IRF3205PbF
HEXFET® Power MOSFET
07/23/10
Absolute Maximum Ratings
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.75
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 62
Thermal Resistance
www.irf.com 1
VDSS = 55V
RDS(on) = 8.0m
ID = 110A
S
D
G
TO-220AB
Description
Advanced HEXFET® Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET power MOSFETs are well known
for, provides the designer with an extremely efficient and
reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation levels
to approximately 50 watts. The low thermal resistance and
low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
lAdvanced Process Technology
lUltra Low On-Resistance
lDynamic dv/dt Rating
l175°C Operating Temperature
lFast Switching
lFully Avalanche Rated
lLead-Free
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 110
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 80 A
IDM Pulsed Drain Current 390
PD @TC = 25°C Power Dissipation 200 W
Linear Derating Factor 1.3 W/°C
VGS Gate-to-Source Voltage ± 20 V
IAR Avalanche Current62 A
EAR Repetitive Avalanche Energy20 mJ
dv/dt Peak Diode Recovery dv/dt 5.0 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)
PD-94791B
IRF3205PbF
2www.irf.com
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode)––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 62A, VGS = 0V
trr Reverse Recovery Time ––– 69 104 ns TJ = 25°C, IF = 62A
Qrr Reverse Recovery Charge ––– 143 215 nC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
110
390
A
Starting TJ = 25°C, L = 138µH
RG = 25, IAS = 62A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
ISD 62A, di/dt 207A/µs, VDD V(BR)DSS,
TJ 175°C
Pulse width 400µs; duty cycle 2%.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 55 –– –– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.057 V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 8.0 mVGS = 10V, ID = 62A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 44 ––– ––– S VDS = 25V, ID = 62A
––– ––– 25 µA VDS = 55V, VGS = 0V
––– ––– 250 VDS = 44V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -20V
QgTotal Gate Charge –– ––– 146 ID = 62A
Qgs Gate-to-Source Charge ––– ––– 35 nC VDS = 44V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 54 VGS = 10V, See Fig. 6 and 13
td(on) Turn-On Delay Time ––– 14 ––– VDD = 28V
trRise Time ––– 101 ––– ID = 62A
td(off) Turn-Off Delay Time ––– 50 –– RG = 4.5
tfFall Time ––– 65 ––– VGS = 10V, See Fig. 10
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 3247 ––– VGS = 0V
Coss Output Capacitance ––– 781 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 211 ––– pF ƒ = 1.0MHz, See Fig. 5
EAS Single Pulse Avalanche Energy––– 1050 264mJ IAS = 62A, L = 138µH
nH
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to TJ = 175°C.
IRF3205PbF
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance
Vs. Temperature
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
107A
1
10
100
1000
4 6 8 10 12
V = 25V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 175 C
J°
IRF3205PbF
4www.irf.com
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
110 100
VDS, Drain-to-Source Voltage (V)
0
1000
2000
3000
4000
5000
6000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
020 40 60 80 100 120
0
2
4
6
8
10
12
14
16
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D62A
V = 11V
DS
V = 27V
DS
V = 44V
DS
1
10
100
1000
10000
1 10 100 1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
Single Pulse
T
T
= 175 C
= 25 C
°
°
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
0.1
1
10
100
1000
0.2 0.8 1.4 2.0 2.6
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 175 C
J°
IRF3205PbF
www.irf.com 5
RD
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
VGS
RG
D.U.T.
10V
+
-
25 50 75 100 125 150 175
0
20
40
60
80
100
120
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
LIMITED BY PACKAGE
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
VGS
RG
D.U.T.
10V
VDD
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRF3205PbF
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150 175
0
100
200
300
400
500
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
25A
44A
62A
IRF3205PbF
www.irf.com 7
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFETS
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RG
VDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRF3205PbF
8www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/2010
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-220AB package is not recommended for Surface Mount Application
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
INTERNATIONAL PART NUMBER
RECT IF IER
LOT CODE
AS S E MB L Y
LOGO
YEAR 0 = 2000
DAT E CODE
WEEK 19
LINE C
LOT CODE 1789
EXAMPLE : THIS IS AN IRF 1010
Note: "P" in assembly line position
i ndi cates "L ead - F ree"
IN THE ASSEMBLY LINE "C"
AS S E MBLED ON WW 19, 2000
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/