4/21/09
Benefits
lImproved Gate, Avalanche and Dynamic
dv/dt Ruggedness
lFully Characterized Capacitance and
Avalanche SOA
lEnhanced body diode dV/dt and dI/dt
Capability
www.irf.com 1
Applications
l High Efficiency Synchronous Rectification in
SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
PD - 97129A
GDS
Gate Drain Source
IRFR1018EPbF
IRFU1018EPbF
Notes through are on page 2
S
D
G
D-Pak
IRFR1018EPbF
I-Pak
IRFU1018EPbF
VDSS 60V
RDS
(
on
)
typ. 7.1m:
max. 8.4m:
ID
(
Silicon Limited
)
79A c
ID
(
Packa
g
e Limited
)
56A
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) A
IDM Pulsed Drain Current d
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
dv/dt Peak Diode Recovery fV/ns
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Avalanche Characteristics
EAS (Thermally limited) Single Pulse Avalanche Energy emJ
IAR Avalanche Current dA
EAR Repetitive Avalanche Energy gmJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
RθJC Junction-to-Case k––– 1.32
RθJA Junction-to-Ambient (PCB Mount) jk ––– 50
RθJA Junction-to-Ambient k––– 110
56c
11
110
21
-55 to + 175
± 20
0.76
°C/W
300
Max.
79c
56
315
88
47
IRFR/U1018EPbF
2www.irf.com
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 56A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.08mH
RG = 25Ω, IAS = 47A, VGS =10V. Part not recommended for
use above this value.
ISD 47A, di/dt 1668A/μs, VDD V(BR)DSS, TJ 175°C.
S
D
G
Pulse width 400μs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C.
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 60 ––– ––– V
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.073 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 7.1 8.4 mΩ
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V
IDSS Drain-to-Source Leakage Current ––– ––– 20 μA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 110 ––– ––– S
QgTotal Gate Charge ––– 46 69 nC
Qgs Gate-to-Source Charge ––– 10 –––
Qgd Gate-to-Drain ("Miller") Charge ––– 12 –––
Qsync Total Gate Charge Sync. (Qg - Qgd)––– 34 –––
RG(int) Internal Gate Resistance ––– 0.73 ––– Ω
td(on) Turn-On Delay Time ––– 13 ––– ns
trRise Time ––– 35 –––
td(off) Turn-Off Delay Time ––– 55 –––
tfFall Time ––– 46 –––
Ciss Input Capacitance ––– 2290 –––
Coss Output Capacitance ––– 270 –––
Crss Reverse Transfer Capacitance ––– 130 ––– pF
Coss eff. (ER) Effective Output Capacitance (Energy Related)
h
––– 390 –––
Coss eff. (TR) Effective Output Capacitance (Time Related)g––– 630 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 79cA
(Body Diode)
ISM Pulsed Source Current ––– ––– 315
(Body Diode)d
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 26 39 ns TJ = 25°C VR = 51V,
––– 31 47 TJ = 125°C IF = 47A
Qrr Reverse Recovery Charge ––– 24 36 nC TJ = 25°C di/dt = 100A/μs g
––– 35 53 TJ = 125°C
IRRM Reverse Recovery Current ––– 1.8 ––– A TJ = 25°C
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
ID = 47A
RG = 10Ω
VGS = 10V g
VDD = 39V
ID = 47A, VDS =0V, VGS = 10V
TJ = 25°C, IS = 47A, VGS = 0V g
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 5mAd
VGS = 10V, ID = 47A g
VDS = VGS, ID = 100μA
VDS = 60V, VGS = 0V
VDS = 48V, VGS = 0V, TJ = 125°C
MOSFET symbol
showing the
VDS = 30V
Conditions
VGS = 10V g
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 60V i
VGS = 0V, VDS = 0V to 60V h
Conditions
VDS = 50V, ID = 47A
ID = 47A
VGS = 20V
VGS = -20V
IRFR/U1018EPbF
www.irf.com 3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
60μs PULSE WIDTH
Tj = 25°C
4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
60μs PULSE WIDTH
Tj = 175°C
4.5V
23456789
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current
(A)
TJ = 25°C
TJ = 175°C
VDS = 25V
60μs PULSE WIDTH
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 47A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
0
1000
2000
3000
4000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 102030405060
QG Total Gate Charge (nC)
0
4
8
12
16
VGS, Gate-to-Source Voltage (V)
VDS= 48V
VDS= 30V
VDS= 12V
ID= 47A
IRFR/U1018EPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 11. Typical COSS Stored Energy
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
0.0 0.5 1.0 1.5 2.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
010 20 30 40 50 60
VDS, Drain-to-Source Voltage (V)
0.0
0.2
0.4
0.6
0.8
Energy (μJ)
-60 -40 -20 020 40 60 80 100120140160180
TJ , Temperature ( °C )
60
65
70
75
80
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
Id = 5mA
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
50
100
150
200
250
300
350
400
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 5.3A
11A
BOTTOM 47A
25 50 75 100 125 150 175
TC, Case Temperature (°C)
0
20
40
60
80
ID, Drain Current (A)
LIMITED BY PACKAGE
0.1 1 10 100
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100μsec
DC
LIMITED BY PACKAGE
IRFR/U1018EPbF
www.irf.com 5
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τι
(
sec
)
0.026741 0.000007
0.28078 0.000091
0.606685 0.000843
0.406128 0.005884
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci
i
Ri
Ci= τi/Ri
τ
τ
C
τ
4
τ
4
R
4
R
4
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 47A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
IRFR/U1018EPbF
6www.irf.com
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th) Gate threshold Voltage (V)
ID = 1.0A
ID = 1.0mA
ID = 250μA
ID = 100μA
0200 400 600 800 1000
diF /dt (A/μs)
0
2
4
6
8
10
12
14
IRR (A)
IF = 32A
VR = 51V
TJ = 25°C
TJ = 125°C
0200 400 600 800 1000
diF /dt (A/μs)
0
2
4
6
8
10
12
14
IRR (A)
IF = 47A
VR = 51V
TJ = 25°C
TJ = 125°C
0200 400 600 800 1000
diF /dt (A/μs)
0
40
80
120
160
200
240
280
320
QRR (A)
IF = 47A
VR = 51V
TJ = 25°C
TJ = 125°C
0200 400 600 800 1000
diF /dt (A/μs)
0
40
80
120
160
200
240
280
320
QRR (A)
IF = 32A
VR = 51V
TJ = 25°C
TJ = 125°C
IRFR/U1018EPbF
www.irf.com 7
Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform
VDS
Pulse Width 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
1K
VCC
DUT
0
L
S
20K
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
*** VGS = 5V for Logic Level Devices
***
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
**
*
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
IRFR/U1018EPbF
8www.irf.com
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
D-Pak (TO-252AA) Part Marking Information
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
INTE RNATIONAL
ASS EMBLE D ON WW 16, 2001
IN THE ASSEMBLY LINE "A"
OR
Note: "P" in as s embly line pos ition
EXAMPLE:
LOT CODE 1234
THIS IS AN IRFR120
WITH ASSEMBLY
i ndicates "L ead- F ree"
PRODUCT (OPTIONAL)
P = DE S I GNAT E S L E AD- F R E E
A = ASSEMBLY SITE CODE
PART NUMBER
WE E K 16
DAT E CODE
YEAR 1 = 2001
RECTIFIER
INTE RNATIONAL
LOGO
LOT CODE
ASSEMBLY
3412
IRFR120
116A
LINE A
34
RECTIFIER
LOGO
IRFR120
12
AS S E MB L Y
LOT CODE
YEAR 1 = 2001
DAT E CODE
PART NUMBER
WE E K 16
"P" in ass embly line position indicates
"L ead- F r ee" quali fi cation to the cons umer -level
P = DE S I GNAT E S L E AD- F R E E
PRODUCT QUALIFIED TO T HE
CONSUMER LEVEL (OPTIONAL)
IRFR/U1018EPbF
www.irf.com 9
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
78
LINE A
LOGO
INTERNAT IONAL
RECTIFIER
OR
PRODUCT (OPT IONAL)
P = DES IGNAT ES LEAD-FREE
A = ASSEMBLY SITE CODE
IRFU120
PART NUMBER
WEEK 19
DAT E CODE
YEAR 1 = 2001
RECTIFIER
INTERNAT IONAL
LOGO
ASSEMBLY
LOT CODE
IRF U120
56
DAT E CODE
PART NUMBER
LOT CODE
ASSEMBLY
56 78
YEAR 1 = 2001
WEEK 19
119A
indicates Lead-Free"
AS SEMBLED ON WW 19, 2001
IN THE ASSEMBLY LINE "A"
Note: "P" in assembly line position
EXAMPLE:
WITH ASSEMBLY
THIS IS AN IRFU120
LOT CODE 5678
IRFR/U1018EPbF
10 www.irf.com
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
12.1 ( .476 )
11.9 ( .469 ) FEED DIRECTION FEED DIRECTION
16.3 ( .641 )
15.7 ( .619 )
TRR TRL
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
16 mm
13 INCH
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.4/09