2
3
J3
0R
0402
R3
1 uF
250V
C2
1 uF
250V
C1
J7
J6
J11
SW21B
20A
21A
20B
21B
T7
J13 J16 J8 J12
J25 J26 J27 J28
15pF
50V
0805
C9
15pF
50V
0805
C5
15pF
50V
0805
C12
15pF
50V
0805
C17
1k
1206
1%
R11
1k
1206
1%
R7
1k
1206
1%
R13
1k
1206
1%
R15
49.9R
0603
1%
R10
49.9R
0603
1%
R4
49.9R
0603
1%
R12
49.9R
0603
1%
R14
GND GND
GND GND
T12 T13
T15T14
T20 T21
T16
T8
T11T10T9
T19T18T17
D2
Diode-MMBD3004BRM-300V
D1
Diode-MMBD3004BRM-300V
GND
T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36
J29
4.7k
0402
1%
R19
4.7k
0402
1%
R16
VLL
100R
0402
1%
R17
100R
0402
1%
R18
VLL
GND
VLL
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 27 2017 Microchip Technology Inc.
A.3 ADM00795 - TOP SILK
A.4 ADM00795 - TOP COPPER AND SILK
2017 Microchip Technology Inc. DS50002582A-page 28
A.5 ADM00795 - TOP COPPER
A.6 ADM00795 - INNER 1
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 29 2017 Microchip Technology Inc.
A.7 ADM00795 - INNER 2
A.8 ADM00795 - INNER 3
2017 Microchip Technology Inc. DS50002582A-page 30
A.9 ADM00795 - BOTTOM COPPER
A.10 ADM00795 - BOTTOM COPPER AND SILK
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 31 2017 Microchip Technology Inc.
A.11 ADM00795 - BOTTOM SILK
2017 Microchip Technology Inc. DS50002582A-page 32
A.12 ADM00825 - SCHEMATIC (CONNECTION)
MUPB001_PWR.SchDoc
SCK
MISO
MOSI
USB_CONFIG
CSBAR
FPGA_DONE
FPGA_RST
SPI_RST
EXT_INT
GP8
GP4
GP7
USB_TO_SPI.SchDoc
CTRL_OEC
CTRL_SDI
SDO
CTRL_OED
CTRL_OEB
CTRL_SCK
CTRL_CSB
CLK0_N
CLK1_P
CLK1_N
CLK2_P
CLK2_N
CLK4
CLK0_P
CLK3_P
CLK3_N
CLK5
40MHz_N
40MHz_P
PROG_CLK.SchDoc
PROGB_IN
FPGA_DONE
SCK
MOSI
MISO
CSBAR
FPGA_RST
SPI_RST
USB_CONFIG
SDO
CTRL_SCK
CTRL_CSB
CTRL_OEC
CTRL_OED
CTRL_OEB
CLK0_P
CLK0_N
IO_2V5_0_P
IO_2V5_0_N
IO_2V5_1_P
IO_2V5_1_N
IO_2V5_2_P
IO_2V5_2_N
IO_2V5_3_P
IO_2V5_3_N
IO_2V5_4_P
IO_2V5_4_N
IO_2V5_5_P
IO_2V5_5_N
IO_2V5_6_P
IO_2V5_6_N
IO_2V5_7_P
IO_2V5_7_N
IO_2V5_8_P
IO_2V5_8_N
IO_2V5_10_P
IO_2V5_10_N
IO_2V5_9_P
IO_2V5_9_N
IO_2V5_11_P
IO_2V5_11_N
IO_2V5_12_P
IO_2V5_12_N
IO_2V5_13_P
IO_2V5_13_N
IO_2V5_14_P
IO_2V5_14_N
IO_3V3_1
IO_3V3_2
IO_3V3_3
IO_3V3_4
IO_3V3_5
GP4
GP7
EXT_INT
CLK1_P
CLK1_N
CTRL_SDI
IO_2V5_15_N
IO_2V5_15_P
IO_2V5_16_N
IO_2V5_16_P
IO_2V5_17_N
IO_2V5_17_P
IO_2V5_18_N
IO_2V5_18_P
IO_2V5_19_N
IO_2V5_19_P
IO_2V5_20_N
IO_2V5_20_P
IO_2V5_21_N
IO_2V5_21_P
IO_3V3_6_P
IO_3V3_6_N
IO_3V3_7_P
IO_3V3_7_N
IO_3V3_8_P
IO_3V3_8_N
IO_3V3_9_P
IO_3V3_9_N
IO_3V3_10_P
IO_3V3_10_N
IO_3V3_11_P
IO_3V3_11_N
IO_3V3_12_P
IO_3V3_12_N
IO_3V3_13_P
IO_3V3_13_N
IO_3V3_14_P
IO_3V3_14_N
40MHz_N
40MHz_P
IO_3V3_15
IO_3V3_16
IO_3V3_17
FPGA01.SchDoc
SPI_CSBAR
SPI_SCK
SPI_MOSI
SPI_MISO
FPGA_RST
SPI_RST
USB_CONFIG
EXT_INT
FPGA_DONE
PROGB_IN
GP4
GP7
CTRL_OEC
CLK0_P
CLK0_N
CLK1_P
CLK1_N
IO_2V5_0_P
IO_2V5_0_N
IO_2V5_2_P
IO_2V5_2_N
IO_2V5_1_P
IO_2V5_1_N
IO_2V5_3_P
IO_2V5_3_N
IO_2V5_5_P
IO_2V5_5_N
IO_2V5_7_P
IO_2V5_7_N
IO_2V5_9_P
IO_2V5_9_N
IO_2V5_11_P
IO_2V5_11_N
IO_2V5_13_P
IO_2V5_13_N
IO_2V5_4_P
IO_2V5_4_N
IO_2V5_6_P
IO_2V5_6_N
IO_2V5_8_P
IO_2V5_8_N
IO_2V5_10_P
IO_2V5_10_N
IO_2V5_12_P
IO_2V5_12_N
IO_2V5_14_N
IO_2V5_14_P
IO_3V3_1
IO_3V3_2
IO_3V3_3
IO_3V3_4
IO_3V3_5
CLK4
CLK2_P
CLK2_N
IO_2V5_15_N
IO_2V5_15_P
IO_2V5_16_N
IO_2V5_16_P
IO_2V5_17_N
IO_2V5_17_P
IO_2V5_18_N
IO_2V5_18_P
IO_2V5_19_N
IO_2V5_19_P
IO_2V5_20_N
IO_2V5_20_P
IO_2V5_21_N
IO_2V5_21_P
CLK3_P
CLK3_N
CLK5
IO_3V3_6_P
IO_3V3_6_N
IO_3V3_7_P
IO_3V3_7_N
IO_3V3_8_P
IO_3V3_8_N
IO_3V3_9_P
IO_3V3_9_N
IO_3V3_10_P
IO_3V3_10_N
IO_3V3_11_P
IO_3V3_11_N
IO_3V3_12_P
IO_3V3_12_N
IO_3V3_13_P
IO_3V3_13_N
IO_3V3_14_P
IO_3V3_14_N
IO_3V3_15
IO_3V3_16
IO_3V3_17
Connector.SchDoc
IO_2V5_0_P
IO_2V5_0_N
IO_2V5_1_N
IO_2V5_1_P
IO_2V5_2_P
IO_2V5_2_N
IO_2V5_3_P
IO_2V5_3_N
IO_2V5_4_P
IO_2V5_4_N
IO_2V5_5_P
IO_2V5_5_N
IO_2V5_6_P
IO_2V5_6_N
IO_2V5_7_P
IO_2V5_7_N
IO_2V5_8_P
IO_2V5_8_N
IO_2V5_9_P
IO_2V5_9_N
IO_2V5_10_P
IO_2V5_10_N
IO_2V5_11_P
IO_2V5_11_N
IO_2V5_12_P
IO_2V5_12_N
IO_2V5_13_P
IO_2V5_13_N
IO_2V5_14_P
IO_2V5_14_N
IO_3V3_1
IO_3V3_2
IO_3V3_3
IO_3V3_4
IO_3V3_5
CLK2_P
CLK2_N
CLK4
CTRL_OED
CTRL_OEB
CTRL_SCK
CTRL_CSB
SDO
CTRL_SDI
IO_2V5_15_P
IO_2V5_15_N
IO_2V5_16_N
IO_2V5_16_P
IO_2V5_17_P
IO_2V5_17_N
IO_2V5_18_N
IO_2V5_18_P
IO_2V5_19_P
IO_2V5_19_N
IO_2V5_20_N
IO_2V5_20_P
IO_2V5_21_P
IO_2V5_21_N
CLK3_P
CLK3_N
CLK5
40MHz_QA1_N
40MHz_QA1_P
CLK2_P
CLK2_N
CLK4
IO_3V3_6_P
IO_3V3_6_N
IO_3V3_7_P
IO_3V3_7_N
IO_3V3_8_P
IO_3V3_8_N
IO_3V3_9_P
IO_3V3_9_N
IO_3V3_10_P
IO_3V3_10_N
IO_3V3_11_P
IO_3V3_11_N
IO_3V3_12_P
IO_3V3_12_N
IO_3V3_13_P
IO_3V3_13_N
IO_3V3_14_P
IO_3V3_14_N
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 33 2017 Microchip Technology Inc.
A.13 ADM00825 - SCHEMATIC (POWER SUPPLY)
2
3
1
SLIDE SPDT
SW1
GND_D
VIN
GND_D
GND_D
D5V
GND_D
D5V
GND_D
GND_D
3V3_VDD
D5V
GND_D
GND_D
3V3_CLK
D5V
PG_3V3_VDD
D5V
GND_D
GND_D
1V2_VCCINT
D5V
GND_D
GND_D
2V5_VDD
D5V
PG_1V2_VCCINT
D5V
GND_D
PG_3V3_CLK
PG_3V3_CLK
10uF
10V
0805
C51
10uF
10V
0805
C55
10uF
10V
0805
C53
10uF
10V
0805
C57
10uF
10V
0805
C59
10uF
10V
0805
C63
10uF
10V
0805
C61
10uF
10V
0805
C65
10uF
10V
0805
C43
10uF
10V
0805
C44
10uF
10V
0805
C45
10uF
10V
0805
C46
0.1uF
50V
0603
C52
0.1uF
50V
0603
C56
0.1uF
50V
0603
C54
0.1uF
50V
0603
C58
0.1uF
50V
0603
C60
0.1uF
50V
0603
C64
0.1uF
50V
0603
C62
0.1uF
50V
0603
C66
0.1uF
50V
0603
C42
0.1uF
50V
0603
C50
10uF
35V
1206
C47
10uF
35V
1206
C48
10uF
35V
1206
C49
22000pF
50V
0603
C41
10k
0603
5%
R23
10k
0603
5%
R24
10k
0603
5%
R30
10k
0603
1%
R22
10k
0603
1%
R28
10k
0603
1%
R29
390R
0603
5%
R19
390R
0603
5%
R27
1k
0603
5%
R18
51k
0603
1%
R25
19.1k
0603
1%
R17
69.8k
0603
1%
R26
39k
0603
1%
R16
8.66k
0603
1%
R21
VIN
1
VIN
2
SHDN
3
GND 4
PWRGD
5
CDELAY 6
ADJ 7
VOUT 8
EP 9
U6
MCP172X ADJ DFN-8
VIN
1
VIN
2
SHDN
3
GND 4
PWRGD
5
CDELAY 6
ADJ 7
VOUT 8
EP 9
U7
MCP172X ADJ DFN-8
VIN
1
VIN
2
SHDN
3
GND 4
PWRGD
5
CDELAY 6
ADJ 7
VOUT 8
EP 9
U5
MCP172X ADJ DFN-8
VIN
1
VIN
2
SHDN
3
GND 4
PWRGD
5
CDELAY 6
ADJ 7
VOUT 8
EP 9
U4
MCP172X ADJ DFN-8
BOOST 10
SGND
4
VFB 5
EN
9
SW 12
VIN
2
B
T
N
V
F
B
EN
SW
VIN
PGND
14
PG 8
EP
17
VIN
3
PGND
15
SW 13
SW 16
SW 1
U3
GREEN
LD4
GREEN
LD2
ON-POWER ON
GND_D
20BQ030P
D1
Via_2.5x1.5
TP3
Via_2.5x1.5
TP2
Via_2.5x1.5
TP5
Via_2.5x1.5
TP4
Via_2.5x1.5
TP1
1 2
L1
XAL6060
2
3
1
POWER 2.5mm
J6
10.7k
0603
1%
R32
82k
0603
1%
R31
3.6V (Supply to Ripple Blocker)
GND_DGND_D
D3
30V
D5
30V
D4
30V
D6
30V
D2
30V
2017 Microchip Technology Inc. DS50002582A-page 34
A.14 ADM00825 - SCHEMATIC (USB TO SPI)
GND_D
ID 4
VBUS 1
GND 5
D- 2
D+ 3
0
USB MINI-B Female
J7 VDD 1
OSC1 2
OSC2 3
RST 4
GP0 5
GP1 6
GP2 7
GP3 8
MOSI 9
GP4 10
SCK
11 GP5
12 MISO
13 GP6
14 GP7
15 GP8
16 VUSB
17 D-
18 D+
19 VSS
20
VDD
OSC
1
OSC2
R
S
T
G
P
0
G
P1
G
P
2
G
P3
M
OS
I
G
P4
SC
K
G
P5
MI
SO
G
P6
G
P7
G
P
8
VUS
B
D
-
D
+
VSS
U9
MCP2210 SSOP-20
GND_D
2
3 1
12MHz
X1
OSC1
OSC2
GND_D
USB_D-
USB_D+
USB_D+
USB_D-
3V3_VDD
3V3_VDD
0.1uF
25V
0603
C104
GND_D
4.7uF
16V
1206
C103
0.1uF
25V
0603
C106
GND_D
SCK
MISO
MOSI
10k
0603
5%
R50
RED
LD5
GND_D
150R
0603
5%
R51
USB_CONFIG LED, ON- SUSPEND, OFF - ACTIVE
USB_CONFIG
CSBAR
FPGA_DONE
FPGA_RST
SPI_RST
EXT_INT
GP8
GND_D
GND_D
GND_D
GND_D
Ground Posts for Scope Probe ground
4.7uF
16V
1206
C105
GP4
GP7
J10 J11
J12 J13
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 35 2017 Microchip Technology Inc.
A.15 ADM00825 - SCHEMATIC (PROGRAMMABLE CLOCK)
CLK2_N
CLK0_P
CLK0_N
CLK4
CLK2_P
VDDAP2
1
VDD
2
QC1
3
VDDOC
4
/QC1
5
QC2
6
/QC2
7
OEC1/2/3
8
QD1
9
VDDOD
10
/QD1
11
VSS
12
OED1/2/3
13
VDDOD
14
QD3
15
/QD3
16
GND
17
SCK
18
CSB
19
SDO
20
SDI
21
QB2
22
VDDOB
23
/QB2
24
OEB1/2/3 25
VSS 26
QB1 27
/QB1 28
OEA1/2/3 29
VDDOA 30
QA2 31
/QA2 32
VDDOA 33
QA1 34
/QA1 35
VDD 36
VDDAP1 37
VSS 38
REFIN1 39
/REFIN1 40
VDDI1 41
VDDI2 42
XTAL_XIN 43
XTAL_OUT 44
REFIN2 45
/REFIN2 46
VSS 47
VSS 48
EPAD 49
U10
SM803004
13 X2
XTAL-40MHz
GND_D
GND_D
GND_DGND_D
GND_D
CTRL_OEC
CTRL_OED
CTRL_OEB
75k
0603
1%
R36
3V3_CLK
0.010uF
25V
0603
C98
4700pF
50V
0603
C99
VDDOAB
GND_D
40MHz_P
40MHz_N
0.1uF
16V
0603
C67
0.1uF
16V
0603
C68
INF
R34
INF
R35
GND_D
GND_D
100R
0603
1%
R20
CTRL_SCK
CTRL_CSB
SDO
CTRL_SDI
0.1uF
16V
0603
C92
0.1uF
16V
0603
C94
100R
0603
1%
R40
0.1uF
16V
0603
C93
0.1uF
16V
0603
C95
INF
R39
INF
R41
GND_D
GND_D
CLK3_P
CLK3_N
CLK1_P
CLK1_N 0.1uF
16V
0603
C82
0.1uF
16V0603
C81
100R
0603
1%
R37
CLK5
GND_D
4.7uF
16V
0603
C96
4.7uF
16V
0603
C97
3V3_CLK
0.010uF
25V
0603
C85
4700pF
50V
0603
C86
VDDOCD
GND_D
GND_D
4.7uF
16V
0603
C84
4.7uF
16V
0603
C83
3V3_CLK
0.010uF
25V
0603
C71
4700pF
50V
0603
C72
VDD
GND_D
GND_D
4.7uF
16V
0603
C69
4.7uF
16V
0603
C70
VDD
VDD
VDD
VDD
VDDOAB
VDDOAB
VDDOAB
VDDOCD
VDDOCD
VDDOCD
DNI
DNI
DNI
DNI
10k
0603
1%
R38
10k
0603
1%
R33
10k
0603
1%
R42
VDDOAB
10000pF
50V
0603
C100
10000pF
50V
0603
C101
10000pF
50V
0603
C88
10000pF
50V
0603
C87
10000pF
50V
0603
C73
10000pF
50V
0603
C74
10000pF
50V
0603
C75
10000pF
50V
0603
C76
10000pF
50V
0603
C77
10000pF
50V
0603
C78
10000pF
50V
0603
C91
10000pF
50V
0603
C102
VOUT 1
VOU
T
ADJ 2
GND 3
EN
4VIN
5VIN
6
U8
MIC94325YMT-TR
VOUT 1
VOU
T
ADJ 2
GND 3
EN
4VIN
5VIN
6
U11
MIC94325YMT-TR
VOUT 1
VOU
T
ADJ 2
GND 3
EN
4VIN
5VIN
6
U12
MIC94325YMT-TR
100k
0603
1%
R43
10000pF
50V
0603
C107
100k
0603
1%
R45
10000pF
50V
0603
C108
100k
0603
1%
R47
10000pF
50V
0603
C109
0R
0603
R49
0R
0603
R52
D7
30V
D8
30V
D9
30V
1/10 W
78.7k
1%
R44
1/10 W
78.7k
1%
R46
1/10 W
78.7k
1%
R48
GND_D
GND_D
2017 Microchip Technology Inc. DS50002582A-page 36
A.16 ADM00825 - SCHEMATIC (FPGA)
D0
1
(DNC)
2
CLK
3
TDI
4
TMS
5
TCK
6
CF
7
OE/RESET
8
(DNC)
9
CE
10 GND 11
(DNC) 12
CEO 13
(DNC) 14
(DNC) 15
(DNC) 16
TDO 17
VCCINT 18
VCCO 19
VCCJ 20
U2
XCF04S-VOG20C
GND_D
1V2_VCCINT
3V3_VDD
M0
M1
M0
M1
0R
0603
R10
0R
0603
R15
3V3_VDD
GND_D
**DNI
Default config set to Master Serial M(1:0) = 01
GND_D
3V3_VDD
GND_D
3V3_VDD
4.7k
0603
5%
R11
4.7k
0603
5%
R14
51R
R3 CCLKR
CCLKR
51R
R8
3V3_VDD
100R
R6
100R
R7
GND_D
PROG_B
PROG_B
4.7k
0603
5%
R4
3V3_VDD
TACT SPST
1 4
2 3
SW2
GND_D
0R
0603
R5
PROGB_IN
**DNI (Do Not Install)
PUSHBUTTON TO FORCE THE RECONFIGURATION
FPGA_DONE
4.7k
0603
5%
R2
3V3_VDD
FPGA_DONE
3
1
2
BSS123
Q1
FPGA_DONE
GND_D
GREEN
LD1
D5V
330R
0603
5%
R12
FPGA_DONE
INIT_B
4.7k
0603
5%
R1
3V3_VDD
INIT_B
GND_D
22R
R9
DIN
DIN
1
2
3
4
5
6
HDR-2.54 Male 1x6
J4 3V3_VDD
FPGA JTAG
GND_D
FPGA_TMS
FPGA_TCK
FPGA_TDO
FPGA_TDI
FPGA_TDO
FPGA_TMS
FPGA_TCK
FPGA_TDI
"DONE" LED
1
2
3
4
5
6
HDR-2.54 Male 1x6
J5 3V3_VDD
PROM JTAG
GND_D
PROM_TMS
PROM_TCK
PROM_TDO
PROM_TDI
PROM_TDI
PROM_TMS
PROM_TCK
PROM_TDO
4.7k
R13
3V3_VDD
SCK
MOSI
MISO
CSBAR
FPGA_RST
SPI_RST
3V3_VDD
USB_CONFIG
2V5_VDD
2V5_VDD
CLK0_P
CLK0_N
IO_2V5_0_P
IO_2V5_0_N
IO_2V5_1_P
IO_2V5_1_N
IO_2V5_2_P
IO_2V5_2_N
IO_2V5_3_P
IO_2V5_3_N
IO_2V5_4_P
IO_2V5_4_N
IO_2V5_5_P
IO_2V5_5_N
IO_2V5_6_P
IO_2V5_6_N
IO_2V5_7_P
IO_2V5_7_N
CLK1_P
CLK1_N
IO_2V5_8_P
IO_2V5_8_N
IO_2V5_10_P
IO_2V5_10_N
IO_2V5_9_P
IO_2V5_9_N
IO_2V5_11_P
IO_2V5_11_N
IO_2V5_12_P
IO_2V5_12_N
IO_2V5_13_P
IO_2V5_13_N
IO_2V5_14_P
IO_2V5_14_N
IO_3V3_1
IO_3V3_2
IO_3V3_3
IO_3V3_4
IO_3V3_5
GP4
GP7
EXT_INT
U_FPGA_DECOUPLE
FPGA_DECOUPLE.SchDoc
GND
3
VCCO_3 4
GND
13
VCCO_3 18
VCCINT 19
VCCAUX 20
GND
25
VCCINT 28
VCCO_3 31
VCCAUX 36
VCCO_2 42
GND
49
VCCINT 52
VCCAUX 53
GND
54
VCCO_2 63
GND
68
VCCO_1 76
GND
77
VCCO_1 86
VCCINT 89
VCCAUX 90
GND
91
GND
96
VCCO_1 103
GND
108
GND
113
VCCO_0 122
VCCO_0 125
VCCINT 128
VCCAUX 129
GND
130
VCCO_0 135
GND
136
U1A
SUSPEND
73
TDO
106
TMS
107
TCK
109
TDI
110
U1B
IO_L83N_VREF_3 1
IO_L83P_3 2
IO_L52N_3 5
IO_L52P_3 6
IO_L51N_3 7
IO_L51P_3 8
IO_L50N_3 9
IO_L50P_3 10
IO_L49N_3 11
IO_L49P_3 12
IO_L44N_GCLK20_3 14
IO_L44P_GCLK21_3 15
IO_L43N_GCLK22_IRDY2_3 16
IO_L43P_GCLK23_3 17
IO_L42N_GCLK24_3 21
IO_L42P_GCLK25_TRDY2_3 22
IO_L41N_GCLK26_3 23
IO_L41P_GCLK27_3 24
IO_L37N_3 26
IO_L37P_3 27
IO_L36N_3 29
IO_L36P_3 30
IO_L2N_3 32
IO_L2P_3 33
IO_L1N_VREF_3 34
IO_L1P_3 35
BANK 3
U1C
PROGRAM_B_2 37
IO_L65N_CSO_B_2 38
IO_L65P_INIT_B_2 39
IO_L64N_D9_2 40
IO_L64P_D8_2 41
IO_L62N_D6_2 43
IO_L62P_D5_2 44
IO_L49N_D4_2 45
IO_L49P_D3_2 46
IO_L48N_RDWR_B_VREF_2 47
IO_L48P_D7_2 48
IO_L31N_GCLK30_D15_2 50
IO_L31P_GCLK31_D14_2 51
IO_L30N_GCLK0_USERCCLK_2 55
IO_L30P_GCLK1_D13_2 56
IO_L14N_D12_2 57
IO_L14P_D11_2 58
IO_L13N_D10_2 59
IO_L13P_M1_2 60
IO_L12N_D2_MISO3_2 61
IO_L12P_D1_MISO2_2 62
IO_L3N_MOSI_CSI_B_MISO0_2 64
IO_L3P_DO_DIN_MISO_MISO1_2 65
IO_L2N_CMPMOSI_2 66
IO_L2P_CMPCLK_2 67
IO_L1N_M0_CMPMISO_2 69
IO_L1P_CCLK_2 70
DONE_2 71
CMPCS_B_2 72
BANK 2
U1D
IO_L66N_SCP0_0 111
IO_L66P_SCP1_0 112
IO_L65N_SCP2_0 114
IO_L65P_SCP3_0 115
IO_L64N_SCP4_0 116
IO_L64P_SCP5_0 117
IO_L63N_SCP6_0 118
IO_L63P_SCP7_0 119
IO_L62N_VREF_0 120
IO_L62P_0 121
IO_L37N_GCLK12_0 123
IO_L37P_GCLK13_0 124
IO_L36N_GCLK14_0 126
IO_L36P_GCLK15_0 127
IO_L35N_GCLK16_0 131
IO_L35P_GCLK17_0 132
IO_L34N_GCLK18_0 133
IO_L34P_GCLK19_0 134
IO_L4N_0 137
IO_L4P_0 138
IO_L3N_0 139
IO_L3P_0 140
IO_L2N_0 141
IO_L2P_0 142
IO_L1N_VREF_0 143
IO_L1P_HSWAPEN_0 144
BANK 0
U1F
IO_L74N_DOUT_BUSY_1 74
IO_L74P_AWAKE_1 75
IO_L47N_1 78
IO_L47P_1 79
IO_L46N_1 80
IO_L46P_1 81
IO_L45N_1 82
IO_L45P_1 83
IO_L43N_GCLK4_1 84
IO_L43P_GCLK5_1 85
IO_L42N_GCLK6_TRDY1_1 87
IO_L42P_GCLK7_1 88
IO_L41N_GCLK8_1 92
IO_L41P_GCLK9_IRDY1_1 93
IO_L40N_GCLK10_1 94
IO_L40P_GCLK11_1 95
IO_L34N_1 97
IO_L34P_1 98
IO_L33N_1 99
IO_L33P_1 100
IO_L32N_1 101
IO_L32P_1 102
IO_L1N_VREF_1 104
IO_L1P_1 105
BANK 1
U1E
CTRL_OEC
CTRL_OED
CTRL_OEB
CTRL_SCK
CTRL_CSB
SDO
CTRL_SDI
1
2
RF Coaxial SMA Female
J8
GND_D
1
2
RF Coaxial SMA Female
J9
GND_D
OUT1 OUT2
OUT1
OUT2
OUT1 OUT2
IO_2V5_15_P
IO_2V5_15_N
IO_2V5_16_P
IO_2V5_16_N
IO_2V5_17_P
IO_2V5_17_N
IO_2V5_18_P
IO_2V5_18_N
IO_2V5_19_P
IO_2V5_19_N
IO_2V5_20_P
IO_2V5_20_N
IO_2V5_21_P
IO_2V5_21_N
IO_3V3_6_N
40MHz_N
40MHz_P
IO_3V3_6_P
IO_3V3_7_N
IO_3V3_7_P
IO_3V3_8_N
IO_3V3_8_P
IO_3V3_9_N
IO_3V3_9_P
IO_3V3_10_N
IO_3V3_10_P
IO_3V3_11_N
IO_3V3_11_P
IO_3V3_12_N
IO_3V3_12_P
IO_3V3_13_N
IO_3V3_13_P
IO_3V3_14_N
IO_3V3_14_P
IO_3V3_15
IO_3V3_16
IO_3V3_17
**DNI
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 37 2017 Microchip Technology Inc.
A.17 ADM00825 - SCHEMATIC (FPGA DECOUPLING CAPACITORS)
For VCCO_0
3V3_VDD
33uF
10V
TANT-B
C10
47nF
16V
0603
C13
1000pF
50V
0603
C14
1000pF
50V
0603
C15
1000pF
50V
0603
C16
GND_D
For VCCO_1
2V5_VDD
33uF
10V
TANT-B
C11
47nF
16V
0603
C17
1000pF
50V
0603
C18
1000pF
50V
0603
C19
1000pF
50V
0603
C20
GND_D
For VCCO_2
3V3_VDD
33uF
10V
TANT-B
C27
47nF
16V
0603
C30
1000pF
50V
0603
C31
1000pF
50V
0603
C32
GND_D
For VCCO_3
2V5_VDD
33uF
10V
TANT-B
C28
47nF
16V
0603
C33
1000pF
50V
0603
C34
1000pF
50V
0603
C35
1000pF
50V
0603
C36
GND_D
For 1V2_VCCINT
1V2_VCCINT
47nF
16V
0603
C4
1000pF
50V
0603
C5
1000pF
50V
0603
C6
1000pF
50V
0603
C7
GND_D
100uF
6.3V
TANT-B
C3
For VCCAUX
3V3_VDD
33uF
10V
TANT-B
C12
47nF
16V
0603
C21
1000pF
50V
0603
C22
1000pF
50V
0603
C23
1000pF
50V
0603
C24
GND_D
1000pF
50V
0603
C25
1000pF
50V
0603
C26
1000pF
50V
0603
C8
1000pF
50V
0603
C9
For XCF04S
3V3_VDD
33uF
10V
TANT-B
C29
47nF
16V
0603
C37
1000pF
50V
0603
C38
1000pF
50V
0603
C39
1000pF
50V
0603
C40
GND_D
2017 Microchip Technology Inc. DS50002582A-page 38
A.18 ADM00825 - SCHEMATIC (CONNECTORS)
A1
B1
BG1
A2
B2
BG2
A3
B3
BG3
A4
B4
BG5
A5
B5
BG4
A6
B6
BG6
A7
B7
BG7
A8
B8
BG8
A9
B9
BG9
A10
B10
BG10
C1
D1
DG1
C2
D2
DG2
C3
D3
DG3
C4
D4
DG4
C5
D5
DG5
C6
D6
DG6
C7
D7
DG7
C8
D8
DG8
C9
D9
DG9
C10
D10
DG10
J1
CONN-1469028
GND_D GND_D
D5V
IO_2V5_0_P
IO_2V5_0_N
IO_2V5_2_P
IO_2V5_2_N
IO_2V5_1_P
IO_2V5_1_N
IO_2V5_3_P
IO_2V5_3_N
IO_2V5_5_P
IO_2V5_5_N
IO_2V5_7_P
IO_2V5_7_N
IO_2V5_9_P
IO_2V5_9_N
IO_2V5_11_P
IO_2V5_11_N
IO_2V5_13_P
IO_2V5_13_N
IO_2V5_4_P
IO_2V5_4_N
IO_2V5_6_P
IO_2V5_6_N
IO_2V5_8_P
IO_2V5_8_N
IO_2V5_10_P
IO_2V5_10_N
IO_2V5_12_P
IO_2V5_12_N
IO_2V5_14_N
IO_2V5_14_P
IO_3V3_1
IO_3V3_2
IO_3V3_3
IO_3V3_4
IO_3V3_5
CLK4
CLK2_P
CLK2_N
33uF
10V
TANT-B
C1
0.1uF
25V
0603
C2
GND_D
PWR5V0
CLK5
CLK3_P
CLK3_N
A1
B1
BG1
A2
B2
BG2
A3
B3
BG3
A4
B4
BG5
A5
B5
BG4
A6
B6
BG6
A7
B7
BG7
A8
B8
BG8
A9
B9
BG9
A10
B10
BG10
C1
D1
DG1
C2
D2
DG2
C3
D3
DG3
C4
D4
DG4
C5
D5
DG5
C6
D6
DG6
C7
D7
DG7
C8
D8
DG8
C9
D9
DG9
C10
D10
DG10
J2
CONN-1469028
GND_D GND_D
D5V
GND_D
PWR5V0
IO_2V5_15_P
IO_2V5_15_N
IO_2V5_16_P
IO_2V5_16_N
IO_2V5_17_P
IO_2V5_17_N
IO_2V5_18_P
IO_2V5_18_N
IO_2V5_19_P
IO_2V5_19_N
IO_2V5_20_P
IO_2V5_20_N
IO_2V5_21_P
IO_2V5_21_N
IO_3V3_6_N
IO_3V3_6_P IO_3V3_7_P
IO_3V3_7_N
IO_3V3_8_P
IO_3V3_8_N
IO_3V3_9_P
IO_3V3_9_N
IO_3V3_10_P
IO_3V3_10_N
IO_3V3_11_P
IO_3V3_11_N
IO_3V3_12_P
IO_3V3_12_N IO_3V3_13_N
IO_3V3_13_P
IO_3V3_14_N
IO_3V3_14_P
IO_3V3_16
IO_3V3_15
IO_3V3_17
33uF
10V
TANT-B
C90
0.1uF
25V
0603
C89
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 39 2017 Microchip Technology Inc.
A.19 ADM00825 - TOP SILK
A.20 ADM00825 - TOP COPPER AND SILK
2017 Microchip Technology Inc. DS50002582A-page 40
A.21 ADM00825 - TOP COPPER
A.22 ADM00825 - INNER 1
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 41 2017 Microchip Technology Inc.
A.23 ADM00825 - INNER 2
A.24 ADM00825 - INNER 3
2017 Microchip Technology Inc. DS50002582A-page 42
A.25 ADM00825 - INNER 4
A.26 ADM00825 - BOTTOM COPPER
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 43 2017 Microchip Technology Inc.
A.27 ADM00825 - BOTTOM COPPER AND SILK
A.28 ADM00825 - BOTTOM SILK
HV2903
ANALOG SWITCH
EVALUATION BOARD
USERS GUIDE
2017 Microchip Technology Inc. DS50002582A-page 44
Appendix B. Bill of Materials
B.1 HV2903 ANALOG SWITCH EVALUATION BOARD
TABLE B-1: BILL OF MATERIALS (BOM)
Qty. Reference Description Manufacturer Part Number
6 C1, C2, C19, C20,
C21, C22
Capacitor TDK Corporation C4532X7T2E105M250KA
4 C10, C13, C27, C28 Capacitor Murata
Manufacturing Co., Ltd.
GCM21A7U2E331JX01D
2 C15, C16 Capacitor-Array-10nF AVX Corporation W3A41C103MAT2A
11 C25, C26, C31, C32,
C33, C34, C35, C36,
C37, C38, C39
Capacitor Cal-Chip
Electronics Inc.
GMC10Y5V104Z25NTLF
7 C3, C4, C6, C7, C8,
C11, C14
Capacitor TDK Corporation CGA2B3X7R1V104K050BB
4 C5, C9, C12, C17 Capacitor Panasonic® - ECG ECU-V1H150JCN
2 D1, D2 MMBD3004BRM-300V Diodes Incorporated®MMBD3004BRM-7-F
2 D13, D16 Diodes Incorporated®BAT54DW-7FDICT-ND
2 D14, D15 DIO SCTKY B1100
790mV 1A 70V
DO-214AC_SMA
Diodes Incorporated®B1100-13-F
2 J1, J2 CONN HEADER 40POS
2ROW R/A HM-ZD TIN
TE Connectivity, Ltd. 6469169-1
1 J3 Samtec, Inc. TSW-103-07-T-S
1 J4 Samtec, Inc. TSW-105-07-S-S
13 J5, J6, J7, J11, J8,
J12, J13, J16, J25,
J26, J27, J28, J29
FCI 77311-118-02LF
12 J9, J10, J14, J15, J17,
J18, J19, J20, J21,
J22, J23, J24
CONN SMA TE Connectivity, Ltd. 5-1814832-1
1 PCB HV2903 Analog Switch
Evaluation Board –
Printed Circuit Board
Microchip Technology Inc. 04-10599
4 R1, R2, R8, R9 Resistor-2.55K 2W Panasonic® - ECG ERJ-1TNF2551U
1 R16, R19 Resistor Yageo Corporation RC0402JR-074K7L
5 R17, R18 Resistor Panasonic® - ECG
1 R3 Resistor Yageo Corporation RC0402JR-070RL
4 R4, R10, R12, R14 Resistor Vishay
Intertechnology, Inc.
CRCW060349R9FKEAHP
2 R5, R6 RES 4.99OHM 1/16W
SMD0805
Stackpole
Electronics, Inc.
RMCF0805FT4R99
4 R7, R11, R13, R15 Resistor Yageo Corporation RC1206FR-071KL
Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM
used in manufacturing uses all RoHS-compliant components.
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 45 2017 Microchip Technology Inc.
B.2 HV MUX CONTROLLER BOARD
12 T24, T25, T26, T27,
T28, T29, T30, T31,
T32, T33, T34, T35,
T36
Test Point
2 U1, U2 MD1822 Microchip Technology Inc. MD1822K6-G
1 U13 HV2903 Microchip Technology Inc. HV2903/AHA
1 U14 SQI Serial Flash Micron Technology Inc. N25Q128A13ESE40E
4 U5, U6, U7, U8 TC6320 DFN-8 Microchip Technology Inc. TC6320K6-G
TABLE B-2: BILL OF MATERIALS (BOM)
Qty. Reference Description Manufacturer Part Number
8 C1, C10, C11, C12,
C27, C28, C29, C90
CAP TANT 33uF 10V 10%
1.4Ohm SMD B
KEMET T494B336K010AT
2 C103, C105 CAP CER 4.7uF 16V 10%
X7R SMD 1206
KEMET C1206C475K4RACTU
4 C2, C89, C104, C106 CAP CER 0.1uF 25V 10%
X7R SMD 0603
Murata
Manufacturing Co., Ltd.
GRM188R71E104-
KA01D
1 C3 CAP TANT 100uF 6.3V 10%
400mOhm SMD B
AVX Corporation TPSB107K006R0400
7 C4, C13, C17, C21,
C30, C33, C37
CAP CER 47nF 16V 10% X7R
SMD 0603
Murata
Manufacturing Co., Ltd.
GRM188R71C473-
KA01D
1 C41 CAP CER 22000pF 50V 5%
X7R SMD 0603
AVX Corporation 06035C223JAT2A
10 C42, C50, C52, C54,
C56, C58, C60, C62,
C64, C66
CAP CER 0.1uF 50V 20%
X7R SMD 0603
TDK Corporation C1608X7R1H104M
12 C43, C44, C45, C46,
C51, C53, C55, C57,
C59, C61, C63, C65
CAP CER 10uF 10V 10% X7R
SMD 0805
Murata
Manufacturing Co., Ltd.
GRM21BR71A106KE51
L
3 C47, C48, C49 CAP CER 10uF 35V 10% X5R
SMD 1206
Taiyo Yuden Co., Ltd. GMK316BJ106KL-T
24 C5, C6, C7, C8, C9,
C14, C15, C16, C18,
C19, C20, C22, C23,
C24, C25, C26, C31,
C32, C34, C35, C36,
C38, C39, C40
CAP CER 1000pF 50V 10%
X7R SMD 0603
NIC Components Corp. NMC0603X7R102K50T
RPF
8 C67, C68, C81, C82,
C92, C93, C94, C95
CAP CER 0.1uF 16V 10%
X7R SMD 0603
Samsung
Electro-Mechanics
America, Inc.
CL10B104KO8NNNC
9 C69, C70, C83, C84,
C96, C97,107,108,109
CAP CER 4.7uF 16V 10%
X5R SMD 0603
TDK Corporation C1608X5R1C475K080
AC
3 C71, C85, C98 CAP CER 0.010uF 25V 10%
X7R SMD 0603
Yageo Corporation CC0603KRX7R8BB103
Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM
used in manufacturing uses all RoHS-compliant components.
TABLE B-1: BILL OF MATERIALS (BOM) (CONTINUED)
Qty. Reference Description Manufacturer Part Number
Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM
used in manufacturing uses all RoHS-compliant components.
2017 Microchip Technology Inc. DS50002582A-page 46
3 C72, C86, C99 CAP CER 4700pF 50V 10%
X7R SMD 0603
KEMET C0603C472K5RACTU
12 C73, C74, C75, C76,
C77, C78, C87, C88,
C91, C100, C101,
C102
CAP CER 10000PF 50V 10%
X7R 0603
AVX Corporation 06035C103KAT2A
1 D1 DIO SCTKY 20BQ030P
470mV 2A 30V
DO-214AA_SMB
ON Semiconductor®MBRS130LT3G
8 D2, D3, D4, D5, D6,
D7, D8, D9
DIODE SCHOTTKY 30V
200MA SOD523
Micro Commercial
Components
BAT54WX-TP
2 J1, J2 CONN RCPT 40POS 2ROW
RT ANG T/H TE Connectivity
1469028-1
4 J10, J11, J12, J13 CONN PC PIN CIRC
0.030DIA GOLD
Mill-Max Mfg.
Corporation
3132-0-00-15-00-00-08-
0
2 J4, J5 CON HDR-2.54 Male 1x6 Tin
5.84MH TH VERT
Sullins
Connector Solutions
PEC06SAAN
1 J6 CON POWER 2.5mm 5.5mm
SWITCH TH R/A
CUI Inc. PJ-002B
1 J7 CON USB MINI-B Female
SMD R/A
Hirose Electric Co., Ltd. UX60SC-MB-5ST(80)
2 J8, J9 CON RF Coaxial SMA Female
2P TH VERT
TE Connectivity, Ltd. 5-1814832-1
1 L1 4.7uH 11A Inductor Coilcraft XAL6060-472MEB
3 LD1, LD2, LD4 DIO LED GREEN 2.2V 25mA
15mcd Clear SMD 0603
Kingbright Electronic
Co., Ltd.
APT1608SGC
1 LD5 DIO LED RED 2V 25mA
104mcd Diffuse SMD 0603
OSRAM Opto
Semiconductors GmbH.
LS
Q976-NR-1-0-20-R18
1 PCB HV MUX Controller Board –
Printed Circuit Board
Microchip
Technology Inc.
04-10636
1 Q1 TRANS FET N-CH BSS123
100V 170mA 300mW
SOT-23-3
Diodes Incorporated®BSS123-7-F
6 R1, R2, R4, R11, R13,
R14
RES TKF 4.7k 5% 1/10W
SMD 0603
Panasonic® - ECG ERJ-3GEYJ472V
1 R12 RES MF 330R 5% 1/16W
SMD 0603
Panasonic® - ECG ERA-V33J331V
1 R16 RES TKF 39k 1% 1/10W SMD
0603
Panasonic® - ECG ERJ-3EKF3902V
1 R17 RES TKF 19.1k 1% 1/10W
SMD 0603
Panasonic® - ECG ERJ-3EKF1912V
1 R18 RES TKF 1k 5% 1/10W SMD
0603
Panasonic® - ECG ERJ-3GEYJ102V
2 R19, R27 RES TKF 390R 5% 1/10W
SMD 0603
Panasonic® - ECG ERJ-3GEYJ391V
3 R20, R37, R40 RES TKF 100R 1% 1/10W
SMD 0603
Panasonic® - ECG ERJ-3EKF1000V
1 R21 RES TKF 8.66k 1% 1/10W
SMD 0603
Yageo Corporation RC0603FR-078K66L
TABLE B-2: BILL OF MATERIALS (BOM) (CONTINUED)
Qty. Reference Description Manufacturer Part Number
Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM
used in manufacturing uses all RoHS-compliant components.
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 47 2017 Microchip Technology Inc.
6 R22, R28, R29, R33,
R38, R42
RES TF 10k 1% 1/8W SMD
0603
Vishay Beyschlag MCT06030C1002FP50
0
4 R23, R24, R30, R50 RES TKF 10k 5% 1/10W SMD
0603
Panasonic® - ECG ERJ-3GEYJ103V
1 R25 RES TKF 51k 1% 1/10W SMD
0603
Panasonic® - ECG ERJ-3EKF5102V
1 R26 RES TKF 69.8k 1% 1/10W
SMD 0603
Panasonic® - ECG ERJ-3EKF6982V
2 R3, R8 RES TKF 51R 5% 1/10W SMD
0603
Panasonic® - ECG ERJ-3GEYJ510V
1 R31 RES TKF 82K 1% 1/10W SMD
0603
Panasonic® - ECG ERJ-3EKF8202V
1 R32 RES TKF 10.7k 1% 1/10W
SMD 0603
Panasonic® - ECG ERJ-3EKF1072V
4 R34, R35, R39, R41 RES TKF 150R 1% 1/10W
SMD 0603
Stackpole
Electronics, Inc.
RMCF0603FT150R
1 R36 RES TKF 75k 1% 1/10W SMD
0603
Panasonic® - ECG ERJ-3EKF7502V
3 R43,R45,R47 RES TKF 100k 1% 1/10W
SMD 0603
Panasonic® - ECG
3 R44, R46, R48 RES 78.7k 1% 1/10W SMD
0603
Yageo Corporation RC0603FR-0778K7L
2 R49,R52 RES SMD 0.0OHM JUMPER
1/10W 0603
Panasonic® - ECG ERJ-3GEY0R00V
3 R5, R10, R15 RES TKF 0R 1/10W SMD
0603
NIC Components Corp. NRC06Z0TRF
1 R51 RES TKF 150R 5% 1/10W
SMD 0603
Panasonic® - ECG ERJ-3GEYJ151V
2 R6, R7 RES TKF 100R 5% 1/10W
SMD 0603
Vishay
Intertechnology, Inc.
CRCW0603100RJNEA
1 R9 RES TKF 22R 5% 1/10W SMD
0603
Panasonic® - ECG ERJ-3GSYJ220V
1 SW1 SWITCH SLIDE SPDT MINI
50V 0.5A G4050X-R TH
Jameco® Electronics G4050X-R
1 SW2 SWITCH TACT SPST 12V
50mA TL3301NF160QG/TR
SMD
E-Switch®, Inc. TL3301NF260QG/TR
1 U1 IC FPGA 102 I/O 144TQFP Xilinx Inc. XC6SLX9-2TQG144C
1 U10 FLEXIBLE ULTRA-LOW JIT-
TER CLOCK GENERATOR
Microchip
Technology Inc.
SM803234
1 U2 IC PROM SRL FOR 4M GATE Xilinx Inc. XCF04SVOG20C
1 U3 3A BUCK 5V QFN-16 Semtech Corporation TS30013-M000QFNR
4 U4, U5, U6, U7 MCHP ANALOG LDO 0.8V-5V
MCP1727T-ADJE/MF DFN-8
Microchip
Technology Inc.
MCP1727-ADJE/MF
3 U8, U11, U12 Adjustable LDO ripple blocker Microchip
Technology Inc.
MIC94325YMT-TR
1 U9 MCHP INTERFACE USB SPI
MCP2210-I/SS SSOP-20
Microchip
Technology Inc.
MCP2210T-I/SS
TABLE B-2: BILL OF MATERIALS (BOM) (CONTINUED)
Qty. Reference Description Manufacturer Part Number
Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM
used in manufacturing uses all RoHS-compliant components.
2017 Microchip Technology Inc. DS50002582A-page 48
1 X1 RESONATOR 12MHz 0.1%
SMD CSTCE-G
Murata
Manufacturing Co., Ltd.
CSTCE12M0G15L99-R
0
1 X2 40 MHz ±30ppm Crystal 12pF
40 Ohm -20°C ~ 70°C Surface
Mount 4-SMD
TXC Corporation 7B-40.000MAAE-T
TABLE B-2: BILL OF MATERIALS (BOM) (CONTINUED)
Qty. Reference Description Manufacturer Part Number
Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM
used in manufacturing uses all RoHS-compliant components.
HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 49 2017 Microchip Technology Inc.
NOTES:
HV2903
ANALOG SWITCH
EVALUATION BOARD
USERS GUIDE
2017 Microchip Technology Inc. DS50002582A-page 50
Appendix C. Demo Board Waveforms
C.1 BOARD TYPICAL WAVEFORMS
FIGURE C-1: 5 MHz 4 Pulses Ch1 Pulser Input and Output When All SW OFF.
FIGURE C-2: 5 MHz 10 Pulses, VPP/VNN = ±100V, VDD/VSS = ±6V,
VGP = 10V, 330 pF//2.5 K Load.
Ch3
5V/div
1_DMP
Ch1
5V/div
1_A
Ch2
5V/div
1_B
CH4
1V/div
Ch1 Pulser Output


       
 


















































       
 






























































 















 
 
 


 




 


Ch1
100V/div
SW8A (SW8 ON)
Ch2
5V/div
SW9A (SW9 OFF)
Ch3
100V/div
SW24A (SW24 ON)
Ch4
5V/div
SW25A (SW25 OFF)








































































         
 
 
 


 


HV2903 Analog Switch Evaluation Board User’s Guide
DS50002582A-page 51 2017 Microchip Technology Inc.
DS50002582A-page 52 2017 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Worldwide Sales and Service
10/25/17